Abstract: Current APIs for multiprocessor multi-disk file systems are not easy to use in developing out-of-core algorithms that choreograph parallel data accesses. Consequently, the efficiency of these algorithms is hard to achieve in practice. We address this deficiency by specifying an API that includes data-access primitives for data choreography. With our API, the programmer can easily access specific blocks from each disk in a single operation, thereby fully utilizing the parallelism of the underlying storage system.

Our API supports the development of libraries of commonly-used higher-level routines such as matrix-matrix addition, matrix-matrix multiplication, and BMMC (bit-matrix-multiply/complement) permutations. We illustrate our API in implementations of these three high-level routines to demonstrate how easy it is to use.