
Learning Representations of Text through Language and
Discourse Modeling: From Characters to Sentences

by Yacine Jernite

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2018

Professor David Sontag

Dedication

To my loving family and my wonderful partner.

ii

Acknowledgements

I would first like to thank my advisor David Sontag, who made this work possi-

ble and taught me many valuable skills over the last five years. David has been an

ever-reliable source of varied and pertinent insights on pretty much every research prob-

lem I’ve ever thought of, and his extensive knowledge and inexhaustible ingenuity have

helped me out of several tight spots. His advice has also been inestimable in helping me

learn to navigate the world of research, and will no doubt continue to do so in my future

scientific endeavors.

My committee is also comprised of Slav Petrov, Sasha Rush, Kyunghyun Cho, and

Sam Bowman, who have each at different times helped shape my understanding of the

field of natural language processing. From Slav’s statistical NLP class when I arrived at

NYU in the Fall of 2012, to collaborating with Sasha on my first language papers (and

first major coding project!), to several enlightening conversations with Kyunghyun after

his arrival at NYU made language a focus of the lab, to my more recent research with

Sam which helped me round out this thesis in the best possible way. This work could

not have existed in its current form without all of their inputs.

It takes a village to raise a child. . . or to write a thesis. Too many people to do justice

to have contributed to enriching my experience of these five and a half years. I am

grateful to all of my co-authors and collaborators during this graduate program. I also

want to thank all the friends from my previous lives and the ones I have made since

moving to New York whose company I have enjoyed and who have allowed me to keep

growing every day beyond my research field.

Finally, I would like to thank my family, whose unwavering support I can always

count on. My parents, who have been and continue to be the best role models a person

iii

could hope for. Salim and Kenza, whose drive and intelligence make me always want

to be the best version of myself I can imagine. And last but not least, my extraordinary

partner Amanda, who has been a light in my life and a beacon of wisdom for these last

three years.

iv

Abstract

In this thesis, we consider the problem of obtaining a representation of the meaning

expressed in a text. How to do so correctly remains a largely open problem, combin-

ing a number of inter-related questions (e.g. what is the role of context in interpreting

text? how should language understanding models handle compositionality? etc...) In

this work, after reflecting on some of these questions and describing the most common

sequence modeling paradigms in use in recent work, we focus on two specifically: what

level of granularity text should be read at, and what training objectives can lead models

to learn useful representations of a text’s meaning.

In a first part, we argue for the use of sub-word information for that purpose, and

present new neural network architectures which can either process words in a way that

takes advantage of morphological information, or do away with word separations alto-

gether while still being able to identify relevant units of meaning.

The second part starts by arguing for the use of language modeling as a learning

objective, and provides algorithms which can help with its scalability issues and pro-

pose a globally rather than locally normalized probability distribution. It then explores

the question of what makes a good language learning objective, and introduces dis-

criminative objectives inspired by the notion of discourse coherence which help learn a

representation of the meaning of sentences.

v

Statement of Contributions

This thesis is the product of a number of collaborations over the years with several

fantastic co-workers. Chapter 2 is built on work which was first published in [Kim

et al., 2016] and [Jernite et al., 2016], while chapters 3, 4, and 5 use work which was

originally presented in [Jernite et al., 2017b], [Jernite et al., 2015], and [Jernite et al.,

2017a] respectively. The work presented in [Kim et al., 2016] was the product of Yoon

Kim’s work during his Master at NYU under my and David Sontag’s supervision: we

worked together on the model and methodology, and he wrote the code used in the

experiments and most of the paper with help from Sasha Rush, my self and David. Most

of the code and writing used in the rest of the thesis is mine, with help from Sasha,

Edouard Grave and Haoyue Shi for the experiments of [Jernite et al., 2015], [Jernite

et al., 2016], and [Jernite et al., 2017a] respectively. Anna Choromanska was the author

of the original proof for the theorem and some of the lemmas in [Jernite et al., 2017a],

although all have been modified to some extent for this thesis. Sasha, Anna and Sam

Bowman were also involved in the writing of [Jernite et al., 2015], [Jernite et al., 2017b],

and [Jernite et al., 2017a], and my advisor David was heavily involved in the writing

and editing of all papers except [Jernite et al., 2016] (which was work done during my

internship at the Facebook FAIR lab).

vi

Table of Contents

Dedication . ii

Acknowledgements . iii

Abstract . v

Contributions . vi

List of Figures . x

List of Tables . xii

1 Introduction 1

1.1 Motivation . 1

1.2 Overview of the Problem . 3

1.3 Representations of Meaning in NLP 5

1.4 Background: Neural Language Modeling 13

1.5 Background: Recurrent Neural Networks 15

1.6 Organization of this Thesis . 20

2 Using Sub Word Information 23

2.1 Introduction . 24

2.2 Character-Aware Word Embeddings: Model 29

2.3 Character-Aware Word Embeddings: Experiments 33

vii

2.4 Adaptive Character Level Encoding: Model 45

2.5 Adaptive Character Level Encoding: Experiments 50

2.6 Discussion . 58

3 Speeding up Word Level Language Modeling 62

3.1 Introduction . 63

3.2 Background . 67

3.3 Adaptive Tree Model and Learning Algorithm 76

3.4 Theoretical Properties of the Objective 90

3.5 Experiments . 106

3.6 Discussion . 112

4 Globally Normalized Language Modeling 114

4.1 Introduction . 115

4.2 A Markov Random Field Language Model 116

4.3 Efficient Learning of a Chain MRF . 119

4.4 Experiments . 130

4.5 Discussion . 136

5 Towards Better Learning Objectives 138

5.1 Introduction . 139

5.2 Background . 142

5.3 Discourse Inspired Objectives . 145

5.4 Experiments . 148

5.5 Discussion: Further Work on Discourse 152

5.6 Towards Formalizing Meaning for NLP Tasks 153

viii

Conclusion 164

Bibliography 168

ix

List of Figures

1.1 RNN language model . 19

2.1 Character-aware word embedding architecture 30

2.2 n-gram representations . 42

2.3 Two time steps of a VCU . 47

2.4 Per-bit computation . 55

2.5 Per-character computation . 56

2.6 Bits per character on Europarl . 57

2.7 Per-character computation: morphoogy 57

3.1 Hierarchical predictor . 64

3.2 Hierarchical vs flat language model 65

3.3 Hierarchical language model . 66

3.4 J objective . 77

3.5 J objective: probas . 79

3.6 Tree learning algorithm . 83

3.7 J objective: alpha and beta . 91

3.8 Tree learned from the Gutenberg corpus 108

3.9 Test perplexity per epoch. 110

x

4.1 A segment of the linear-chain model over a small corpus. 117

4.2 The cyclic model with N = 16 . 121

4.3 Covering forests . 125

4.4 Lifted inference sub-problem tree . 127

4.5 Exact log-partition vs upper bound . 131

4.6 Learning with lifted bound vs exact objective 132

4.7 Lifted TRW MRF bound vs feed-forward log-likelihood 133

4.8 POS tagging model for K = 2,M = 3 135

5.1 Joint training of sentence encoder . 144

5.2 The eval function . 159

xi

List of Tables

2.1 Multilingual corpus statistics . 34

2.2 Small vs large CharLSTM . 36

2.3 CharLSTM: PTB performance . 37

2.4 Test set perplexities for DATA-S . 38

2.5 Test set perplexities for DATA-L . 40

2.6 CharLSTM: nearest neighbor words 41

2.7 Perplexity on Penn Treebank. 43

2.8 Influence of vocabulary and training data size 44

2.9 Music modeling . 52

2.10 Average amount of computation . 52

2.11 VCRNN perplexity . 54

3.1 Classification performance on the YFCC100M dataset 107

3.2 Examples of learned deep nodes . 111

3.3 Flat vs hierarchical language modeling 111

4.1 Nearest neighbours in different embeddings 134

4.2 POS tagging accuracy . 135

5.1 ORDER objective . 145

xii

5.2 NEXT objective . 146

5.3 CONJUNCTION objective . 147

5.4 List of conjunctions. 147

5.5 Intrinsic evaluation results. 149

5.6 Text classification results . 151

xiii

Chapter 1

Introduction

1.1 Motivation

One of the greatest driving forces of the advance of civilizations is the ability to share

information: individuals who want to advance science and knowledge need to have the

means to build on top of their predecessors’ and contemporaries’ efforts. In Antiquity,

great collections and concentrations of expensive books in centers of knowledge such as

the famed Alexandria library were instrumental in the progress of technique and thought.

In the early Middle Ages, the loss of such centers in Western Europe spelled a period

of sharp decline, until those texts were finally re-discovered and made available in the

late 13th to early 14th century. More than a century later, the development of a more

efficient printing press around 1440 CE by Johannes Gutenberg largely democratized

access to written knowledge by reducing the cost of the production and dissemination

of texts. This had a profound impact on society, and the influence of this innovation

can be traced to the Reformation, the Enlightenment, and much of what marked the

beginning of the Modern Era. Further technological advances in the following cen-

1

turies continued this trend of making information more persistent and readily available,

including the development of lithographs, the 19th century Industrial Revolution steam-

powered presses, and culminating in the rise of digitization and the Internet in the 1980s

and 1990s. Today, the physical cost of accessing or publishing a book, news article or

scientific document is next to nothing.

However, as the cost of producing and spreading texts became virtually nil, new

problems arose in being able to find and make use of relevant knowledge. In a scientific

research setting, for example, every new endeavor begins with questions about the state

of the art. Who has considered the same problem? Who has applied similar methods?

What were their results? As more and more articles are published every passing day, this

information becomes a needle in an increasingly large haystack. But the difficulties do

not stop at finding the needle. In some domains, such as medical research, one routinely

encounters articles reaching different conclusions in answer to the same question. In

such a case, any worthy knowledge needs to be aggregated from an ever increasing

number of publications, which requires significant effort.

This difficulty becomes even more apparent when looking beyond scientific research

at civil society. The same way that technological advance is supported by an easy access

to the work of the whole scientific community, social progress and the good functioning

of democracy depend on every citizen’s understanding of the institutions that support

their societies and of contemporary events. However, journalism has found itself deal-

ing with a significant crisis in recent years, a crisis which has something to do with the

shifting of production costs away from the printing of physical newspapers and maga-

zines. We do not know exactly yet the extent of what has been called the “fake news”

problem, but what is sure is that information now comes from a variety of sources of

varying quality and reliability up to and including public posts on social media, and that

2

combining all of this information, discerning the true from the false, and linking it to

relevant contexts can be a task of awe-inspiring proportions.

Thus, we find that the development of mass writing and production of text, while

undoubtedly beneficial to society, raises new questions of its own. If we are to keep

making knowledge more available, more accessible, and more useful, we need to de-

velop mass reading: new systems and inventions which can consider and combine all of

this available information for us. There have already been some tremendous advances

in that direction. Smarter search engines have become a reality of everyday life, and

manage to somewhat alleviate the “needle in a haystack” problem we mentioned earlier.

But, as noted above, finding the needle is only the start of the problem. In order to

combine and compare information for the benefit of the user, a system needs to be able

to understand the meaning of a text, and encode it in a usable way. In this thesis, we

consider two of the main problems which need to be addressed in order to do so.

1.2 Overview of the Problem

Our goal is then to go from a text, which can be defined as a sequence of characters

or words, to a representation of its meaning. A number of questions arise on the way

from the one to the other; too many for one thesis, or even one person, to answer. Still,

we can start by identifying those questions, and contribute to answering at least some of

them.

One of the most important features of language is compositionality. Characters com-

bine into morphemes and words. Words combine into phrases, into sentences, into para-

graphs. These combinations are discrete in nature, following processes which are not

always explicitly observed. They are sometimes understood: grammar explains the phe-

3

nomenology of morphemes, syntactic analysis gives us some information on how words

combine. On the other hand, some questions are still very much open: how general

knowledge about the world or the intended reader of a text affects these combinations,

for example.

While the answers to these questions are interesting for their own sake, they also

correspond to concrete modeling choices when attempting to design a language under-

standing system. Do we treat each word we encounter as an independent entity, or do

we obtain word-level information by combining characters? Do we want a model which

explicitly combines words according to a syntactic tree, or one which has the ability to

learn combining schemes by itself? Does the combination happen in a discrete or con-

tinuous space? And should we explicitly model general knowledge about the world, or

do we expect that the parameters of the model will implicitly encode that knowledge?

A more fundamental question also seems to stand in the way of our objective;

namely, what exactly is it that we understand by “meaning”? And tied to that ques-

tion: what shape or form should our representation take? Should we define meaning in

relation to a physical world, or to the writer or reader’s state of mind? Should we have

a symbol for each concept or entity, or share information across different parameters?

Does the representation need to be discrete, continuous, a combination of both? And

how does the final form of our encoding of meaning reflect the property of composi-

tionality outlined above? One way to start answering this question is to consider some

existing formalisms of meaning, how they relate to each other, and on which axes they

differ.

Finally, assuming that we manage to decide on a usable definition of the concept of

meaning and are able to formulate a family of models which have the capacity to learn

to extract it from text, we still have to work out exactly how to learn such a model. Is the

4

usual machine learning paradigm of learning to solve a specific task from training data

appropriate? Is there a task which fully captures meaning, or do we need to combine a

set of tasks? What makes a good objective? Do we need to go beyond this training/test

setting?

We do not claim to make significant progress on each and every one of these ques-

tions in this thesis. However, we believe that advances on any of them should always be

guided by a good understanding of this global context. On the one hand, some common

principles (e.g. compositionality) can be found at every level from character to docu-

ment, so that answers to one of the questions may prove helpful in solving others. On

the other hand, the solutions to all of the above mentioned problems depend on each

other; it would make no sense to come up with a “good” representation of meaning by

linguistics standards which makes model training next to impossible.

This thesis focuses on two of the problems presented here. On the one hand, we

investigate the question of the choice of a reading level and consider different ways

of combining characters into larger units of meaning (morphemes, words,. . .). On the

other hand, we consider how to make language modeling, a commonly used language

learning objective, more efficient, and work to find other good language learning tasks.

Because we strongly believe in the necessity of synergy to make global progress on the

wider question of language understanding, we also endeavor to put these advances in

context and explore how they relate to problems which fall beyond our scope.

1.3 Representations of Meaning in NLP

As outlined in Section 1.2, there are a great many applications to text understanding

which rely on being able to compute a representation of the meaning expressed in a text.

5

What then does learning such a representation look like for each of these applications?

Is it possible to use a common definition and representation of meaning for all of them?

Indeed, learning a different system for each would appear to be both impractical and

wasteful, as they rely on many of the same mechanisms (e.g. compositionality. . .).

We can look to linguistics for general formalisms of meaning which might be useful

in a natural language processing setting. The family of Model Theoretic Semantics, for

example, proposes one way of describing and reasoning over the meaning of a sentence

or text. Approaches which fall under the umbrella of Model Theoretic Semantics, such

as those presented in [Tarski and Vaught, 1956] or [Montague, 1973], start with a model

of the world, which usually consists of a base set of entities and relations or n-ary prop-

erties. Some form of predicate logic (e.g. first or higher-order logic, lambda calculus)

then makes it possible to formulate information about how the entities and properties

relate to each other. In this framework, understanding the meaning of a text can then

be seen as mapping an utterance or sentence to a logical formula encoding this infor-

mation, and indeed the problem has been the focus of a number of works in the field

of NLP within the area of semantic parsing [Zettlemoyer and Collins, 2005, Wong and

Mooney, 2006, Liang et al., 2011, Liang, 2016]. For example, consider a model of the

world which has the following set of properties:

{ISCAT(·), ISRED(·), ISMAT(·), ISABOVE(·, ·)}

and suppose we choose first order logic as our predicate logic. In this setting, under-

standing the sentence “A red cat sat on a mat.”, would mean producing the following

formula:

S(x, y) = ∃x, ∃y ISCAT(x) ∧ ISRED(x) ∧ ISMAT(y) ∧ ISABOVE(x, y)

6

It is easy to see how this formalism can be used to answer questions about a document

by computing which answers are implied by its statements. For example, the question

“Is there something red on a mat?” would be mapped to:

Q(x, y) = ∃x,∃y ISRED(x) ∧ ISMAT(y) ∧ ISABOVE(x, y)

Since we can compute that S(x, y) ⇒ Q(x, y), we know that the answer to question

Q in context S is yes. This is an extremely simplified example of a use case of Model

Theoretic Semantics. A lot of attention has been given in the field of Natural Language

Processing to learning such mappings to more complex models (such as Freebase [Bol-

lacker et al., 2007]) and choices of predicate logics, including lambda calculus [Wong

and Mooney, 2007] and frame semantic parsing [Das et al., 2014], and to making practi-

cal use of those for tasks such as Question Answering [Zelle and Mooney, 1996, Berant

et al., 2013] or Knowledge Base Completion [Guu et al., 2015] by mapping questions

and statements respectively to logical formulas. On the theoretical side, this family of

formalisms has also proven to be largely useful in a number of areas of semantics and

pragmatics [Lewis, 1970, Montague, 1973, Hobbs, 1979], including work on defining

and analyzing the recently popularized tasks of Natural Language Inference and Recog-

nizing Textual Entailment [Sánchez Valencia, 1991, MacCartney, 2009].

One weakness of this approach is quickly made obvious however: the scope of the

formalism is heavily dependent on both the model and choice of predicate logic. In our

simple example, “A cat sat on a mat.” is indistinguishable from e.g. “The cat sat on

the mat.”, “A cat sits on a mat.” or even “Some cat flies over a mat.”. The definite

article can be handled by adding grounding constants to the model, the tense can be

handled by having different properties for each time, or by allowing properties to act

7

over other properties, and the difference between sitting on and flying over by having

more granularity in our set of properties. Still, this simple model shows that devising

a model/logic pair which covers a reasonable amount of sentences in an open domain

while remaining tractable can be quite challenging. Given these limitations, computing

a model-theoretic representation of meaning as a first step can then be impractical for

a number of application domains of Natural Language Processing, and there have been

a number of successful approaches to these problems which do not rely on an explicit

model of the world.

In order to showcase how methods to handle (or dispense with) representations of

meaning have shaped the development of Natural Language Processing, we consider

the case of machine translation, as it has at times relied heavily both on symbolic

knowledge-intensive and on more unsupervised statistical methods. Other tasks have

leaned more strongly towards the one or the other, but have mostly followed similar

paths.

Machine translation consists in taking a sentence or document in a source language

as input, and outputting a sentence or document in a target language with the same

meaning. The description of the task would seem to imply that obtaining a good repre-

sentation of the source language document’s meaning should be necessary, and indeed

some of the early successful applications of automated machine translation relied on

some form of semantic parsing. Strategies have included using a rule based system

to go from the source language to an abstract “script”, then using another set of rules

to go from the script to the target language [Schank and Abelson, 1977, Cullingford,

1978, Carbonell et al., 1981]. One significant advantage of this setting is that the size

of the models grows linearly in the number of languages rather than the number of

language pairs, since it only requires an encoder from natural language to script and

8

a decoder from script to natural language for each. However, the approach “requires

general semantic information and domain specific knowledge roughly proportional to

the semantic knowledge base that a human translator would bring to bear.” [Carbonell

and Tomita, 1985], which can be costly to obtain, and limits its application to restricted

domains, such as brief topic specific news text or technical documentation.

The popularization of statistical machine translation following the development of

the IBM models in the early 1990s [Brown et al., 1990, Brown et al., 1993] was re-

quired to allow the field to move beyond the narrow application domains of those early

knowledge-intensive settings. These methods rely on parallel corpora of documents

available in several languages, such as the European Parliament proceedings [Koehn,

2005], and use a statistical model to learn a maximum likelihood word-to-word or word-

to-phrase alignment between two versions of the same documents. When using the

system, this alignment model is then combined with a language model in the target lan-

guage to obtain a translation. Compared to the previous knowledge-based approaches,

the statistical methods present the significant advantage of being mostly unsupervised:

all that is required to learn a translation system between two languages is a sufficiently

large aligned bilingual corpus. However, without any common representation of mean-

ing, the generalization ability of the models across languages suffers significantly. At a

high level, this approach reduces the notion of meaning and of translation to something

which is defined for the granularity of a word or phrase: it identifies cross-lingual pairs

of “equivalent” words, along with a re-ordering function from a sentence in the source to

one the target language. This implies that while some of the parameters (such as those of

the language model) can be learned once for each language, most need to be trained for

each language pair. This dependence is reduced somewhat in systems which better han-

dle phrase level translation [Och and Ney, 2004] or take advantage of syntax [Chiang,

9

2005, Galley et al., 2006, Venugopal et al., 2007, Zhang and Gildea, 2008, Katz-Brown

et al., 2011], but remains a limiting factor for low resource language pairs.

The next significant advance in the field of automatic machine translation came in the

form of neural methods [Kalchbrenner and Blunsom, 2013, Sutskever et al., 2014, Cho

et al., 2014a]. These approaches use a neural network to compute a distributed repre-

sentation of the sentence in the source language, and another neural network to decode

this representation into a target language sentence. In practice, having a single vector as

representation of the input sentence happens to be too much of a bottleneck, and the suc-

cess of these techniques often depend on some form of attention mechanism [Bahdanau

et al., 2014], but whether the intermediary state consists in the final state of a recurrent

network or a set of recurrent or convolutional states, the paradigm can broadly be de-

fined as mapping a sentence to an implicit representation of its meaning, and decoding

this representation into a sentence in another language. While the representation isn’t as

interpretable as the output of a semantic parser, this allows the systems to learn more ef-

ficiently by taking advantage of the common mechanisms across language pairs sharing

a language [Johnson et al., 2017] and even by learning from non-aligned monolingual

corpora [Lample et al., 2017].

The idea of using distributed representations for concepts and meaning did not start

with machine translation, and has had an impact in most other fields of Natural Language

Processing. Early examples can be found in the connectionist literature of the 1980s

[Hinton, 1986], with some successful applications to word level language modeling

starting in the works of [Schwenk and Gauvain, 2002] or [Bengio et al., 2003]. In those

settings, a neural network is used to obtain a distributed representation of the immediate

context, or of the whole text read so far in the case of recurrent neural network language

models [Mikolov et al., 2010]. Similar approaches to representing the input text have

10

also recently lead to significant progress in fields such as text summarization, allowing

to go beyond the extractive [Kupiec et al., 1995] and to start tackling the abstractive

setting [Rush et al., 2015, Nallapati et al., 2016], as well as in the area of question

answering [Iyyer et al., 2014, Sukhbaatar et al., 2015, Andreas et al., 2016].

All of the above mentioned recent works correspond to a common approach: the

neural network model learns an implicit representation of a text’s meaning (or at least

of all of its relevant properties for the purpose of solving the task at hand, which is our

working definition of “meaning”) in the form of an embedding or a set of embeddings

in a continuous space. This representation is not as interpretable as a semantic parse,

and it is not quite obvious how to use it to reason about the properties of language and

draw insights about linguistic phenomena. However, its flexibility and self-organization

properties makes it extremely practical for semi- or un-supervised training of various

language processing systems. Still, one question remains: do we need to learn sepa-

rate representation functions for each of those tasks, or can we take advantage of the

synergies between them in a more efficient way?

One possible way of doing so would be to come up with a task, or set of tasks,

which require a system to learn all of the properties of text and language we shall ever

need. That is, a set of tasks which are strictly more difficult taken together than any

application we want to set for language understanding. We argue that language modeling

provides a first shot at this, which has been helpful for developing systems which learn

generally useful representations of words [Mikolov et al., 2013] and sentences [Kiros

et al., 2015]. Indeed, understanding the difference between sequences of words which

make sense (sentences which are likely to occur in data) and sequences which do not

(and should therefore not occur, or very little), requires an understanding of grammar,

and the realities which the language can refer to. For example, consider the following

11

text sample:

I wanted to keep the files secure. There were a simple wooden box and safe

on the table, but I did not know how to open the. . . safe.

When doing word level language modeling, we need to compute the probability of each

word given the ones to its left. Let’s focus on the final safe. One can see for example

how an understanding of grammar of syntax tells us that to the. . . will likely be followed

by a noun. A system also needs to have some form of medium term memory to see that

the most likely candidates are the recently mentioned nouns, here files, table, box, and

safe. Finally, general knowledge about the world tells us that of these, a safe can have

a combination and is use to keep items safe. While this does not guarantee that good

language modeling performance will always require a thorough understanding of the

meaning of a text, it does seem to indicate that it might be a good first step to reach this

goal, and so Chapters 2, 3, and 4 focus on this task (we revisit the choice of learning

objective in Chapter 5).

In the rest of this Chapter, we provide some general algorithmic and conceptual

background for the rest of this work. We start by introducing the problem of language

modeling, then present the class of Recurrent Neural Networks, which is of broad use

in language processing applications in general and in the work presented in this thesis

in particular. The next Chapters then show how to devise models which can produce

distributed representations of meaning as described in the previous paragraphs, and how

to use freely available text data to learn these models’ parameters through language and

discourse modeling.

Note on Conventions and Notations. We use the following notations in the rest of

this thesis. Constants are denoted as upper case letters (e.g. dimension D). Vectors

12

are denoted as bold lower case letters (e.g. v ∈ RD) and matrices as bold upper case

letters (e.g. M ∈ RD×D). Sets are denoted as calligraphic upper case letters (e.g. W).

A sequence of words is denoted either as a sequence of word indices in a vocabulary V

(e.g. (w)1,N = (w1, w2, . . . , wN) where ∀i, wi ∈ {1, . . . , |V|}) or of word embeddings

(e.g. (w)1,N = (w1,w2, . . . ,wN) where ∀i,wi ∈ RD).

1.4 Background: Neural Language Modeling

The task of language modeling consists in learning a probability distribution over

text. At a high level, this corresponds to being able to discriminate between sequences

of words which correspond to natural language and sequences which do not: whether

they be a-grammatical, incoherent, or fail to correspond to an interpretable and plausible

meaning in some other way. Being able to formulate such a distribution has practical

applications in any Natural Language Processing (NLP) task whose output format is a

sequence of words, since it can be used to limit the search space, or re-rank propos-

als. Those include speech recognition, text generation, machine translation, or dialogue

systems, among others.

Conditioning on the Past Let us now formally define the class of contextual lan-

guage models. As noted previously, the goal is to formulate a probability distribution

over word sequences (document, sentence, paragraph,. . .) (w)1,N = (w1, . . . , wN) (the

distribution can be defined over sequences of any length through the use of a special

<END> token). Contextual language models simply decompose this distribution by

13

using the chain rule from left to right:

p((w)1,N) =
N∏
i=1

p(wi|(w)1,i−1)

The above formulation holds without loss of generality. However, early approaches

to language modeling have found it useful to make an additional n-th order Markov

assumption. That is, the probability of a word given its left context only depends on its

n immediate left neighbors:

p(wi|(w)1,i−1) ≈ p(wi|wi−n, . . . , wi−1)

The model is then entirely defined by the probability of a word given its immediate

context p(wi|wi−n, . . . , wi−1). Works such as [Chen and Goodman, 1998] estimate those

via counting and subsequent smoothing . The probability of the next word given the past

is then represented as a multinomial distribution conditioned on the local left context.

These count-based models are simple to train, but probabilities of rare n-grams can

be poorly estimated due to data sparsity (despite smoothing techniques). Neural n-

gram models have been developed to address this data sparsity issue by learning low

dimensional embeddings of the words and local context and using them as inputs to a

neural network [Bengio et al., 2003]. More formally, to each word w ∈ V corresponds

a vector w ∈ RD, and a transition matrix R ∈ RD×D is used to obtain a representation

of the context. This model estimates:

p(wi|wi−n, . . . , wi−1) =
exp((wn

i−n + . . .+ w1
i−1)TRwi)

Z

Where Z is the local partition function. Word embeddings obtained through these mod-

14

els exhibit interesting linguistic properties, where the difference between the vectors

representing two words can give some information on how they relate to each other se-

mantically and morphologically [Mikolov et al., 2013] (similar to ones obtained with

document-level non-neural techniques such as Latent Semantic Analysis [Deerwester

et al., 1990]).

More recent Neural Network Language Models (NNLMs) have expanded upon this

general idea by using a rich family of neural networks to represent the local context,

such as log-bilinear [Mnih and Hinton, 2007], sum-product [Cheng et al., 2014], and

convolutional [Wang et al., 2015, Dauphin et al., 2017] networks, and even allowing

the model access to context beyond the local neighborhood through the use of recurrent

architectures [Mikolov et al., 2010]. NNLMs have been shown to produce competitive

results with n-gram models using many fewer parameters. Additionally the parameters

themselves have proven to be useful for other language tasks [Collobert et al., 2011].

Unfortunately, while the parameterization of NNLMs is significantly more compact than

that of n-gram models, training can be much slower, often requiring expensive gradient

computations for each token, and developing techniques to speed up training in practice

has been an active area of research [Mnih and Hinton, 2008, Mnih and Teh, 2012].

1.5 Background: Recurrent Neural Networks

As mentioned in Section 1.4, neural n-gram models approximate the chain rule by

making an additional Markov assumption: this is necessary as keeping the full left con-

text in memory for documents of any reasonable size is intractable. An alternative,

however, would be to build a summary of the left context as we read the document.

One way to do this is to use the class of Recurrent Neural Networks (RNNs), which we

15

describe in this Section.

Recurrent Neural Network Definition Let us start by formally defining the class of

RNNs. For tasks such as language modeling, we are interested in defining a probability

distribution over sequences (w)1,T = (w1, . . . , wT). Using the chain rule, the negative

log likelihood of a sequence can be written:

L((w)1,T) = −
T∑
t=1

log
(
p
(
wt|F (w1, . . . , wt−1)

))
. (1.1)

where F is a filtration, i.e. a function which summarizes all the relevant information

from the past. RNNs are a class of models that can read a sequence of arbitrary length

to provide such a summary in the form of a hidden state ht ≈ F(w1, . . . , wt−1), by

applying the same operation (recurrent unit) at each time step. More specifically, the

recurrent unit is defined by a recurrence function g which takes as input the previous

hidden state ht−1 at each time step t, as well as a representation of the input xt (where

ht−1 and xt are D-dimensional vectors), and (with the convention h0 = 0,) outputs the

new hidden state:

ht = g(ht−1,xt) (1.2)

It is easy to extend a RNN to two (or more) layers by having another network whose

input at t is ht (from the first network). Indeed, having multiple layers is often crucial

for obtaining competitive performance on various tasks [Pascanu et al., 2013a].

Elman Unit The unit described in [Elman, 1990] is often considered to be the stan-

dard unit. It is parameterized by U and V, which are square, D-dimensional transition

16

matrices, and uses a sigmoid non-linearity to obtain the new hidden state:

ht = σ(Uht−1 + Vxt) (1.3)

In theory the RNN can summarize all historical information up to time t with the hidden

state ht. In practice however, capturing long-range dependencies with a vanilla RNN is

difficult due to vanishing/exploding gradients [Bengio et al., 1994], which occurs as a

result of the Jacobian’s multiplicativity with respect to time.

LSTM Unit Long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997]

addresses the problem of learning long range dependencies by augmenting the RNN

with a memory cell vector ct ∈ Rn at each time step. Concretely, one step of an LSTM

takes as input xt,ht−1, ct−1 and produces ht, ct via the following intermediate calcula-

tions:

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf)

ot = σ(Woxt + Uoht−1 + bo)

gt = tanh(Wgxt + Ught−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(1.4)

Where σ(·) and tanh(·) are the element-wise sigmoid and hyperbolic tangent functions,

and � is the element-wise multiplication operator. it, ft, and ot are referred to as input,

forget, and output gates respectively. At t = 1, h0 and c0 are initialized to zero vectors.

Parameters of the LSTM are Wj,Uj,bj for j ∈ {i, f, o, g}. Memory cells in the LSTM

17

are additive with respect to time, alleviating the gradient vanishing problem. Gradient

explosion is still an issue, though in practice simple optimization strategies (such as

gradient clipping [Pascanu et al., 2013b]) work well. LSTMs have been shown to out-

perform vanilla RNNs on many tasks, including on language modeling [Sundermeyer

et al., 2012].

Gated Recurrent Unit The Gated Recurrent Unit (GRU) was introduced in [Cho

et al., 2014b]. The main difference between the GRU and Elman unit consists in the

model’s ability to interpolate between a proposed new hidden state and the current one,

which makes it easier to model longer range dependencies. More specifically, at each

time step t, the model computes a reset gate rt, an update gate zt, a proposed new hidden

state h̃t and a final new hidden state ht as follows:

rt = σ(Vrxt + Urht−1 + br)

zt = σ(Vzxt + Uzht−1 + bz)

h̃t = tanh(Vhxt + Uh(rt � ht−1) + bh)

ht = zt � h̃t + (1− zt)� ht−1

(1.5)

RNN language models Let V be the fixed size vocabulary of words. A conditional

language model as defined in Section 1.4 specifies a distribution over wt+1 (whose sup-

port is V) given the historical sequence w1,t = (w1, . . . , wt). A recurrent neural network

language model (RNN-LM) does this by applying an affine transformation to the hidden

layer of a recurrent neural network on the word embeddings followed by a softmax, as

18

moment the absurdity is

ℎ

𝑝(𝑤′|ℎ)

𝑤

the

the absurdity is recognizedmoment

Figure 1.1: Recurrent neural network language model. At each time step, the hidden
state ht is updated based on its the previous time step version ht−1 and the embedding of
the current wordwt. The model then outputs a distribution over the next word p(wt+1|ht)

illustrated in Section 1.1

p(wt+1 = j|w1,t) =
exp(ht · pj + qj)∑

j′∈V exp(ht · pj′ + qj′)
(1.6)

where pj is the j-th column of P ∈ RD×|V| (also referred to as the output embedding),

and qj is a bias term. Similarly, for a conventional RNN-LM which usually takes words

as inputs, if wt = k, then the input to the RNN-LM at t is the input embedding wk, the

k-th column of the embedding matrix W ∈ RDe×|V|. If we denote w1:T = (w1, · · · , wT)

to be the sequence of words in the training corpus, training involves minimizing the neg-

ative log-likelihood of the sequence (Equation 1.1) which is typically done by truncated

backpropagation through time [Werbos, 1990, Graves, 2013].

19

1.6 Organization of this Thesis

In this Section, we provide a brief overview of the rest of this thesis. Chapter 2

focuses on the problem of choosing a reading level for a text understanding system. A

majority of models use words as a smallest semantic unit. We consider the motivation

for this choice and present arguments for also making use of sub-word information. We

describe two approaches to making use of character-level input. The first one computes a

representation of a word’s meaning in the form of an embedding vector by composing all

of its characters and sub-sequences of characters, making use of a word level language

modeling objective to learn the parameters of the system. We show that in addition to

learning some notion of morphology and allowing our system to handle new words it

has not seen before, these embeddings lead to an improvement in language modeling

performance. Our second approach also looks at combining characters, but in a bottom

up rather than top down fashion, by giving a recurrent neural network the ability to

vary the amount of computation it performs after reading each character. We show

that this leads to a more computation efficient model than comparable character-level

approaches, and that the system also learns a notion of morphology and word meanings.

The second part of the thesis is concerned with the learning objective question. As

outlined above, there are a great many applications to text understanding. Learning a

different system for each of these would be both impractical and wasteful, as they have

many mechanisms in common. Machine learning research often takes a task-driven

approach to learning: recognizing objects in a picture, predicting the outcome of a sit-

uation... If we want to apply this paradigm to language learning, we need to come up

with a task, or set of tasks, which requires a system to learn all of the properties of text

and language we shall ever need. That is, a set of tasks which are strictly more difficult

20

taken together than any application we want to set for language understanding.

Language modeling provides a first shot at this, which has been helpful for devel-

oping systems which learn representations of words [Mikolov et al., 2013] and sen-

tences [Kiros et al., 2015]. The idea is that understanding the difference between se-

quences of words which make sense (sentences which are likely to occur in data) and

sequences which do not (and should therefore not occur, or very little), requires an un-

derstanding of grammar, and the realities which the language can refer to. Chapters 3

and 4 are both concerned with improving existing language modeling objectives in dif-

ferent ways. Most existing language models compute the probability of each word given

their context. This can be quite expensive, as it requires to compute a score at each time

step for every word in a vocabulary whose size can be in the hundreds of thousands or

millions. Chapter 3 aims to speed up this step by proposing an adaptive hierarchical

objective. Hierarchical prediction significantly reduces the cost of computing the proba-

bility of a word, and we provide an algorithm which allows to learn a good tree structure

for this purpose along with the other parameters of the model. Chapter 4, on the other

hand, introduces a new class of language models which is globally rather than locally

normalized; that is to say, we provide a score for the text as a whole, and do approximate

normalization over all possible sequences of words. This can have several advantages,

from avoiding the label bias problem to speeding up the objective computation for large

text corpora.

Finally, other objectives can also help a system learn the relevant properties of lan-

guage, with possibly better local minima (language modeling can rely on grammar and

local word-level semantics significantly). Understanding the structure of discourse, for

example, requires a good grasp on both semantics and pragmatics, which constitute a

higher level of text understanding. Inspired by this, Chapter 5 proposes a set of new

21

discriminative objectives based on discourse structure. We follow this by sketching

a possible formalism for descriptions of meaning based on continuous representations

and function approximations.

We conclude by giving a summary of the contributions of this thesis, and reviewing

some of the remaining open questions presented in Section 1.2, as well as those raised

in the following Chapters.

22

Chapter 2

Using Sub Word Information

So far, we have noted how a number of fundamental language understanding

mechanisms are connected to the Language Modeling task, and proposed to

use the family of neural networks, and more specifically recurrent neural

networks, as a category of architectures to learn to perform language mod-

eling. At this point, there are still several design choices to be made to meet

this objective, from the structure of the RNN to the dimensions of the in-

termediary representations. But one of the most important choices, which

corresponds to one of our original questions, is that of the reading level. We

explore this question in the following Section. More specifically, we argue

for the use of sub-word information. First, we show that a word level re-

current network language model can benefit from using word embeddings

which depend on a word’s characters. Conversely, we also show that a char-

acter level model can learn to organize its computational load to make use

of morphological and word-level structure.

23

2.1 Introduction

Text can be considered at different levels of granularity: as a sequence of characters,

morphemes, words. . . We could even try to go so far as to consider phrases or sentences

as units of meaning. So far, we have focused on using words: evaluating their likelihood

and learning embeddings encoding their relevant properties. There are some good rea-

sons to consider words. Contrary to characters, one can assign a notion of meaning to

a single word: verbs often refer to actions, nouns to objects, etc. . . Segmentation of text

into words is relatively straightforward in English. Words are also relatively tractable,

as most datasets have vocabularies of at most a few hundred thousands or million words.

On the other hand, there are far too many phrases, let alone sentences to handle in any

language if one were to treat them as independent units.

However, words are compositional (for example, a priori, eventful, eventfully, un-

eventful, and uneventfully should have structurally related embeddings in the vector

space), have a history, and the distribution of their occurrences follows Zipf’s law; em-

beddings of rare words can thus be poorly estimated, leading to high perplexities for

rare words and words surrounding them. While we could probably learn everything we

need to know while considering different words as independent entities, looking at their

characters allows to take compositionality and formation history into account, and to al-

leviate the difficulty of learning relevant information about rarely occurring data. In this

Chapter, we consider two approaches to taking advantage of morphological information.

On the one hand, one can keep using words as units, but encourage their representations

to depend on their composition by building character-aware word embeddings. On the

other hand, one can build sentence representations directly from characters, and let the

model figure out when higher level reasoning (word-level, phrase-level) is necessary

24

through adaptive computation.

Character-Aware Word Embeddings Word embeddings capture a continuous repre-

sentation of a word’s meaning. More specifically, when these embeddings are learned

in the context of language modeling, it is expected that two words which appear in sim-

ilar contexts should map to vectors whose Euclidean distance is small. These kinds of

abstractions of a word’s meaning have been shown to be useful, as Neural Language

Models outperform count-based n-gram language models [Mikolov et al., 2011]. How-

ever, they are also blind to the kind of subword information which humans have access

to (and make use of) when parsing text, such as prefixes, suffixes, declinations or conju-

gations of words, etc. . . This can make it more difficult for them to learn a representation

for rare words, especially in morphologically rich languages with long-tailed frequency

distributions or domains with dynamic vocabularies (e.g. social media).

Previous work has looked into taking advantage of morphological information to

mitigate this rare world problem. For example, [Botha and Blunsom, 2014, Luong

et al., 2013] use morphological tagging and segmentation as a pre-processing step,

which allows them to learn and combine morpheme vectors to obtain a word embed-

ding. [Alexandrescu and Kirchhoff, 2006] (building on analogous work on count-based

n-gram language models by Bilmes and Kirchhoff [Bilmes and Kirchhoff, 2003]) rep-

resent a word as a set of shared factor embeddings. Their Factored Neural Language

Model (FNLM) can incorporate morphemes, word shape information (e.g. capitaliza-

tion) or any other annotation (e.g. part-of-speech tags) to represent words. A specific

class of FNLMs leverages morphemic information by viewing a word as a function of

its (learned) morpheme embeddings [Luong et al., 2013,Botha and Blunsom, 2014,Qiu

et al., 2014]. For example [Luong et al., 2013] apply a recursive neural network over

25

morpheme embeddings to obtain the embedding for a single word. While such models

have proved useful, they require morphological tagging as a preprocessing step. An-

other direction of work has involved purely character-level NNLMs, wherein both input

and output are characters [Sutskever et al., 2011, Graves, 2013]. Outside of language

modeling, improvements have been reported on part-of-speech tagging [dos Santos and

Zadrozny, 2014] and named entity recognition [dos Santos and Guimarães, 2015] by

representing a word as a concatenation of its word embedding and an output from a

character-level CNN, and using the combined representation as features in a Conditional

Random Field (CRF). Finally, [Ling et al., 2015] apply a bi-directional LSTM over char-

acters to use as inputs for language modeling and part-of-speech tagging. They show

improvements on various languages (English, Portuguese, Catalan, German, Turkish).

Adaptive Character Level Sequence Modeling Another option does away with word

level embeddings entirely, and modeling text as a sequence of characters. However, do-

ing that well relies on being able to at least implicitly be able to handle processes happen-

ing at different time scales, and having more computational power at word boundaries

can certainly help. For example, after reading the left context The prime. . . , the model

should be able to put a higher likelihood on the sequence of characters that make up the

word minister. However, we can take this idea one step further: after reading The prime

min. . . , the next few characters are almost deterministic, and the model should require

little computation to predict the sequence i-s-t-e-r.

Handling concurrent processes with various schedules is a problem of wide interest

in sequence modeling: consider sequential data such as video feeds, audio signal, or

language. In video data, there are time periods where the frames differ very slightly,

and where the underlying model should probably do much less computation than when

26

the scene completely changes. When modeling speech from an audio signal, it is also

reasonable to expect that the model should be able do little to no computation during

silences. Thus, we want recurrent neural networks to be able to efficiently model pro-

cesses happening at different and possibly varying time scales, without prior knowledge

of the sequence’s time structure. While many sequential data can have highly variable

information flow, most recurrent models still consume input features at a constant rate

and perform a constant number of computations per time step, which can be detrimental

to both speed and model capacity.

How to properly handle sequences which reflect processes happening at different

time scales has been a widely explored question. Among the proposed approaches, a

variety of notable systems based on Hidden Markov Models (HMMs) have been put

forward in the last two decades. The Factorial HMM model of [Ghahramani and Jor-

dan, 1997] (and its infinite extension in [Gael et al., 2008]) use parallel interacting

hidden states to model concurrent processes. While there is no explicit handling of

different time scales, the model achieves good held-out likelihood on Bach chorales,

which exhibit multi-scale behaviors. The hierarchical HMM model of [Fine et al., 1998]

and [Murphy and Paskin, 2001] takes a more direct approach to representing multiple

scales of processes. In these works, the higher level HMM can recursively call sub-

HMMs to generate short sequences without changing its state, and the authors show a

successful application to modeling cursive writing. Finally, the Switching State-Space

Model of [Ghahramani and Hinton, 2000] combines HMMs and Linear Dynamical Sys-

tems: in this model, the HMM is used to switch between LDS parameters, and the

experiments show that the HMM learns higher-level, slower dynamics than the LDS.

On the side of recurrent neural networks, the idea that the models should have mech-

anisms that allow them to handle processes happening at different time scales is not a

27

new one either. On the one hand, such early works as [Schmidhuber, 1992] already

presented a two level architecture, with an “automatizer” acting on every time step and

a “chunker” which should only be called when the automatizer fails to predict the next

item, and which the author hypothesizes learns to model slower scale processes. On

the other hand, the model proposed in [Mozer, 1991] has slow-moving units as well

as regular ones, where the slowness is defined by a parameter τ ∈ [0, 1] deciding how

fast the representation changes by taking a convex combination of the previous and

predicted hidden state. Both these notions, along with different approaches to multi-

scale sequence modeling, have been developed in more recent work. [Mikolov et al.,

2014] expand upon the idea of having slow moving units in an RNN by proposing an

extension of the Elman unit which forces parts of the transition matrix to be close to

the identity. The idea of having recurrent layers called at different time steps has also

recently regained popularity. The Clockwork RNN of [Koutnı́k et al., 2014], for ex-

ample, has RNN layers called every 1, 2, 4, 8, etc. . . time steps. The conditional RNN

of [Bojanowski et al., 2015] takes another approach by using known temporal structure

in the data: in the character level level language modeling application, the first layer

is called for every character, while the second is only called once per word. It should

also be noted that state-of-the art results for language models have been obtained us-

ing multi-layer RNNs [Józefowicz et al., 2016], where the higher layers can in theory

model slower processes. However, introspection in these models is more challenging,

and it is difficult to determine whether they are actually exhibiting significant temporal

behaviors.

Finally, even more recent efforts have considered using dynamic time schedules.

[Chung et al., 2016] presents a multi-layer LSTM, where each layer decides whether

or not to activate the next one at every time step. They show that the model is able to

28

learn sensible time behaviors and achieve good perplexity on their chosen tasks. An-

other implementation of the general concept of adaptive time-dependent computation is

presented in [Graves, 2016]. In that work, the amount of computation performed at each

time step is varied not by calling units in several layers, but rather by having a unique

RNN perform more than one update of the hidden state on a single time step. There too,

the model can be shown to learn an intuitive time schedule.

2.2 Character-Aware Word Embeddings: Model

In this Section, we propose a language model that leverages subword information

through a character-level convolutional neural network (CNN), whose output is used

as an input to a recurrent neural network language model (RNN-LM). Unlike previous

works that utilize subword information via morphemes [Botha and Blunsom, 2014, Lu-

ong et al., 2013], our model does not require morphological tagging as a pre-processing

step. And, unlike the recent line of work which combines input word embeddings with

features from a character-level model [dos Santos and Zadrozny, 2014, dos Santos and

Guimarães, 2015], our model does not utilize word embeddings at all in the input layer.

Given that most of the parameters in Neural Network Language Models (NNLMs) are

from the word embeddings, the proposed model has significantly fewer parameters than

previous NNLMs, making it attractive for applications where model size may be an

issue (e.g. cell phones). The architecture of our model, shown in Figure 2.1, is straight-

forward. Whereas a conventional NNLM takes word embeddings as inputs, our model

instead takes the output from a single-layer character-level convolutional neural network

with max-over-time pooling.

29

Figure 2.1: Character-aware word embedding architecture. Here the model takes absur-
dity as the current input and combines it with the history (as represented by the hidden
state) to predict the next word, is. First layer performs a lookup of character embed-
dings (of dimension four) and stacks them to form the matrix Ck. Then convolution
operations are applied between Ck and multiple filter matrices. Note that in the above
example we have twelve filters—three filters of width two (blue), four filters of width
three (yellow), and five filters of width four (red). A max-over-time pooling operation
is applied to obtain a fixed-dimensional representation of the word, which is given to
the highway network. The highway network’s output is used as the input to a multi-
layer LSTM. Finally, an affine transformation followed by a softmax is applied over the
hidden representation of the LSTM to obtain the distribution over the next word. Cross
entropy loss between the (predicted) distribution over next word and the actual next
word is minimized. Element-wise addition, multiplication, and sigmoid operators are
depicted in circles, and affine transformations (plus nonlinearities where appropriate)
are represented by solid arrows.

30

Character-level CNN In our model, the input at time t is an output from a character-

level convolutional neural network (CharCNN), which we describe in this section. CNNs

[LeCun et al., 1989] have achieved state-of-the-art results on computer vision [Krizhevsky

et al., 2012] and have also been shown to be effective for various NLP tasks [Collobert

et al., 2011]. Architectures employed for NLP applications differ in that they typically

involve temporal rather than spatial convolutions.

Let C be the vocabulary of characters, d be the dimensionality of character embed-

dings,1 and Q ∈ Rd×|C| be the matrix character embeddings. Suppose that word k ∈ V

is made up of a sequence of characters [c1, . . . , cl], where l is the length of word k. Then

the character-level representation of k is given by the matrix Ck ∈ Rd×l, where the j-th

column corresponds to the character embedding for cj (i.e. the cj-th column of Q).2

We apply a narrow convolution between Ck and a filter (or kernel) H ∈ Rd×w of

width w, after which we add a bias and apply a nonlinearity to obtain a feature map

fk ∈ Rl−w+1. Specifically, the i-th element of fk is given by:

fk[i] = tanh(〈Ck[∗, i : i+ w − 1],H〉+ b) (2.1)

where Ck[∗, i : i+w−1] is the i-to-(i+w−1)-th column of Ck and 〈A,B〉 = Tr(ABT)

is the Frobenius inner product. Finally, we take the max-over-time

yk = max
i

fk[i] (2.2)

1Given that |C| is usually small, some authors work with one-hot representations of characters. How-
ever we found that using lower dimensional representations of characters (i.e. d < |C|) performed slightly
better.

2Two technical details warrant mention here: (1) we append start-of-word and end-of-word characters
to each word to better represent prefixes and suffixes and hence Ck actually has l + 2 columns; (2) for
batch processing, we zero-pad Ck so that the number of columns is constant (equal to the max word
length) for all words in V .

31

as the feature corresponding to the filter H (when applied to word k). The idea is to

capture the most important feature—the one with the highest value—for a given filter.

A filter is essentially picking out a character n-gram, where the size of the n-gram

corresponds to the filter width.

We have described the process by which one feature is obtained from one filter ma-

trix. Our CharCNN uses multiple filters of varying widths to obtain the feature vector for

k. So if we have a total of h filters H1, . . . ,Hh, then yk = [yk1 , . . . , y
k
h] is the input rep-

resentation of k. For many NLP applications h is typically chosen to be in [100, 1000].

Note also that while having all filters be of maximum widths should in theory be suffi-

cient to capture all relevant properties of a word, in practice having different sizes helps

the model learn to pick up shorter morphemes in a more data- and computation-efficient

way.

Highway Network We could simply replace the word embedding with yk at each t

in the RNN-LM, and as we show later, this simple model performs well on its own

(Table 2.7). One could also have a multilayer perceptron (MLP) over yk to model in-

teractions between the character n-grams picked up by the filters, but we found that

this resulted in worse performance. Instead we obtained improvements by running yk

through a highway network, recently proposed by Srivastava et al. [Srivastava et al.,

2015]. Whereas one layer of an MLP applies an affine transformation followed by a

nonlinearity to obtain a new set of features,

z = g(Wy + b) (2.3)

32

one layer of a highway network does the following:

z = t� g(WHy + bH) + (1− t)� y (2.4)

where g is a nonlinearity, t = σ(WTy+bT) is called the transform gate, and (1− t) is

called the carry gate. Similar to the memory cells in LSTM networks, highway layers

allow for training of deep networks by adaptively carrying some dimensions of the input

directly to the output.3 By construction the dimensions of y and z have to match, and

hence WT and WH are square matrices.

2.3 Character-Aware Word Embeddings: Experiments

Experimental Setup We conduct experiments with an LSTM-based Recurrent Neural

Network language model, as described in Section 1.5, whose inputs are the product of

the character-aware embedding model described in Section 2.2. As is standard in lan-

guage modeling, we use perplexity (PPL) to evaluate the performance of our models.

Perplexity of a model over a sequence (w1, . . . , wT) is given by

PPL = exp
(L
T

)
(2.5)

where NL is calculated over the test set. We test the model on corpora of varying

languages and sizes (statistics available in Table 2.1).

We conduct hyperparameter search, model introspection, and ablation studies on the

English Penn Treebank (PTB) [Marcus et al., 1993], utilizing the standard training (0-

20), validation (21-22), and test (23-24) splits along with pre-processing by [Mikolov
3Srivastava et al. [Srivastava et al., 2015] recommend initializing bT to a negative value, in order to

militate the initial behavior towards carry. We initialized bT to a small interval around −2.

33

DATA-S DATA-L

|V| |C| T |V| |C| T

English (EN) 10 k 51 1 m 60 k 197 20 m
Czech (CS) 46 k 101 1 m 206 k 195 17 m
German (DE) 37 k 74 1 m 339 k 260 51 m
Spanish (ES) 27 k 72 1 m 152 k 222 56 m
French (FR) 25 k 76 1 m 137 k 225 57 m
Russian (RU) 62 k 62 1 m 497 k 111 25 m
Arabic (AR) 86 k 132 4 m – – –

Table 2.1: Corpus statistics. |V| = word vocabulary size; |C| = character vocabulary
size; T = number of tokens in training set. The small English data is from the Penn
Treebank and the Arabic data is from the News-Commentary corpus. The rest are from
the 2013 ACL Workshop on Machine Translation. |C| is large because of (rarely occur-
ring) special characters.

et al., 2010]. With approximately 1m tokens and |V| = 10k, this version has been

extensively used by the language modeling community and is publicly available.4

With the optimal hyperparameters tuned on PTB, we apply the model to various

morphologically rich languages: Czech, German, French, Spanish, Russian, and Arabic.

Non-Arabic data comes from the 2013 ACL Workshop on Machine Translation,5 and we

use the same train/validation/test splits as in [Botha and Blunsom, 2014]. While the raw

data are publicly available, we obtained the preprocessed versions from the authors,6

whose morphological NNLM serves as a baseline for our work. We train on both the

small datasets (DATA-S) with 1m tokens per language, and the large datasets (DATA-L)

including the large English data which has a much bigger |V| than the PTB. Arabic data

comes from the News-Commentary corpus,7 and we perform our own preprocessing and

train/validation/test splits.

In these datasets only singleton words were replaced with <unk> and hence we ef-

4http://www.fit.vutbr.cz/˜imikolov/rnnlm/
5http://www.statmt.org/wmt13/translation-task.html
6http://bothameister.github.io/
7http://opus.lingfil.uu.se/News-Commentary.php

34

http://www.fit.vutbr.cz/~imikolov/rnnlm/
http://www.statmt.org/wmt13/translation-task.html
http://bothameister.github.io/
http://opus.lingfil.uu.se/News-Commentary.php

fectively use the full vocabulary. It is worth noting that the character model can utilize

surface forms of OOV tokens (which were replaced with <unk>), but we do not do this

and stick to the preprocessed versions (despite disadvantaging the character models) for

exact comparison against prior work.

Optimization The models are trained by truncated backpropagation through time [Wer-

bos, 1990, Graves, 2013]. We backpropagate for 35 time steps using stochastic gradient

descent where the learning rate is initially set to 1.0 and halved if the perplexity does

not decrease by more than 1.0 on the validation set after an epoch. On DATA-S we use

a batch size of 20 and on DATA-L we use a batch size of 100 (for greater efficiency).

Gradients are averaged over each batch. We train for 25 epochs on non-Arabic and 30

epochs on Arabic data (which was sufficient for convergence), picking the best perform-

ing model on the validation set. Parameters of the model are randomly initialized over a

uniform distribution with support [−0.05, 0.05].

For regularization we use dropout [Hinton et al., 2012] with probability 0.5 on the

LSTM input-to-hidden layers (except on the initial Highway to LSTM layer) and the

hidden-to-output softmax layer. We further constrain the norm of the gradients to be

below 5, so that if the L2 norm of the gradient exceeds 5 then we renormalize it to

have || · || = 5 before updating. The gradient norm constraint was crucial in training the

model. These choices were largely guided by previous work of Zaremba et al. [Zaremba

et al., 2014] on word-level language modeling with LSTMs.

Finally, in order to speed up training on DATA-L we employ a hierarchical softmax

[Morin and Bengio, 2005]—a common strategy for training language models with very

large |V|—instead of the usual softmax. We pick the number of clusters c = d
√
|V|e and

randomly split V into mutually exclusive and collectively exhaustive subsets V1, . . . ,Vc

35

Small Large

CNN
d 15 15
w [1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6, 7]
h [25 · w] [min{200, 50 · w}]
f tanh tanh

Highway l 1 2
g ReLU ReLU

LSTM l 2 2
m 300 650

Table 2.2: Architecture of the small and large models. d = dimensionality of char-
acter embeddings; w = filter widths; h = number of filter matrices, as a func-
tion of filter width (so the large model has filters of width [1, 2, 3, 4, 5, 6, 7] of size
[50, 100, 150, 200, 200, 200, 200] for a total of 1100 filters); f, g = nonlinearity func-
tions; l = number of layers; m = number of hidden units.

of (approximately) equal size. In this application, we found that random simpy used ran-

dom clusters8; Chapter 3 shows how to learn the hierarchy for improved performance.

Then Pr(wt+1 = j|w1:t) becomes,

Pr(wt+1 = j|w1:t) =
exp(ht · sr + tr)∑c

r′=1 exp(ht · sr′ + tr′)

× exp(ht · pjr + qjr)∑
j′∈Vr exp(ht · pj

′
r + qj

′
r)

(2.6)

where r is the cluster index such that j ∈ Vr. The first term is simply the probability

of picking cluster r, and the second term is the probability of picking word j given that

cluster r is picked. We found that hierarchical softmax was not necessary for models

trained on DATA-S.

English Penn Treebank We train two versions of our model to assess the trade-off

between performance and size. Architecture of the small (LSTM-Char-Small) and large
8While Brown clustering/frequency-based clustering is commonly used in the literature (e.g. [Botha

and Blunsom, 2014] use Brown clustering), we used random clusters as our implementation enjoys the
best speed-up when the number of words in each cluster is approximately equal. We found random
clustering to work surprisingly well.

36

PPL Size
LSTM-Word-Small 97.6 5 m
LSTM-Char-Small 92.3 5 m
LSTM-Word-Large 85.4 20 m
LSTM-Char-Large 78.9 19 m
KN-5 [Mikolov and Zweig, 2012] 141.2 2 m
RNN† [Mikolov and Zweig, 2012] 124.7 6 m
RNN-LDA† [Mikolov and Zweig, 2012] 113.7 7 m
genCNN† [Wang et al., 2015] 116.4 8 m
FOFE-FNNLM† [Zhang et al., 2015a] 108.0 6 m
Deep RNN [Pascanu et al., 2013a] 107.5 6 m
Sum-Prod Net† [Cheng et al., 2014] 100.0 5 m
LSTM-1† [Zaremba et al., 2014] 82.7 20 m
LSTM-2† [Zaremba et al., 2014] 78.4 52 m

Table 2.3: Performance of our model versus other neural language models on the En-
glish Penn Treebank test set. PPL refers to perplexity (lower is better) and size refers
to the approximate number of parameters in the model. KN-5 is a Kneser-Ney 5-gram
language model which serves as a non-neural baseline.†For these models the authors did
not explicitly state the number of parameters, and hence sizes shown here are estimates
based on our understanding of their papers or private correspondence with the respective
authors.

(LSTM-Char-Large) models is summarized in Table 2.2. As another baseline, we also

train two comparable LSTM models that use word embeddings only (LSTM-Word-

Small, LSTM-Word-Large). LSTM-Word-Small uses 200 hidden units and LSTM-

Word-Large uses 650 hidden units. Word embedding sizes are also 200 and 650 respec-

tively. These were chosen to keep the number of parameters similar to the corresponding

character-level model.

As can be seen from Table 2.3, our large model is on par with the existing state-of-

the-art (Zaremba et al. 2014), despite having approximately 60% fewer parameters. Our

small model significantly outperforms other NNLMs of similar size, even though it is

penalized by the fact that the dataset already has OOV words replaced with <unk> (other

models are purely word-level models). While lower perplexities have been reported with

model ensembles [Mikolov and Zweig, 2012], we do not include them here as they are

37

DATA-S

CS DE ES FR RU AR

Botha KN-4 545 366 241 274 396 323
MLBL 465 296 200 225 304 –

Small
Word 503 305 212 229 352 216
Morph 414 278 197 216 290 230
Char 401 260 182 189 278 196

Large
Word 493 286 200 222 357 172
Morph 398 263 177 196 271 148
Char 371 239 165 184 261 148

Table 2.4: Test set perplexities for DATA-S. First two rows are from [Botha,
2014] (except on Arabic where we trained our own KN-4 model) while the last six
are from this paper. KN-4 is a Kneser-Ney 4-gram language model, and MLBL
is the best performing morphological logbilinear model from Botha [Botha, 2014].
Small/Large refer to model size (see Table 2.2), and Word/Morph/Char are models with
words/morphemes/characters as inputs respectively.

not comparable to the current work.

Other Languages The model’s performance on the English PTB is informative to the

extent that it facilitates comparison against the large body of existing work. However,

English is relatively simple from a morphological standpoint, and thus our next set of

results (and arguably the main contribution of this paper) is focused on languages with

richer morphology (Table 2.4, Table 2.5).

We compare our results against the morphological log-bilinear (MLBL) model from

[Botha, 2014], whose model also takes into account subword information through mor-

pheme embeddings that are summed at the input and output layers. As comparison

against the MLBL models is confounded by our use of LSTMs—widely known to out-

perform their feed-forward/log-bilinear cousins—we also train an LSTM version of the

morphological NNLM, where the input representation of a word given to the LSTM is

a summation of the word’s morpheme embeddings. Concretely, suppose thatM is the

set of morphemes in a language, M ∈ Rn×|M| is the matrix of morpheme embeddings,

38

and mj is the j-th column of M (i.e. a morpheme embedding). Given the input word k,

we feed the following representation to the LSTM:

xk +
∑
j∈Mk

mj (2.7)

where xk is the word embedding (as in a word-level model) and Mk ⊂ M is the set

of morphemes for word k. The morphemes are obtained by running an unsupervised

morphological tagger as a preprocessing step.9 We emphasize that the word embedding

itself (i.e. xk) is added on top of the morpheme embeddings, as was done in Botha

and Blunsom [Botha, 2014]. The morpheme embeddings are of size 200/650 for the

small/large models respectively. We further train word-level LSTM models as another

baseline.

On DATA-S it is clear from Table 2.4 that the character-level models outperform

their word-level counterparts despite, again, being smaller. The difference in param-

eters is greater for non-PTB corpora as the size of the word model scales faster with

|V|. For example, on Arabic the small/large word models have 35m/121m parameters

while the corresponding character models have 29m/69m parameters respectively. The

character models also outperform their morphological counterparts (both MLBL and

LSTM architectures), although improvements over the morphological LSTMs are more

measured. Note that the morpheme models have strictly more parameters than the word

models because word embeddings are used as part of the input.

Due to memory constraints (all models were trained on GPUs with 2GB memory)

we only train the small models on DATA-L (Table 2.5). Interestingly we do not observe

significant differences going from word to morpheme LSTMs on Spanish, French, and

9We use Morfessor Cat-MAP [Creutz and Lagus, 2007], as in [Botha, 2014].

39

DATA-L

CS DE ES FR RU EN

Botha KN-4 862 463 219 243 390 291
MLBL 643 404 203 227 300 273

Small
Word 701 347 186 202 353 236
Morph 615 331 189 209 331 233
Char 578 305 169 190 313 216

Table 2.5: Test set perplexities on DATA-L. First two rows are from [Botha, 2014],
while the last three rows are from the small LSTM models described in the paper. KN-
4 is a Kneser-Ney 4-gram language model, and MLBL is the best performing mor-
phological logbilinear model from [Botha, 2014]. Word/Morph/Char are models with
words/morphemes/characters as inputs respectively.

English. The character models again outperform the word/morpheme models. We also

observe significant perplexity reductions even on English when V is large. We conclude

this section by noting that we used the same architecture for all languages and did not

perform any language-specific tuning of hyperparameters.

Learned Word Representations We explore the word representations learned by the

models on the PTB. Table 2.6 has the nearest neighbors of word representations learned

from both the word-level and character-level models. For the character models we com-

pare the representations obtained before and after highway layers. Before the highway

layers the representations seem to solely rely on surface forms—for example the nearest

neighbors of you are your, young, four, youth, which are close to you in terms of edit dis-

tance. The highway layers however, seem to enable encoding of semantic features that

are not discernable from orthography alone. After highway layers the nearest neighbor

of you is we, which is orthographically distinct from you. Another example is while and

though—these words are far apart edit distance-wise yet the composition model is able

to place them near each other. The model also makes some clear mistakes (e.g. his and

hhs), highlighting the limits of our approach, although this could be due to the small

40

In Vocabulary
while his you richard trading

LSTM-Word
although your conservatives jonathan advertised

letting her we robert advertising
though my guys neil turnover
minute their i nancy turnover

chile this your hard heading
LSTM-Char whole hhs young rich training

(before highway) meanwhile is four richer reading
white has youth richter leading

meanwhile hhs we eduard trade
LSTM-Char whole this your gerard training

(after highway) though their doug edward traded
nevertheless your i carl trader

Out-of-Vocabulary
computer-aided misinformed looooook

LSTM-Word
– – –
– – –
– – –
– – –

computer-guided informed look
LSTM-Char computerized performed cook

(before highway) disk-drive transformed looks
computer inform shook

computer-guided informed look
LSTM-Char computer-driven performed looks

(after highway) computerized outperformed looked
computer transformed looking

Table 2.6: Nearest neighbor words (based on cosine similarity) of word representations
from the large word-level and character-level (before and after highway layers) models
trained on the PTB. Last three words are OOV words, and therefore they do not have
representations in the word-level model.

dataset. The learned representations of OOV words (computer-aided, misinformed) are

positioned near words with the same part-of-speech. The model is also able to correct

for incorrect/non-standard spelling (looooook), indicating potential applications for text

normalization in noisy domains.

41

Figure 2.2: PCA of character n-gram representations for English. Colors correspond to:
prefixes (red), suffixes (blue), hyphenated (orange), and all others (grey). Prefixes refer
to character n-grams which start with the start-of-word character. Suffixes likewise refer
to character n-grams which end with the end-of-word character.

Learned CharacterN -gram Representations As discussed previously, each filter of

the CharCNN is essentially learning to detect particular character n-grams. Our initial

expectation was that each filter would learn to activate on different morphemes and then

build up semantic representations of words from the identified morphemes. However,

upon reviewing the character n-grams picked up by the filters(i.e. those that maximized

the value of the filter), we found that they did not (in general) correspond to valid mor-

phemes. To get a better intuition for what the character composition model is learning,

we plot the learned representations of all character n-grams (that occurred as part of

at least two words in V) via principal components analysis (Figure 2.2). We feed each

character n-gram into the CharCNN and use the CharCNN’s output as the fixed di-

mensional representation for the corresponding character n-gram. As is apparent from

Figure 2.2, the model learns to differentiate between prefixes (red), suffixes (blue), and

others (grey). We also find that the representations are particularly sensitive to character

n-grams containing hyphens (orange), presumably because this is a strong signal of a

word’s part-of-speech.

42

LSTM-Char
Small Large

No Highway Layers 100.3 84.6
One Highway Layer 92.3 79.7
Two Highway Layers 90.1 78.9
One MLP Layer 111.2 92.6

Table 2.7: Perplexity on Penn Treebank.

Effect of the Highway Layers We quantitatively investigate the effect of highway

network layers via ablation studies (Table 2.7). We train a model without any highway

layers, and find that performance decreases significantly. As the difference in perfor-

mance could be due to the decrease in model size, we also train a model that feeds yk

(i.e. word representation from the CharCNN) through a one-layer multilayer percep-

tron (MLP) to use as input into the LSTM. We find that the MLP does poorly, although

this could be due to optimization issues. We hypothesize that highway networks are

especially well-suited to work with CNNs, adaptively combining local features detected

by the individual filters. CNNs have already proven to be been successful for many

NLP tasks [Collobert et al., 2011, Shen et al., 2014, Kalchbrenner et al., 2014, Kim,

2014, Zhang et al., 2015b, Lei et al., 2015], and we posit that further gains could be

achieved by employing highway layers on top of existing CNN architectures. We also

anecdotally note that (1) having one to two highway layers was important, but more

highway layers generally resulted in similar performance (though this may depend on

the size of the datasets), (2) having more convolutional layers before max-pooling did

not help, and (3) highway layers did not improve models that only used word embed-

dings as inputs.

Effect of Corpus/Vocab Sizes We next study the effect of training corpus/vocabulary

sizes on the relative performance between the different models. We take the German

43

|V|
10 k 25 k 50 k 100 k

T
1 m 17% 16% 21% –
5 m 8% 14% 16% 21%

10 m 9% 9% 12% 15%
25 m 9% 8% 9% 10%

Table 2.8: Influence of vocabulary and training data size on perplexity improvement.
Perplexity reductions by going from small word-level to character-level models based
on different corpus/vocabulary sizes on German (DE). |V| is the vocabulary size and T
is the number of tokens in the training set. The full vocabulary of the 1m dataset was
less than 100k and hence that scenario is unavailable.

(DE) dataset from DATA-L and vary the training corpus/vocabulary sizes, calculating

the perplexity reductions as a result of going from a small word-level model to a small

character-level model. To vary the vocabulary size we take the most frequent k words

and replace the rest with <unk>. As with previous experiments the character model

does not utilize surface forms of <unk> and simply treats it as another token. Although

Table 2.8 suggests that the perplexity reductions become less pronounced as the corpus

size increases, we nonetheless find that the character-level model outperforms the word-

level model in all scenarios.

Further Observations Combining word embeddings with the CharCNN’s output to

form a combined representation of a word (to be used as input to the LSTM) resulted

in slightly worse performance (81 on PTB with a large model). This was surprising, as

improvements have been reported on part-of-speech tagging [dos Santos and Zadrozny,

2014] and named entity recognition [dos Santos and Guimarães, 2015] by concatenat-

ing word embeddings with the output from a character-level CNN. While this could be

due to insufficient experimentation on our part,10 it suggests that for some tasks, word

10We experimented with (1) concatenation, (2) tensor products, (3) averaging, and (4) adaptive weight-
ing schemes whereby the model learns a convex combination of word embeddings and the CharCNN

44

embeddings are superfluous—character inputs are good enough.

While our model requires additional convolution operations over characters and is

thus slower than a comparable word-level model which can perform a simple lookup

at the input layer, we found that the difference was manageable with optimized GPU

implementations—for example on PTB the large character-level model trained at 1500

tokens/sec compared to the word-level model which trained at 3000 tokens/sec. For

scoring, our model can have the same running time as a pure word-level model, as the

CharCNN’s outputs can be pre-computed for all words in V . This would, however, be at

the expense of increased model size, and thus a trade-off can be made between run-time

speed and memory (e.g. one could restrict the pre-computation to the most frequent

words).

Thus, we have introduced a neural language model that utilizes only character-level

inputs for word level language modeling. Despite having fewer parameters, our model

outperforms baseline models that utilize word/morpheme embeddings in the input layer,

showing the advantage of using a flexible enough character composition model. Anal-

ysis of word representations obtained from the character composition part of the model

further indicates that the model is able to encode, from characters only, rich semantic

and orthographic features.

2.4 Adaptive Character Level Encoding: Model

Section 2.3 shows how useful reading text at the character level can be. It appears

natural, then, to take this idea further and see whether we can do away with using word

separations entirely, for example by applying a recurrent neural network directly to the

outputs.

45

sequence of characters.

Most existing recurrent models take one of two approaches regarding the amount of

computation they require. Either the computational load is constant over time, or it fol-

lows a fixed (or deterministic) schedule [Koutnı́k et al., 2014,Mikolov et al., 2014]. The

latter approach has proven especially useful when dealing with sequences which reflect

processes taking place at different levels (and time scales) [Bojanowski et al., 2015].

However, we believe that taking a more flexible approach could prove useful. In this

work, we show how to modify two commonly used recurrent unit architectures, namely

the Elman and Gated Recurrent Unit, to obtain their variable computation counterparts.

This gives rise to two new architecture, the Variable Computation RNN and Variable

Computation GRU (VCRNN and VCGRU), which take advantage of these phenomena

by deciding at each time step how much computation is required based on the current

hidden state and input. We show that the models learn time patterns of interest, can per-

form fewer operations, and may even take advantage of these time structures to produce

better predictions than the constant computation versions.

The bulk of the computation in most character level recurrent neural network models

comes from the linear layers; a natural option to reduce the number of operations would

then be to only apply the linear transformations to a sub-set of the hidden dimensions.

These could in theory correspond to any sub-set indices in {1, . . . , D}; however, we

want a setting where the computational cost of the choice is much less than the cost of

computing the new hidden state. Thus, we only consider the sets of first d dimensions

of RD, so that there is a single parameter d to compute.

Our Variable Computation Units (VCUs) implement this idea using two modules:

a scheduler decides how many dimensions need to be updated at the current time step,

and the VCU performs a partial update of its hidden state accordingly, as illustrated in

46

Scheduler! Scheduler!

xt+1!xt!

ht-1! ht! ht+1!

Figure 2.3: Two time steps of a VCU. At each step t, the scheduler takes in the current
hidden vector ht−1 and input vector xt and decides on a number of dimensions to use d.
The unit then uses the first d dimensions of ht−1 and xt to compute the first d elements
of the new hidden state ht, and carries the remaining D− d dimensions over from ht−1.

Figure 2.3. In the rest of this Section, we first describe the scheduler and partial update

operations, then outline the procedure to jointly learn both modules.

Scheduler. The model first needs to decide how much computation is required at the

current time step. To make that decision, the recurrent unit has access to the current

hidden state and input; this way, the model can learn to ignore an uninformative input,

or to decide on more computation when it is unexpected given the current hidden state.

The scheduler is then defined as a functionm : R2D → [0, 1] which decides what portion

of the hidden state to change based on the current hidden and input vectors. In this work,

we decide to implement it as a simple log-linear function with parameter vectors u and

v, and bias b, and at each time step t, we have:

mt = σ(u · ht−1 + v · xt + b). (2.8)

47

Partial update. Once the scheduler has decided on a computation budgetmt, the VCU

needs to perform a partial update of the first dmtDe dimensions of its hidden state.

Recall the hidden state ht−1 is a D-dimensional vector. Given a smaller dimension

d ∈ {1, . . . , D}, a partial update of the hidden state would take the following form.

Let gd be the d-dimensional version of the model’s recurrence function g as defined

in Equation 1.3, which uses the upper left d by d square sub-matrices of the linear

transformations (Ud,Vd, . . .), and hdt−1 and xdt denote the first d elements of ht−1 and

xt. We apply gd to hdt−1 and xdt , and carry dimensions d + 1 to D from the previous

hidden state, so the new hidden state ht is defined by:

hdt = gd(h
d
t−1,x

d
t) and ∀i > d, ht,i = ht−1,i.

Soft mask. In practice, the transition function we just defined would require making a

hard choice at each time step of the number of dimensions to be updated, which makes

the model non-differentiable and can significantly complicate optimization. Instead,

we approximate the hard choice by using a gate function to apply a soft mask. Given

mt ∈ [0, 1] and a sharpness parameter λ, we use the gating vector et ∈ RD defined by:

∀i ∈ 1, . . . , D, (et)i = Thresε
(
σ
(
λ(mtD − i)

))
, (2.9)

where Thresε maps all values greater than 1 − ε and smaller than ε to 1 and 0 respec-

tively (in practice, this simply means that the model does not need to compute an update

when the mask value would be smaller than machine precision, since the sigmoid func-

tion never actually reaches 0). That way, the model performs an update using the first

(mt ×D + η) dimensions of the hidden state, where η goes to 0 as λ increases, and

leaves its last ((1−mt)×D − η) dimensions unchanged. Thus, if g is the recurrence

48

function defined in Equation 1.2, we have:

h̄t−1 = et�ht−1, īt = et�xt, and ht = et�g(h̄t−1, x̄t)+(1−et)�ht. (2.10)

The computational cost of this model at each step t, defined as the number of multipli-

cations involving possibly non-zero elements is then O(m2
tD

2).

Variable Computation Elman and Gated Recurrent Unit. First, we derive a vari-

able computation version of the Elman RNN to get the Variable Computation Recurrent

Neural Network (VCRNN) by transforming Equation 1.3 as follows:

ht = et � σ(Uh̄t−1 + Vx̄t) + (1− et)� ht. (2.11)

Secondly, we obtain the Variable Computation Gated Recurrent Unit (VCGRU) by de-

riving the variable computation of the GRU architecture. This is achieved by modifying

the Equations 1.5 as follows:

rt = σ(Urh̄t−1 + Vrx̄t), zt = et � σ(Uzh̄t−1 + Vzx̄t) (2.12)

h̃t = tanh(Uh(rt � h̄t−1) + Vhx̄t) (2.13)

And:

ht = zt � h̃t + (1− zt)� ht−1 (2.14)

Learning Since the soft mask et is a continuous function of the model parameters,

the scheduler can be learned through back-propagation. However, we have found that

the naive approach of using a fixed sharpness parameter and simply minimizing the

49

negative log-likelihood defined in Equation 1.1 led to the model being stuck in a local

optimum which updates all dimensions at every step. We found that the following two

modifications allowed the model to learn better parameterizations.

First, we can encourage mt to be either close or no greater than a target m̄ at all

time by adding a penalty term Ω to the objective. For example, we can apply a `1 or

`2 penalty to values of mt that are greater than the target, or that simply diverge from it

(in which case we also discourage the model from using too few dimensions). The cost

function defined in Equation 1.1 then becomes:

O(w,U,V,u,v, b) = NL(w,U,V,u,v, b) + Ω(m, m̄). (2.15)

Secondly, for the model to be able to explore the effect of using fewer or more

dimensions, we need to start training with a smooth mask (small λ parameter), since for

small values of λ, the model actually uses the whole hidden state. We can then gradually

increase the sharpness parameter until the model truly does a partial update.

2.5 Adaptive Character Level Encoding: Experiments

We ran experiments with the Variable Computation variants of the Elman and Gated

Recurrent Units (VCRNN and VCGRU respectively) on several sequence modeling

tasks. All experiments were run using a symmetrical `1 penalty on the scheduler m,

that is, penalizing mt when it is greater or smaller than target m̄, with m̄ taking various

values in the range [0.2, 0.5]. In all experiments, we start with a sharpness parameter

λ = 0.1, and increase it by 0.1 per epoch to a maximum value of 1.

In each of our experiments, we are interested in investigating two specific aspects

of our model. On the one hand, do the time patterns that emerge agree with our intu-

50

ition of the time dynamics expressed in the data? On the other hand, does the Variable

Computation Unit (VCU) yield a good predictive model? More specifically, does it lead

to lower perplexity than a constant computation counterpart which performs as many or

more operations? In order to be able to properly assess the efficiency of the model, and

since we do not know a priori how much computation the VCU uses, we always report

the “equivalent RNN” dimension (noted as RNN-d in Table 2.11) along with the perfor-

mance on test data, i.e. the dimension of an Elman RNN that would have performed the

same amount of computation. Note that the computational complexity gains we refer to

are exclusively in terms of lowering the number of operations, which does not neces-

sarily correlate with a speed up of training when using general purpose GPU kernels; it

is however a prerequisite to achieving such a speed up with the proper implementation,

motivating our effort.

We answer both of these questions on the tasks of music modeling, bit and char-

acter level language modeling on the Penn Treebank text, and character level language

modeling on the Text8 data set as well as two languages from the Europarl corpus.

Music Modeling We downloaded a corpus of Irish traditional tunes from theses-

sion.org11 and split them into a training validation and test of 16,000 (2.4M tokens),

1,511 (227,000 tokens) and 2,000 (288,000 tokens) melodies respectively. Each sub-set

includes variations of melodies, but no melody has variations across subsets. We con-

sider each (pitch, length) pair to be a different symbol; with rests and bar symbols, this

comes to a total vocabulary of 730 symbols.

Table 2.9 compares the perplexity on the test set to Elman RNNs with equivalent

computational costs: an VCRNN with hidden dimension 500 achieves better perplexity

11https://thesession.org

51

unit type equivalent RNN perplexity
RNN-200 − 9.13
RNN-250 − 8.70
VCRNN-500 233 8.51

Table 2.9: Music modeling, test set perplexity on a corpus of traditional Irish tunes. Our
model manages to achieve better perplexity with less computation than the Elman RNN.

with fewer operations than an RNN with dimension 250.

Looking at the output of the scheduler on the validation set also reveals some in-

teresting patterns. First, bar symbols are mostly ignored: the average value of mt on

bar symbols is 0.14, as opposed to 0.46 on all others. This is not surprising: our pre-

processing does not handle polyphony or time signatures, so bars en up having different

lengths. The best thing for the model to do is then just to ignore them and focus on the

melody. Similarly, the model spends less computation on rests (0.34 average mt), and

pays less attention to repeated notes (0.51 average formt on the first note of a repetition,

0.45 on the second).

We also notice that the model needs to do more computation on fast passages, which

often have richer ornamentation, as illustrated in Table 2.10. While it is difficult to think

a priori of all the sorts of behaviors that could be of interest, these initial results certainly

show a sensible behavior of the scheduler on the music modeling task.

note length 0.25 1/3 0.5 0.75 1 1.5 2
average m 0.61 0.77 0.39 0.59 0.44 0.46 0.57

Table 2.10: Average amount of computation (mt) for various note lengths. More effort
is required for the faster passages with 16th notes and triplets.

52

Penn TreeBank and Text8 We also chose to apply our model to the tasks of bit level

and character level language modeling. Those appeared as good applications since we

know a priori what kind of temporal structure to look for: ASCII encoding means that we

expect a significant change (change of character) every 8 bits in bit level modeling, and

we believe the structure of word units to be useful when modeling text at the character

level.

We first ran experiments on two English language modeling tasks, using the Penn

TreeBank and Text8 data sets. We chose the former as it is a well studied corpus, and one

of the few corpora for which people have reported bit-level language modeling results.

It is however quite small for our purposes, with under 6M characters, which motivated

us to apply our models to the larger Text8 data set (100M characters). Table 2.11 shows

bit per bit and bit per character results for bit and character level language modeling. We

compare our results with those obtained with standard Elman RNN, GRU, and LSTM

networks, as well as with the Conditional RNN of [Bojanowski et al., 2015].

Quantitative Results. We first compare the VCRNN to the regular Elman RNN, as

well as to the Conditional RNN of [Bojanowski et al., 2015], which combines two lay-

ers running at bit and character level for bit level modeling, or character and word

level for character level modeling. For bit level language modeling, the VCRNN not

only performs fewer operations than the standard unit, it also achieves better perfor-

mance. For character level modeling, the Elman model using a hidden dimension of

1024 achieved 1.47 bits per character, while our best performing VCRNN does slightly

better while only requiring as much computation as a dimension 760 Elman unit. While

we do slightly more computation than the Conditional RNN, it should be noted that our

model is not explicitly given word-level information: it learns how to summarize it from

53

Bit level PTB
unit type RNN-d bpb
RNN-100 100 0.287
RNN-500 500 0.227
RNN-1000 1000 0.223
CRNN-100 140 0.222
VCRNN-1000 340 0.231
VCRNN-1000 460 0.215

Character level PTB
unit type RNN-d bpc
GRU-1024 1450 1.42
LSTM-1024 2048 1.42
RNN-1024 1024 1.47
CRNN-500 700 1.46
VCRNN-1024 760 1.46
RNN-760 760 1.47
LSTM-380 760 1.44
GRU-538 760 1.43
VCGRU-1024 648 1.42
LSTM-324 648 1.46
GRU-458 648 1.47

Character level Text8
unit type m̄ RNN-d bpc
RNN-512∗ - 512 1.80
RNN-1024∗ - 1024 1.69
LSTM-512∗ - 1024 1.65
LSTM-1024∗ - 2048 1.52
RNN-512 - 512 1.80
GRU-512 - 725 1.69
GRU-1024 - 1450 1.58
VCGRU-1024 0.3 464 1.69
VCGRU-1024 0.4 648 1.64
VCGRU-1024 0.5 820 1.63

Table 2.11: Top left: Bits per character for character level language modeling on Penn
TreeBank. CRNN refers to the Conditional RNN from [Bojanowski et al., 2015]. Top
right: Bits per bit for bit level language modeling on Penn TreeBank. Bottom: Bits per
character for character level language modeling on Text8. ∗From [Zhang et al., 2016b]

character-level input.

The comparison between the constant computation and Variable Computation GRU

(VCGRU) follows the same pattern, both on the PTB and Text8 corpora. On PTB, the

VCGRU with the best validation perplexity performs as well as a GRU (and LSTM) of

the same dimension with less than half the number of operations. On Text8, the VCGRU

models with various values of the target m̄ always achieve better perplexity than other

models performing similar or greater numbers of operations. It should be noted that

none of the models we ran on Text8 overfits significantly (the training and validation

54

perplexities are the same), which would indicate that the gain is not solely a matter of

regularization.

u u u u u u u u t t t t t t t t e e e e e e e e s s s s s s s s ~ ~ ~ ~ ~ ~ ~ ~ w w w w w w w w
0.94

0.96

0.98

1 2 3 4 5 6 7 8 s s s s s s s s 1 2 3 4 5 6 7 8 p p p p p p p p 1 2 3 4 5 6 7 8 e e e e e e e e
0.20
0.25
0.30
0.35

1 2 3 4 5 6 7 8 s s s s s s s s 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 p p p p p p p p
0.2

0.4

0.6

Figure 2.4: Top: Per-bit computation by VCRNN, higher dimensions (950 to 1000).
Middle: adding 8 bits of buffer between every character. Bottom: adding 24 bits of
buffer between each character.

Bit Level Scheduler. The scheduler in the bit level language model manages to learn

the structure of ASCII encoding: Figure 2.4 shows that the higher dimensions are modi-

fied roughly every 8 bits. We also created some artificial data by taking the PTB text and

adding 8 or 24 0 bits between each character. Figure 2.4, shows that the model learns to

mostly ignore these “buffers”, doing most of its computation on actual characters.

Character Level Scheduler. On character level language modeling, the scheduler

learns to make use of word boundaries and some language structures. Figure 2.5 shows

that the higher dimensions are used about once per words, and in some cases, we even

observe a spike at the end of each morpheme (long-stand-ing, as shown in Figure 2.7).

55

d a y s e v e r y o n e i s l o o k i n g f o r a w a y t o g e t v i ew e r s mo r e e x c i
0.4

0.6

0.8

e n a k o n c i z d l o u h a v é h o a n am á h a v é h o p r o c e s u . N á v r a t d o t é t o
0.4

0.6

0.8

d i e d e u t l i c h ü b e r d em An t e i l d e s L u f t v e r k e h r s l i e g t , d e r e b
0.4

0.6

0.8

Figure 2.5: Per-character computation by VCRNN. Top: English. Middle: Czech. Bot-
tom: German. All languages learn to make use of word units.

While we provide results for the VCRNN specifically in this Section, the VCGRU

scheduler follows the same patterns. Early experiments on a text where the spaces had

been artificially removed showed similar patterns, although less marked, indicating that

the model’s scheduler makes some use of the information provided by word boundaries.

Europarl Czech and German We also ran our model on two languages form the Eu-

roparl corpus. We chose Czech, which has a larger alphabet than other languages in the

corpus, and German , which is a language that features long composite words without

white spaces to indicate a new unit. Both are made up of about 20M characters. We tried

two settings. In the “guide” setting, we use the penalty on mt to encourage the model

to use more dimensions on white spaces. The “learn” setting is fully unsupervised, and

encourages lower values of mt across the board.

Figure 2.6 shows that both perform similarly on the Czech dataset, achieving better

56

100 200 300 400 500
hidden dimension

1.6

1.7

1.8

1.9
bi

t p
er

 c
ha

r

Europarl-cs

Elman
Guide VCRNN
Learn VCRNN

100 200 300 400 500
hidden dimension

1.4

1.5

1.6

1.7

bi
t p

er
 c

ha
r

Europarl-de

Elman
Guide VCRNN
Learn VCRNN

Figure 2.6: Bits per character for different computational loads on the Europarl Czech
(left) and German (right) datasets. The VCRNN, whether guided to use boundaries
or fully unsupervised, achieves better held-out log-likelihood more efficiently than the
standard RNN.

a l ong s t and i ng ban
0.4
0.5
0.6
0.7

De r An s a t z d e r

0.5
0.6
0.7

e i n e u mw e l t f r e u n d l i c h e

0.5
0.6
0.7

Figure 2.7: Per-character computation by VCRNN. The model appears to make use of
morphology, separating sub-word units.

performance more efficiently than the standard RNN. On German, the guided settings

remains slightly more efficient than the fully learned one, but both are more efficient

than the RNN and achieve the same performance when using more dimensions. Both

learn to use more dimensions at word boundaries as shown in Figure 2.5. The German

model also appears to be learning interesting morphology (Luft-ver-kehrs, eben-falls in

Figure 2.5, An-satz, Um-welt-freund-lich in Figure 2.7), and grammar (focusing on case

markers at the end of articles, Figure 2.7).

57

2.6 Discussion

In this Chapter, we have presented two ways of using character level inputs for lan-

guage processing systems. The performance gains of the Character Aware LSTM, espe-

cially on morphologically rich languages, shows that not only can the characters inform

the word embeddings, they can be sufficient to model all of their relevant properties.

Indeed, on the English Penn Treebank the model is on par with the existing state-of-the-

art despite having 60% fewer parameters. On languages with rich morphology (Ara-

bic, Czech, French, German, Spanish, Russian), the model outperforms word-level or

morpheme-level LSTM baselines, again with fewer parameters. This agrees with our

initial intuition: by giving the model the ability to explicitly take advantage of what

linguistics and morphology in particular tell us are significant phenomena occurring at

the character level, we gained both data efficiency and overall performance at the cost

of some additional computation.

This would tend to suggest that a fully character-level LSTM or other recurrent

model with sufficient capacity might do better than a word-level one in most cases,

and indeed there have been recent successes in using such models e.g. in machine

translation [Lee et al., 2017]. However, since these models need to update their latent

state at each time step, they can be extremely computationally costly, and may have

trouble keeping track of information over too many time steps. We took a first step to-

wards alleviating this difficulty through the proposed Variable Computation Recurrent

Neural Networks. By giving a recurrent model the ability to efficiently and explicitly

decide how much of its latent state it needs to update at each time step, we show that

not only can it be more computation efficient while reaching better performances, the

computation patterns often agree with our intuitions about morphology and higher level

58

reasoning for word level modeling. We hope to develop our model further in future

work to exploit its capacity better: promising directions include explicitly conditioning

the scheduler on morphological features other than the recurrent hidden state, or using

morphological knowledge or prediction entropy as an additional signal during training.

Recent Related Work and Future Directions We put forward two hybrid systems

which realize different trade-offs between the respective advantages of processing text

as a sequence of characters or as a sequence of words. More specifically, one mostly

word-level system whose input is augmented with character-level information, and one

mostly character-level model whose input is augmented with the ability to handle larger

units. In the rest of this Section, we consider how these paradigms have been used in

concurrent and more recent works.

One of the cheapest ways of augmenting word level inputs with subword information

consists in deterministically splitting words into relevant word pieces or word parts, and

treating those as the new units to process. One approach which has become very popular

recently (e.g. [Vaswani et al., 2017]) consists in using Byte Pair Encoding (BPE) to

construct a data-driven vocabulary of word pieces, following [Sennrich et al., 2016]:

among other things, this pre-processing step is currently deployed in very large-scale

neural machine translation systems as described in [Wu et al., 2016]. The word piece

vocabulary size is usually of the same order of size as V , and the method naturally adapts

to the morphological complexity of a language, making this approach a particularly

computation-efficient way to add in morphemes or switches to character-level prediction

when necessary. This makes the BPE method a good choice when computation is an

issue, at the cost of relying on a somewhat crude heuristic to find relevant word parts.

The method proposed in [Bojanowski et al., 2017] is more flexible than BPE while

59

remaining computationally cheaper than the Character Aware LSTM. There, rather than

obtaining representations for character n-grams through convolutions, the authors sim-

ply learn them independently, and sum them to obtain a word embedding. The method

is kept tractable by using a hash table for all character n-grams, the assumption being

that the embedding size is sufficient to handle collisions. This yields an architecture

which is more computation-efficient than ours at the cost of memory requirements and

loss of expressiveness in the way the word parts are combined.

All of the above, up to and including our own Character-aware LSTM, correspond

to different trade offs between computational complexity, performance and memory re-

quirements by considering different ways to integrate character information in the model

input. The obvious next question is then whether something similar can be achieved in

the output (beyond predicting word pieces given by BPE).

[Józefowicz et al., 2016] attempts to augment word representations on the predic-

tion side a recurrent neural network language model as well as the input side: they try

two approaches, the first one parameterizing word embeddings in the softmax using the

character CNN we presented in Section 2.2, and the second by using a character-level

LSTM to compute the likelihood of each word as a sequence of characters (similarly

to [Bojanowski et al., 2015]). However, while both provide similar gains in memory

efficiency and model size, they also lag behind independent word embeddings in terms

of performance. Arguably, the latter also provides a rough upper bound on the perfor-

mance of multi-scale fully character level RNN language models such as our Variational

Computation RNN, or the systems presented in [Chung et al., 2016] or [Graves, 2016].

In summary, while more and more models routinely leverage sub-word information

on the input side to obtain state-of-the-art results on a variety of language task, there

is still some work to be done before a fully character level language model can reach

60

the same performance as a word level system, or before we can efficiently compute the

likelihood of a next word in a character aware fashion.

61

Chapter 3

Speeding up Word Level Language

Modeling

In the next part of this thesis, we consider language modeling as a language

learning objective. More specifically, in this Chapter, we follow the set-

ting presented in Section 1.4, where we compute a probability distribution

for each word given its left context. However, one of the main issues with

this setting is the computational cost of computing a probability distribution

over a large vocabulary for each token in a corpus. To remedy this difficulty,

we propose to resort to hierarchical prediction: replacing one costly oper-

ation to compute the likelihood of a word with a series of much cheaper

ones. While this is a known technique for speeding up language modeling,

we differ from other work by providing an efficient theoretically motivated

algorithm to learn a hierarchical structure over the vocabulary in an online

fashion, yielding performance gains and potentially useful tree structures.

62

3.1 Introduction

Central to the language modeling problem is the challenge of scale. It is typical

for languages to have lexicons of hundreds of thousands of word types, and language

models themselves are often estimated on corpora with billions of tokens [Graff and

Cieri, 2003]. The scale of the problem inherently limits the space of distributions that

can be effectively applied. Hierarchical prediction can help alleviate this difficulty: for

a corpus with C tokens, a hidden representation of dimension D and a vocabulary of

size |V|, the complexity of computing the likelihood (and its gradients) can go from

O(C × D × |V|) for a flat predictor to O(C × D × log(|V|)) for a hierarchical one.

However, the optimal hierarchy for the predictor can depend both on the data and on the

text representation function. In this work, we propose to learn both jointly.

The models in this chapter are most closely related to the Log Bi-Linear (LBL)

neural n-gram language model of [Mnih and Hinton, 2008]. First, using the chain rule

and an order T Markov assumption we model the probability of a sentence (w)1,N =

(w1, w2, . . . , wN) as:

p(w1, w2, . . . , wN) =
N∏
t=1

p(wt|wt−T,...,t−1)

Similarly to their work, we also use a low dimensional representation of the context

(wt−T,...,t−1). In this setting, each word w in the vocabulary V has an embedding of

dimension D: Uw ∈ RD. A given context x = (wt−T , . . . , wt−1) corresponding to

position t is then represented by a context embedding vector rx such that

rx =
T∑
k=1

RkUwt−k ,

63

1

2

"a" "b" "c" "d"

V = {"a","b","c","d","e","f","g","h","i"}

4

ci = ((1,3),(4,3))

3

"e" "f" "g" "h" "i"

Figure 3.1: Hierarchical predictor: in order to predict label “i”, the system needs to
choose the third child of node 1, then the third child of node 4.

where U ∈ R|V|×D is the embedding matrix, and Rk ∈ RD×D is the transition matrix

associated with the kth context word.

The most straight-forward way to define a probability function is then to define the

distribution over the next word given the context representation as a softmax, as done

in [Mnih and Hinton, 2007]. That is:

p(wt = i|x) = softmaxi(r>xU + b)

=
exp(r>xUi + bi)∑

w∈V exp(r>xUw + bw)
,

where bw is the bias for word w. However, the complexity of computing this probability

distribution in this setting is O(|V|×D), which can be prohibitive for large corpora and

vocabularies.

Instead, [Mnih and Hinton, 2008] takes a hierarchical approach to the problem. They

construct a binary tree, where each word w ∈ V corresponds to a leaf, and can thus be

identified with the path from the root to the corresponding leaf by making a sequence of

choices of going left versus right (as illustrated in Figures 3.2 and 3.3). In this setting,

each word in the vocabulary corresponds to a unique leaf in a binary tree, and is iden-

64

Lost Time Pie Was The

Scoring function
I ate some -

0.4 0.1 0.20.10.2

Lost Time Pie Was

The

Root node

𝒏𝟏:
{T,P,W,L,T}

𝒏𝟐:
{P,W,L,T}

𝒏𝟑:
{L,T}

𝒏𝟒:
{P,W}

I like -

We baked a -

He got -

Game was -

We had -

We were on -

Just in -

Part -

Lost

Pie

Time

Was

The

I ate some -
𝒏𝟒

𝒏𝟐

𝒏𝟏

Figure 3.2: Comparing softmax functions for NNLMs. Each context in a corpus (e.g.
“We baked a. . . ”, “We were on. . . ”) has an embedding in R2 and a target next word in
the vocabulary V = {lost, time, pie, wasthe}. When the embedding for a new context
(“I ate some. . . ”) is given, we want to compute the likelihood of the target class (pie).
Top: Flat Softmax. The scoring function computes a similarity metric between the new
embedding and each of the classes, which yields a score, then normalizes these using
a softmax function. This takes O(|V|) operations. Here, the system makes a five-way
prediction between lost, time, was, and pie.
Bottom: Hierarchical Softmax. The words in the vocabulary correspond to the leaves
of a tree. The likelihood of a class is the product of the probabilities of each child on
the path from root to leaf. This takes O(log(|V|)) operations. Here, the path to the
leaf corresponding to the class “Pie” is ((n1, 0), (n2, 1), (n4, 0)), hence the likelihood is
obtained with three binary predictions (corresponding to the choice of a child at each of
the nodes n1, n2, and n4).

tified with the path from the root to that leaf: ((ni1, d
i
1), . . . , (niLi , d

i
Li

)), where Li is the

depth of the leaf corresponding to word i, nl ∈ {1, . . . , N} are the nodes of the tree and

dl ∈ {0, 1} correspond to the decision of going to the left or right child. The likelihood

of sending a context x to the right child of a node n is then parameterized by the node

65

Lost Time Pie Was

The

Root node

𝒏𝟏:
{T,P,W,L,T}

𝒏𝟐:
{P,W,L,T}

𝒏𝟑:
{L,T}

𝒏𝟒:
{P,W}

I ate some -

𝒏𝟏

𝑝 𝑛2 𝑛1, "I ate some" = 0.55

Lost Time Pie Was

The

Root node

𝒏𝟏:
{T,P,W,L,T}

𝒏𝟐:
{P,W,L,T}

𝒏𝟑:
{L,T}

𝒏𝟒:
{P,W}

I ate some -

𝒏𝟐

𝑝 𝑛4 𝑛2, "I ate some" = 0.75

Lost Time Pie Was

The

Root node

𝒏𝟏:
{T,P,W,L,T}

𝒏𝟐:
{P,W,L,T}

𝒏𝟑:
{L,T}

𝒏𝟒:
{P,W}

I ate some -

𝒏𝟒

𝑝 Pie 𝑛4, "I ate some" = 0.95

Figure 3.3: Computing the likelihood of the class pie for the embedding corresponding
to the context “I ate some. . . ”. The context is embedded to rIatesome ∈ R2, and the path
from the root to the label is ((n1, 0), (n2, 1), (n4, 0)). Following Equations 3.1 and 3.2,
we then have: p(Pie|“I ate some”) = 0.55× 0.75× 0.95 = 0.392

vector vn and bias bn and corresponds to the output of a sigmoid:

p(d = 1|x, n) = σ(rx · vn + bn) (3.1)

Where σ denotes the sigmoid function. Hence:

log p(wt = i|x) = log p(((ni1, d
i
1), . . . , (niL, d

i
L))|x)

= log

Li∏
l=1

p(d = dl|x, nl)

=

Li∑
l=1

log p(d = dl|x, nl) (3.2)

66

Since the depth of a balanced tree is logarithmic in the number of leaves (here |V|), the

cost of computing the likelihood of word w can then be reduced to O(log(|V|)×D). In

their work, the authors start the training procedure by using a random tree, then alternate

parameter learning with using a clustering-based heuristic to rebuild their hierarchy. We

expand upon their method by providing an algorithm which uses hierarchies of arbitrary

width, and jointly learns the tree structure and the model parameters by introducing a

theoretically motivated node objective.

3.2 Background

We consider the general setting of multi-class prediction where the predictor has a

hierarchical structure that allows for a very large number of labels both at train and test

time. The predictive power of such models can heavily depend on the structure of the

tree, and although past work showed how to learn the tree structure (e.g. [Madzarov

et al., 2009,Bengio et al., 2010,Choromanska and Langford, 2015]), it expected that the

feature vectors remained static. We provide a novel algorithm to simultaneously perform

representation learning for the input data and learning of the hierarchical predictor. We

introduce an objective function which favors balanced and easily-separable multi-way

node partitions, and provide a novel algorithm for conditional density estimation which

uses it to learn the tree structure along with the other model parameters. We theoretically

analyze this objective, showing that it gives rise to a boosting property and a bound on

classification error. We empirically validate the algorithm on text classification and

language modeling, and show that it compares favorably to common baselines in terms

of accuracy and running time.

67

Related Work The multi-class classification problem in the presence of a large num-

ber of classes has been addressed in the literature in a variety of ways. Hierarchical

prediction has been a widely explored area. Some, such as [Breiman, 2001], have used

random trees, but most more recent works have attempted to learn tree structures in a

data dependent fashion. Beyond the rather inefficient enumerate-and-test approach (see

e.g. [Breiman et al., 1984]) to find a good partition or expensive brute-force optimiza-

tion [Agrawal et al., 2013], we give an overview of notable examples here. [Madzarov

et al., 2009] build a binary tree by using hierarchical clustering in the feature space, then

trains SVM classifiers to assign examples to children of a node. [Bengio et al., 2010]

learn a tree structure by first learning a set of computationally cheaper one-against-all

classifiers, and using their confusion matrix on the label set to learn splits in a top-down

fashion via spectral clustering. [Deng et al., 2011] propose to extend on [Bengio et al.,

2010] by initializing the tree structure at random and modifying the node partitions at

training time once per epoch in a way which allows for overlaps between children, in-

troducing a parameter to trade-off the resulting loss of efficiency with classification ac-

curacy. Other works, such as the Structured OUtput Layer network of [Le et al., 2011]

and more recently [Grave et al., 2017a], reduce the model’s reliance on the hierarchical

structure by relying on a flat prediction between the common classes, and only using

hierarchical prediction for the less frequent ones.

Error Correcting Output Codes (ECOC) have been another promising direction, as

they are less sensitive than hierarchical prediction to compounding of errors. [Hsu et al.,

2009] propose to use sparse ECOC for image classification: since the complexity of the

prediction (without the reconstruction step) only depends on the length of the codes,

this can lead to gains in computational efficiency for large label sets. [Zhao and Xing,

2013] develop this idea further by learning codes in a data-dependent way, consider-

68

ing semantic similarity matrix between labels computed on the training data as well

as additional constraints. [Beygelzimer et al., 2009b] and [Beygelzimer et al., 2009a]

endeavor to bridge the gap between hierarchical prediction and probabilistic ECOC in

terms of guarantees of robustness. [Beygelzimer et al., 2009b] show that using an m-

elimination tournament rather than a simple tree for hierarchical prediction can have

achieve the same kind of guarantees as an ECOC based model nearly as efficiency as

tree-structured prediction. [Beygelzimer et al., 2009a] on the other hand propose to use

wider trees where ECOC are used to choose between the children, and also provide a

rudimentary tree learning method which uses an additional hyper-parameter to find a

trade-off between building a balanced and accurate hierarchy.

Another family of works learns to partition the feature space into regions with a

limited label space. FastXML [Prabhu and Varma, 2014] (and its slower and less ac-

curate at prediction predecessor [Agrawal et al., 2013]) builds trees to do so by relying

on a rank-sensitive loss function and shows an advantage over some other ranking and

NLP-based techniques in the context of multi-label classification. Another approach is

the SLEEC classifier [Bhatia et al., 2015] for extreme multi-label classification which

learns sparse embeddings and employs a nearest neighbors approach to limit the set of

candidate labels for a new example. Finally, [Weston et al., 2013] propose a method to

make prediction time shorter for a pre-trained label scorer by first partitioning the input

space with a weighted variant of k-means which takes advantage of information from

the scoring function, and limiting the possible labels of an example in a specific partition

to be in a restricted subset of labels.

A common shortcoming of all of the above mentioned methods, however, is that they

either learn their partitions or hierarchies based solely on properties of the input space,

or rely on an expensive regime of initial training with a standard model. The recently

69

proposed LOM tree algorithm of [Choromanska and Langford, 2015] differs signifi-

cantly from the above mentioned works in this regard in that it addresses the problem of

learning good-quality binary node partitions on-line using an objective which can be op-

timized through SGD ([Bottou, 1998]) and naturally balances the needs for efficiency

and the compatibility of the hierarchical structure and prediction function. A follow-

up to that work which was developed concurrently with the method introduced in this

chapter is the Recall Tree of [Daumé III et al., 2017]. The method learns a binary tree to

partition the input space into regions which are associated with limited sub-sets of the

label space with high recall, and trains a prediction function on the sub-set of labels at

each node. Note that both of these works learn a tree-structured partition of the input

space, rather than an explicit hierarchy over the output space, which is the focus of our

work.

Conditional density estimation can also be challenging in settings where the label

space is large. The underlying problem here consists in learning a probability distribu-

tion over a set of random variables given some context. For example, in the language

modeling setting one can learn the probability of a word given the previous text, ei-

ther by making a Markov assumption and approximating the left context by the last few

words seen (n-grams e.g. [Jelinek and Mercer, 1980, Katz, 1987], feed-forward neu-

ral language models [Bengio et al., 2003, Mikolov et al., 2011, Schwenk and Gauvain,

2002]), or by attempting to learn a low-dimensional representation of the full history

(RNNs [Mikolov et al., 2010, Mirowski and Vlachos, 2015]). Both the recurrent and

feed-forward Neural Network Language Models (NNLM) [Bengio et al., 2003] simul-

taneously learn a distributed representation for words and the probability function for

word sequences, expressed in terms of these representations.

The major drawback of these models is that they can be slow to train, as they grow

70

linearly with the vocabulary size (anywhere between 10,000 and 1M words), which

can make them difficult to apply [Mnih and Teh, 2012]. A number of methods have

been proposed to overcome this difficulty. Works such as LBL [Mnih and Hinton,

2007] or Word2Vec [Mikolov et al., 2013] reduce the model to its barest bones, with

only one hidden layer and no non-linearities. Another proposed approach has been to

only compute the NNLM probabilities for a reduced vocabulary size, and use hybrid

neural-n-gram model [Schwenk and Gauvain, 2005] at prediction time. Other avenues

to reduce the cost of computing gradients for large vocabularies include using different

sampling techniques to approximate it [Bengio and Senecal, 2003, Bengio and Senecal,

2008,Mnih and Teh, 2012], replacing the likelihood objective by a contrastive one [We-

ston et al., 2011, Gutmann and Hyvärinen, 2012] or spherical loss [de Brébisson and

Vincent, 2015], relying on self-normalizing models [Andreas and Klein, 2015], or tak-

ing advantage of data sparsity [Vincent et al., 2015]. It is important to note however

that while all of these methods drastically reduce training time, using the trained models

for classification still requires computing a score for all classes, such that the test-time

computational complexity would not be reduced.

Similarly to the classification case, there have also been a significant number of

works that use tree structured models to accelerate computation of the likelihood and

gradients [Morin and Bengio, 2005, Mnih and Hinton, 2008, Mikolov et al., 2013].

These use various heuristics to build a hierarchy, from using ontologies [Morin and

Bengio, 2005] to Huffman coding [Mikolov et al., 2013]. One algorithm which endeav-

ors to learn a binary tree structure along with the representation is presented in [Mnih

and Hinton, 2008]. They iteratively learn word representations given a fixed tree struc-

ture, and use a criterion that trades off between making a balanced tree and clustering

the words based on their current embedding. Their method is not truly on-line however,

71

as it needs to run a full epoch before updating the hierarchical structure, and relies on

a heuristic with an additional hyper-parameter to ensure balanced trees. The language

modeling application we present in the second part of this chapter is most closely re-

lated to the latter work, and uses a similar embedding of the context. However, where

their setting is limited to binary trees, we work with arbitrary width, and provide a tree

building objective which is both less computationally costly and comes with theoretical

guarantees. We also implemented a simple version of their proposed paradigm, which

performs significantly worse than our method.

Background In the next paragraphs, we define the classification and log-likelihood

objectives we wish to maximize. Let X be an input space, and V a label space. Let P be

a joint distribution over samples in (X ,V), and let fΘ : X → RDr be a function mapping

every input x ∈ X to a dimension Dr representation rx ∈ RDr , and parameterized by Θ

(e.g. as a neural network).

We consider two objectives. On the one hand, given a function g which takes an

input representation rx ∈ RDr , and predicts for it a label g(r) ∈ V , the classification

objective is defined as the expected proportion of correctly classified examples:

Oclass(Θ, g) = E(x,y)∼P

[
1[g ◦ fΘ(x) = y]

]
(3.3)

On the other hand, if a function pθ(·|r) defines a conditional probability distribution

(parameterized by θ) over V for any r ∈ RDr , we can define the log-likelihood objective

as the expected log-likelihood of samples from (X ,V):

Oll(Θ, θ) = E(x,y)∼P

[
log pθ(y|fΘ(x))

]
(3.4)

72

The second objective is slightly more general than the first. Indeed, if one can learn a

probability distribution pθ which maximizes the log-likelihood defined in Equation 3.4,

then it is possible to obtain a good classification accuracy by replacing g in Equation 3.3

by the deterministic prediction function gd corresponding to the MAP label:

gd(fΘ(x)) = arg max
y∈V

pθ(y|fΘ(x)) (3.5)

or by the stochastic prediction function gs corresponding to sampling from the condi-

tional distribution:

gs(fΘ(x)) ∼ pθ(y|fΘ(x)) (3.6)

The inverse direction is not true however: if a function pθ generally assigns a high

conditional probability to the right label in most cases but predicts it to be close to zero in

some cases, the gd or gs functions defined above can have a good classification accuracy

while leading to a poor log-likelihood. In the rest of this chapter, we practically learn a

probability distribution by optimizing a log-likelihood objective, and provide theoretical

guarantees on the classification accuracy using the stochastic prediction function gs.

Let us now show how to express the objectives in Equations 3.3 and 3.4 when using

tree-structured prediction functions (with fixed structure) as illustrated in Figure 3.1.

Consider a tree T of depth D and arity M with K = |V| leaf nodes and N internal

nodes. Each leaf l corresponds to a label, and can be identified with the path cl from the

root to the leaf. In the rest of the paper, we will use the following notations:

cl = ((cl1,1, c
l
1,2), . . . , (cld,1, c

l
d,2), . . . , (clD,1, c

l
D,2)), (3.7)

where cld,1 ∈ [1, N] correspond to the node index at depth d, and cld,2 ∈ [1,M] indicates

73

which child of cld,1 is next in the path. In that case, our classification and density estima-

tion problems are reduced to choosing the right child of a node or defining a probability

distribution over children given x ∈ X respectively.

We then need to replace g and pθ with node decision functions (gn)Nn=1 and condi-

tional probability distributions (pθn)Nn=1 respectively. Given such a tree and representa-

tion function, since we have a unique path from root to leaf ly for each label y, we can

write:

1[g ◦ fΘ(x) = y] =
D∏
d=1

1[g
c
ly
d,1

◦ fΘ(x) = c
ly
d,2]

and,

pθ(y|fΘ(x)) =
∏
d=1D

pθ
c
ly
d,1

(c
ly
d,2|fΘ(x))

Hence our objective functions become:

Oclass(Θ, g) = E(x,y)∼P

[D∏
d=1

1[g
c
ly
d,1

◦ fΘ(x) = c
ly
d,2]
]

(3.8)

Oll(Θ, θ) = E(x,y)∼P

[D∑
d=1

log pθ
c
ly
d,1

(c
ly
d,2|fΘ(x))

]
(3.9)

Similarly to the flat prediction setting, a model trained with the hierarchical log-likelihood

objective of Equation 3.9 can lead to a low classification error (Equation 3.8) when us-

ing the stochastic or deterministic MAP prediction functions defined above (Equations

3.5 and 3.6 respectively). For a balanced tree, the cost of using the stochastic prediction

is logarithmic in the size of the label space: we sample a child from the root, then a child

of this child, etc. . . until we reach a leaf. However, finding the maximum likelihood leaf

could in theory require computing a score for each label and be as expensive as a flat

prediction. There are two ways to get around this difficulty. On the one hand, we could

74

perform a greedy beam search for the MAP label. This approach is guaranteed to be

logarithmic in complexity, but may fail to find the true MAP if e.g. children of the root

have similar scores, but more important decisions need to be taken deeper in the tree. On

the other hand, we can use a depth-first search with a branch-and-bound type algorithm,

since the log-likelihood of reaching a node is an upper bound on the log-likelihood of

reaching any of its descendants. We choose the latter in our experiments. This approach

is exact, but does not have guaranteed logarithmic complexity. However, we find in

practice that the branch-and-bound method seldom has to visit more than a handful of

leaves, leading to good running times (see Section 3.5).

The tree objective defined in Equation 3.9, and possibly 3.8 depending on the for-

mulation of the prediction function, can be optimized in the space of parameters of the

representation and node functions using standard gradient ascent methods. However,

they also implicitly depend on the tree structure T . In the rest of the paper, we provide a

surrogate node objective function Jn which determines the structure of the tree in a way

which naturally balances tree depth and prediction accuracy. In Section 3.3, we provide

an algorithm which learns a hierarchical prediction function’s parameters to optimize

the data log-likelihood (Equation 3.9) under an adaptive tree structure motivated by Jn.

In Section 3.4, we justify our choice of objective by showing how a high value for a

specific node leads to a pure and balanced split, and how a lower bound on the Jn’s for

all nodes leads to an upper bound on the classification error presented in Equation 3.8

(when using the stochastic prediction function of Equation 3.5). Finally, in Section 3.5,

we show experimentally that learning a model with our algorithm leads to a low classi-

fication error on a tag prediction dataset when using the deterministic MAP prediction

function of Equation 3.5, and to a low perplexity (high log-likelihood, Equation 3.9) in

a language modeling application.

75

3.3 Adaptive Tree Model and Learning Algorithm

In this Section, we introduce a per-node objective Jn which leads to good quality

trees when maximized, and provide a tree learning algorithm inspired by it.

Objective function In an M -ary tree with K labels, we define the node objective Jn

for a non-leaf node n as:

Jn =
2

M

K∑
i=1

q
(n)
i

M∑
j=1

|p(n)
j − p

(n)
j|i |, (3.10)

where q(n)
i denotes the proportion of examples reaching node n that are of class i, p(n)

j|i

is the probability that an example of class i reaching n will be sent to its j th child, and

p
(n)
j is the probability that an example of any class reaching n will be sent to its j th child.

Note that we have:

∀j ∈ [1,M], p
(n)
j =

K∑
i=1

q
(n)
i p

(n)
j|i . (3.11)

The objective in Equation 3.10 reduces to the LOM tree objective in the case of M = 2

(illustrated in Figure 3.4).

At a high level, maximizing the objective encourages the conditional distribution

for each class to be as different as possible from the global one; so the node decision

function needs to be able to discriminate between examples of the different classes. The

objective thus favors balanced and pure node splits. To wit, we call a split at node

n perfectly balanced when the global distribution p(n)
· is uniform, and perfectly pure

when each p(n)
·|i takes value either 0 or 1, as all data points from the same class reaching

node n are sent to the same child. In Section 3.4, we discuss the theoretical properties

of this objective in details. We show that maximizing it leads to perfectly balanced and

perfectly pure splits. We also provide a boosting theorem which gives an upper bound on

76

Lost

Pie

Time

Was

𝒏𝟐

𝑞𝑃𝑖𝑒 = 0.15
𝑞𝑊𝑎𝑠 = 0.39
𝑞𝐿𝑜𝑠𝑡 = 0.23
𝑞𝑇𝑖𝑚𝑒 = 0.23

𝑝𝑟|𝑃𝑖𝑒 = 0.55

𝑝𝑟|𝑊𝑎𝑠 = 0.62

𝑝𝑟|𝐿𝑜𝑠𝑡 = 0.25

𝑝𝑟|𝑇𝑖𝑚𝑒 = 0.3

𝑝𝑟 = 0.45
𝑝𝑙 = 0.55

𝐽𝑛2 = 𝟎. 𝟏𝟓 × 𝟎. 𝟐 + 𝟎. 𝟑𝟗 × 𝟎. 𝟑𝟒

+𝟎. 𝟐𝟑 × 𝟎. 𝟒 + 𝟎. 𝟐𝟑 × 𝟎. 𝟑

𝐽𝑛2 = 0.32

Figure 3.4: Computing the value of the Jn objective for a binary node split (M = 2 and
K = |{Pie,Was, Lost, T ime}| = 4 in Equation 3.10), here n2 from Figures 3.2 and
3.3. We have:

Jn2 = qPie × (|pr|Pie − pr|+ |pl|Pie − pl|) + qWas × (|pr|Was − pr|+ |pl|Was − pl|)
+ qLost × (|pr|Lost − pr|+ |pl|Lost − pl|) + qT ime × (|pr|T ime − pr|+ |pl|T ime − pl|)

= 0.15× (|0.55− 0.45|+ |0.45− 0.55|) + 0.39× (|0.62− 0.45|+ |0.38− 0.55|)
+ 0.23× (|0.25− 0.45|+ |0.75− 0.55|) + 0.23× (|0.3− 0.45|+ |0.7− 0.55|)

= 0.15× 0.2 + 0.39× 0.35 + 0.23× 0.4 + 0.23× 0.3 = 0.32

the classification error (Equation 3.8) of a tree where all nodes are “weakly” optimized

in Jn (i.e., all Jn are greater than some value).

Comparison to Previous Work While the form of the objective and theoretical guar-

antees presented in this chapter are somewhat similar to those provided in i.e. [Choro-

manska and Langford, 2015] or [Daumé III et al., 2017], the approach is actually

quite different. Indeed, the above mentioned works learn a hierarchy over the input

space. At each node n, for each example (x, y), a function gn takes the example’s in-

put representation rx, and decides to deterministically send it to the child predicted by

gn(rx) ∈ {1, . . . ,M}. Then, when a leaf l is reached, the algorithm predicts among

the classes which it has seen in the past: either the majority class in [Choromanska and

77

Langford, 2015], or using a prediction function gl with values in the sub-set of labels

V l ⊂ V which have reached the leaf in the past in [Daumé III et al., 2017]. Under this

setting, the conditional probability p(n)
j|i of sending an example of class i to child j of

node n corresponds the expected counts over the data distribution:

p
(n)
j|i = E(x,y)∼P|y=i

[
1[gn(rx) = j]

]

and the classification objective (the probability that the leaf classifier that an example x

is routed to predicts the right label) is defined as an empirical expectation over the data.

So if x is sent to leaf lx, we have:

Oclass(g) = E(x,y)∼P

[
1[glx(rx) = y]

]

In this chapter on the other hand, we consider trees over the label space, as described

in section 3.2, where each label is identified with a unique leaf l and path from the root

cl (see Equation 3.7). The theoretical results consider the setting where each non-leaf

node n of the tree has a conditional probability function p(n)
θ , and a new example x is

classified by sampling a child c ∼ p
(n)
θ (rx) at each node n from the root down until a leaf

is reached. The corresponding label is then predicted. In this setting, the classification

accuracy is then defined as an expectation over both the data distribution and the node

choices:

Oclass(θ) = E(x,y)∼P,(c1,...,cD)∼pθ(rx)

[D∏
d=1

1[cd = c
ly
d,2]
]

and p(n)
j|i becomes the expected value of p(n)

θ for examples of class i (as illustrated in

Figure 3.5):

p
(n)
j|i := E(x,y)∼P|y=i[p

(n)
θ (rx)] (3.12)

78

Lost

Pie

Time

Was

𝒏𝟐

𝑝𝑟|𝑃𝑖𝑒 =
1

2
× (0.45 + 0.65) = 0.55

𝑝𝑟|𝑊𝑎𝑠 =
1

5
× (0.55 + 0.55 + 0.63 + 0.67 + 0.7) = 0.62

𝑝𝑟|𝐿𝑜𝑠𝑡 =
1

3
× (0.35 + 0.25 + 0.15) = 0.25

𝑝𝑟|𝑇𝑖𝑚𝑒 =
1

3
× (0.45 + 0.25 + 0.2) = 0.3

Figure 3.5: Computing the value of the p(n)
j|i as an empirical expectation (Equation 3.12.

In the binary case, we only show j corresponding to the right child (r), and gn is a
sigmoid function).

There are two main advantages to using the latter formulation over the former. First,

it provides a hierarchy over labels, which can be useful in and of itself: most notably,

under our model, the conditional likelihood of a label can be estimated in logarithmic

time by simply computing the likelihood of the path to the corresponding leaf, rather

than all leaves which have ever seen that label. Secondly, and perhaps more importantly,

it makes p(n)
j|i , and thus p(n)

j and in turn Jn, differentiable in the model parameters. In

the rest of this Section, we show how we can use the gradients of Jn to inform our tree

learning algorithm.

Algorithm We now present an algorithm for simultaneously building a tree over the

labels and learning the data representation. We aim at maximizing log-likelihood of

the data as defined in 3.9, while ensuring that the tree learned also leads to a good

classification accuracy (Equation 3.8) by increasing the value of the objective Jn of

Equation 3.10 at each node of the tree (the boosting property presented in Theorem 3.1

shows the connection between the two).

Contrary to what could be expected, and even though we have pointed out that the

79

Algorithm 3.1 Tree Learning Algorithm
Input Input representation function: f with parameters

Θf . Node decisions functions (gn)Kn=1 with
parameters (Θn)Kn=1. Gradient step size ε.

Output Learned M -ary tree, parameters Θf and (Θn)Kn=1.
// SumProbas, Counts and the paths to the leaves cl are treated as global variables

procedure InitializeNodeStats ()
for n = 1 to N do

for i = 1 to K do
SumProbasn,i ← 1

M
Countsn,i ← 1

procedure NodeCompute (r, n, i, target)
p← gn(w)
// Keep track of statistics used to compute ∂Jn

∂p
(n)
·|i

SumProbasn,i ← SumProbasn,i + p
Countsn,i ← Countsn,i + 1
// Gradient step in the node parameters
Θn ← Θn + ε

∂ log ptarget

∂Θn
// Accumulate gradients in the example embedding
return ∂ log ptarget

∂r

InitializeNodeStats ()
for Each batch b do

// AssignLabels () re-builds the tree based on the
// current statistics
AssignLabels ({1, . . . , K}, root)
for each example (x, i) in b do

Compute input representation r = f(x)
∆r← 0
// Go down the depth D path to the currently assigned leaf for label i
for d = 1 to D do

Set node id and target: (n, j)← cid
∆r← ∆r + NodeCompute (r, n, i, j)

// Gradient step in the parameters of f
Θf ← Θf + ε ∂f

∂Θf
∆r

Jn are (mostly) differentiable in our setting, we do not take a direct gradient descent ap-

proach on them; given the value of these gradients, this would correspond to increasing

the likelihood of sending members of a single class to more than one child (see Equation

3.13). Instead, we maintain a tree structure over the label set, and take gradient steps

in the log-likelihood of our training data (as defined in Equation 3.9) in a batch-SGD

80

Algorithm 3.2 Label Assignment Algorithm
Input labels currently reaching the node

node ID n
Output Lists of labels now assigned to the node’s children

procedure CheckFull (full, assigned, count, j)
if |assignedj| ≡ 2 mod (M − 1) then

count← count− (M − 1)
if count = 0 then

full← full ∪ {j}
if count = 1 then

count← 0
for j′ s.t. |assignedj′| ≡ 1 mod (M − 1) do

full← full ∪ {j′}
procedure AssignLabels (labels, n)

// first, compute p(n)
j and p(n)

j|i .
pavg0 ← 0
count← 0
for i in labels do

pavg0 ← pavg0 + SumProbasn,i
count← count + Countsn,i
pavgi ← SumProbasn,i/Countsn,i

pavg0 ← pavg0 /count
// then, assign each label to a child of n
unassigned← labels
full← ∅
count← (|unassigned| − (M − 1))
for j = 1 to M do

assignedj ← ∅
while unassigned 6= ∅ do//

∂Jn

∂p
(n)
j|i

is given in Equation 3.13

(i∗, j∗)← argmax
i∈unassigned,j 6∈full

(
∂Jn

∂p
(n)
j|i

)
if n = root then

ci
∗ ← (n, j∗)

else
ci
∗ ← (ci

∗
, (n, j∗))

assignedj∗ ← assignedj∗ ∪ {i∗}
unassigned← unassigned \ {i∗}
CheckFull (full, assigned, count, j∗)

for j = 1 to M do
AssignLabels (assignedj , childn,j , d+ 1)

return assigned

like fashion, using the current tree for each example. The key part of the algorithm

consists in updating this tree structure once per batch to ensure that the gradient step in

81

the log-likelihood also improves the value of Jn in each of the nodes visited as much as

possible. This way, we obtain an algorithm which generalizes training of fixed structure

hierarchical softmaxes while making use of the insights and theoretical gains of the Jn

objectives.

The general idea is the following. The node objective is piece-wise linear in the

conditional probability distributions p(n)
j|i , and the gradient on the differentiable parts is

(see proof of Lemma 3.1):

∂Jn

∂ log p
(n)
j|i

=
2

M
q

(n)
i (1− q(n)

i)p
(n)
j|i sign(p

(n)
j|i − p

(n)
j). (3.13)

Then, according to Equation 3.13, increasing the log-likelihood of sending label i to any

child j of n such that p(n)
j|i > p

(n)
j increases the objective Jn. Note that we only need to

consider the labels i for which q(n)
i > 0, that is, labels iwhich reach node n in the current

tree. For practical reasons, we also want to make sure that we have a well-formedM -ary

tree at each step, which means that the number of labels assigned to any node is always

congruent to 1 modulo (M − 1) (this way, we always have the same number of non-leaf

nodes, making implementation easier). Algorithm 3.2 provides such an assignment by

greedily choosing the label-child pair (i, j) such that j still has room for labels with the

highest value of ∂Jn

∂p
(n)
j|i

.

The global procedure, described in Algorithm 3.1, is then the following. At the start

of each batch, re-assign targets for each node prediction function, starting from the root

and going down the tree. At each node, each label is re-assigned to the child that most

increases Jn, which trades off between keeping the node balance and sending the label to

the child it has had most affinity with in the past (Algorithm 3.2). This can be seen as a

form of hierarchical on-line clustering. Every example now has a unique path depending

82

𝒏𝟏:
{T,P,W,L,T}

𝒏𝟐:
{P,W,L,T}

𝒏𝟑:
{L,T}

Lost Time

The

Was

𝒏𝟒:
{P,W}

Pie

𝒏𝟏

𝒏𝟏:
{T,P,W,L,T}

𝒏𝟐:
{P,W,L,T}

𝒏𝟑:
{L,T}

Lost Time

The

Was

𝒏𝟒:
{P,W}

Pie

𝒏𝟐

𝒏𝟏:
{T,P,W,L,T}

𝒏𝟐:
{P,W,L,T}

𝒏𝟑:
{L,T}

Lost Time

The

Was

𝒏𝟒:
{P,W}

Pie

𝒏𝟒

𝒏𝟏:
{T,P,W,L,T}

𝒏𝟐:
{P,W,L,T}

𝒏𝟑:
{L,T}

Lost Time

The

Was

𝒏𝟒:
{P,W}

Pie

𝒏𝟏:
{T,P,W,L,T}

𝒏𝟐:
{P,W,L,T}

𝒏𝟑:
{L,T}

Lost Time

The

Was

𝒏𝟒:
{P,W}

Pie

𝒏𝟏:
{T,P,W,L,T}

𝒏𝟐:
{P,W,L,T}

𝒏𝟑:
{L,T,P} Was

The

𝒏𝟏:
{T,P,W,L,T}

𝒏𝟐:
{P,W,L,T}

𝒏𝟑:
{L,T,P}

𝒏𝟓:
{L, P} Time

Was

The

𝒏𝟏:
{T,P,W,L,T}

𝒏𝟐:
{P,W,L,T}

𝒏𝟑:
{L,T,P}

𝒏𝟓:
{L, P}

Lost Pie

Time

Was

The

𝒏𝟓
Lost

Pie

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3.6: Tree learning algorithm: one iteration of Algorithm 3.1 (for a batch size of
1). (a)-(c): An example of class Was is sent down the path to the corresponding leaf,
computing the gradients in the node likelihood functions on the ways. (d): Applying the
gradients affects all of the embeddings and node functions on the path. (e)-(g): The tree
is re-built from the root down. n2 has become un-balanced and label Pie is re-routed
form the right to the left child. (h): The new non-leaf node n5 is initialized at random.

on its label. For each sample, we then take a gradient step in the log-likelihood of the

newly assigned child for the label at each node along the assigned path (see Algorithm

3.1, illustrated in Figure 3.6).

83

Lemma 3.1. If the gradients of the prediction functions are statistically independent

across nodes, taking a stochastic gradient descent step in the log-likelihood under the

tree defined in Algorithm 3.2 increases Jn in expectation.

Proof of Lemma 3.1. Recall the form of the objective defined in 3.10:

Jn =
2

M

K∑
i=1

q
(n)
i

(M∑
j=1

|p(n)
j − p

(n)
j|i |
)

=
2

M
Ei∼q(n)

[
fJn (i, p

(n)
·|· , q

(n))
]

Where:

fJn (i, p
(n)
·|· , q

(n)) =
M∑
j=1

∣∣∣p(n)
j − p

(n)
j|i

∣∣∣ =
M∑
j=1

∣∣∣p(n)
j|i −

K∑
i′=1

q
(n)
i′ p

(n)
j|i′

∣∣∣
=

M∑
j=1

∣∣∣ K∑
i′=1

(1i=i′ − q(n)
i′)p

(n)
j|i′

∣∣∣
Hence, on parts of the p(n)

j|i space where the absolute value function in the above equa-

tion is differentiable, we have:

∂fJn (i, p
(n)
·|· , q

(n))

∂p
(n)
j|i

= (1− q(n)
i) sign(p

(n)
j|i − p

(n)
j)

Which leads to:
∂Jn

∂p
(n)
j|i

=
2

M
q

(n)
i (1− q(n)

i) sign(p
(n)
j|i − p

(n)
j) (3.14)

And:
∂p

(n)
j|i

∂θ
= E(x,y)∼P|y=i[

∂

∂θ
p

(n)
θ (j|rx)]

84

Hence by applying the chain rule and noting that q(n)
i = E(x,y)∼P [1[y = i]], we have:

∂Jn
∂θ

=
∂Jn

∂p
(n)
·|·

∂p
(n)
·|·

∂θ

=
∑
i,j

2

M
q

(n)
i (1− q(n)

i) sign(p
(n)
j|i − p

(n)
j)E(x,y)∼P|y=i[

∂

∂θ
p

(n)
θ (j|rx)]

=
2

M
E(x,i)∼P

[
(1− q(n)

i) sign(p
(n)
j|i − p

(n)
j)

∂

∂θ
p

(n)
θ (j|rx)

]
= E(x,i)∼P

[
a

(n)
θ (i, rx)

]

Where a(n)
θ (i, rx) is the gradient step taken on example (x, i) when doing SGD on the

Jn objective.

Meanwhile, recall the form of the log-likelihood objective described in Equation 3.9:

Oll(Θ, θ) = E(x,i)∼P

[D∑
d=1

log pθ
c
li
d,1

(clid,2|fΘ(x))
]

Then consider 1[n ∈ ci] the indicator function that a node n is on the path from the

root to the leaf li corresponding to class i, and denote j(n)
i the child of n corresponding

to class i if n ∈ ci, we have:

∂Oll(Θ, θ)

∂θ
=

∂

∂θ
E(x,i)∼P

[D∑
d=1

log pθ
c
li
d,1

(clid,2|fΘ(x))
]

=
∂

∂θ
E(x,i)∼P

[∑
n

1[n ∈ ci] log pθ
c
li
d,1

(clid,2|fΘ(x))
]

=
∑
n

1[n ∈ ci] ∂
∂θ

E(x,y)∼P

[
log pθ

c
li
d,1

(clid,2|fΘ(x))
]

= E(x,i)∼P

[∑
n∈ci

∂

∂θ
log p

(n)
θ (j

(n)
i |rx)

]
= E(x,i)∼P

[
bθ(i, rx)

]

85

Here bθ(i, rx) is the gradient step taken on example (x, i) when doing SGD on the Oll

objective.

For any node n, we can the compute the dot product between the gradient step for the

log-likelihood and Jn objective:

E(x,i)∼P

[
a

(n)
θ (i, rx) · bθ(i, rx)

]
= E(x,y)∼P|y=i

[(2

M
(1− q(n)

i) sign(p
(n)
j|i − p

(n)
j)

∂

∂θ
p

(n)
θ (j|rx)

)
·
(∑
n′∈ci

∂

∂θ
log p

(n′)
θ (j(n′)(i)|rx)

)]
=
∑
i

q
(n)
i E(x,y)∼P

[(2

M
(1− q(n)

i) sign(p
(n)
j|i − p

(n)
j)

∂

∂θ
p

(n)
θ (j|rx)

)
·
(∑
n′∈ci

∂

∂θ
log p

(n′)
θ (j(n′)(i)|rx)

)]
=
∑
i,j

2

M
q

(n)
i (1− q(n)

i) sign(p
(n)
j|i − p

(n)
j)E(x,y)∼P|y=i

[(∂
∂θ
p

(n)
θ (j|rx)

)
·
(∑
n′∈ci

∂

∂θ
log p

(n′)
θ (j(n′)(i)|rx)

)]

Let us assume that the gradients in different node functions are independent, that is:

∀n 6= n′, Cov(
∂

∂θ
p

(n)
θ (j|rx),

∂

∂θ
log p

(n′)
θ (j(n′)(i)|rx)) = 0

86

Where Cov is the covariance. Then, we would have:

E(x,i)∼P

[
a

(n)
θ (i, rx) · bθ(i, rx)

]
=
∑
i,j

2

M
q

(n)
i (1− q(n)

i) sign(p
(n)
j|i − p

(n)
j)E(x,y)∼P|y=i

[∂
∂θ
p

(n)
θ (j|rx)

· ∂
∂θ

log p
(n)
θ (j

(n)
i |rx)

]
=
∑
i,j

∂Jn

∂p
(n)
j|i

E(x,y)∼P|y=i

[∂
∂θ
p

(n)
θ (j|rx) ·

∂

∂θ
log p

(n)
θ (j

(n)
i |rx)

]
=
∑
i

E(x,y)∼P|y=i

[∑
j

∂Jn

∂p
(n)
j|i

∂

∂θ
p

(n)
θ (j|rx) ·

∂

∂θ
log p

(n)
θ (j

(n)
i |rx)

]

Let us note:

σij,j∗ = E(x,y)∼P|y=i

[∂
∂θ
p

(n)
θ (j|rx) ·

∂

∂θ
log p

(n)
θ (j∗|rx)

]

Then the expected dot product of the log-likelihood gradient step and of the Jn gradient

becomes:

E(x,i)∼P

[
a

(n)
θ (i, rx) · bθ(i, rx)

]
=
∑
i

(
σi
j
(n)
i ,j

(n)
i

∂Jn

∂p
(n)

j
(n)
i |i

+
∑
j 6=j(n)

i

σi
j,j

(n)
i

∂Jn

∂p
(n)
j|i

)

=
∑
i

σi
j
(n)
i ,j

(n)
i

(
∂Jn

∂p
(n)

j
(n)
i |i

−
∑
j 6=j(n)

i

(
−

σi
j,j

(n)
i

σi
j
(n)
i ,j

(n)
i

) ∂Jn
∂p

(n)
j|i

)

(3.15)

Since p(n)
θ (·|rx) is a probability distribution,we know that

∑
j

∂

∂θ
p

(n)
θ (j|rx) =

∂
∑

j p
(n)
θ (j|rx)
∂θ

=
∂1

∂θ
= 0

87

Hence, since the expectation is linear:

∀i, ∀j∗,
∑
j

σij,j∗ = 0

And:

∀i,∀j∗,
∑
j 6=j∗

(
−

σij,j∗

σij∗,j∗

)
= 1 (3.16)

Similarly, since the prediction function is a softmax, we can show that:

∀j∗, σij∗,j∗ ≥ 0 and ∀j 6= j∗, σij,j∗ ≤ σij,j (3.17)

Indeed, if we write the scores in the softmax as ojθ(rx), we get:

∂ log p
(n)
θ (j|rx)
∂θ

=
∂

∂θ

(
ojθ(rx)− log

∑
j′

exp oj
′

θ (rx)
)

=
∂ojθ(rx)

∂θ
− 1∑

j′′ exp oj
′′

θ (rx)

∑
j′

∂ exp oj
′

θ (rx)

∂θ

=
∂ojθ(rx)

∂θ
−
∑
j′

p
(n)
θ (j′|rx)

∂oj
′

θ (rx)

∂θ

And:
∂p

(n)
θ (j|rx)
∂θ

= p
(n)
θ (j|rx)

∂ log p
(n)
θ (j|rx)
∂θ

Let us write eθ(rx) =
∑

j′ p
(n)
θ (j′|rx)

∂oj
′
θ (rx)

∂θ
, then we have:

∂p
(n)
θ (j|rx)
∂θ

· ∂ log p
(n)
θ (j|rx)
∂θ

= p
(n)
θ (j|rx)||

∂ojθ(rx)

∂θ
− eθ(rx)||22

88

And:

∂p
(n)
θ (j|rx)
∂θ

· ∂ log p
(n)
θ (j′|rx)
∂θ

= p
(n)
θ (j|rx)

(∂ojθ(rx)
∂θ

− eθ(rx)
)
·
(∂oj′θ (rx)

∂θ
− eθ(rx)

)
≤ ∂p

(n)
θ (j|rx)
∂θ

· ∂ log p
(n)
θ (j|rx)
∂θ

Hence, by applying Equations 3.16 and 3.17 to Equation 3.15, and considering that

Algorithm 3.2 assigns a class i to the child j(n)
i = arg maxj

∂Jn

∂p
(n)
j|i

, we get the lower

bound:

E(x,i)∼P

[
a

(n)
θ (i, rx) · bθ(i, rx)

]
=
∑
i

σi
j
(n)
i ,j

(n)
i

(
∂Jn

∂p
(n)

j
(n)
i |i

−
∑
j 6=j(n)

i

(
−

σi
j,j

(n)
i

σi
j
(n)
i ,j

(n)
i

) ∂Jn
∂p

(n)
j|i

)

≥
∑
i

σi
j
(n)
i ,j

(n)
i

(∂Jn

∂p
(n)

j
(n)
i |i

− max
j 6=j(n)

i

∂Jn

∂p
(n)
j|i

)
≥ 0

An interesting feature of the algorithm is that since the representation of examples

from different classes are learned together, there is intuitively less of a risk of getting

stuck in a specific tree configuration. More specifically, if two similar classes are ini-

tially assigned to different children of a node, the algorithm is less likely to keep this

initial decision since the representations for examples of both classes will be pulled

together in other nodes. In the next Section, we provide a theoretical analysis of the

objective introduced in Equation 3.10.

89

3.4 Theoretical Properties of the Objective

We start by showing that maximizing Jn in every node of the tree leads to high-

quality nodes, i.e. perfectly balanced and perfectly pure node splits. Let us first intro-

duce some formal definitions.

Definition 3.1 (Balancedness factor). The split in node n of the tree is β(n)-balanced if

β(n) ≤ min
j={1,2,...,M}

p
(n)
j ,

where β(n) ∈ (0, 1
M

] is a balancedness factor.

A split is perfectly balanced if and only if β(n) = 1
M

.

Definition 3.2 (Purity factor). The split in node n of the tree is α(n)-pure if

1

M

M∑
j=1

K∑
i=1

q
(n)
i min

(
p

(n)
j|i , 1− p

(n)
j|i

)
≤ α(n),

where α(n) ∈ [0, 1
M

) is a purity factor.

A split is perfectly pure if and only if α(n) = 0. Figure 3.7 illustrates the computation

of both α(n) and β(n) for a specific binary node split.

The following lemmas characterize the range of the objective Jn and link it to the

notions of balancedness and purity of the split.

Lemma 3.2. The objective function Jn lies in the interval [0, J∗], with J∗ = 4
M

(
1− 1

M

)
.

90

Lost

Pie

Time

Was

𝒏𝟐

𝑞𝑃𝑖𝑒 = 0.15
𝑞𝑊𝑎𝑠 = 0.39
𝑞𝐿𝑜𝑠𝑡 = 0.23
𝑞𝑇𝑖𝑚𝑒 = 0.23

𝑝𝑟|𝑃𝑖𝑒 = 0.55

𝑝𝑟|𝑊𝑎𝑠 = 0.62

𝑝𝑟|𝐿𝑜𝑠𝑡 = 0.25

𝑝𝑟|𝑇𝑖𝑚𝑒 = 0.3

𝑝𝑟 = 0.45
𝑝𝑙 = 0.55

𝐽𝑛2 = 0.32

𝛼𝑛2 =
1

2
× (𝟎. 𝟏𝟓 × 𝟎. 𝟒𝟓 + 𝟎. 𝟑𝟗 × 𝟎. 𝟑𝟖 +𝟎. 𝟐𝟑 × 𝟎. 𝟐𝟓 + 𝟎. 𝟐𝟑 × 𝟎. 𝟑)

𝛼𝑛2 = 0.17

𝛽𝑛2 = min 0.45, 0.55 = 0.45

Figure 3.7: Computing the value of the α(n) and β(n) for a binary node split. The node
is not quite pure, so α(n) is somewhat larger than 0, but mostly balanced, so that β(n) is
close to 1

2
.

Proof of Lemma 3.2. Recall that we have p(n)
j =

∑K
l=1 q

(n)
l p

(n)
j|l , hence:

Jn =
2

M

M∑
j=1

K∑
i=1

q
(n)
i |p

(n)
j − p

(n)
j|i | =

2

M

M∑
j=1

K∑
i=1

q
(n)
i

∣∣∣∣∣
K∑
l=1

q
(n)
l p

(n)
j|l − p

(n)
j|i

∣∣∣∣∣
The objective Jn is a convex function of the p(n)

j|l which are defined over a simplex,

hence its extrema are reached on corners. Thus, define the following two sets:

Oj = {i : i ∈ {1, 2, . . . , K}, p(n)
j|i = 1} and Zj = {i : i ∈ {1, 2, . . . , K}, p(n)

j|i = 0}.

(3.18)

We omit the n index for ease of reading. Note that
∑M

j=1 p
(n)
j = 1 and

91

p
(n)
j =

∑K
l=1 q

(n)
l p

(n)
j|l =

∑
i∈Oj q

(n)
i , thus

∑M
j=1

∑
i∈Oj q

(n)
i = 1, and we have:

Jn ≤
2

M

M∑
j=1

∑
i∈Oj

q
(n)
i

1−
∑
l∈Oj

q
(n)
l

+
∑
i∈Zj

q
(n)
i

∑
l∈Oj

q
(n)
l


=

4

M

M∑
j=1

∑
i∈Oj

q
(n)
i −

∑
i∈Oj

q
(n)
i

2
=

4

M

1−
M∑
j=1

∑
i∈Oj

q
(n)
i

2
Applying Jensen’s inequality to the last line yields:

Jn ≤
4

M
− 4

 M∑
j=1

 1

M

∑
i∈Oj

q
(n)
i

2

=
4

M

(
1− 1

M

)

Lemma 3.3. The objective function Jn admits the highest value, i.e. Jn = J∗, if and

only if the split in node n is perfectly balanced, i.e. β(n) = 1
M

, and perfectly pure, i.e.

α(n) = 0.

Proof of Lemma 3.3. We start by proving that if the split in node n is perfectly bal-

anced and perfectly pure, then Jn = J∗. For a maximally balanced split, we have:

Jn =
2

M

M∑
j=1

K∑
i=1

q
(n)
i

∣∣∣∣ 1

M
− p(n)

j|i

∣∣∣∣ .
Since the split is maximally pure, each p(n)

j|i can only take value 0 or 1. Thus, with sets

92

Oj and Zj defined as in the proof of Lemma 3.2 (Equation 3.18), we have:

Jn =
2

M

M∑
j=1

∑
i∈Oj

q
(n)
i

(
1− 1

M

)
+
∑
i∈Zj

q
(n)
i

1

M


=

2

M

M∑
j=1

∑
i∈Oj

q
(n)
i

(
1− 1

M

)
+

1

M

1−
∑
i∈Oj

q
(n)
i


=

2

M

(
1− 2

M

) M∑
j=1

∑
i∈Oj

q
(n)
i +

2

M

=
4

M

(
1− 1

M

)

This proves the first implication. Next we prove that if Jn = J∗, then the split in node n

is perfectly balanced and perfectly pure. The latter simply follows from the fact that, as

we noted earlier, Jn is a convex function of the p(n)
j|l which are defined over a simplex.

We give a proof by contradiction that the optimum is also perfectly balanced.

Let us assume that at least for one value of j, p(n)
j 6= 1

M
, or in other words if we

decompose each p(n)
j as p(n)

j = 1
M

+ xj , then at least for one value of j, xj 6= 0. Using

the above defined setsOj andZj , and recalling that p(n)
j =

∑K
l=1 q

(n)
l p

(n)
j|l =

∑
i∈Oj q

(n)
i ,

93

we have:

Jn =
2

M

M∑
j=1

∑
i∈Oj

q
(n)
i (1− p(n)

j) +
∑
i∈Zj

q
(n)
i p

(n)
j


=

2

M

M∑
j=1

[
p

(n)
j (1− p(n)

j) + p
(n)
j (1− p(n)

j)
]

=
4

M

M∑
j=1

[
p

(n)
j − (p

(n)
j)2

]
=

4

M

[
1−

M∑
j=1

(p
(n)
j)2

]

=
4

M

[
1−

M∑
j=1

(
1

M
+ xj

)2
]

=
4

M

(
1− 1

M
− 2

M

M∑
j=1

xj −
M∑
j=1

x2
j

)

<
4

M

(
1− 1

M

)
= J∗

We next propose Lemmas 3.4 and 3.5 which analyze balancedness and purity of a

node split in isolation, i.e. we analyze resp. balancedness and purity of a node split

when resp. purity and balancedness is fixed and perfect. We show that in such isolated

setting increasing Jn leads to a more balanced and more pure split.

Lemma 3.4. If a split in node n is perfectly pure, then

β(n) ∈

[
1

M
−
√
M(J∗ − Jn)

2
,

1

M

]
.

94

Proof of Lemma 3.4. Since we assume that the split is perfectly pure, then each p(n)
j|i

is either 0 or 1. Thus, using sets Oj and Zj from Equation 3.18, we have:

Jn =
2

M

M∑
j=1

∑
i∈Oj

q
(n)
i (1− pj) +

∑
i∈Zj

q
(n)
i pj


Note that pj =

∑
i∈Oj q

(n)
i , hence:

Jn =
2

M

M∑
j=1

[pj (1− pj) + (1− pj)pj] =
4

M

M∑
j=1

pj (1− pj) =
4

M

(
1−

M∑
j=1

p2
j

)

Thus:
M∑
j=1

p2
j = 1− MJn

4
. (3.19)

Let us express pj as pj = 1
M

+ εj , where εj ∈ [− 1
M
, 1− 1

M
]. Then:

M∑
j=1

p2
j =

M∑
j=1

(
1

M
+ εj

)2

=
1

M
+

2

M

M∑
j=1

εj +
M∑
j=1

ε2j =
1

M
+

M∑
j=1

ε2j , (3.20)

since 2
M

∑M
j=1 εj = 0. Thus combining Equation 3.19 and 3.20

1

M
+

M∑
j=1

ε2j = 1− MJn
4

and thus
M∑
j=1

ε2j = 1− 1

M
− MJn

4
.

The last statement implies that

max
j=1,2,...,M

εj ≤
√

1− 1

M
− MJn

4
,

95

which is equivalent to

min
j=1,2,...,M

pj =
1

M
−max

j
εj ≥

1

M
−
√

1− 1

M
− MJn

4
=

1

M
−
√
M(J∗ − Jn)

2
.

Lemma 3.5. If a split in node n is perfectly balanced, then α(n) ≤ (J∗ − Jn)/2.

Proof of Lemma 3.5. Since the split is perfectly balanced, we have:

Jn =
2

M

M∑
j=1

K∑
i=1

q
(n)
i

∣∣∣∣ 1

M
− p(n)

j|i

∣∣∣∣ =
2

M

K∑
i=1

M∑
j=1

q
(n)
i

∣∣∣∣ 1

M
− p(n)

j|i

∣∣∣∣
Define two sets:

Ai = {j : j ∈ {1, 2, . . . , K}, p(n)
j|i <

1

M
} and Bi = {j : j ∈ {1, 2, . . . , K}, p(n)

j|i ≥
1

M
}.

Then:

Jn =
2

M

K∑
i=1

[∑
j∈Ai

q
(n)
i

(
1

M
− p(n)

j|i

)
+
∑
j∈Bi

q
(n)
i

(
p

(n)
j|i −

1

M

)]

=
2

M

K∑
i=1

q
(n)
i

[∑
j∈Ai

(
1

M
− p(n)

j|i

)
+
∑
j∈Bi

(
p

(n)
j|i −

1

M

)]

=
2

M

K∑
i=1

q
(n)
i

[∑
j∈Ai

(
1

M
− p(n)

j|i

)
+
∑
j∈Bi

(
(1− 1

M
)− (1− p(n)

j|i)

)]

96

Recall that the optimal value of Jn is:

J∗ =
4

M

(
1− 1

M

)
=

2

M

N∑
i=1

q
(n)
i

[
(M − 1)

1

M
+

(
1− 1

M

)]

=
2

M

N∑
i=1

q
(n)
i

[(∑
j∈Ai∪Bi

1

M

)
− 1

M
+

(
1− 1

M

)]

Note thatAi can have at most M − 1 elements. Furthermore, ∀j ∈ Ai, p(n)
j|i < 1− p(n)

j|i .

Then, we have:

J∗−Jn =
2

M

K∑
i=1

q
(n)
i

[∑
j∈Ai

p
(n)
j|i +

∑
j∈Bi

(
(1− p(n)

j|i) +
1

M
− (1− 1

M
)

)
− 1

M
+

(
1− 1

M

)]

Hence, since Bi has at least one element:

J∗ − Jn ≥ 2

M

K∑
i=1

q
(n)
i

[∑
j∈Ai

p
(n)
j|i +

∑
j∈Bi

(
1− p(n)

j|i

)]

≥ 2

M

K∑
i=1

q
(n)
i

[
M∑
j=1

min(p
(n)
j|i , 1− p

(n)
j|i)

]
≥ 2α

Error bound Next we provide a bound on the classification error for a tree based on

the value of the Jn. In particular, we show that if the objective is “weakly” optimized

in each node of the tree, where this weak advantage is captured in a form of the Weak

Hypothesis Assumption, then our algorithm will amplify this weak advantage to build a

tree achieving any desired level of accuracy. Denote y(x) to be a fixed target function

97

with domain X , which assigns the data point x to its label, and let P be a fixed target

distribution over X . Together y and P induce a distribution on labeled pairs (x, y(x)).

Let t(x) be the label assigned to data point x by the tree. We denote as ε(T) the error

of tree T , i.e. ε(T) := Ex∼P
[∑K

i=1 1[t(x) = i, y(x) 6= i]
]

(thus 1− ε(T) refers to the

accuracy as given by Equation 3.8).

To bound the error, we start by proving a theorem relating the number of weakly

optimized non-leaf nodes in a tree to the entropy of the predictions Ge, then relate low

entropy to low classification error under the learned tree. Let L denote the set of leaves

of the tree. Let wl denote the probability that an example of any class reaches leaf l, and

q
(l)
i be as defined previously, the entropy is defined as:

Ge =
∑
l∈L

wl

K∑
i=1

q
(l)
i ln

(
1

q
(l)
i

)

Then, the following theorem holds:

Theorem 3.1. The Weak Hypothesis Assumption says that for any distribution P over

the data, at each node n of the tree T there exists a node prediction function p(n)
θ such

that Jn ≥ γ, where γ ∈
[
M
2

min
j=1,2,...,M

pj, 1− M
2

min
j=1,2,...,M

pj

]
. Under the Weak Hypoth-

esis Assumption, for any κ ∈ [0, 1], a tree with N non-leaf nodes has entropy Ge ≤ κ

provided N meets the requirement:

N ≥
(

1

κ

) 16[M(1−2γ)+2γ](M−1)

M2γ2 log2 e
lnK

Proof of Theorem 3.1. Let the weight of the tree leaf be defined as the probability that

a randomly chosen data point x drawn from some fixed target distribution P reaches

this leaf. Suppose at time step t, n is the heaviest leaf and has weight w. Consider

98

splitting this leaf to M children n1, n2, . . . , nM . Let the weight of the j th child be

denoted aswj . Also for the ease of notation let pj refer to p(n)
j (recall that

∑m
j=1 pj = 1)

and pj|i refer to p
(n)
j|i , and furthermore let qi be the shorthand for q(n)

i . Recall that

pj =
∑K

i=1 qipj|i and
∑K

i=1 qi = 1. Notice that for any j = {1, 2, . . . ,M}, wj = wpj .

Let q be the k-element vector with ith entry equal to qi.

Recall the expression for the entropy of tree leaves:

Ge =
∑
l∈L

wl

K∑
i=1

q
(l)
i ln

(
1

q
(l)
i

)

where L is a set of all tree leaves. Define the following function:

G̃e(q) =
∑K

i=1 qi ln
(

1
qi

)
. Before the split the contribution of node n to Ge was equal

to wG̃e(q). Note that for any j = {1, 2, . . . ,M}, q(nj)
i =

qipj|i
pj

is the probability that

a randomly chosen x drawn from P has label i given that x reaches node nj . For

brevity, let qnji be denoted as qj,i. Let qj be the k-element vector with ith entry equal

to qj,i. Notice that q =
∑M

j=1 pjqj . After the split the contribution of the same, now

internal, node n changes to w
∑M

j=1 pjG̃
e(qj). We denote the difference between the

contribution of node n to the value of the entropy-based objectives in times t and t+ 1

as

∆e
t := Ge

t −Ge
t+1 = w

[
G̃e(q)−

M∑
j=1

pjG̃
e(qj)

]
. (3.21)

The entropy function G̃e is strongly concave with respect to l1-norm with modulus 1,

thus we extend the inequality given by Equation 7 in [Choromanska et al., 2016] by

99

applying Theorem 5.2. from [Azocar et al., 2011] and obtain the following bound

∆e
t = w

[
G̃e(q)−

M∑
j=1

pjG̃
e(qj)

]

≥ w
1

2

M∑
j=1

pj‖qj −
M∑
l=1

plql‖2
1

= w
1

2

M∑
j=1

pj

(
K∑
i=1

∣∣∣∣∣qipj|ipj
−

M∑
l=1

pl
qipl|i
pl

∣∣∣∣∣
)2

= w
1

2

M∑
j=1

pj

(
K∑
i=1

qi

∣∣∣∣∣pj|ipj −
M∑
l=1

pl|i

∣∣∣∣∣
)2

= w
1

2

M∑
j=1

pj

(
K∑
i=1

qi

∣∣∣∣pj|ipj − 1

∣∣∣∣
)2

= w
1

2

M∑
j=1

1

pj

(
K∑
i=1

qi
∣∣pj|i − pj∣∣)2

.

Before proceeding, we will bound each pj . Note that by the Weak Hypothesis Assump-

tion we have

γ ∈
[
M

2
min

j=1,2,...,M
pj, 1−

M

2
min

j=1,2,...,M
pj

]
,

thus

min
j=1,2,...,M

pj ≥
2γ

M
,

hence all pjs are such that pj ≥ 2γ
M

. Then:

max
j=1,2,...,M

pj ≤ 1− 2γ

M
(M − 1) =

M(1− 2γ) + 2γ

M
.

100

Thus all pjs are such that pj ≤ M(1−2γ)+2γ
M

.

∆e
t ≥ w

M2

2[(M(1− 2γ) + 2γ]

M∑
j=1

1

M

(
K∑
i=1

qi
∣∣pj|i − pj∣∣)2

≥ w
M2

2[(M(1− 2γ) + 2γ]

(
M∑
j=1

1

M

K∑
i=1

qi
∣∣pj|i − pj∣∣)2

= w
M2

8[(M(1− 2γ) + 2γ]

(
2

M

M∑
j=1

K∑
i=1

qi
∣∣pj|i − pj∣∣)2

=
M2

[(M(1− 2γ) + 2γ]

wJ2
n

8
,

where the last inequality is a consequence of Jensen’s inequality. w can further be

lower-bounded by noticing the following:

Ge
t =

∑
l∈L

wl

K∑
i=1

q
(l)
i ln

(
1

q
(l)
i

)

≤
∑
l∈L

wl lnK

≤ w lnK
∑
l∈L

1

= [t(M − 1) + 1]w lnK ≤ (t+ 1)(M − 1)w lnK,

where the first inequality results from the fact that uniform distribution maximizes the

entropy. This gives the lower-bound on ∆e
t of the following form:

∆e
t ≥

M2Ge
tJ

2
n

8(t+ 1)[M(1− 2γ) + 2γ](M − 1) lnK
,

101

and by using Weak Hypothesis Assumption we get

∆e
t ≥

M2Ge
tγ

2

8(t+ 1)[M(1− 2γ) + 2γ](M − 1) lnK

Following the recursion of the proof in Section 3.2 in [Choromanska et al., 2016] (note

that in our case Ge
1 ≤ 2(M − 1) lnK), we obtain that under the Weak Hypothesis

Assumption, for any κ ∈ [0, 2(M − 1) lnK], to obtain Ge
t ≤ κ it suffices to make

t ≥
(

2(M − 1) lnK

κ

) 16[M(1−2γ)+2γ](M−1) lnK

M2 log2 eγ
2

splits.

The above theorem shows the number of splits that suffice to reduce the entropy of

the predictions of the tree below an arbitrary threshold κ. As shown in the proof of

the above theorem, the Weak Hypothesis Assumption implies that all pjs satisfy: pj ∈

[2γ
M
, M(1−2γ)+2γ

M
]. Below we show a tighter version of this bound when assuming that

each node induces balanced split.

Corollary 3.1. The Weak Hypothesis Assumption says that for any distribution P over

the data, at each node n of the tree T there exists a partition such that Jn ≥ γ, where

γ ∈ R+. Under the Weak Hypothesis Assumption and when all nodes make perfectly

balanced splits, for any κ ∈ [0, 1], to obtain Ge ≤ κ it suffices to have a tree with

N ≥
(

1

κ

) 16(M−1)

M2γ2 log2 e
lnK

non-leaf nodes.

102

Proof of Corollary 3.1. Note that the lower-bound on ∆e
t from the previous prove

could be made tighter as follows:

∆e
t ≥ w

1

2

M∑
j=1

1

pj

(
K∑
i=1

qi
∣∣pj|i − pj∣∣)2

= w
M2

2

M∑
j=1

1

M

(
K∑
i=1

qi
∣∣pj|i − pj∣∣)2

≥ w
M2

2

(
M∑
j=1

1

M

K∑
i=1

qi
∣∣pj|i − pj∣∣)2

= w
M2

8

(
2

M

M∑
j=1

K∑
i=1

qi
∣∣pj|i − pj∣∣)2

=
M2wJ2

n

8
,

where the first inequality was taken from the proof of Theorem 3.1 and the following

equality follows from the fact that each node is balanced. By next following exactly

the same steps as shown in the proof of Theorem 3.1 we obtain the corollary.

Finally, the following Corollary relates both of the above results to the multi-class

error rate and the classification objective from Equation 3.8:

Corollary 3.2. For the tree structure defined in Algorithm 3.1 and under the Weak

Hypothesis Assumption stating that in each node we have Jn ≥ γ, the classification

error ε is upper bounded by:

ε ≤
(M − 1

K

) M2 log2 e
16[M(1−2γ)+2γ] logK

γ2

103

Further, if all nodes are perfectly balanced, we can write:

ε ≤
(M − 1

K

) M2 log2 e
16(M−1) logK

γ2

Proof. We next proceed to directly proving the error bound. Denote w(l) to be the

probability that a data point x reached leaf l. Recall that q(l)
i is the probability that

the data point x corresponds to label i given that x reached l, i.e. q(l)
i = P (y(x) =

i|x reached l). Algorithm 3.2 assigns labels to leaves by order of descending qi(1 −

qi)pj|i. Notice that if nj id the j-th child of n, we have q(nj)
i = q

(n)
i p

(n)
j|i , and that ∂x(1−x)

∂x

is greater than 0 for x < 1
2
, this means that a leaf is assigned to label i if and only if the

following is true ∀z={1,2,...,k}
z 6=i

q
(l)
i ≥ q

(l)
z . Therefore we can write that

ε(T) =
K∑
i=1

P (t(x) = i, y(x) 6= i) (3.22)

=
∑
l∈L

w(l)
K∑
i=1

P (t(x) = i, y(x) 6= i|x reached l)

=
∑
l∈L

w(l)
K∑
i=1

P (y(x) 6= i|t(x) = i, x reached l)P (t(x) = i|x reached l)

=
∑
l∈L

w(l)(1−max(q
(l)
1 , q

(l)
2 , . . . , q

(l)
K))

K∑
i=1

P (t(x) = i|x reached l)

=
∑
l∈L

w(l)(1−max(q
(l)
1 , q

(l)
2 , . . . , q

(l)
K)) (3.23)

Consider again the Shannon entropy G(T) of the leaves of tree T that is defined as

Ge(T) =
∑
l∈L

w(l)
K∑
i=1

q
(l)
i log2

1

q
(l)
i

. (3.24)

104

Let il = arg maxi={1,2,...,K} q
(l)
i . Note that

Ge(T) =
∑
l∈L

w(l)
K∑
i=1

q
(l)
i log2

1

q
(l)
i

≥
∑
l∈L

w(l)
K∑
i=1
i 6=il

q
(l)
i log2

1

q
(l)
i

≥
∑
l∈L

w(l)
K∑
i=1
i 6=il

q
(l)
i

=
∑
l∈L

w(l)(1−max(q
(l)
1 , q

(l)
2 , . . . , q

(l)
K))

= ε(T), (3.25)

where the last inequality comes from the fact that ∀i={1,2,...,K}
i 6=il

q
(l)
i ≤ 0.5 and thus

∀i={1,2,...,K}
i 6=il

1

q
(l)
i

∈ [2; +∞] and consequently ∀i={1,2,...,K}
i 6=il

log2
1

q
(l)
i

∈ [1; +∞]. We next

use the proof of Theorem 6 in [Choromanska et al., 2016]. The proof modifies only

slightly for our purposes and thus we only list these modifications below.

• Since we define the Shannon entropy through logarithm with base 2 instead of

the natural logarithm, the right hand side of inequality (2.6) in [Shalev-Shwartz,

2012] should have an additional multiplicative factor equal to 1
ln 2

and thus the

right-hand side of the inequality stated in Lemma 14 has to have the same mul-

tiplicative factor.

• For the same reason as above, the right-hand side of the inequality in Lemma 9

should take logarithm with base 2 of k instead of the natural logarithm of k.

Using the entropy to bound the classification error and noticing that an M -ary tree

needs at least K
M−1

internal nodes to have K leaves leads to the statement of Corol-

lary 3.2.

105

3.5 Experiments

Data Description We run experiments to evaluate both the classification and den-

sity estimation version of our algorithm. For classification, we use the YFCC100M

dataset [Thomee et al., 2016], which consists of a set of a hundred million Flickr pic-

tures along with captions and tag sets split into 91M training, 930K validation and 543K

test examples. We focus here on the problem of predicting a picture’s tags given its cap-

tion. For density estimation, we learn a log-bilinear language model on the Gutenberg

novels corpus [Stroube, 2003], and compare the perplexity to that obtained with other

flat and hierarchical losses.

Classification We follow the setting of [Grave et al., 2017b] for the YFCC100M tag

prediction task: we only keep the tags which appear at least a hundred times, which

leaves us with a label space of size 312K. We compare our results to those obtained with

the FastText software [Grave et al., 2017b], which uses a binary hierarchical softmax

objective based on Huffman coding (Huffman trees are designed to minimize the ex-

pected depth of their leaves weighed by frequencies and have been shown to work well

with word embedding systems [Mikolov et al., 2013]), and to the Tagspace system [We-

ston et al., 2014], which uses a sampling-based margin loss (this allows for training in

tractable time, but does not help at test time, hence the long times reported). We also

extend the FastText software to use Huffman trees of arbitrary width. All models use a

bag-of-word embedding representation of the caption text; the parameters of the input

representation function fΘ which we learn are the word embeddings Uw ∈ Rd and a

caption representation is obtained by summing the embeddings of its words. We exper-

imented with embeddings of dimension d = 50 and d = 200. We predict one tag for

each caption, and report the precision as well as the training and test times in Table 3.1.

106

d Model Arity P@1 Train Test

50

TagSpace1 - 30.1 3h8 6h
FastText2 2 27.2 8m 1m

M -ary Huffman Tree 5 28.3 8m 1m
20 29.9 10m 3m

Learned Tree 5 31.6 18m 1m
20 32.1 30m 3m

200

TagSpace1 - 35.6 5h32 15h
FastText2 2 35.2 12m 1m

M -ary Huffman Tree 5 35.8 13m 2m
20 36.4 18m 3m

Learned Tree 5 36.1 35m 3m
20 36.6 45m 8m

Table 3.1: Classification performance on the YFCC100M dataset. 1 [Weston et al.,
2014]. 2 [Grave et al., 2017b]. M -ary Huffman Tree modifies FastText by adding an
M -ary hierarchical softmax objective.

Our implementation is based on the FastText open source version1, to which we

added M -ary Huffman and learned tree objectives. Table 3.1 reports the best accuracy

we obtained with a hyper-parameter search using this version on our system so as to

provide the most meaningful comparison, even though the accuracy is less than that

reported in [Grave et al., 2017b]. We learned our models with SGD with a linearly

decreasing rate for five epochs. We run a hyper-parameter search on the learning rate

(in {0.01, 0.02, 0.05, 0.1, 0.25, 0.5}). In the learned tree settings, the learning rate stays

constant for the first half of training, during which the AssignLabels() routine is called

50 times. We run the experiments in a Hogwild data-parallel setting using 12 threads

on an Intel Xeon E5-2690v4 2.6GHz CPU. At prediction time, we follow the FastText

setting in performing a truncated depth first search to find the most likely label (using

the same idea as in a branch-and-bound algorithm: if a node score is less than that of the

best current label, then all of its descendants are out). This could in theory be somewhat

1https://github.com/facebookresearch/fastText

107

more expensive than simply following the maximum likelihood child path from the root

to a label, but in practice the children likelihood are different enough that there is little

additional cost.

5402:
only
never
just
still

5367:
turned
stood
sat
ran

5393:
got
found
heard
met

5337:
put
set
lay
cut

3992:
her
him
my
them

4360:
a
no
an
something

4400:
it
what
nothing
anything

4412:
this
these
those
m.

26:
,
.
of
to

73:
had
been
could
only

4003:
first
most
next
best

67:
the
a
it
his

2 (root):
,
the
.
and

... ...

...

... ...

Figure 3.8: Tree learned from the Gutenberg corpus, showing the four most common
words assigned to each node.

We gain a few different insights from Table 3.1. First, although wider trees are

theoretically slower (remember that the theoretical complexity is O(M logM(N)) for an

M -ary tree with N labels), they run incomparable time in practice and always perform

better. Using our algorithm to learn the structure of the tree also always leads to more

accurate models, with a gain of up to 3.3 precision points in the smaller 5-ary setting.

Further, both the importance of having wider trees and learning the structure seems to

be less when the node prediction functions become more expressive. At a high level,

one could imagine that in that setting, the model can learn to use different dimensions of

the input representation for different nodes, which would minimize the negative impact

of having to learn a representation which is suited to more nodes.

108

Algorithm 3.3 Label Assignment Algorithm under Depth Constraint

Input Node statistics, max depth D
Paths from root to labels: P = (ci)Ki=1
node ID n and depth d
List of labels currently reaching n

Output Updated paths
Lists of labels now assigned to
each of n’s children under
depth constraints

procedure AssignLabels (labels, n, d)
// first, compute p(n)

j and p(n)
j|i .

// � is the element-wise
// multiplication
pavg0 ← 0
count← 0
for i in labels do

pavg0 ← pavg0 + SumProbasn,i
count← count + Countsn,i
pavgi ← SumProbasn,i/Countsn,i

pavg0 ← pavg0 /count

// then, assign each label to a child
// of n under depth constraints
unassigned← labels
full← ∅
for j = 1 to M do

assignedj ← ∅
while unassigned 6= ∅ do//

∂Jn

∂p
(n)
j|i

is given in Equation 3.13

(i∗, j∗)← argmax
i∈unassigned,j 6∈full

(
∂Jn

∂p
(n)
j|i

)
ci
∗

d ← (n, j∗)
assignedj∗ ← assignedj∗ ∪ {i∗}
unassigned← unassigned \ {i∗}
if |assignedj∗| = MD−d then

full← full ∪ {j∗}
for j = 1 to M do

AssignLabels (assignedj ,
childn,j , d+ 1)

return assigned

Another thing to notice is that since prediction time only depends on the expected

depth of a label, our models which learned balanced trees are nearly as fast as Huff-

man coding which is optimal in that respect (except for the dimension 200, 20-ary tree,

but the tree structure had not stabilized yet in that setting). Given all of the above re-

marks, our algorithm especially shines in settings where computational complexity and

prediction time are highly constrained at test time, such as mobile devices or embedded

systems.

Language Modeling We also ran language modeling experiments on the Gutenberg

novel corpus [Stroube, 2003], which has about 50M tokens and a vocabulary of 250,000

words.

One notable difference from the previous task is that the language modeling set-

ting can drastically benefit from the use of GPU computing, which can make using

109

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
epochs

140

150

160

170

180

190

200

p
e
rp

le
x
it

y

random
flat
learned

Figure 3.9: Test perplexity per epoch.

a flat softmax tractable (if not fast). While our algorithm requires more flexibility

and thus does not benefit as much from the use of GPUs, a small modification of

Algorithm 3.2 (described in the Algorithm 3.3) allows it to run under a maximum

depth constraint and remain competitive. The results presented in this section are ob-

tained using this modified version, which learns 65-ary trees of depth 3. In our exper-

iments, we use a context window size of 4. We optimize the objectives with Adagrad,

run a hyper-parameter search on the batch size (in {32, 64, 128}) and learning rate (in

{0.01, 0.02, 0.05, 0.1, 0.25, 0.5}). The hidden representation dimension is 200. In the

learned tree settings, the AssignLabels() routine is called 50 times per epoch. We used

a 12GB NVIDIA GeForce GTX TITAN GPU.

Table 3.3 presents perplexity results for different loss functions, along with the time

spent on computing and learning the objective (softmax parameters for the flat version,

hierarchical softmax node parameters for the fixed tree, and hierarchical softmax struc-

ture and parameters for our algorithm). The learned tree model is nearly three and seven

times as fast at train and test time respectively as the flat objective without losing any

points of perplexity.

110

Leaf 229 Leaf 230 Leaf 300 Leaf 231
suggested vegas payments operates
watched & buy-outs includes
created calif. swings intends
violated park gains makes
introduced n.j. taxes means
discovered conn. operations helps
carried pa. profits seeks
described pa. penalties reduces
accepted ii relations continues
listed d. liabilities fails
.

Table 3.2: Example of labels reaching the deepest internal nodes in the final tree learned
on Gutenberg. We can identify a leaf for 3rd person verbs, one for past participates, one
for plural nouns, and one (loosely) for places.

Model perp. train ms/batch test ms/batch
Clustering Tree 212 2.0 1.0
Random Tree 160 1.9 0.9
Flat softmax 149 12.5 6.9
Learned Tree 148 4.5 0.9

Table 3.3: Comparison of a flat softmax to a 65-ary hierarchical softmax (learned, ran-
dom and heuristic-based tree).

Huffman coding does not apply to trees where all of the leaves are at the same depth.

Instead, we use the following heuristic as a baseline, inspired by [Mnih and Hinton,

2008]: we learn word embeddings using FastText, perform a hierarchical clustering of

the vocabulary based on these, then use the resulting tree to learn a new language model.

We call this approach “Clustering Tree”. However, for all hyper-parameter settings, this

tree structure did worse than a random one. We conjecture that its poor performance is

because such a tree structure means that the deepest node decisions can be quite difficult.

Figure 3.9 shows the evolution of the test perplexity for a few epochs. It appears

that most of the relevant tree structure can be learned in one epoch: from the second

epoch on, the learned hierarchical softmax performs similarly to the flat one. Figure 3.8

and Table 3.2 show parts of the tree learned on the Gutenberg dataset, which appears to

111

make semantic and syntactic sense.

3.6 Discussion

In this Chapter, we have proposed a method to address the challenge of scale in

word level language modeling. We introduced a provably accurate algorithm for jointly

learning tree structure and data representation for hierarchical prediction, applied it to

the task of language modeling and to a multi-class classification problem, and showed

our model’s ability to achieve favorable accuracy in competitive times in both settings.

A few obvious next steps come to mind in this direction. For example, the use

of a single hierarchy can be quite limiting in some applications. Conversely, a forest

model could be quite a bit more effective without drastically limiting the speed and

computational gains of our methods. Figuring out how to use several trees jointly, and

how to combine them in a theoretically grounded manner with similar guarantees, would

be a significant development.

Additionally, there is till some theoretical work to be done on the relation between

the Jn and the log-likelihood objective, and on relevant optimization guarantees for Jn.

Here, we upper bounded the classification error based on the minimum value of all

Jn’s, while proposing an approximate algorithm to optimize the Jn’s locally in parallel,

without giving any guarantees about the minimum. In practice however, we observe

that while the Jn’s do increase from the beginning of training on the root and shallower

nodes, the deeper nodes have to wait until the structure of the the tree has stabilized

somewhat. In future work, we hope to provide an algorithm tailored more specifically

to the weak hypothesis assumption of Theorem 3.1, and to extend the guarantees based

on Jn to the log-likelihood objective.

112

We also note that, since it reduces the computational complexity dependence on

the size of the output space, hierarchical prediction could make it possible to extend

the prediction space beyond the original vocabulary. One could imagine, for example,

adding common multi-word expressions or learning useful phrases through some form

of Connectionist Temporal Classification like objective [Graves et al., 2006], possibly

leading to better performances.

Some recent works using different topologies, such as hyperbolic spaces [Nickel

and Kiela, 2017], have also shown promise in learning to embed inherently hierarchical

structures in a continuous space. While these methods have not been used in ways which

provide computational gains yet, it is possible that they might give rise to another family

of theoretically grounded methods to produce hierarchical prediction systems.

Finally, it is worth keeping in mind that similar methods could be devised for other

uses of adaptive hierarchies beyond tree-structured prediction. For example, forms of

hierarchical addressing have started being used in neural networks with external memo-

ries [Chandar et al., 2016], but they tend to rely on heuristics which only apply to static

memories or can be quite computationally expensive without providing any guarantees.

Extensions of our proposed algorithm, or other ways of adapting the hierarchy jointly

with the other model parameters, would provide a consequent boost to this paradigm.

113

Chapter 4

Globally Normalized Language

Modeling

In this Chapter, we propose to take language modeling beyond word-level

prediction, by using a globally normalized model to consider sequences in

their entirety. To that end, we propose a Markov Random Field language

model, whose structure is inspired by embeddings based neural language

models. The main computational difficulty in optimizing such a model con-

sists in computing the partition function to normalize over all possible se-

quences. We propose to take advantage of symmetries in our model to com-

bine the paradigm of lifting with a Tree Re-Weighted upper bound on the

partition function, and so provide an efficient algorithm to compute a lower

bound on the global likelihood function in time mostly independent on the

size of the corpus.

114

4.1 Introduction

In Section 1.4, we justified using language modeling as a learning objective by ar-

guing that it was related to fundamental mechanisms of language understanding. We

then expressed the language modeling objective as a probability distribution factorized

over word choices using the chain rule. While this is one way to make the distribution

tractable, it is easy to see how this choice might be less than ideal for our setting. Indeed,

at each time step, we are asking a model to make a prediction which has to account for

future decisions while only looking at information from the past. A global objective,

which considers the whole statement to make a decision, would be much preferable in

that respect.

This remark is coherent with the fact that n-gram language models, which draw on

little world knowledge and only consider short-term context, can achieve similar per-

plexity to recurrent neural network models on most text datasets. This can be explained

by the fact that linguistically interesting cases which rely on higher level reasoning are

relatively rare. Consider the example presented in Chapter 3. The model would only

achieve a tiny gain in perplexity by refining its candidate set for the last word from box,

safe to the singleton safe, even though this is the step which relies on mid-term context

and world knowledge. This appears to be an artifact of left to right word level prediction;

indeed, a model which looked at the text as a whole would also increase the contribution

to the global score of secure or know how to given the final open the safe. In addition,

when a language model relies on latent features such as a parse tree or alternative in-

terpretations of a word (whether from different possible POS tags or different forms

of polysemy), label bias can also be a problem for locally normalized models [Bottou,

1991, Andor et al., 2016].

115

In this chapter, we consider a different class of language models. Instead of esti-

mating the local probability of the next word given its context, we globally model the

entire corpus as a Markov Random Field (MRF) language model. Undirected graphical

models like MRFs have been widely applied in natural language processing as a way

to flexibly model statistical dependencies; however, MRFs are rarely used for language

modeling since estimating their parameters requires computing a costly partition func-

tion. Our contribution is to provide a simple to implement algorithm for very efficiently

learning the parameters of this class of models. We take a variational approach to the

optimization problem, and devise a lower bound on the log-likelihood using lifted infer-

ence. By exploiting the problem’s symmetry, we derive an efficient approximation of

the partition function. Crucially, each step of the final algorithm has time complexity of

O(K|V|2) where K is the n-gram context and |V| is the size of the vocabulary. Note

that besides collecting statistics, this algorithm has no time dependence on the number

tokens, potentially allowing its estimation speed to scale similarly to n-gram models.

Experimentally, we demonstrate the quality of the models learned by our algorithm by

applying it to language modeling on the Penn Treebank corpus [Marcus et al., 1993].

Additionally we show that this same estimation algorithm can be effectively applied to

other common sequence modeling tasks such as part-of-speech tagging.

4.2 A Markov Random Field Language Model

Markov Random fields To avoid the issue of local normalization, we model our cor-

pus as a sequence of random variables T1 . . . TN , for which we give a joint, globally

normalized distribution. We specify this distribution with a Markov random field. A

Markov random field is defined by a graph structure G, and a set of potentials (θc)c∈C ,

116

dog... </S>barked </S> catsThe ...

Figure 4.1: A segment of the linear-chain model over a small corpus.

where C is defined as the set of cliques in graph G. Let t denote a specific assignment

of T1 . . . TN , let tc = (ti)i∈c, the log-probability of a sequence t is then:

log(p(t; θ)) =
∑
c∈C

θctc − A(θ)

Where the normalizing factor A(θ) is called the log-partition function. The complexity

of computing this log-partition exactly is in general exponential in the size of the largest

clique of G. However, there exist many algorithms to compute an approximation in time

O(N |V|2). In this work, we go one step further, by devising a method which dispenses

with the N factor.

Chain MRF In the rest of the paper, we will focus on a specific class of linear-chain

MRFs, where the set of edges E of G connects each token to its K immediate neighbors

in a sentence. To connect the whole corpus while maintaining independence of tokens

across sentences, we also include separator tokens 〈/S〉 at the end of each sentence.

Figure 4.1 presents such a model for K = 2. For simplicity of exposition, we will

focus on pairwise MRFs, for which only size 2 cliques (edges) have potentials. The

lifted inference method, however, can easily be extended to models which consider other

cliques.

117

Under this model, the log-likelihood of a corpus t is given by:

log(p(t; θ)) =
N∑
i=1

i+K∑
j=i+1

θi,jti,tj (4.1)

− log(
∑
s∈SN

exp(
N∑
i=1

i+K∑
j=i+1

θi,jsi,sj))

Where SN is the set of possible token sequences of length N , and ∀s ∈ SN ,∀i ∈

[1, K], tN+i = sN+i = 〈/S〉.

These graphical models define a large family of log-linear distributions, depending

on the value of K and the parametrization of the edge log-potentials θ. In the applica-

tions that follow θ will either be given (and optimized over) explicitly, or represented

as a product of low-rank matrices. We will show how to optimize the likelihood of the

corpus for both these settings.

Low Rank Approximation of Chain MRF We now consider different low-rank real-

izations of the log-potentials θ. Suppose that θi,j only depends on |j − i|, that is to say,

parameters are shared across edges of the same length (in which case we shall simply

write θi,j = θ|j−i|), we can have for example:

1 θ
|j−i|
ti,tj = UtiR

|j−i|Wtj

2 θ
|j−i|
ti,tj = UtiW

|j−i|
tj

3 θ
|j−i|
ti,tj = U

|j−i|
ti Vtj + VtiW

|j−i|
tj

In the experimental results for this paper, we use the second formulation. One inter-

esting property of these models is that since the Markov blanket of a word consists only

of its immediate neighbors, its conditional likelihood can be expressed as:

118

p(ti|t−i) = p(ti|ti−K,...,i+K)

=
exp(

∑K
l=1 θ

l
ti−l,ti

+ θlti,ti+l)∑
s∈S exp(

∑K
l=1 θ

l
ti−l,s

+ θls,ti+l)

This class of probability functions corresponds to those defined by a bi-directional

log-bilinear neural language model. And in fact model 1 (θ = URW) can easily be

rewritten in terms of the bi-directional version of Mnih’s Log Bi-Linear model. Con-

versely, log-bilinear NNLMs can be seen as optimizing the pseudo-likelihood (defined

as
∏n

i=1 p(ti|t−i)) of a MRF of the class we present in this paper. Since the pseudo-

likelihood is a consistent estimator of the likelihood, we expect our factorization to have

properties similar to those of the embeddings learned by log-bilinear neural language

models.

4.3 Efficient Learning of a Chain MRF

Efficient Learning Using Lifted Variational Inference We now outline our method

for optimizing the likelihood of a corpus under our class of models. Learning undirected

graphical models is challenging because of the global normalization constant, or parti-

tion function. We derive a tractable algorithm by using a variational approximation: we

define a lower bound on the data likelihood [Wainwright et al., 2005, Yanover et al.,

2008], and alternate between finding the tightest version of that bound and taking a gra-

dient ascent step in the parameters of the model. The novelty of our method comes from

the fact that for the bound we define, both the tightening and gradient step only require

us to consider K pairwise moments, i.e. the running time of learning will be indepen-

119

dent of the size of the corpus. We achieve this by showing how to reduce the learning

task to lifted variational inference, allowing us to build upon recent work by [Bui et al.,

2014]. We then derive an algorithm to efficiently perform lifted variational inference us-

ing belief propagation and dual decomposition. The overall learning algorithm is simple

to implement and runs very fast.

Creating Symmetry using a Cyclic Model To obtain the kind of symmetric lower

bound on the likelihood we want, we apply a small change to the original model, which

we argue does not change its induced probability distribution. The modification is to

make the model completely symmetrical by wrapping the MRF around, and linking the

last 〈/S〉 tokens of the corpus to theK first 〈/S〉. The new model is shown in Figure 4.2.

Variational lower bound Let θ0 denote single node unary potentials, and θl the edge

potentials as defined in Section 4.2, the log-likelihood of text t under the linear model

is then:

log(p(t)) =
N∑
i=1

(
θ0
ti

+
K∑
l=1

θlti,ti+l

)
− A0(θ)

A0(θ) = log(
∑
s∈S

exp(
N∑
i=1

(
θ0
si

+
K∑
l=1

θlsi,si+l

)
))

Our first approximation here is to replace the linear-chain model with the cyclic one to

obtain A(θ) ≥ A0(θ), which gives us a lower bound on the log-likelihood.

Unfortunately, both of these partition functions are extremely costly to compute for

any reasonable vocabulary size, as dynamic programming would have running time

O(N |V|K). However, it is easy to formulate upper bounds on A, which give rise to

a family of lower bounds on the log-likelihood. We start by formulating the computa-

120

</S>

</S>

</S>

ran

 played

mice

</S>

The

The

</S>

The

cats

dog

barked

</S>

</S>

Figure 4.2: The cyclic model with N = 16 and a sequence s ∈ S corresponding to three
sentences of text.

tion of the partition function as an optimization problem:

A(θ) = log(
∑
s∈S

exp(
N∑
i=1

(
θ0
si

+
K∑
l=1

θlsi,si+l

)
))

= max
µ∈M

N∑
i=1

(
〈µi, θ0〉+

K∑
l=1

〈µi,i+l, θl〉

)
+H(µ)

whereM denotes the marginal polytope, theset of valid marginal probabilities [Wain-

wright and Jordan, 2003]. We then make two approximations to make solving this

approximation problem easier. First, we replaceM with the local consistency polytope

LC. Since LC ⊃ M, this gives us an upper bound on the original solution. Secondly,

we replace the entropy H(µ) with the tree reweighted (TRW) upper bound [Wainwright

121

et al., 2005]:

H(µ) ≤ H̄ρ(µ) =
N∑
i=1

(
H(µi)−

K∑
l=1

ρi,i+lI(µi,i+l)

)

where ρi,j denotes the probability and µi,j the pseudo-marginal of edge (i, j) in a cover-

ing set of forests for the MRF. Let:

Ā(θ; ρ) = max
µ∈LC

N∑
i=1

(
〈µi, θ0〉+

K∑
l=1

〈µi,i+l, θl〉

)
+ H̄ρ(µ)

Using this variational approximation, we now have an upper bound on the log-partition

function which can be computed by solving a convex optimization problem. Altogether

this then gives us the following tractable lower bound on the log-likelihood:

log(p(t)) ≥
N∑
i=1

(
θ0
ti

+
K∑
l=1

θlti,ti+l

)
− Ā(θ; ρ)

= L̄(θ, t; ρ). (4.2)

Learning using gradient ascent then requires that we compute the derivative of Ā(θ; ρ),

which we will show is the µ that maximizes the variational optimization problem (we

return to this process in more detail in the next section). We can therefore reduce

the learning task to that of repeatedly performing approximate inference using TRW.

Fast combinatorial solvers for TRW exist, including tree-reweighted belief propaga-

tion [Wainwright et al., 2005], convergent message-passing based on geometric pro-

gramming [Globerson and Jaakkola, 2007], and dual decomposition [Jancsary and Matz,

2011]. However, we next show that by taking advantage of the symmetries present in

the optimization problem, it is possible to solve it in time which is independent of N ,

the number of words in the corpus.

122

Lifting the objective Our key insight is that because of the parameter sharing in our

model, each of the random variables in the cyclic model are indistinguishable. More

precisely, there is an automorphism group of rotation which can be applied to the suffi-

cient statistic vector and to the model parameters whwithout changing the joint distribu-

tion [Bui et al., 2013]. When such symmetry exists, [Bui et al., 2014] show that without

loss of generality one can choose the edge appearance probabilities to be symmetric,

which in our setting corresponds to choosing a ρ such that ∀i, j, ρi,j = ρ|j−i| (i.e., the

tightest TRW upper bound on A(θ) can be obtained by a symmetric ρ). When the edge

appearance probabilities are chosen accordingly, since the objective is strictly concave

and the variables are rotationally symmetric, it follows from Theorem 3 of [Bui et al.,

2014] that the optimum must satisfy the following property:

∀1 ≤ i, j ≤ N, 1 ≤ l ≤ K,µi = µj and µi,i+l = µj,j+l. (4.3)

We will take advantage of this structural property to dramatically simplify the vari-

ational optimization problem. In particular, using the notation µ0
V to refer to the single-

node marginal (there is only one) and µlE(x1, x2) to refer to the edge marginal corre-

sponding to the potential θl, we have:

Ā(θ) = max
µ

N ×
[
〈µ0

V , θ
0〉+H(µ0

V) (4.4)

+
K∑
l=1

(
〈µlE, θl〉 − ρlI(µlE)

)]

where the maximization is subject to the non-negativity constraints µ0
V , µ

1
E, . . . , µ

K
E ≥ 0,

sum-to-one constraints
∑

xv
µ0
V (xv) = 1 and ∀l,

∑
x1,x2

µlE(x1, x2) = 1, and pairwise

123

consistency constraints:

∑
x1

µlE(x1, x2) = µ0
V (x2) ∀l, x2, (4.5)

∑
x2

µlE(x1, x2) = µ0
V (x1) ∀l, x1. (4.6)

The optimal µlE is guaranteed to be symmetric, and so we could have used a slightly

more compact form of the optimization problem c.f. [Bui et al., 2014]. However, we

prefer this form both because it is easier to describe and because it is more amenable to

solving efficiently.

The lifted problem, Eq. 4.4, has only |V|+K|V|2 optimization variables, instead of

the N(|V| + K|V|2) of the original objective. However, it remains to figure out how to

solve this optimization problem. [Bui et al., 2014] solve the lifted TRW problem using

Frank-Wolfe, which has to repeatedly solve a linear program over the same feasible

space (i.e., Eqs. 4.5 and 4.6). These linear programs would be huge in our setting,

where |V| can be as large as 10, 000, leading to prohibitive running times.

Dual Decomposition We now derive an efficient algorithm based on dual decom-

position to optimize our lifted TRW objective. We will have an upper bound on the

log-partition function, and thus a lower bound on the likelihood, for any valid edge ap-

pearance probabilities. However, our algorithm requires a specific choice (which is the

same for all edges):

∀l, ρl =
1

K + 1
. (4.7)

124

Figure 4.3: The set of K + 1 covering forests used for K = 3, N = 16. Each edge is
represented in exactly one forest.

We assume that the corpus lengthN is a multiple ofK+1, which can always be achieved

by adding “filler” 〈/S〉 tokens. To prove that Eq. 4.7 defines valid edge appearance

probabilities, we demonstrate a set ofK+1 forests T such that ρij =
∑

T :ij∈T ρT , where

for all T , ρT = 1
K+1

. In particular, we take forests which are made up of disconnected

stars, rotated so that each edge is covered exactly once. Figure 4.3 illustrates this choice

of forests.

Using this, we can rewrite the objective in Eq. 4.4 as:

Ā(θ) =
N

K + 1
max
µ

(K + 1)
[
〈µ0

V , θ
0〉+H(µ0

V)
]

(4.8)

+
K∑
l=1

(
〈µlE, (K + 1)θl〉 − I(µlE)

)]
.

125

Finally, rather than optimizing over Eq. 4.8 explicitly, we re-write it in a form in which

we can use a belief propagation algorithm to perform part of the maximization. To do

so, we introduce redundant variables µlV for l ∈ [1, K], enforce that they are equal to

µ0
V and use them instead of µlV for each pairwise consistency constraint. The resulting

equivalent form of the optimization problem is:

Ā(θ) =
N

K + 1
max
µ

K∑
l=0

〈µlV , θ0〉+
K∑
l=1

〈µlE, (K + 1)θl〉

+
K∑
l=0

H(µlv)−
K∑
l=1

I(µlE), (4.9)

subject to non-negativity and sum-to-1 constraints, and:

∑
x1

µlE(x1, x2) = µlV (x2) ∀l ∈ [1, K], x2,

∑
x2

µlE(x1, x2) = µlV (x1) ∀l ∈ [1, K], x1,

µlV (x1) = µ0
V (x1) ∀l ∈ [1, K], x1. (4.10)

If one ignores the equality constraints (4.10) then we see that the constrained op-

timization problem in (4.9) corresponds exactly to a Bethe variational problem for the

tree-structured Markov random field shown in Figure 4.4, and as a result can be maxi-

mized in linear time using belief propagation (Theorem 4.2b [Wainwright and Jordan,

2008]).

Our next step is then to introduce these constraints in a way that still allows for

efficient optimization.This can be achieved through the use of Langrangian duality, in

an approach similar to that of [Hazan and Urtasun, 2010] and [Meshi et al., 2010]: by

formulating the right dual problem, we obtain a tight bound on our objective which can

126

3 2 1 0

Figure 4.4: The tree corresponding to the maximization sub-problem in the lifted infer-
ence, for K = 3.

still be maximized through message passing.

We then introduce Lagrange multipliers δlV (xl) for each constraint in (4.10) and form

the Lagrangian by adding
∑K

l=1

∑|V|
xl=1 δ

l
V (xl)(µ

l
V (xl) − µ0

V (xl)) to the objective (4.9).

Re-arranging terms and omitting the constant, we obtain that the dual objective is:

Oδ(θ,µ) = 〈µ0
V , θ

0 −
K∑
l=1

δlV 〉+
K∑
l=1

〈µlV , θ0 + δlV 〉 (4.11)

+
K∑
l=1

〈µlE, (K + 1)θl〉+
K∑
l=0

H(µlv)−
K∑
l=1

I(µlE).

Since the primal problem is concave and strictly feasible (it is feasible with no inequality

constraints), Slater’s conditions are met and we have strong duality. Thus,

A(θ) ≤ Ā(θ) =
N

K + 1
min
δ

max
µ∈LC

Oδ(θ, µ). (4.12)

One useful property of the above is that we have a valid upper bound on A(θ), the log-

partition function of the circular model, for any choice of the dual variables δ [Meshi

et al., 2010]. For fixed δ, computing the upper bound simply requires one pass of belief

propagation in the tree MRF shown in Figure 4.4, for a running time of O(K|V|2).

127

Learning Algorithm Recall that our goal is to estimate parameters to maximize the

objective L̄(θ, t, ρ) given in equation (4.2). Letting µ̂t denote the observed moments in

text t, we have:

L̄(θ, t, ρ) = N × 〈µ̂t, θ〉 − Ā(θ)

= N ×
(
〈µ̂t, θ〉 −

minδ maxµ∈LC O
δ(θ, µ)

K + 1

)
= N ×max

δ

(
〈µ̂t, θ〉 −

maxµ∈LC O
δ(θ, µ)

K + 1

)
= N ×max

δ
L(θ, t; δ),

where L(θ, t; δ) = 〈µ̂t, θ〉 − maxµ∈LC O
δ(θ,µ)

K+1
. Hence, for any δ, N × L(θ, t; δ) defines a

lower bound over the log-likelihood of corpus t, which can be made tighter by optimiz-

ing over δ. The variational learning algorithm will then consist of alternating between

making this bound tight (Algorithm 4.1), and taking gradient steps in θ (Algorithm 4.2).

Tightening the bound For a given value of the parameters θ, the tightest bound is

obtained for δ∗ = arg minδ maxµ∈LC O
δ(θ, µ). We can find this minimizer through a

sub-gradient descent algorithm. Indeed, let µ∗ be a maximizer of Oδ(θ, µ), we have the

following sub-gradient in δ:

∀l ∈ [1, K], ∇δlV = µl∗V − µ0∗
V (4.13)

The maximization problem corresponds to computing the partition function of the

tree-structured MRF given in Figure 4.4 with the following potentials:

• ∀l ∈ [1, K] θ̄lV = θ0 + δlV

• θ̄0
V = θ0 −

∑K
l=1 δ

l
V

128

Algorithm 4.1 Tightening the bound
input: model parameters θ
repeat

compute θ̄(θ, δ) for the lifted MRF (Figure 4.4)
compute µ(θ̄) (belief propagation)
compute∇δ (Equation 4.13)
Take sub-gradient step: δnew = δ − α∇δ

until µ satisfies primal constraints
output: pseudo-marginals µ

• ∀l ∈ [1, K], θ̄lE = (K + 1)θl

This can be solved using the belief propagation algorithm.

Gradient Ascent The marginals computed at δ∗ can then be used to compute gradients

for our main objective. Recall that our aim is to maximize the objective function

L̄(θ, t, ρ) = N × L(θ, t; δ∗(θ)),

where δ∗(θ) is the output of Algorithm 4.1. Moreover, for any value of δ, even before

optimality, we have:

∇θ max
µ∈LC

Oδ(θ, µ) = (K + 1)arg max
µ∈LC

Oδ(θ, µ)

Hence:

∇θL̄(θ, t, ρ) = N ×
(
µ̂− arg max

µ∈LC
Oδ∗(θ, µ)

)
The gradients in the model parameters can then be obtained through the application

of a simple chain rule. For the second factorization of θ presented in Section 4.2, which

we use in experiments, we get:

129

Algorithm 4.2 Learning algorithm

input: data t = (ti)
n
i=1

collect pairwise moments µ̂ from the data
repeat

find the tightest bound L(θ, t; δ) (Algorithm 4.1)
compute gradient in θ and parameters
take gradient step to update parameters
re-compute θ

until convergence
output: estimated parameters (e.g. U, R, W)

• ∀s ∈ T,∀d ∈ [1, D],

∇Us,dL̄(θ, t, ρ) =
K∑
l=1

∑
t∈T

(
∇θs,tL̄(θ, t, ρ)×W l

t,d

)

• ∀t ∈ T,∀d ∈ [1, D],∀l ∈ [1, K],

∇W l
t,d
L̄(θ, t, ρ) =

∑
s∈T

(
Us,d ×∇θs,tL̄(θ, t, ρ)

)

These can be used to perform gradient ascent on the objective function, as outlined in

Algorithm 4.2.

4.4 Experiments

We conducted experiments using the lifted algorithm to examine its practical effi-

ciency, effectiveness at estimating gradients, and the properties of the tree re-weighted

bound. We implemented models for two standard natural language tasks: language

modeling and part-of-speech tagging.

130

2 4 6 8 10 12 14
N

10

11

12

13

14

15

16

lo
g-

pa
rt

it
io

n
/ N

linear
cyclic

Figure 4.5: Comparison of the linear-chain log-partition value to the cyclic upper-bound
as corpus size increases.

Setup For model parameter optimization (the gradient step in algorithm 4.2) we use

L-BFGS [Liu and Nocedal, 1989] with backtracking line-search. For dual optimization

(algorithm 4.1), we used 200 sub-gradient iterations, each requiring a round of belief

propagation. Our sub-gradient rate parameter α was set as α = 103/2t where t is the

number of preceding iterations where the dual objective did not decrease. Our imple-

mentation of the algorithm and baselines was implemented in multithreaded C++ for

efficiency.

For language modeling we ran experiments on the Penn Treebank (PTB) corpus with

the standard language modeling setup: sections 0-20 for training (N = 930k), sections

21-22 for validation (N = 74k) and sections 23-24 (N = 82k) for test. For this dataset

the lexicon size is |V| = 10k, and rare words are replaced with UNK.

For part-of-speech tagging we use the tagged version of the Penn Treebank corpus

[Marcus et al., 1993]. We use section 2-21 for training, section 22 for validation and

section 23 for test. For this corpus the tag size is T = 36 and we use the full vocabulary

131

0 5 10 15 20 25 30
LBFGS iterations

1.2

1.0

0.8

0.6

0.4

0.2

ob
je

ct
iv

e
va

lu
es

lifted TRW bound, optimizing lifted TRW
log-likelihood value, optimizing lifted TRW
log-likelihood value, optimizing log-likelihood

Figure 4.6: Comparison of a model trained by optimizing exact likelihood versus lifted
TRW objective. The blue line shows the exact log-likelihood of the model learned by
optimizing the lifted TRW bound.

size |V| is around 30k.

Experiments First to confirm the properties of the algorithm we ran experiments on

a small synthetic data set with N ∈ [3, 14] and |V| = 4. The small size of this data set

allows us to exactly compute the log-partition for the original linear-chain formulation.

Figure 4.5 shows how the value of the lifted bound gets closer to the exact log-partition

as the corpus size increases.

We also explored training with lifted inference using this data set (N = 12, |V| = 4).

For these experiments we compare training two models, the first model uses the lifted in-

ference and the second uses exact gradients from the linear-chain formulation. Addition-

ally we also compute the exact log-likelihood using the parameters of the lifted model.

Figure 4.6 shows the results of this setup. The lifted log-likelihood gives an underes-

timate of the log-likelihood, but the learned parameters yield an exact log-likelihood

close to the linear-chain model.

132

0 50 100 150 200 250 300 350
LBFGS iterations

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

ob
je

ct
iv

e
va

lu
es

low rank model, training
low rank model, validation
explicit model, training
explicit model, validation
likelihood under the LBL model

Figure 4.7: The green line shows the fixed value the validation log-likelihood of an LBL
model trained on PTB. The red and blue lines give lower bounds on the log-likelihood
(lifted objective).

Next we applied the lifted algorithm to a language modelling task on the Penn Tree-

bank corpus. We first compared the explicit full-rank model to the low-rank potentials

from Section 4.2, θ|j−i|ti,tj = UtiW
|j−i|
tj , for D = 30 and K = 2. The results are presented

in figure 4.7. As expected, the explicit model is prone to over-fitting, and gets to a worse

validation objective. We also evaluated the loss incurred in bound tightness due to using

a non optimal ρ: it turned out to account for less than 0.3 points of log-likelihood.

Another advantage of using low-rank potentials is that they produce embedded rep-

resentations of the vocabulary. Table 4.1 shows a sample of embeddings learned for

the MRF compared to those obtained with the word2vec algorithm (with D = 100

and a window size of 4). We also tried training our algorithm by performing stochas-

tic gradient descent on the pseudo-likelihood of the corpus under our model (which, as

mentioned in section 4.2, is the same learning objective as that of the log-bilinear model

of [Mnih and Hinton, 2007]). The column MRF SGD shows the embeddings obtained

133

WORD MRF LIFTED MRF SGD WORD2VEC
named fell named

elected appointed billings appointed
assistant indicated bank-holding

firm he holding
company industry it anacomp

group corp. uniroyal
conservative vietnamese cross

red freedom delegation tape
black judge delicious
had have had

has is had been
was n’t have

currency intergroup currency
dollar economy market pound

government uses stabilized
francs share us$

dollars lows went millions
highs accounts billions

richard like kemp
jack david needed porter

carl first timothy
food specially flat-rolled

coffee network humanitarian sport
business liberal recycling

Table 4.1: Nearest neighbours in different embeddings. MRF LIFTED are the embed-
dings learned by our algorithm. MRF SGD are obtained by running stochastic gradient
descent for 48 hours on the pseudo-likelihood objective: the algorithm did not converge
in that time, hence the mostly bad results. WORD2VEC are the vectors learned by the
word2vec software of [Mikolov et al., 2013]

after 48 hours of training. In comparison, our algorithm reaches its optimal objective

value on the validation dataset in 3 hours on the Penn Treebank dataset.

Finally we ran experiments on part-of-speech tagging. For this task we use a differ-

ent MRF graphical structure. Each tag node is connected to its K neighbors as well as

the M nearest-words. We use a different set of covering forests for this model which is

shown in figure 4.8. As with language modelling the partition function for this model

would be very inefficient to compute explicitly. However, given a sentence, the best

tagging can be found efficiently by dynamic programming.

For this model, we also employ explicit features for pairwise potentials, i.e. θmti,wi =

uf(ti, wi) and θlti,ti+l = vg(ti, ti+l) where u,v are parameter vectors and f, g are pre-

134

Model Total Acc Unk Acc
HMM 95.8 65.4
Lifted MRF 96.0 76.0

Table 4.2: Comparison of tagging accuracy between the lifted MRF and an HMM in
total and on unseen words.

Figure 4.8: The POS tagging model for K = 2,M = 3, and a decomposition for the
lifted inference algorithm

defined feature functions. For g we use tag-pair indicator features, and for f we use

standard features on capitalization, punctuation, and prefixes/suffixes. This model and

features are identical to a standard conditional random field tagger; however we opti-

mize for joint likelihood.

It is known that joint models are less effective than discriminative conditional models

for this task [Liang and Jordan, 2008], but we can compare performance to a similar

joint model. We compare this model with K = 1 to a standard first-order HMM tagging

135

model using the TnT tagger [Brants, 2000] with simple rare word smoothing. Table 4.2

shows the results. The lifted model achieves similar total accuracy, but has much better

performance on unseen words, due to its feature structure.

4.5 Discussion

This Chapter introduces a Markov Random Field Language Model which extends

upon Neural Language Models, and presents a fast lifted inference algorithm with com-

plexity independent of the length of the corpus. This presents a firs step towards building

models which consider statements or even documents in their entirety, which would be

an important step towards being able to use language modeling to teach text understand-

ing systems to do more complex reasoning.

Still, our model suffers from some consequential limitations, which will need to

be remedied in future works. Complexity wise, while we provide a partition function

which can be computed independently of the length of the corpus considered (after

gathering relevant statistics once), the computational and memory cost is still quadratic

in the vocabulary size, which can restrict the application domain. We could imagine

some cheaper approximations with minimal modifications to the algorithm, such as only

optimizing the upper and left rectangles of the matrix, but a more principled approach

would be appreciated.

The lack of interaction between distant words, as well as the restriction to pair-wise

potentials, also somewhat limit the expressiveness of the model. In word-normalized

neural language models, these features can be handled by latent recurrent states and the

use of more non-linearities. How to adapt those to a globally normalized model remains

an open question.

136

Additionally, a common bottleneck of systems with a natural language output is

the arg max over the space of possible sequences. In the setting of our Markov Random

Field language model, this would correspond to performing maximum a posteriori rather

than marginal inference, which we do in this Chapter. Thus, extending our method to

the former setting might be quite significant.

Finally, the lifting method we propose here relies on symmetry, which is broken for

conditional models. While this can in theory be remedied by simply using Bayes’ rule

(as long as we have access to the marginal distribution of the conditioning variables),

doing so can be impractical, and we hope that future work can find ways to retain the

computational gains of lifting while allowing the use of more flexible models.

137

Chapter 5

Towards Better Learning Objectives

In this Chapter, we return to the problem of finding a good learning objec-

tive to develop and train text understanding systems. To that end, we start

by reviewing a set of other common language tasks in terms of how much

of the mechanisms they rely o can be learned in a generally useful way,

and of whether they can easily be learned from freely available natural lan-

guage data. We then look towards modeling the coherence of discourse to

come up with new tasks which meet our requirements on both fronts. We

show that discriminative objectives inspired by this notion can be used to

train sentence representation systems in an unsupervised fashion, and that

the meaning encoded in these representations can be broadly useful for a

variety of language tasks.

138

5.1 Introduction

In Section 1.3, we argued that language modeling could be a useful objective for

learning to represent the meaning of a text. Chapters 3 and 4 then outlined some of

the drawbacks of this objective, and worked towards minimizing the effects of these

drawbacks. In the present Chapter, we take a slightly different approach, by considering

what other tasks can be used to learn similar representations, what their advantages

and disadvantages are compared to language modeling, and eventually presenting a new

objective based on the notion of discourse.

Most sequences of words (and a fortiori characters) do not correspond to inter-

pretable language. Even deviating from natural language sentences in very restricted

ways often leads to a loss of coherence. For example, consider changing the mode of

the verb in the simple statement “A bird was flying.” to “A bird was flies.”, or switching

the article in the sentence “The sky is blue.” to “Three sky is blue.”: a language model

must learn to assign a low score to each of the two new sentences for reasons which have

little to do with the meaning of any previously read text. We already mentioned this issue

in Chapter 4 when discussing the limitations of locally normalized language modeling:

while the learning objective gives as much importance to each word prediction in the

output, higher level reasoning is typically only required for a few of those. This can

make it difficult for a model to efficiently learn when making use of longer term context

or relying on common sense reasoning is necessary. We proposed a global prediction

objective to mitigate this issue. Other works have provided objectives which attempt

to focus on more “linguistically significant” words, such as the LAMBADA [Paperno

et al., 2016] or Children Books Test corpora [Hill et al., 2015] (the latter also attempts to

make the task more relevant by making the system choose between likely confounders).

139

By focusing on one-word answers, these settings also remain tractable: the complexity

is strictly less than that of word-level language modeling. Efforts to automate this pro-

cess, in the form of an adversarial two-player game where one of the player is in charge

of picking the difficult words and the other is supposed to predict them (similarly to

e.g. [Sukhbaatar et al., 2017]), are also promising.

A related setting is that of extractive question answering, where the model takes a

document and question, and is asked to return a text segment from the document as an

answer. There is a growing amount of labeled datasets for this task (e.g. SQuAD [Ra-

jpurkar et al., 2016]), and recent work has looked into automatically expanding question

answering datasets [Yang et al., 2017]. Still, providing enough data to cover all domains

of language will require significant amounts of human effort. Both of the above men-

tioned problems (focused word completion and extractive question answering) heavily

rely on a good encoding or indexing of an input document and the new information

expressed within, while attempting to minimize the burden of producing interpretable

answer or evaluating the interpretability of a complex statement. Compared to previ-

ously proposed language objectives, this adds a useful complementary learning signal,

but would not necessarily be enough to learn all of the properties of language which

are relevant to text understanding. Additionally, in spite of efforts to automate data set

creation, the best results are still currently obtained with curated training sets, requiring

significant amounts of human work.

Another approach to helping the model focus on desired properties of language con-

sists on explicitly conditioning a language model for each new sentence on a represen-

tation of previous statements. For example, the SkipThought model learns a function

which takes as input a sentence and outputs a probability distribution over words in the

sentences to the left and right [Kiros et al., 2015], and recent works have attempted to

140

learn a distribution over the next sentence in a text given representations of the previous

ones [Wang and Cho, 2016], or of next utterance in a dialogue given its history [Lowe

et al., 2017]. In doing so, the model lets the decoder learn all of the properties of lan-

guage which have to do with immediate context coherence and grammar, and allows the

encoder to focus on properties of the sentence which matter in the longer run. Training

data is also readily available, at least in the SkipThought setting (dialogue is somewhat

more limited, and restricted to specific domains). However, it is unclear whether the

encoding function learned in this setting will remain useful when we need to apply it to

full documents, and these works still use a language modeling objective which suffers

from the biases and limitations outlined in previous Chapters.

Finally, recent works have endeavored to use supervised language tasks to learn

generally useful representations of sentences. One such task has been Natural Language

Inference, as it is generally assumed to more often require higher level reasoning and

rely on good use of compositionality, common sense reasoning or co-reference. Large

scale resources have recently become available [Bowman et al., 2015, Williams et al.,

2017], and sentence representations learned for this task have been shown to be widely

useful [Conneau et al., 2017]. However, while these results are extremely encouraging

in terms of transferability of learned representation, they still rely on vast amounts of

human-labeled data. This raises the following question: is there a similar unsupervised

or semi-supervised objective which relies on the same mechanisms?

Understanding the structure of discourse, for example, requires a good grasp on both

semantics and pragmatics [Hobbs, 1979], which constitute a more elaborate form of text

understanding. Inspired by this, the current Chapter proposes a set of new objectives for

the unsupervised training of neural network sentence encoders. It exploits signals from

paragraph-level discourse coherence to train these models to understand text, perform-

141

ing, or at the very least approximating, the read function of Section 1.3. Additionally,

the proposed objective depends on properties of naturally occurring text, giving it ac-

cess to the same profusion of training data as language modeling, and is discriminative,

making it much cheaper to compute.

5.2 Background

Modern artificial neural network approaches to natural language understanding tasks

like translation [Sutskever et al., 2014, Cho et al., 2014b], summarization [Rush et al.,

2015], and classification [Yang et al., 2016] depend crucially on subsystems called sen-

tence encoders that construct distributed representations for sentences. These encoders

are typically implemented as convolutional [Kim, 2014], recursive [Socher et al., 2013],

or recurrent neural networks [Mikolov et al., 2010] operating over a sentence’s words

or characters [Zhang et al., 2015b, Kim et al., 2016]. Most of the early successes with

sentence encoder-based models have been on tasks with ample training data, where it

has been possible to train the encoders in a fully-supervised end-to-end setting. How-

ever, recent work has shown some success in using unsupervised pre-training with un-

labeled data to both improve the performance of these methods and extend them to

lower-resource settings [Dai and Le, 2015, Kiros et al., 2015, Bajgar et al., 2016, Hill

et al., 2016].

This Chapter presents a set of methods for unsupervised pre-training that train sen-

tence encoders to recognize discourse coherence. When reading text, human readers

have an expectation of coherence from one sentence to the next. In most cases, for ex-

ample, each sentence in a text should be both interpretable in context and relevant to

the topic under discussion. Both of these properties depend on an understanding of the

142

local context, which includes both general knowledge about the state of the world and

the specific meanings of previous sentences in the text. Thus, a model that is success-

fully trained to recognize discourse coherence must be able to understand the meanings

of sentences as well as relate them to key pieces of knowledge about the world.

[Hobbs, 1979] presents a formal treatment of this phenomenon. He argues that

for a discourse (here, a text) to be interpreted as coherent, any two adjacent sentences

must be related by one of a few set kinds of coherence relations. For example, a sen-

tence might be followed by another that elaborates on it, parallels it, or contrasts with

it. While this treatment may not be adequate to cover the full complexity of language

understanding, it allows Hobbs to show how identifying such relations depends upon

sentence understanding, co-reference resolution, and commonsense reasoning.

Recently proposed techniques [Kiros et al., 2015, Ramachandran et al., 2016] suc-

ceed in exploiting discourse coherence information of this kind to train sentence en-

coders, but rely on generative objectives which require models to compute the likeli-

hood of each word in a sentence at training time, thus suffering from the problems of

language modeling outlined in earlier Chapters (speed, label bias,. . .). In this work, we

propose alternative objectives which exploit much of the same coherence information

in a more direct fashion. In particular, we propose three coherence-based pre-training

tasks, show that they can be used together effectively in multitask training (Figure 5.1),

and evaluate models trained in this setting on the training tasks themselves and on stan-

dard text classification tasks. We find that our approach makes it possible to learn to

extract broadly useful sentence representations.

Related Work This approach is inspired most directly by the SkipThought approach

of [Kiros et al., 2015], which introduces the use of paragraph-level discourse informa-

143

Sentence encoder

Task 1:
ORDER
classifier

Task 2:
CONJUNCTION

classifier

Task 3:
NEXT

classifier

Sentence(s) 1 Sentence(s) 2

Sentence encoder

Figure 5.1: We train a sentence encoder (shown as two copies with shared parameters)
on three discourse-based objectives over unlabeled text.

tion for the unsupervised pre-training of sentence encoders. Since that work, three other

papers have presented improvements to this method (the SDAE of [Hill et al., 2016],

also [Gan et al., 2016, Ramachandran et al., 2016]). These improved methods are based

on techniques and goals that are similar to ours, but all three rely on conditional language

modeling as an objective, which implies specific biases and a consequent computational

cost.

In closely related work, [Logeswaran et al., 2016] present a model that learns to

order the sentences of a paragraph. While they focus on learning to assess coherence,

they show positive results on measuring sentence similarity using their trained encoder.

Alternately, the FastSent model of [Hill et al., 2016] is designed to work dramatically

more quickly than systems like SkipThought, but in service of this goal the standard

sentence encoder RNN is replaced with a low-capacity CBOW model. Their method

does well on existing semantic textual similarity benchmarks, but its insensitivity to

order places an upper bound on its performance in more intensive extrinsic language

understanding tasks.

Looking beyond work on unsupervised pre-training: [Li and Hovy, 2014] and [Li

144

Sentence Pair Label Relation
A strong one at that. FLIPPED elaborationThen I became a woman.
I saw flowers on the ground. ORDERED listI heard birds in the trees.
It limped closer at a slow pace. ORDERED spatialSoon it stopped in front of us.
I kill Ben, you leave by yourself. FLIPPED timeI kill your uncle, you join Ben.

Table 5.1: The binary ORDER objective. Discourse relation labels are provided for the
reader, but are not available to the model.

and Jurafsky, 2016] use representation learning systems to directly model the problem of

sentence order recovery, but focus primarily on intrinsic evaluation rather than transfer.

[Wang and Cho, 2016] train sentence representations for use as context in language

modeling. In addition, [Ji et al., 2016] treat discourse relations between sentences as

latent variables and show that this yields improvements in language modeling in an

extension of the document-context model of [Ji et al., 2015].

Outside the context of representation learning, there has been a good deal of work

in NLP on discourse coherence, and on the particular tasks of sentence ordering and

coherence scoring. [Barzilay and Lapata, 2005] provide thorough coverage of this work.

5.3 Discourse Inspired Objectives

In this work, we propose three objective functions to be used over paragraphs ex-

tracted from unlabeled text. Each captures a different aspect of discourse coherence and

together the three can be used to train a single encoder to extract broadly useful sentence

representations.

145

Context
No, not really.
I had some ideas, some plans.
But I never even caught sight of them.
Candidate Successors
1. There’s nothing I can do that compares to that.
2. Then one day Mister Edwards saw me.
3. I drank and that was about all I did.
4. And anyway, God’s getting his revenge now.
5. He offered me a job and somewhere to sleep.

Table 5.2: The NEXT objective.

Binary Ordering of Sentences Many coherence relations have an inherent direction.

For example, if S1 is an elaboration of S0, S0 is not generally an elaboration of S1.

Thus, being able to identify these coherence relations implies an ability to recover the

original order of the sentences. Our first task, which we call ORDER, consists in taking

pairs of adjacent sentences from text data, switching their order with probability 0.5,

and training a model to decide whether they have been switched. Table 5.1 provides

some examples of this task, along with the kind of coherence relation that we assume to

be involved. It should be noted that since some of these relations are unordered, it is not

always possible to recover the original order based on discourse coherence alone (see

e.g. the flowers / birds example).

Next Sentence Many coherence relations are transitive by nature, so that any two

sentences from the same paragraph will exhibit some coherence. However, two adjacent

sentences will generally be more coherent than two more distant ones. This leads us to

formulate the NEXT task: given the first three sentences of a paragraph and a set of five

candidate sentences from later in the paragraph, the model must decide which candidate

immediately follows the initial three in the source text. Table 5.2 presents an example

of such a task: candidates 2 and 3 are coherent with the third sentence of the paragraph,

146

Sentence Pair Label
He had a point. RETURN
For good measure, I pouted. (Still)
It doesn’t hurt at all. STRENGTHEN
It’s exhilarating. (In fact)
The waterwheel hammered on. CONTRAST
There was silence. (Otherwise)

Table 5.3: The CONJUNCTION objective. Discourse relation labels are shown with the
text from which they were derived.

addition contrast time
again furthermore anyway contrarily meanwhile
also moreover however conversely next

besides in addition instead nonetheless then
finally nevertheless in contrast now
further otherwise rather thereafter
result specific compare strengthen return

accordingly namely likewise indeed still
consequently specifically similarly in fact

hence notably recognize
thus that is undoubtedly

therefore for example certainly

Table 5.4: List of conjunctions.

but the elaboration (3) takes precedence over the progression (2).

Conjunction Prediction Finally, information about the coherence relation between

two sentences is sometimes apparent in the text [Miltsakaki et al., 2004]: this is the

case whenever the second sentence starts with a conjunction phrase. To form the CON-

JUNCTION objective, we create a list of conjunction phrases (see Table 5.4), then extract

from our source text all pairs of sentences where the second starts with one of the listed

conjunctions, give the system the pair without the phrase, and train it to recover the

conjunction category. Table 5.3 provides examples.

147

5.4 Experiments

In this Section, we introduce our training data and methods, present qualitative re-

sults and comparisons among our three objectives, and close with quantitative compar-

isons with related work.

Data Creation Despite having recently become a standard dataset for unsupervised

learning, the BookCorpus presented in [Zhu et al., 2015] does not exhibit sufficiently

rich discourse structure to allow our model to fully succeed—in particular, some of

the conjunction categories are severely under-represented. While this precludes a strict

apples-to-apples comparison with other published results, our goal in extrinsic evalua-

tion is simply to show that our method makes it possible to learn useful representations

quickly, rather than to demonstrate the superiority of our learning technique given fixed

data and unlimited time. Instead, we train on system on text from Wikipedia and the

Gutenberg project [Stroube, 2003].

We collected the latest Wikipedia dump on 03/29/2017, and downloaded all of the

English language books from the Gutenberg project. After sentence and word tokeniza-

tion with NLTK [Bird, 2006] and lower-casing, we identify all paragraphs longer than

8 sentences and extract a NEXT example from each, as well as pairs of sentences for

the ORDER and CONJUNCTION tasks. A CONJUNCTION example is a pair of adjoining

sentences where the second starts with one of the conjunction phrases listed in Table

5.4 followed by a comma. Additionally, if the first sentence starts with a conjunction

phrase, we remove it. So for example: “Moreover, it was quite a good meal. However,

the wine was sub par.” becomes (“it was quite a good meal.”, “the wine was sub par.”,

“however”). This gives us 104M examples for ORDER, 1.6M for CONJUNCTION, and

5.4M for NEXT.

148

CONJ ORDER NEXT

BiGRU single C / O / N 38.9 62.3 33.0
BiGRU joint NEXT + CONJ 38.1 - 36.1
BiGRU joint ORDER + CONJ 39.1 63.0 -
BiGRU joint ALL 39.1 60.9 35.6
GRU joint ALL 37.0 58.4 32.7
CBOW joint ALL 33.3 57.4 28.5

Table 5.5: Intrinsic evaluation results.

Intrinsic Evaluation In order to explore the properties of the proposed tasks, we first

consider the following three sentence encoding models: a simple 2048D sum-of-words

(CBOW) encoding, a 2048D GRU recurrent neural network [Cho et al., 2014b], and a

2 × 1024D bi-directional GRU. For these last two, following [Conneau et al., 2017],

we use max pooling over the recurrent hidden states to obtain the final encoding. Each

of the discourse tasks uses a bi-linear classifier which takes as input the dimension D

embeddings of the left and the right sentences sl and sr, and computes a score for each

class. For the ORDER task, we have a matrix Morder ∈ RD×D, and we optimize the

cross-entropy of the likelihood that the sentences have been flipped as:

p(flipped|sl, sr) = σ(sTl M
ordersr) (5.1)

For NEXT, we concatenate the representations of the three context sentences into a larger

context vector sc, use a projection matrix Mnext ∈ RD×D, and compute a softmax over

the scores for each of the embeddings of the proposals (sp1 , . . . , sp5):

p(i|sc, sp) =
exp(sTc M

nextspi)∑5
j=1 exp(sTc M

nextspj)
(5.2)

149

Finally, the CONJ classifier has a matrix Mconj
c ∈ RD×D for each conjunction c, and

computes the probability as:

p(c|sl, sr) =
exp(sTl M

conj
c sr)∑

c′ exp(sTl M
conj
c′ sr)

(5.3)

We train separate models on each of the tasks, and also perform joint training on NEXT

+ CONJUNCTION, ORDER + CONJUNCTION, and ALL three tasks. All our models are

trained for 24 hours, which allows for several epochs on the full CONJUNCTION data (2

to 5 depending on the setting).

Table 5.5 compares the performance of different training regimes on a separate val-

idation set along two axes: encoder architecture and whether we train one model per

task or one joint model. As expected, the more complex bidirectional GRU architecture

is required to capture the appropriate sentence properties. The results of joint training

also inform us about the relation between the difference discourse tasks. Both the OR-

DER and NEXT tasks benefit from being trained jointly with CONJUNCTION, and the

latter reaches its best performance when trained with either ORDER or with both oth-

ers. Early experiments on the external evaluation also show that the joint BiGRU model

substantially outperforms each single model.

Extrinsic Evaluation We evaluate the quality of the encoder learned by our system,

which we call DiscSent, by using the sentence representations it produces in a variety

of sentence classification tasks. We follow the setting and use the evaluation code of

[Conneau et al., 2017] (SentEval). For this application, we use the BiGRU models

trained on all our tasks separately (the ORDER, NEXT and CONJ lines in Table 5.6), as

well as on all three tasks jointly (the DiscSent lines.) We are specifically interested

in measuring whether our model is able to capture information beyond that of a Bag-

150

Model Avg. MR CR SUBJ MPQA SST-b TREC S-R S-E MRPC STS14

GloVe1 0.790 78.7 78.5 91.6 87.6 79.8 83.6 0.800 78.6 72.1/80.9 0.54/0.56
ST1 0.789 76.5 80.1 93.6 87.1 82.0 92.2 0.858 82.3 73.0/82.0 0.29/0.35
InferSent1 0.845 81.1 86.3 92.4 90.2 84.6 88.2 0.884 86.3 76.2/83.1 0.70/0.67

GloVe(ours) 0.787 77.0 78.2 91.3 87.8 80.2 82.4 0.801 78.4 70.0/80.8 0.55/0.56
ST-3M 0.737 72.9 78.5 91.6 80.5 64.6 70.6 0.785 80.6 71.1/80.1 0.45/0.44
ST-3M+G 0.791 80.9 83.6 94.1 89.3 71.5 80.0 0.838 82.0 71.4/79.8 0.51/0.50
ST-16M 0.757 73.7 80.4 92.8 82.8 68.7 78.2 0.805 81.0 70.4/80.5 0.45/0.44
ST-16M+G 0.800 79.8 84.0 93.9 88.9 76.4 84.8 0.841 82.9 72.1/80.1 0.50/0.48

ORDER+G2 0.800 80.8 84.1 93.4 89.4 75.0 85.8 0.827 80.4 71.1/81.0 0.52/0.53
NEXT+G2 0.792 78.6 79.7 91.3 87.4 81.9 83.8 0.805 78.7 70.0/81.0 0.54/0.56
CONJ+G2 0.814 81.9 85.5 93.5 89.6 80.7 85.8 0.841 81.0 71.5/81.3 0.55/0.56

DiscSent 0.775 73.5 79.0 90.6 81.4 74.1 85.2 0.804 83.3 71.5/80.5 0.51/0.52
DiscSent+G2 0.817 81.5 84.7 93.5 89.3 82.3 87.6 0.838 81.1 73.2/81.4 0.56/0.56

Table 5.6: Text classification results, comparing our system to the SkipThought and
InferSent sentence encoders. The best result in each column is bolded, the second best
is underlined. ST is the SkipThought model of [Kiros et al., 2015], ST-3M and ST-
16M are our implementation of the model trained on 3 million examples and 16 million
examples drawn from our data respectively. 1 Results were taken from [Conneau et al.,
2017]. 2+G lines concatenate the sum of the GloVe embeddings for the words to the
output of the sentence encoder at evaluation time [Pennington et al., 2014].

of-Words approach, and so concatenate the sum of the GloVe embeddings [Pennington

et al., 2014] for the words in a sentence to the output of our encoders. In order to better

compare to the work of [Kiros et al., 2015], we also trained a SkipThought model with

the same encoder on our data. This setting was trained on 3 million sentences in 24

hours. Using the hyper-parameters found in this setting, we also trained a model for five

days on 16 million examples.

Table 5.6 presents the transfer learning results obtained with SentEval for all of these

settings. We notice that while our model still lags behind the InferSent encoder, it does

better than SkipThought trained on our data on average, even when the latter is given

significantly more time. We also notice that of all our tasks, CONJUNCTION seems

to be the most useful when taken by itself, and combining a model trained on it with

a sum-of-word representation using the GloVe embeddings out-performs [Kiros et al.,

2015]. However, there is still something to be gained by combining all three discourse

151

objectives, and DiscSent + GloVe embeddings reaches the best average score among

unsupervised systems.

Experimental Details We learn all of our models through stochastic gradient descent

with AdaGrad [Duchi et al., 2010], subsampling NEXT by a factor of 4 whenever it is

trained jointly with another task (each NEXT example encodes 8 sentences, compared to

2 for the ORDER and CONJUNCTION tasks). We ran a hyper-parameter search using the

same grid for all parameters, with a learning rate in {2e− 3, 5e− 3, 2e− 2}. All param-

eters are initialized uniformly at random in a (−x, x) range, with x ∈ {0.1, 0.5, 1}. We

tried combining the recurrent states of the GRUs with a sum and max pooling function.

We use an input vocabulary the 100K most common words in our data and learn the

word embeddings from scratch. For our version of Skip Thought [Kiros et al., 2015],

the decoder is a one-directional GRU recurrent network with a 1024 dimensional hidden

state, and the output vocabulary is limited to the 20K most frequent words. For each of

the models, we performed the transfer experiments by using the model which has the

best validation score on the training task (ORDER, NEXT or CONJUNCTION accuracy or

average thereof for our tasks, perplexity for Skip Thought).

5.5 Discussion: Further Work on Discourse

In this Chapter, we proposed to look beyond language modeling for unsupervised

training of text understanding models. We described a variety of alternative objectives

from the literature, and introduced three new tasks based on the notion of discourse co-

herence. We then used them to train a sentence representation system which we showed

can be of use in a variety of language tasks.

Our approach opens the way to a number of follow-ups. First, there is some room

152

to improve accuracy on the intrinsic evaluations; leads to achieve such an improvement

include using larger sentence representation dimensions, taking advantage of character

level inputs as suggested in Chapter 2, or exploring different encoder architectures.

An alternative view of the proposed objectives would see them as a way to explore

and evaluate different architectures and sentence encoders trained in other settings: what

models can capture the structure necessary for modeling discourse? How do representa-

tions learned on the skip-thought objective or on Natural Language Inference fare when

transferred to our tasks with minimal fine-tuning? Given the difficulty of automatically

and reliably evaluating the general usefulness of sentence encoders, this could provide

critical information.

Finally, another notable feature of the present work is the simultaneous use of several

objectives with different properties. However, we did this in a trivial way, by simply al-

ternating batches during stochastic gradient descent. While this works reasonably well,

it is likely that we are not making the best of our data this way. Better ways if combining

objectives might also allow us to train models which also learn from language modeling,

and take advantage of the advances described in Chapter 3 and 4. Recent works such

as [Kirkpatrick et al., 2016] have started looking into this problem of learning from

numerous tasks in a synergistic way, but there are still many open questions in this area.

5.6 Towards Formalizing Meaning for NLP Tasks

We have presented our goal for this thesis as learning to represent the meaning of a

text in a usable way. However, we have spent little time so far reflecting on what exactly

it is that we understand by the notion of meaning: after pointing out the difficulties of

scaling systems which rely on a model theoretic representation in Chapter 1, we implied

153

that the concept of meaning was related to the notion of conditioning on representations

of text in language modeling and other common NLP tasks and proceeded to propose

ways to better learn those representations in the following Chapters. While we believe

this approach to constitute a valid strategy, which can still lead to much progress in the

field, we also strongly believe in the usefulness of formalizing the concept in a way that

can be more systematically analyzed and reasoned over. Note that our priorities here are

slightly different from those of a semanticist or philosopher, two disciplines which have

considered this question at length: specifically, we are looking for a formalism which is

wide enough to cover all or most of written language, but which can also be described

using a system that remains tractable for a machine, and has a natural link to the neural

network approaches which have become ubiquitous in recent years.

In this Section, we attempt to sketch such a formalism by drawing from existing

theories of semantics while keeping an eye on their tractability and relation to modern

practices in the field of natural language processing. More specifically, we consider two

salient properties of neural network methods. On the one hand, a common argument

for the use of neural networks is that they constitute “universal function approxima-

tors” [Hornik et al., 1989, Zhang et al., 2016a]. This allows machine learning systems

based on them to learn conditional probability functions or general predictors without

having to e.g. define domain-specific representation schemes, as long as enough exam-

ples of input/output pairs are provided. Similarly, we would like our representation of

meaning to be defined through general functions acting on text, without relying on ex-

trinsically defined entities. On the other hand, neural network functions are continuous

in nature: they rely on gradient descent to learn parameters and intermediary distributed

representations to optimize an objective. While it is unclear whether gradient descent

or other forms of local search in a continuous search are a necessary part of learning

154

to represent meaning, reasoning over continuous rather than discrete objects does have

a number of advantages, such as an inherent notion of ranking or natural handling of

uncertainty. These prompt us to look for a formalism of meaning using objects defined

in continuous spaces whose algebraic properties correspond to similar notions.

Possible Worlds Semantics. In order to arrive at a definition of meaning which meets

both of the above stated requirements, we look to the notion of Possible World Seman-

tics [Carnap, 1947, Kripke, 1963, Lewis, 1986]. Richard Montague argues that “The

basic aim of semantics is to characterize the notion of a true sentence (under a given

interpretation) and of entailment” [Montague, 1970]. This definition lead to the devel-

opment of a semantics based on first order logic which has proven useful in studying and

describing linguistic phenomena (see e.g. [Montague, 1973]). However, this formalism

does not naturally handle phenomena such as uncertainty, hedging,. . . The introduction

of modal logic [Lewis and Langford, 1959, Hughes and Cresswell, 1968, Hughes and

Cresswell, 1996] aimed at solving some of these issues, by allowing to also characterize

the notion of a possibly or necessarily true sentence. Unfortunately, contrary to propo-

sitional logic, validity in modal logic cannot be defined through the use of truth tables:

Possible Worlds Semantics provide a way to remedy this difficulty.

Possible Worlds Semantics start with a base universe or frame Ω∅ = {W} represent-

ing all possible states of the world, and restricts this set every time more information

becomes available in the form of a sentence or statement. More formally, let us define

a universe as a set of world states: Ω = {W}, and an evaluation function eval, and

let us define a world state W by the set of assertions (s̄) which are true in W , that is

(eval(s̄,W) = 1), or false in W , that is (eval(s̄,W) = −1). The evaluation function

eval can be trivially extended to work over universes: a statement is true in a universe

155

Ω if and only if it is true in all world statesW ∈ Ω. That is:

(eval(s̄,Ω) = 1)⇔ (∀W ∈ Ω, eval(s̄,W) = 1)

Similarly, a statement is false in a universe (eval(s̄,Ω) = −1) if and only if it is false

in all of its world states. Finally, we add a third value for the remaining cases: if (s̄) is

true in some of the world states and false in others, then it is considered to be possible:

(eval(s̄,Ω) = 0).

As mentioned above, we start with a universe of all possible world states: that is, any

statement which is neither self-contradictory nor a tautology is possible. The next step

is then to define a reading function which updates a universe after reading a sentence:

read(s̄,Ω) = Ω′. This function needs to have certain properties. For example, reading a

statement should either give us new information or reiterate information which is already

known, and thus cannot increase the number of possible world states: read(s̄,Ω) ⊆ Ω.

Additionally, after reading a statement from a trusted source, it should be considered

as true in the new universe (for a more complete discussion of the De Re/De Dicto

distinction, see e.g. [Nortmann, 2002]):

∀s̄, eval(s̄, read(s̄,Ω)) = 1

Additionally, note that the read function needs to be able to change the state of the

universe even when applied to a sentence which is already known to be true; this is nec-

essary in order to handle self-referential text, including pronouns. Consider for example

a universe where we have eval(“The sky is blue.”,Ω) = 1. Then, let

Ω1 = read(“The sun is bright.”,Ω)

156

We still have eval(“The sky is blue.”,Ω1) = 1. Now consider the sentence “This is

caused by the diffraction of light in the atmosphere.” The truth value of this statement in

Ω1 is 0, since there is no direct relation between the brightness of the sun and diffraction.

However, reading “The sky is blue.” again, even though it does not change our belief

about the state of the universe, changes this eval to 1.

The formalism presented so far meets the first of our requirements: the meaning of

a sentence can be defined through the use of general functions which take text as input,

namely eval and read, and corresponds to the restriction induced by said sentence over

an implicitly defined set of possible worlds (universe). Some important questions remain

open: for example, where common knowledge or common sense reasoning fits in this

definition: what exactly is the set of all possible world states Ω∅? Does it contain world

states where words have different relations (e.g., a truck is a kind of food, blue is the

opposite of small)? These questions are inherently tied to the problem of defining the set

of possible worlds, which has been the focus of a significnt amount of work in the field

of philosophy (see e.g. the abstractionist approach of [Plantinga, 1976], combinatorial

definition of [Armstrong, 1986], or concretism [Lewis, 1986]), and goes beyond the

scope of this thesis. However, from a practical point of vies, one possible answer would

be to start by applying the read function to e.g. a dictionary or encyclopedia, or to

extend read to restrict possible world states based on physical evidence (this brings us

in turn to the question of whether language needs to be grounded in the physical world

or not, which we will not delve into in this work).

Continuous Output and Interpretability. Although it differentiates between possi-

bly true and necessarily true statements, the current discrete-valued version of the eval

function still fails to account for how likely a possible statement is. To that end, we

157

could find it useful for eval(s̄,Ω) to have values in [−1, 1] rather than {−1, 0, 1}: the

output should still be the same for statements which are necessarily false or necessarily

true (−1 and 1 respectively), and would otherwise depends on the proportions of worlds

in the current universe W ∈ Ω for which eval(s̄,W) = 1. A more precise definition

would require having access to a measure over the infinite (and uncountable) set of pos-

sible worlds, but we can still describe some properties of such a function. For example:

{W ∈ Ω; eval(s̄a,W) =} ⊆ {W ∈ Ω; eval(s̄b,W) =} ⇒ eval(s̄a,Ω) ≤ eval(s̄b,Ω)

In other words, if s̄a implies s̄b, then s̄a is less likely than s̄b according to the eval

function.

Additionally, we have only considered reasoning over “statements” or “sentences”

so far, always assuming that the referred sequences of words were interpretable (i.e.

correspond to a computable meaning). However, both the read and eval function might

be applied to arbitrary sequences of words or characters, especially when considering

systems involving automated language generation. Let us start by considering how the

eval function should handle such a sequence. We choose to add a special output value

µη to the world-state-level function, which now has values in {−1, 1, µη}. Note that a

sequence might be interpretable in one world state, and not in another: for example, a

sequence like “A tried greenly blue.” is non-interpretable in any universe for syntactic

reasons, while “The purple cat sat on the mat.” would be interpretable in a world

state which has a purple cat but non-interpretable in one which does not. Now, let us

consider the universe-level eval function. If a sequence s̄ is interpretable in all world

states, then eval(s̄,Ω) should behave as described previously. If the sequence is non-

interpretable in all world states, then we can simply have eval(s̄,Ω) = µη. In all other

158

-1: False 1: True

𝝁𝜼: Non-
Interpretable

Ω0 read(``𝑇ℎ𝑒 𝐾𝑜𝑟𝑘𝑜 𝑖𝑠 𝑎 𝑏𝑒𝑎𝑢𝑡𝑖𝑓𝑢𝑙 𝑓𝑙𝑦𝑖𝑛𝑔 𝑙𝑖𝑧𝑎𝑟𝑑. ′′, Ω0)

Korkos are splendid.

Reptiles fly. The sky is blue.

First molten very walks.

-1: False 1: True

𝝁𝜼: Non-
Interpretable

Korkos are splendid.

Reptiles fly. The sky is blue.

First molten very walks.

eval(ҧ𝑠, Ω) eval(ҧ𝑠, Ω)

Figure 5.2: Representing the eval function in two universes. Left: base universe. The
base universe Ω0 corresponds to general knowledge about the world. In this universe,
the output of eval for sentences “The sky is blue.”, “Lizards can fly.” and “First molted
very walks.” is close to the corners corresponding to true, false and non-interpretable
respectively, the first two because of common knowledge about the world, the third for
being a-grammatical. As for the sentence “Korkos are splendid.”, the base universe
has no knowledge of what a Korko is, and so the sentence is mostly non-interpretable.
Right: universe after reading the sentence “The Korko is a beautiful flying lizard.”.
“The sky is blue.” is still evaluated as true, and “First molted very walks.” as non-
interpretable. However, now that we know what a Korko is, “Korkos are splendid.”
becomes not only interpretable, but also likely true. Similarly, now that there is evidence
of at least one reptile flying (common knowledge tells us that a lizard is a reptile),
“Lizards can fly.” moves away from false and closer to possible. The colors simply
illustrates how close to both interpretable and true a sentence is, with blue corresponding
to higher scores and red to lower scores.

cases, eval(s̄,Ω) = µη will have a value corresponding to the center of gravity in the

−1, µη, 1 weighted according to the proportion of worlds in the current universeW ∈ Ω

for which eval(s̄,W) = −1, eval(s̄,W) = µη, and eval(s̄,W) = 1 (computing these

weights would rely on the measure mentioned in the previous paragraph). Figure 5.2

illustrates this eval function in two different universes. As for the read function, its

159

role remains the same: even a non immediately interpretable sentence can bring some

information, by setting up the state of the universe for e.g. when a previously unknown

word is defined.

By extending the eval function in this way, we meet our second requirement: by

defining the output of our fundamental functions in a continuous space, we have access

to ranking judgments (more or less likely to be true, more or less interpretable). Note

that we could easily imagine adding more vertices to the output space of eval. For

example, a vertex υs+ could correspond to sentiment analysis, where eval(s̄,W) = υs+

for a world W ∈ Ω if s̄ expresses a positive sentiment, eval(s̄,Ω) would then have

values in the {−1, µη, υs+, 1} simplex. We could also have different non-interpretability

vertices (µη1 , µη2 , . . .) for a-grammatical sentences, sentences with unknown words, un-

resolved references, etc. . . For ease of exposition, we simply use the {−1, µη, 1} simplex

in the rest of this Chapter.

Now, let us consider how this formalism can help us define a notion of contextual

similarity between the meaning of two sentences. First, we will need to define a distance

measure between universes, which are implicitly defined uncountable sets, or at least

a way to describe how similar any two universes are to each other. We propose the

following: assuming that we have a probability distribution over sentences ps̄, we define

the distance between two universes Ωa and Ωb as:

∆(Ωa|Ωb) = Es̄∼ps̄ [||eval(s̄,Ωa) = eval(s̄,Ωb)||2] (5.4)

That is, two universes are close to each other if the same statements tend to be true or

false in both. Then, we can define the following distance function between the meaning

160

of two sentences s̄a and s̄b in a universe Ω:

δ(s̄a, s̄b; Ω) = ∆(read(s̄a,Ω)|read(s̄b,Ω)) (5.5)

Note that the notion of distance presented here is contextual: for example the sentences

“Ernesto saw Francis.” and “Francis visited his doctor.” will be close to each other in

a universe where we know that Francis’ doctor is named Ernesto, and far if we know

that is not the case. This is quite different from the definition of Semantic Textual

Similarity used in works such as [Agirre et al., 2012]. An absolute distance metric could

be obtained by either fixing the universe to some Ω0, or more generally by providing

some distribution pΩ over all possible universes:

δ0(s̄a, s̄b) = EΩ∼pΩ [∆(read(s̄a,Ω)|read(s̄b,Ω))] (5.6)

Relation to NLP tasks. Now, let us consider how some natural language tasks, such

as machine translation [Brown et al., 1990], summarization [Kupiec et al., 1995], or

Natural Language Inference [MacCartney, 2009,Bowman et al., 2015] can be described

in our framework. In the rest of this Section, the universe Ω0 corresponds to the context

for a task. This would represent at the minimum the set of possible world states which

correspond to common knowledge (after having read, for example, that the sky is blue,

or that a container needs to be larger than what it contains. . .), and can be further refined

by previously read text or task-specific additional information.

Then, given a source and a target language, let us assume that we have two read

functions, one for the source readS and one for the target readT , We can define machine

translation as the task of finding the sentence in the target language s̄T which has the

closest meaning to the source sentence s̄S in context, that is, such that evaluating each

161

of them in the same context leads to universes which are as close as possible:

s̄T = arg min
s̄

∆(readS(s̄S,Ω
0)|readT (s̄,Ω0)) (5.7)

Similarly, summarization would consist in finding the sentence or text with the closest

meaning to document d̄ under a length constraint (e.g. fewer than L word):

s̄∗ = arg min
|s̄|<L

∆(read(d̄,Ω0)|read(s̄,Ω0)) (5.8)

Finally, Natural Language Inference considers two statements s̄a and s̄b, and, considers

whether s̄a implies s̄b, s̄b contradicts s̄a or s̄a and s̄b lack a logical relations. In the

framework we just presented, this might correspond to considering a base universe Ω0,

and deciding whether (eval(s̄b, read(s̄a,Ω
0)) = 1), (eval(s̄b, read(s̄a,Ω

0)) = −1), or

(eval(s̄b, read(s̄a,Ω
0)) ≈ 0) respectively.

There are other constraints obviously. For example, we want to make sure summa-

rization does not give any information which was not in the initial document (hence

read(d̄,Ω0) ⊂ read(s̄∗,Ω0)), but this shows how the formalism we introduce in this

Section can help provide a framework for some language understanding tasks.

Conclusion and Future Work In this Section, we have sketched a formalism to de-

scribe the meaning of a text in terms of some general functions read and eval, and

shown the relation between some common NLP tasks and compositions these functions.

This implies that we can use machine learning techniques to train universal function

approximators, such as kernel-based functions or neural networks, which have gained

in popularity recently, to learn these compositions. Such approximators produce two

objects of interest. They are usually parameterized in some way, and these parameters

162

implicitly encode the base universe Ω0 mentioned previously. They also often work

with intermediary representations of words or word sequences. Given the requirements

of the tasks we have presented in this Section, such intermediary representations need

to encode (or at least index in a way which makes computing the arg min involved more

tractable) all of the information necessary to perform the eval and read operations: from

what we have seen so far, this corresponds to encoding the meaning of the text. Thus,

we have the beginning of an answer to the question of what we understand by the no-

tion of meaning: it can be accessed by learning a set of parameters and finding families

of encoding or indexing models which can implicitly represent a universe, as well as

implement the eval, read and ∆ functions. We hope that by developing this formalism

further and answering some of the questions which we have left open, we can character-

ize the objects involved and their relations to their approximators in a way which leads

useful linguistic insights and guides the development of new models.

163

Conclusion

In this thesis, we have considered the problem of combining sequences of characters

or words into a representation of the meaning expressed in text. We put forward that the

task of language modeling relied on a conditioning step over a representation of a text’s

meaning, and so proposed to use it as a general objective to discover model architectures

and train systems which may be of use for general text understanding.

In Chapter 2, we raised the question of what the appropriate reading level was for

text between characters and words. Sections 2.2 and 2.3 showed a clear advantage to

at the very least using character information to compute token embeddings in the con-

text of word level language modeling. Then, noting that fully character level sequence

modeling still lags behind word level processing in terms of computational efficiency

and long term memory, we proposed a Variable Computation Recurrent Network archi-

tecture for the purpose of processing sequences of characters which learns to adapt its

operations in a way which starts bridging this gap.

Chapters 3 and 4 focused on the language modeling objective itself. In Chapter 3,

we considered the challenge of scale caused by using a family of distributions which

needs to compute a normalization constant over a large vocabulary for every token of

a corpus. We proposed to remedy this difficulty by resorting to hierarchical prediction,

and innovated over previous work by providing a theoretically grounded algorithm to

164

efficiently learn the structure of the hierarchy, in an online fashion and jointly with the

other parameters of the model, showing gains in both speed and performance. Then,

Chapter 4 argued for the use of global (sequence-level) rather than local (word-level)

normalization, proposed a neural network inspired Markov Random Field structured

language model, and provided a new and efficient algorithm to approximate its partition

function in time mostly independent of the corpus size.

Finally, in Chapter 5, we went back to our initial definition of meaning, and con-

sidered other objectives beyond language modeling to train text understanding systems.

We found that some discriminative objectives inspired by a notion of discourse coher-

ence presented similar advantages to language modeling, such as having access to vast

amounts of naturally occurring training data, while being much cheaper to compute.

We used these objectives to train sentence representation systems, and showed that the

learned encodings were practically useful. We then sketched a formalism of meaning

based on Possible Worlds Semantics which we believe might be helpful in reasoning

over the properties of language understanding systems in the future.

What comes next? First, we raised a number of immediate follow up questions in

the discussion Sections of Chapters 2 to 5. Indeed, by and large, the algorithms and

paradigms introduced in this thesis should be seen as stepping stones or building blocks

towards reaching their stated purpose. While it is becoming increasingly obvious that

character level information is useful, finding ways to limit the additional computational

cost incurred by doing so and finding the right trade-off between character and word

level processing for different tasks remains an open problem. The principled tree learn-

ing algorithm we introduced to speed up word level language modeling would benefit

from being extended to more general structures, such as prediction forests, and from be-

ing adapted to other application settings. While we took a first step towards being able to

165

perform marginal inference in globally normalized language models, there is still much

work to be done to make more expressive distributions tractable, and extending the ap-

proach to maximum a posteriori inference could have a significant impact on many areas

of language processing. Finally, we are barely just starting to explore alternative unsu-

pervised training objectives for text understanding beyond language modeling, and to

consider their potential to both train and evaluate more complex models.

However, at least as important as all of the above questions are those raised by our

initial foray into defining a framework to describe meaning in Section 5.6. For example,

what distribution over statements should Equation 5.4 use to define a distance measure

between universes? How should it account for interpretability? What can we say about

the topology of the eval output space, especially for “well-formed” statements? Do we

need a higher dimensional output to account for different sorts of interpretability? How

do questions and other types of utterances differ from the kinds of statements we used

in our examples?

And most prominently, while we have given some insights into how the read(·,Ω0)

and eval(·,Ω0) functions relate to several language tasks, we have said little about how

to handle more general universes, or, for that matter, how the base universe Ω0 relates

to the original universe Ω∅. Even if we were to overlook the latter problem, language

understanding has to rely at some point on the ability to use and retain new information

across settings, or across iterations of a task. A number of promising recent works,

such as memory-based Neural Networks [Sukhbaatar et al., 2015] or Neural Turing

Machines [Graves et al., 2016] aim to keep longer term memory of read statements,

which can help represent a universe in a tractable way. Unfortunately, these models

still need to be made drastically faster and more memory efficient before they can be of

general use in language understanding settings.

166

All of the above questions present promising avenues for future research, which will

need to be explored on the way to developing generally useful systems for language

understanding. We look forward to seeing future research build upon the ideas pro-

posed in the present work to that end, and to add our own further contributions to the

advancement of the field.

167

Bibliography

[Agirre et al., 2012] Agirre, Eneko, Cer, Daniel M., Diab, Mona T., and Gonzalez-

Agirre, Aitor (2012). SemEval-2012 Task 6: A Pilot on Semantic Textual Similarity.

In Proceedings of the 6th International Workshop on Semantic Evaluation, pages

385–393.

[Agrawal et al., 2013] Agrawal, Rahul, Gupta, Archit, Prabhu, Yashoteja, and Varma,

Manik (2013). Multi-Label Learning with Millions of Labels: Recommending Ad-

vertiser Bid Phrases for Web Pages. In WWW 2013, 22nd International World Wide

Web Conference, pages 13–24.

[Alexandrescu and Kirchhoff, 2006] Alexandrescu, Andrei and Kirchhoff, Katrin

(2006). Factored Neural Language Models. In HLT-NAACL 2006, Human Lan-

guage Technology Conference of the North American Chapter of the Association of

Computational Linguistics.

[Andor et al., 2016] Andor, Daniel, Alberti, Chris, Weiss, David, Severyn, Aliaksei,

Presta, Alessandro, Ganchev, Kuzman, Petrov, Slav, and Collins, Michael (2016).

Globally Normalized Transition-Based Neural Networks. In ACL 2016, Proceedings

of the 54th Annual Meeting of the Association for Computational Linguistics.

168

[Andreas and Klein, 2015] Andreas, Jacob and Klein, Dan (2015). When and why are

log-linear models self-normalizing? In NAACL HLT 2015, The 2015 Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 244–249.

[Andreas et al., 2016] Andreas, Jacob, Rohrbach, Marcus, Darrell, Trevor, and Klein,

Dan (2016). Learning to Compose Neural Networks for Question Answering. In

NAACL HLT 2016, The 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, pages

1545–1554.

[Armstrong, 1986] Armstrong, David M. (1986). The nature of possibility. Canadian

Journal of Philosophy, 16(4):575–594.

[Azocar et al., 2011] Azocar, A., Gimenez, J., Nikodem, K., and Sanchez, J. L. (2011).

On Strongly Midconvex Functions. Opuscula Math., 31:15–26.

[Bahdanau et al., 2014] Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua

(2014). Neural Machine Translation by Jointly Learning to Align and Translate.

CoRR, abs/1409.0473.

[Bajgar et al., 2016] Bajgar, Ondrej, Kadlec, Rudolf, and Kleindienst, Jan (2016). Em-

bracing Data Abundance: BookTest Dataset for Reading Comprehension. CoRR,

abs/1610.00956.

[Barzilay and Lapata, 2005] Barzilay, Regina and Lapata, Mirella (2005). Modeling

Local Coherence: an Entity-Based Approach. In ACL 2005, 43rd Annual Meeting of

the Association for Computational Linguistics, pages 141–148.

169

[Bengio et al., 2010] Bengio, Samy, Weston, Jason, and Grangier, David (2010). Label

Embedding Trees for Large Multi-Class Tasks. In NIPS 2010, Advances in Neural

Information Processing Systems 23, pages 163–171.

[Bengio et al., 2003] Bengio, Yoshua, Ducharme, Rejean, and Vincent, Pascal (2003).

A Neural Probabilistic Language Model. Journal of Machine Learning Research,

3:1137–1155.

[Bengio and Senecal, 2003] Bengio, Yoshua and Senecal, Jean-Sébastien (2003).

Quick Training of Probabilistic Neural Nets by Importance Sampling. In AISTATS

2003, Proceedings of the Ninth International Workshop on Artificial Intelligence and

Statistics.

[Bengio and Senecal, 2008] Bengio, Yoshua and Senecal, Jean-Sébastien (2008).

Adaptive Importance Sampling to Accelerate Training of a Neural Probabilistic Lan-

guage Model. IEEE Trans. Neural Networks, 19(4):713–722.

[Bengio et al., 1994] Bengio, Yoshua, Simard, Patrice Y., and Frasconi, Paolo (1994).

Learning Long-Term Dependencies with Gradient Descent is Difficult. IEEE Trans.

Neural Networks, 5(2):157–166.

[Berant et al., 2013] Berant, Jonathan, Chou, Andrew, Frostig, Roy, and Liang, Percy

(2013). Semantic Parsing on Freebase from Question-Answer Pairs. In EMNLP

2013, Proceedings of the 2013 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 1533–1544.

[Beygelzimer et al., 2009a] Beygelzimer, Alina, Langford, John, Lifshits, Yury, Sorkin,

Gregory B., and Strehl, Alexander L. (2009a). Conditional Probability Tree Estima-

170

tion Analysis and Algorithms. In UAI 2009, Proceedings of the Twenty-Fifth Confer-

ence on Uncertainty in Artificial Intelligence, pages 51–58.

[Beygelzimer et al., 2009b] Beygelzimer, Alina, Langford, John, and Ravikumar,

Pradeep (2009b). Error-Correcting Tournaments. In ALT 2009, Algorithmic Learning

Theory, 20th International Conference, pages 247–262.

[Bhatia et al., 2015] Bhatia, Kush, Jain, Himanshu, Kar, Purushottam, Varma, Manik,

and Jain, Prateek (2015). Sparse Local Embeddings for Extreme Multi-Label Clas-

sification. In NIPS 2015, Advances in Neural Information Processing Systems 28,

pages 730–738.

[Bilmes and Kirchhoff, 2003] Bilmes, Jeff A. and Kirchhoff, Katrin (2003). Factored

Language Models and Generalized Parallel Backoff. In HLT-NAACL 2003, Human

Language Technology Conference of the North American Chapter of the Association

for Computational Linguistics.

[Bird, 2006] Bird, Steven (2006). NLTK: the natural language toolkit. In ACL 2006,

21st International Conference on Computational Linguistics and 44th Annual Meet-

ing of the Association for Computational Linguistics.

[Bojanowski et al., 2017] Bojanowski, Piotr, Grave, Edouard, Joulin, Armand, and

Mikolov, Tomas (2017). Enriching Word Vectors with Subword Information. TACL,

5:135–146.

[Bojanowski et al., 2015] Bojanowski, Piotr, Joulin, Armand, and Mikolov, Tomas

(2015). Alternative Structures for Character-Level RNNs. CoRR, abs/1511.06303.

[Bollacker et al., 2007] Bollacker, Kurt D., Cook, Robert P., and Tufts, Patrick (2007).

Freebase: A Shared Database of Structured General Human Knowledge. In AAAI

171

2007, Proceedings of the Twenty-Second Conference on Artificial Intelligence, pages

1962–1963.

[Botha, 2014] Botha, Jan Abraham (2014). Probabilistic Modelling of Morphologically

Rich Languages. PhD thesis, University of Oxford, UK.

[Botha and Blunsom, 2014] Botha, Jan A. and Blunsom, Phil (2014). Compositional

Morphology for Word Representations and Language Modelling. In ICML 2014,

Proceedings of the 31th International Conference on Machine Learning, pages 1899–

1907.

[Bottou, 1991] Bottou, Léon (1991). Une Approche Théorique de l’Apprentissage Con-

nexionniste: Applications à la Reconnaissance de la Parole. PhD thesis.

[Bottou, 1998] Bottou, Léon (1998). Online algorithms and stochastic approximations.

In Saad, David, editor, Online Learning and Neural Networks. Cambridge University

Press.

[Bowman et al., 2015] Bowman, Samuel R., Angeli, Gabor, Potts, Christopher, and

Manning, Christopher D. (2015). A Large Annotated Corpus for Learning Natu-

ral Language Inference. In EMNLP 2015, Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, pages 632–642.

[Brants, 2000] Brants, Thorsten (2000). TnT – A Statistical Part-of-Speech Tagger. In

ANLP 2000, 6th Applied Natural Language Processing Conference, pages 224–231.

[Breiman, 2001] Breiman, Leo (2001). Random Forests. Machine Learning, 45(1):5–

32.

172

[Breiman et al., 1984] Breiman, Leo, Friedman, J. H., Olshen, R. A., and Stone, C. J.

(1984). Classification and Regression Trees. Wadsworth.

[Brown et al., 1990] Brown, Peter F., Cocke, John, Pietra, Stephen Della, Pietra, Vin-

cent J. Della, Jelinek, Frederick, Lafferty, John D., Mercer, Robert L., and Roossin,

Paul S. (1990). A Statistical Approach to Machine Translation. Computational Lin-

guistics, 16(2):79–85.

[Brown et al., 1993] Brown, Peter F., Pietra, Stephen Della, Pietra, Vincent J. Della,

and Mercer, Robert L. (1993). The Mathematics of Statistical Machine Translation:

Parameter Estimation. Computational Linguistics, 19(2):263–311.

[Bui et al., 2013] Bui, Hung Hai, Huynh, Tuyen N., and Riedel, Sebastian (2013). Au-

tomorphism Groups of Graphical Models and Lifted Variational Inference. In UAI

2013, Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intel-

ligence.

[Bui et al., 2014] Bui, Hung Hai, Huynh, Tuyen N., and Sontag, David (2014). Lifted

Tree-Reweighted Variational Inference. In UAI 2014, Proceedings of the Thirtieth

Conference on Uncertainty in Artificial Intelligence, pages 92–101.

[Carbonell et al., 1981] Carbonell, Jaime G., Cullingford, Richard E., and Gershman,

Anatole V. (1981). Steps Toward Knowledge-Based Machine Translation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, (4):376–392.

[Carbonell and Tomita, 1985] Carbonell, Jaime G. and Tomita, Masaru (1985). New

Approaches to Machine Translation. In Proceedings of the conference on Theoretical

and Methodological Issues in Machine Translation of Natural Languages.

173

[Carnap, 1947] Carnap, Rudolf (1947). Meaning and Necessity. University of Chicago

Press.

[Chandar et al., 2016] Chandar, Sarath, Ahn, Sungjin, Larochelle, Hugo, Vincent, Pas-

cal, Tesauro, Gerald, and Bengio, Yoshua (2016). Hierarchical Memory Networks.

CoRR, abs/1605.07427.

[Chen and Goodman, 1998] Chen, Stanley and Goodman, Joshua (1998). An Empirical

Study of Smoothing Techniques for Language Modeling. Technical Report, Harvard

University.

[Cheng et al., 2014] Cheng, Wei-Chen, Kok, Stanley, Pham, Hoai Vu, Chieu,

Hai Leong, and Chai, Kian Ming Adam (2014). Language Modeling with Sum-

Product Networks. In INTERSPEECH 2014, 15th Annual Conference of the Interna-

tional Speech Communication Association, pages 2098–2102.

[Chiang, 2005] Chiang, David (2005). A Hierarchical Phrase-Based Model for Statis-

tical Machine Translation. In ACL 2005, 43rd Annual Meeting of the Association for

Computational Linguistics, pages 263–270.

[Cho et al., 2014a] Cho, Kyunghyun, van Merrienboer, Bart, Bahdanau, Dzmitry, and

Bengio, Yoshua (2014a). On the Properties of Neural Machine Translation: Encoder-

Decoder Approaches. In Proceedings of SSST@EMNLP 2014, Eighth Workshop on

Syntax, Semantics and Structure in Statistical Translation, pages 103–111.

[Cho et al., 2014b] Cho, Kyunghyun, van Merrienboer, Bart, Gülçehre, Çaglar, Bah-

danau, Dzmitry, Bougares, Fethi, Schwenk, Holger, and Bengio, Yoshua (2014b).

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Ma-

174

chine Translation. In EMNLP 2014, Proceedings of the 2014 Conference on Empiri-

cal Methods in Natural Language Processing, pages 1724–1734.

[Choromanska et al., 2016] Choromanska, Anna, Choromanski, Krzysztof, and Bo-

jarski, Mariusz (2016). On the Boosting Ability of Top-Down Decision Tree Learn-

ing Algorithm for Multiclass Classification. CoRR, abs/1605.05223.

[Choromanska and Langford, 2015] Choromanska, Anna and Langford, John (2015).

Logarithmic Time Online Multiclass Prediction. In NIPS 2015, Advances in Neural

Information Processing Systems 28, pages 55–63.

[Chung et al., 2016] Chung, Junyoung, Ahn, Sungjin, and Bengio, Yoshua (2016). Hi-

erarchical Multiscale Recurrent Neural Networks. CoRR, abs/1609.01704.

[Collobert et al., 2011] Collobert, Ronan, Weston, Jason, Bottou, Léon, Karlen,

Michael, Kavukcuoglu, Koray, and Kuksa, Pavel P. (2011). Natural Language Pro-

cessing (almost) from Scratch. Journal of Machine Learning Research, 12:2493–

2537.

[Conneau et al., 2017] Conneau, Alexis, Kiela, Douwe, Schwenk, Holger, Barrault,

Loı̈c, and Bordes, Antoine (2017). Supervised Learning of Universal Sentence Rep-

resentations from Natural Language Inference Data. In EMNLP 2017, Proceedings of

the 2017 Conference on Empirical Methods in Natural Language Processing, pages

681–691.

[Creutz and Lagus, 2007] Creutz, Mathias and Lagus, Krista (2007). Unsupervised

Models for Morpheme Segmentation and Morphology Learning. TSLP, 4(1):3:1–

3:34.

175

[Cullingford, 1978] Cullingford, Richard Edward (1978). Script Application: Com-

puter Understanding of Newspaper Stories. Technical report.

[Dai and Le, 2015] Dai, Andrew M. and Le, Quoc V. (2015). Semi-Supervised Se-

quence Learning. In NIPS 2015, Advances in Neural Information Processing Systems

28, pages 3079–3087.

[Das et al., 2014] Das, Dipanjan, Chen, Desai, Martins, André F. T., Schneider, Nathan,

and Smith, Noah A. (2014). Frame-Semantic Parsing. Computational Linguistics,

40(1):9–56.

[Daumé III et al., 2017] Daumé III, Hal, Karampatziakis, Nikos, Langford, John, and

Mineiro, Paul (2017). Logarithmic Time One-Against-Some. In ICML 2017, Pro-

ceedings of the 34th International Conference on Machine Learning, pages 923–932.

[Dauphin et al., 2017] Dauphin, Yann N., Fan, Angela, Auli, Michael, and Grangier,

David (2017). Language Modeling with Gated Convolutional Networks. In ICML

2017, Proceedings of the 34th International Conference on Machine Learning, pages

933–941.

[de Brébisson and Vincent, 2015] de Brébisson, Alexandre and Vincent, Pascal (2015).

An Exploration of Softmax Alternatives Belonging to the Spherical Loss Family.

CoRR, abs/1511.05042.

[Deerwester et al., 1990] Deerwester, Scott C., Dumais, Susan T., Landauer,

Thomas K., Furnas, George W., and Harshman, Richard A. (1990). Indexing by

Latent Semantic Analysis. JASIS, 41(6):391–407.

[Deng et al., 2011] Deng, Jia, Satheesh, Sanjeev, Berg, Alexander C., and Li, Fei-Fei

(2011). Fast and Balanced: Efficient Label Tree Learning for Large Scale Object

176

Recognition. In NIPS 2011, Advances in Neural Information Processing Systems 24,

pages 567–575.

[dos Santos and Guimarães, 2015] dos Santos, Cı́cero Nogueira and Guimarães, Victor

(2015). Boosting Named Entity Recognition with Neural Character Embeddings.

CoRR, abs/1505.05008.

[dos Santos and Zadrozny, 2014] dos Santos, Cı́cero Nogueira and Zadrozny, Bianca

(2014). Learning Character-level Representations for Part-of-Speech Tagging. In

ICML 2014, Proceedings of the 31th International Conference on Machine Learning,

pages 1818–1826.

[Duchi et al., 2010] Duchi, John C., Hazan, Elad, and Singer, Yoram (2010). Adaptive

Subgradient Methods for Online Learning and Stochastic Optimization. In COLT

2010, The 23rd Conference on Learning Theory, pages 257–269.

[Elman, 1990] Elman, Jeffrey L. (1990). Finding Structure in Time. Cognitive Science,

14(2):179–211.

[Fine et al., 1998] Fine, Shai, Singer, Yoram, and Tishby, Naftali (1998). The Hier-

archical Hidden Markov Model: Analysis and Applications. Machine Learning,

32(1):41–62.

[Gael et al., 2008] Gael, Jurgen Van, Teh, Yee Whye, and Ghahramani, Zoubin (2008).

The Infinite Factorial Hidden Markov Model. In NIPS 2008, Advances in Neural

Information Processing Systems 21, pages 1697–1704.

[Galley et al., 2006] Galley, Michel, Graehl, Jonathan, Knight, Kevin, Marcu, Daniel,

DeNeefe, Steve, Wang, Wei, and Thayer, Ignacio (2006). Scalable Inference and

177

Training of Context-Rich Syntactic Translation Models. In ACL 2006, 21st Inter-

national Conference on Computational Linguistics and 44th Annual Meeting of the

Association for Computational Linguistics.

[Gan et al., 2016] Gan, Zhe, Pu, Yunchen, Henao, Ricardo, Li, Chunyuan, He, Xi-

aodong, and Carin, Lawrence (2016). Unsupervised Learning of Sentence Repre-

sentations Using Convolutional Neural Networks. CoRR, abs/1611.07897.

[Ghahramani and Hinton, 2000] Ghahramani, Zoubin and Hinton, Geoffrey E. (2000).

Variational Learning for Switching State-Space Models. Neural Computation,

12(4):831–864.

[Ghahramani and Jordan, 1997] Ghahramani, Zoubin and Jordan, Michael I. (1997).

Factorial Hidden Markov Models. Machine Learning, 29(2-3):245–273.

[Globerson and Jaakkola, 2007] Globerson, Amir and Jaakkola, Tommi S. (2007).

Convergent propagation algorithms via oriented trees. In UAI 2007, Proceedings

of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, pages 133–

140.

[Graff and Cieri, 2003] Graff, David and Cieri, C (2003). English Gigaword Corpus.

Linguistic Data Consortium.

[Grave et al., 2017a] Grave, Edouard, Joulin, Armand, Cissé, Moustapha, Grangier,

David, and Jégou, Hervé (2017a). Efficient Softmax Approximation for GPUs. In

ICML 2017, Proceedings of the 34th International Conference on Machine Learning,

pages 1302–1310.

[Grave et al., 2017b] Grave, Edouard, Mikolov, Tomas, Joulin, Armand, and Bo-

janowski, Piotr (2017b). Bag of Tricks for Efficient Text Classification. In EACL

178

2017, Proceedings of the 15th Conference of the European Chapter of the Associa-

tion for Computational Linguistics, Volume 2: Short Papers, pages 427–431.

[Graves, 2013] Graves, Alex (2013). Generating Sequences With Recurrent Neural

Networks. CoRR, abs/1308.0850.

[Graves, 2016] Graves, Alex (2016). Adaptive Computation Time for Recurrent Neural

Networks. CoRR, abs/1603.08983.

[Graves et al., 2006] Graves, Alex, Fernández, Santiago, Gomez, Faustino J., and

Schmidhuber, Jürgen (2006). Connectionist Temporal Classification: Labelling Un-

segmented Sequence Data with Recurrent Neural Networks. In (ICML 2006), Pro-

ceedings of the Twenty-Third International Conference on Machine Learning, pages

369–376.

[Graves et al., 2016] Graves, Alex, Wayne, Greg, Reynolds, Malcolm, Harley, Tim,

Danihelka, Ivo, Grabska-Barwinska, Agnieszka, Colmenarejo, Sergio Gomez,

Grefenstette, Edward, Ramalho, Tiago, Agapiou, John, Badia, Adrià Puigdomènech,

Hermann, Karl Moritz, Zwols, Yori, Ostrovski, Georg, Cain, Adam, King, He-

len, Summerfield, Christopher, Blunsom, Phil, Kavukcuoglu, Koray, and Hassabis,

Demis (2016). Hybrid Computing Using a Neural Network with Dynamic External

Memory. Nature, 538(7626):471–476.

[Gutmann and Hyvärinen, 2012] Gutmann, Michael and Hyvärinen, Aapo (2012).

Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications

to Natural Image Statistics. Journal of Machine Learning Research, 13:307–361.

179

[Guu et al., 2015] Guu, Kelvin, Miller, John, and Liang, Percy (2015). Traversing

Knowledge Graphs in Vector Space. In EMNLP 2015, Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language Processing, pages 318–327.

[Hazan and Urtasun, 2010] Hazan, Tamir and Urtasun, Raquel (2010). A Primal-Dual

Message-Passing Algorithm for Approximated Large Scale Structured Prediction. In

Advances in Neural Information Processing Systems 23: 24th Annual Conference

on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9

December 2010, Vancouver, British Columbia, Canada., pages 838–846.

[Hill et al., 2015] Hill, Felix, Bordes, Antoine, Chopra, Sumit, and Weston, Jason

(2015). The Goldilocks Principle: Reading Children’s Books with Explicit Mem-

ory Representations. CoRR, abs/1511.02301.

[Hill et al., 2016] Hill, Felix, Cho, Kyunghyun, and Korhonen, Anna (2016). Learning

Distributed Representations of Sentences from Unlabelled Data. In NAACL HLT

2016, The 2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 1367–1377.

[Hinton, 1986] Hinton, Geoffrey E. (1986). Learning Distributed Representations of

Concepts. In Proceedings of the Eight Annual Conference of Cognitive Science So-

ciety, pages 1–12.

[Hinton et al., 2012] Hinton, Geoffrey E., Srivastava, Nitish, Krizhevsky, Alex,

Sutskever, Ilya, and Salakhutdinov, Ruslan (2012). Improving Neural Networks by

Preventing Co-Adaptation of Feature Detectors. CoRR, abs/1207.0580.

[Hobbs, 1979] Hobbs, Jerry R. (1979). Coherence and coreference. Cognitive Science,

3(1):67–90.

180

[Hochreiter and Schmidhuber, 1997] Hochreiter, Sepp and Schmidhuber, Jürgen

(1997). Long Short-Term Memory. Neural Computation, 9(8):1735–1780.

[Hornik et al., 1989] Hornik, Kurt, Stinchcombe, Maxwell B., and White, Halbert

(1989). Multilayer Feedforward Networks are Universal Approximators. Neural

Networks, 2(5):359–366.

[Hsu et al., 2009] Hsu, Daniel J., Kakade, Sham, Langford, John, and Zhang, Tong

(2009). Multi-Label Prediction via Compressed Sensing. In NIPS 2009, Advances in

Neural Information Processing Systems 22, pages 772–780.

[Hughes and Cresswell, 1968] Hughes, GE and Cresswell, MJ (1968). An Introduction

to Modal Logic. Methuen, London.

[Hughes and Cresswell, 1996] Hughes, GE and Cresswell, MJ (1996). A New Introduc-

tion to Modal Logic. Routledge, London.

[Iyyer et al., 2014] Iyyer, Mohit, Boyd-Graber, Jordan L., Claudino, Leonardo

Max Batista, Socher, Richard, and III, Hal Daumé (2014). A Neural Network for

Factoid Question Answering over Paragraphs. In EMNLP 2014, Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing, pages 633–

644.

[Jancsary and Matz, 2011] Jancsary, Jeremy and Matz, Gerald (2011). Convergent de-

composition solvers for tree-reweighted free energies. In AISTATS 2011, Proceedings

of the Fourteenth International Conference on Artificial Intelligence and Statistics,

pages 388–398.

181

[Jelinek and Mercer, 1980] Jelinek, Fred and Mercer, Robert L. (1980). Interpolated

Estimation of Markov Source Parameters from Sparse Data. In Workshop on Pattern

Recognition in Practice 2000, pages 381–397.

[Jernite et al., 2017a] Jernite, Yacine, Bowman, Samuel R., and Sontag, David (2017a).

Discourse-Based Objectives for Fast Unsupervised Sentence Representation Learn-

ing. CoRR, abs/1705.00557.

[Jernite et al., 2017b] Jernite, Yacine, Choromanska, Anna, and Sontag, David (2017b).

Simultaneous Learning of Trees and Representations for Extreme Classification and

Density Estimation. In ICML 2017, Proceedings of the 34th International Conference

on Machine Learning, pages 1665–1674.

[Jernite et al., 2016] Jernite, Yacine, Grave, Edouard, Joulin, Armand, and Mikolov,

Tomas (2016). Variable Computation in Recurrent Neural Networks. CoRR,

abs/1611.06188.

[Jernite et al., 2015] Jernite, Yacine, Rush, Alexander M., and Sontag, David (2015). A

Fast Variational Approach for Learning Markov Random Field Language Models. In

ICML 2015, Proceedings of the 32nd International Conference on Machine Learning,

pages 2209–2217.

[Ji et al., 2015] Ji, Yangfeng, Cohn, Trevor, Kong, Lingpeng, Dyer, Chris, and Eisen-

stein, Jacob (2015). Document Context Language Models. CoRR, abs/1511.03962.

[Ji et al., 2016] Ji, Yangfeng, Haffari, Gholamreza, and Eisenstein, Jacob (2016). A

Latent Variable Recurrent Neural Network for Discourse Relation Language Models.

CoRR, abs/1603.01913.

182

[Johnson et al., 2017] Johnson, Melvin, Schuster, Mike, Le, Quoc V., Krikun, Maxim,

Wu, Yonghui, Chen, Zhifeng, Thorat, Nikhil, Viégas, Fernanda B., Wattenberg, Mar-

tin, Corrado, Greg, Hughes, Macduff, and Dean, Jeffrey (2017). Google’s Multilin-

gual Neural Machine Translation System: Enabling Zero-Shot Translation. TACL,

5:339–351.

[Józefowicz et al., 2016] Józefowicz, Rafal, Vinyals, Oriol, Schuster, Mike, Shazeer,

Noam, and Wu, Yonghui (2016). Exploring the Limits of Language Modeling. CoRR,

abs/1602.02410.

[Kalchbrenner and Blunsom, 2013] Kalchbrenner, Nal and Blunsom, Phil (2013). Re-

current continuous translation models. In EMNLP 2013, Proceedings of the 2013

Conference on Empirical Methods in Natural Language Processing, pages 1700–

1709.

[Kalchbrenner et al., 2014] Kalchbrenner, Nal, Grefenstette, Edward, and Blunsom,

Phil (2014). A Convolutional Neural Network for Modelling Sentences. In ACL

2014, Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics, pages 655–665.

[Katz, 1987] Katz, Slava M. (1987). Estimation of Probabilities from Sparse Data for

the Language Model Component of a Speech Recognizer. IEEE Trans. Acoustics,

Speech, and Signal Processing, 35(3):400–401.

[Katz-Brown et al., 2011] Katz-Brown, Jason, Petrov, Slav, McDonald, Ryan T., Och,

Franz Josef, Talbot, David, Ichikawa, Hiroshi, Seno, Masakazu, and Kazawa, Hideto

(2011). Training a Parser for Machine Translation Reordering. In EMNLP 2011,

183

Proceedings of the 2011 Conference on Empirical Methods in Natural Language

Processing, pages 183–192.

[Kim, 2014] Kim, Yoon (2014). Convolutional Neural Networks for Sentence Classifi-

cation. In EMNLP 2014, Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing, pages 1746–1751.

[Kim et al., 2016] Kim, Yoon, Jernite, Yacine, Sontag, David, and Rush, Alexander M.

(2016). Character-Aware Neural Language Models. In AAAI 2016, Proceedings of

the Thirtieth AAAI Conference on Artificial Intelligence, pages 2741–2749.

[Kirkpatrick et al., 2016] Kirkpatrick, James, Pascanu, Razvan, Rabinowitz, Neil C.,

Veness, Joel, Desjardins, Guillaume, Rusu, Andrei A., Milan, Kieran, Quan, John,

Ramalho, Tiago, Grabska-Barwinska, Agnieszka, Hassabis, Demis, Clopath, Clau-

dia, Kumaran, Dharshan, and Hadsell, Raia (2016). Overcoming Catastrophic For-

getting in Neural Networks. CoRR, abs/1612.00796.

[Kiros et al., 2015] Kiros, Jamie, Zhu, Yukun, Salakhutdinov, Ruslan, Zemel,

Richard S., Urtasun, Raquel, Torralba, Antonio, and Fidler, Sanja (2015). Skip-

Thought Vectors. In NIPS 2015, Advances in Neural Information Processing Systems

28, pages 3294–3302.

[Koehn, 2005] Koehn, Philipp (2005). Europarl: A parallel corpus for statistical ma-

chine translation. In MT summit, volume 5, pages 79–86.

[Koutnı́k et al., 2014] Koutnı́k, Jan, Greff, Klaus, Gomez, Faustino J., and Schmidhu-

ber, Jürgen (2014). A Clockwork RNN. In ICML 2014, Proceedings of the 31th

International Conference on Machine Learning, pages 1863–1871.

184

[Kripke, 1963] Kripke, Saul A. (1963). Semantical Analysis of Modal Logic: Normal

Modal Propositional Calculi. Mathematical Logic Quarterly, 9(5-6):67–96.

[Krizhevsky et al., 2012] Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.

(2012). ImageNet Classification with Deep Convolutional Neural Networks. In NIPS

2012, Advances in Neural Information Processing Systems 25, pages 1106–1114.

[Kupiec et al., 1995] Kupiec, Julian, Pedersen, Jan O., and Chen, Francine (1995). A

Trainable Document Summarizer. In SIGIR’95, Proceedings of the 18th Annual In-

ternational ACM SIGIR Conference on Research and Development in Information

Retrieval. Seattle, pages 68–73.

[Lample et al., 2017] Lample, Guillaume, Denoyer, Ludovic, and Ranzato,

Marc’Aurelio (2017). Unsupervised Machine Translation Using Monolingual

Corpora Only. CoRR, abs/1711.00043.

[Le et al., 2011] Le, Hai Son, Oparin, Ilya, Allauzen, Alexandre, Gauvain, Jean-Luc,

and Yvon, François (2011). Structured output layer neural network language model.

In ICASSP 2011, Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing, pages 5524–5527.

[LeCun et al., 1989] LeCun, Yann, Boser, Bernhard E., Denker, John S., Henderson,

Donnie, Howard, Richard E., Hubbard, Wayne E., and Jackel, Lawrence D. (1989).

Handwritten Digit Recognition with a Backpropagation Network. In NIPS 1989,

Advances in Neural Information Processing Systems 2, pages 396–404.

[Lee et al., 2017] Lee, Jason, Cho, Kyunghyun, and Hofmann, Thomas (2017). Fully

Character-Level Neural Machine Translation without Explicit Segmentation. TACL,

5:365–378.

185

[Lei et al., 2015] Lei, Tao, Barzilay, Regina, and Jaakkola, Tommi S. (2015). Mold-

ing CNNs for Text: Non-linear, Non-Consecutive Convolutions. In EMNLP 2015,

Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing, pages 1565–1575.

[Lewis and Langford, 1959] Lewis, Clarence Irving and Langford, Cooper Harold

(1959). Symbolic Logic. Dover Publications New York.

[Lewis, 1970] Lewis, David (1970). General semantics. Synthese, 22(1):18–67.

[Lewis, 1986] Lewis, David (1986). On the plurality of worlds, volume 322. Oxford

University Press.

[Li and Hovy, 2014] Li, Jiwei and Hovy, Eduard H. (2014). A Model of Coherence

Based on Distributed Sentence Representation. In EMNLP 2014, Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing, pages

2039–2048.

[Li and Jurafsky, 2016] Li, Jiwei and Jurafsky, Dan (2016). Neural Net Models for

Open-Domain Discourse Coherence. CoRR, abs/1606.01545.

[Liang, 2016] Liang, Percy (2016). Learning Executable Semantic Parsers for Natural

Language Understanding. Commun. ACM, 59(9):68–76.

[Liang and Jordan, 2008] Liang, Percy and Jordan, Michael I. (2008). An Asymptotic

Analysis of Generative, Discriminative, and Pseudolikelihood Estimators. In ICML

2008, Machine Learning, Proceedings of the Twenty-Fifth International Conference,

pages 584–591.

186

[Liang et al., 2011] Liang, Percy, Jordan, Michael I., and Klein, Dan (2011). Learn-

ing Dependency-Based Compositional Semantics. In ACL 2011, The 49th Annual

Meeting of the Association for Computational Linguistics, pages 590–599.

[Ling et al., 2015] Ling, Wang, Dyer, Chris, Black, Alan W., Trancoso, Isabel, Ferman-

dez, Ramon, Amir, Silvio, Marujo, Luı́s, and Luı́s, Tiago (2015). Finding Function

in Form: Compositional Character Models for Open Vocabulary Word Representa-

tion. In EMNLP 2015, Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, pages 1520–1530.

[Liu and Nocedal, 1989] Liu, Dong C. and Nocedal, Jorge (1989). On the Limited

Memory BFGS Method for Large Scale Optimization. Math. Program., 45(1-3):503–

528.

[Logeswaran et al., 2016] Logeswaran, Lajanugen, Lee, Honglak, and Radev,

Dragomir R. (2016). Sentence Ordering Using Recurrent Neural Networks. CoRR,

abs/1611.02654.

[Lowe et al., 2017] Lowe, Ryan, Noseworthy, Michael, Serban, Iulian Vlad, Angelard-

Gontier, Nicolas, Bengio, Yoshua, and Pineau, Joelle (2017). Towards an Automatic

Turing Test: Learning to Evaluate Dialogue Responses. In ACL 2017, Proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics, pages

1116–1126.

[Luong et al., 2013] Luong, Thang, Socher, Richard, and Manning, Christopher D.

(2013). Better Word Representations with Recursive Neural Networks for Morphol-

ogy. In CoNLL 2013, Proceedings of the Seventeenth Conference on Computational

Natural Language Learning, pages 104–113.

187

[MacCartney, 2009] MacCartney, Bill (2009). Natural Language Inference. Stanford

University.

[Madzarov et al., 2009] Madzarov, Gjorgji, Gjorgjevikj, Dejan, and Chorbev, Ivan

(2009). A Multi-Class SVM Classifier Utilizing Binary Decision Tree. Informat-

ica (Slovenia), 33(2):225–233.

[Marcus et al., 1993] Marcus, Mitchell P., Santorini, Beatrice, and Marcinkiewicz,

Mary Ann (1993). Building a Large Annotated Corpus of English: The Penn Tree-

bank. Computational Linguistics, 19(2):313–330.

[Meshi et al., 2010] Meshi, Ofer, Sontag, David, Jaakkola, Tommi S., and Globerson,

Amir (2010). Learning Efficiently with Approximate Inference via Dual Losses. In

(ICML-10), Proceedings of the 27th International Conference on Machine Learning,

pages 783–790.

[Mikolov et al., 2013] Mikolov, Tomas, Chen, Kai, Corrado, Greg, and Dean, Jeffrey

(2013). Efficient Estimation of Word Representations in Vector Space. CoRR,

abs/1301.3781.

[Mikolov et al., 2011] Mikolov, Tomas, Deoras, Anoop, Kombrink, Stefan, Burget,

Lukás, and Cernocký, Jan (2011). Empirical Evaluation and Combination of Ad-

vanced Language Modeling Techniques. In INTERSPEECH 2011, 12th Annual Con-

ference of the International Speech Communication Association, pages 605–608.

[Mikolov et al., 2014] Mikolov, Tomas, Joulin, Armand, Chopra, Sumit, Mathieu,

Michaël, and Ranzato, Marc’Aurelio (2014). Learning Longer Memory in Recur-

rent Neural Networks. CoRR, abs/1412.7753.

188

[Mikolov et al., 2010] Mikolov, Tomas, Karafiát, Martin, Burget, Lukás, Cernocký,

Jan, and Khudanpur, Sanjeev (2010). Recurrent Neural Network Based Language

Model. In INTERSPEECH 2010, 11th Annual Conference of the International Speech

Communication Association, pages 1045–1048.

[Mikolov and Zweig, 2012] Mikolov, Tomas and Zweig, Geoffrey (2012). Context De-

pendent Recurrent Neural Network Language Model. In IEEE 2012, Spoken Lan-

guage Technology Workshop (SLT), pages 234–239.

[Miltsakaki et al., 2004] Miltsakaki, Eleni, Prasad, Rashmi, Joshi, Aravind K., and

Webber, Bonnie L. (2004). The Penn Discourse Treebank. In LREC 2004, Proceed-

ings of the Fourth International Conference on Language Resources and Evaluation.

[Mirowski and Vlachos, 2015] Mirowski, Piotr and Vlachos, Andreas (2015). Depen-

dency Recurrent Neural Language Models for Sentence Completion. In ACL 2015,

Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-

guistics, Volume 2: Short Papers, pages 511–517.

[Mnih and Hinton, 2007] Mnih, Andriy and Hinton, Geoffrey E. (2007). Three New

Graphical Models for Statistical Language Modelling. In ICML 2007, Machine

Learning, Proceedings of the 24th International Conference on Machine Learning,

pages 641–648.

[Mnih and Hinton, 2008] Mnih, Andriy and Hinton, Geoffrey E. (2008). A Scalable

Hierarchical Distributed Language Model. In NIPS 2008, Advances in Neural Infor-

mation Processing Systems 21, pages 1081–1088.

189

[Mnih and Teh, 2012] Mnih, Andriy and Teh, Yee Whye (2012). A Fast and Simple

Algorithm for Training Neural Probabilistic Language Models. In ICML 2012, Pro-

ceedings of the 29th International Conference on Machine Learning.

[Montague, 1970] Montague, Richard (1970). Universal Grammar. Theoria,

36(3):373–398.

[Montague, 1973] Montague, Richard (1973). The Proper Treatment of Quantification

in Ordinary English. In Philosophy, language, and artificial intelligence, pages 141–

162. Springer.

[Morin and Bengio, 2005] Morin, Frederic and Bengio, Yoshua (2005). Hierarchical

Probabilistic Neural Network Language Model. In AISTATS 2005, Proceedings of

the Tenth International Workshop on Artificial Intelligence and Statistics.

[Mozer, 1991] Mozer, Michael (1991). Induction of Multiscale Temporal Structure. In

NIPS 1991, Advances in Neural Information Processing Systems 4, pages 275–282.

[Murphy and Paskin, 2001] Murphy, Kevin P. and Paskin, Mark A. (2001). Linear-

Time Inference in Hierarchical HMMs. In NIPS 2001, Advances in Neural Informa-

tion Processing Systems 14, pages 833–840.

[Nallapati et al., 2016] Nallapati, Ramesh, Zhou, Bowen, dos Santos, Cı́cero Nogueira,

Gülçehre, Çaglar, and Xiang, Bing (2016). Abstractive Text Summarization using

Sequence-to-sequence RNNs and Beyond. In Proceedings of the 20th SIGNLL Con-

ference on Computational Natural Language Learning, CoNLL 2016, Berlin, Ger-

many, August 11-12, 2016, pages 280–290.

[Nickel and Kiela, 2017] Nickel, Maximilian and Kiela, Douwe (2017). Poincaré Em-

beddings for Learning Hierarchical Representations. CoRR, abs/1705.08039.

190

[Nortmann, 2002] Nortmann, Ulrich (2002). The Logic of Necessity in Aristotle–an

Outline of Approaches to the Modal Syllogistic, Together with a General Account of

de dicto-and de re-Necessity. History and Philosophy of Logic, 23(4):253–265.

[Och and Ney, 2004] Och, Franz Josef and Ney, Hermann (2004). The Alignment

Template Approach to Statistical Machine Translation. Computational Linguistics,

30(4):417–449.

[Paperno et al., 2016] Paperno, Denis, Kruszewski, Germán, Lazaridou, Angeliki,

Pham, Quan Ngoc, Bernardi, Raffaella, Pezzelle, Sandro, Baroni, Marco, Boleda,

Gemma, and Fernández, Raquel (2016). The LAMBADA Dataset: Word Prediction

Requiring a Broad Discourse Context. In ACL 2016, Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics.

[Pascanu et al., 2013a] Pascanu, Razvan, Gülçehre, Çaglar, Cho, Kyunghyun, and Ben-

gio, Yoshua (2013a). How to Construct Deep Recurrent Neural Networks. CoRR,

abs/1312.6026.

[Pascanu et al., 2013b] Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua

(2013b). On the Difficulty of Training Recurrent Neural Networks. In ICML 2013,

Proceedings of the 30th International Conference on Machine Learning, pages 1310–

1318.

[Pennington et al., 2014] Pennington, Jeffrey, Socher, Richard, and Manning, Christo-

pher D. (2014). Glove: Global vectors for word representation. In EMNLP 2014,

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing, pages 1532–1543.

191

[Plantinga, 1976] Plantinga, Alvin (1976). Actualism and Possible Worlds. Theoria,

42(1-3):139–160.

[Prabhu and Varma, 2014] Prabhu, Yashoteja and Varma, Manik (2014). FastXML: a

Fast, Accurate and Stable Tree-Classifier for Extreme Multi-Label Learning. In KDD

2014, The 20th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 263–272.

[Qiu et al., 2014] Qiu, Siyu, Cui, Qing, Bian, Jiang, Gao, Bin, and Liu, Tie-Yan (2014).

Co-learning of Word Representations and Morpheme Representations. In COLING

2014, 25th International Conference on Computational Linguistics, pages 141–150.

[Rajpurkar et al., 2016] Rajpurkar, Pranav, Zhang, Jian, Lopyrev, Konstantin, and

Liang, Percy (2016). SQuAD: 100, 000+ Questions for Machine Comprehension of

Text. In EMNLP 2016, Proceedings of the 2016 Conference on Empirical Methods

in Natural Language Processing, pages 2383–2392.

[Ramachandran et al., 2016] Ramachandran, Prajit, Liu, Peter J., and Le, Quoc V.

(2016). Unsupervised Pretraining for Sequence to Sequence Learning. CoRR,

abs/1611.02683.

[Rush et al., 2015] Rush, Alexander M., Chopra, Sumit, and Weston, Jason (2015). A

Neural Attention Model for Abstractive Sentence Summarization. In EMNLP 2015,

Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing, pages 379–389.

[Sánchez Valencia, 1991] Sánchez Valencia, Vı́ctor Manuel (1991). Studies on Natural

Logic and Categorial Grammar. ITLI.

192

[Schank and Abelson, 1977] Schank, Roger C. and Abelson, Robert P. (1977). Scripts,

plans, goals, and understanding: An inquiry into human knowledge structures. Psy-

chology Press.

[Schmidhuber, 1992] Schmidhuber, Jürgen (1992). Learning Complex, Extended Se-

quences Using the Principle of History Compression. Neural Computation, 4(2):234–

242.

[Schwenk and Gauvain, 2002] Schwenk, Holger and Gauvain, Jean-Luc (2002). Con-

nectionist Language Modeling for Large Vocabulary Continuous Speech Recogni-

tion. In ICASSP 2002, Proceedings of the IEEE International Conference on Acous-

tics, Speech, and Signal Processing, pages 765–768.

[Schwenk and Gauvain, 2005] Schwenk, Holger and Gauvain, Jean-Luc (2005). Train-

ing Neural Network Language Models on Very Large Corpora. In HLT/EMNLP

2005, Human Language Technology Conference and Conference on Empirical Meth-

ods in Natural Language Processing, pages 201–208.

[Sennrich et al., 2016] Sennrich, Rico, Haddow, Barry, and Birch, Alexandra (2016).

Neural Machine Translation of Rare Words with Subword Units. In ACL 2016, Pro-

ceedings of the 54th Annual Meeting of the Association for Computational Linguis-

tics.

[Shalev-Shwartz, 2012] Shalev-Shwartz, Shai (2012). Online Learning and Online

Convex Optimization. Foundations and Trends in Machine Learning, 4(2):107–194.

[Shen et al., 2014] Shen, Yelong, He, Xiaodong, Gao, Jianfeng, Deng, Li, and Mesnil,

Grégoire (2014). A Latent Semantic Model with Convolutional-Pooling Structure for

Information Retrieval. In CIKM 2014, Proceedings of the 23rd ACM International

193

Conference on Conference on Information and Knowledge Management, pages 101–

110.

[Socher et al., 2013] Socher, Richard, Perelygin, Alex, Wu, Jean Y., Chuang, Jason,

Manning, Christopher D., Ng, Andrew Y., and Potts, Christopher (2013). Recursive

Deep Models for Semantic Compositionality over a Sentiment Treebank. In EMNLP

2013, Proceedings of the 2013 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 1631–1642.

[Srivastava et al., 2015] Srivastava, Rupesh Kumar, Greff, Klaus, and Schmidhuber,

Jürgen (2015). Training Very Deep Networks. In NIPS 2015, Advances in Neural

Information Processing Systems 28, pages 2377–2385.

[Stroube, 2003] Stroube, Bryan (2003). Literary Freedom: Project Gutenberg. ACM

Crossroads, 10(1):3.

[Sukhbaatar et al., 2017] Sukhbaatar, Sainbayar, Kostrikov, Ilya, Szlam, Arthur, and

Fergus, Rob (2017). Intrinsic Motivation and Automatic Curricula via Asymmet-

ric Self-Play. CoRR, abs/1703.05407.

[Sukhbaatar et al., 2015] Sukhbaatar, Sainbayar, Szlam, Arthur, Weston, Jason, and

Fergus, Rob (2015). End-to-End Memory Networks. In NIPS 2015, Advances in

Neural Information Processing Systems 28, pages 2440–2448.

[Sundermeyer et al., 2012] Sundermeyer, Martin, Schlüter, Ralf, and Ney, Hermann

(2012). LSTM Neural Networks for Language Modeling. In INTERSPEECH 2012,

13th Annual Conference of the International Speech Communication Association,

pages 194–197.

194

[Sutskever et al., 2011] Sutskever, Ilya, Martens, James, and Hinton, Geoffrey E.

(2011). Generating Text with Recurrent Neural Networks. In ICML 2011, Proceed-

ings of the 28th International Conference on Machine Learning, pages 1017–1024.

[Sutskever et al., 2014] Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. (2014). Se-

quence to Sequence Learning with Neural Networks. In NIPS 2014, Advances in

Neural Information Processing Systems 27: Annual Conference, pages 3104–3112.

[Tarski and Vaught, 1956] Tarski, Alfred and Vaught, Robert L. (1956). Arithmetical

Extensions of Relational Systems. Compositio Mathematicae, 13:81–102.

[Thomee et al., 2016] Thomee, Bart, Shamma, David A., Friedland, Gerald, Elizalde,

Benjamin, Ni, Karl, Poland, Douglas, Borth, Damian, and Li, Li-Jia (2016).

YFCC100M: the New Data in Multimedia Research. Commun. ACM, 59(2):64–73.

[Vaswani et al., 2017] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit,

Jakob, Jones, Llion, Gomez, Aidan N., Kaiser, Lukasz, and Polosukhin, Illia (2017).

Attention is all you Need. CoRR, abs/1706.03762.

[Venugopal et al., 2007] Venugopal, Ashish, Zollmann, Andreas, and Vogel, Stephan

(2007). An Efficient Two-Pass Approach to Synchronous-CFG Driven Statistical

MT. In ACL 2007, Human Language Technology Conference of the North American

Chapter of the Association of Computational Linguistics, pages 500–507.

[Vincent et al., 2015] Vincent, Pascal, de Brébisson, Alexandre, and Bouthillier, Xavier

(2015). Efficient Exact Gradient Update for Training Deep Networks with Very

Large Sparse Targets. In NIPS 2015, Advances in Neural Information Processing

Systems 28, pages 1108–1116.

195

[Wainwright et al., 2005] Wainwright, Martin J., Jaakkola, Tommi S., and Willsky,

Alan S. (2005). A New Class of Upper Bounds on the Log Partition Function. IEEE

Trans. Information Theory, 51(7):2313–2335.

[Wainwright and Jordan, 2003] Wainwright, Martin J and Jordan, Michael I (2003).

Variational Inference in Graphical Models: The View from the Marginal Polytope.

In PROCEEDINGS OF THE ANNUAL ALLERTON CONFERENCE ON COMMU-

NICATION CONTROL AND COMPUTING, volume 41, pages 961–971.

[Wainwright and Jordan, 2008] Wainwright, Martin J. and Jordan, Michael I. (2008).

Graphical Models, Exponential Families, and Variational Inference. Foundations

and Trends in Machine Learning, 1(1-2):1–305.

[Wang et al., 2015] Wang, Mingxuan, Lu, Zhengdong, Li, Hang, Jiang, Wenbin, and

Liu, Qun (2015). genCNN: A Convolutional Architecture for Word Sequence Pre-

diction. In ACL 2015, Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics, pages 1567–1576.

[Wang and Cho, 2016] Wang, Tian and Cho, Kyunghyun (2016). Larger-Context Lan-

guage Modelling with Recurrent Neural Network. In ACL 2016, Proceedings of the

54th Annual Meeting of the Association for Computational Linguistics.

[Werbos, 1990] Werbos, Paul (1990). Back-Propagation Through Time: what it does

and how to do it. In Proceedings of IEEE.

[Weston et al., 2011] Weston, Jason, Bengio, Samy, and Usunier, Nicolas (2011). WS-

ABIE: Scaling up to Large Vocabulary Image Annotation. In IJCAI 2011, Pro-

ceedings of the 22nd International Joint Conference on Artificial Intelligence, pages

2764–2770.

196

[Weston et al., 2014] Weston, Jason, Chopra, Sumit, and Adams, Keith (2014).

#TagSpace: Semantic Embeddings from Hashtags. In EMNLP 2014, Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing, pages

1822–1827.

[Weston et al., 2013] Weston, Jason, Makadia, Ameesh, and Yee, Hector (2013). Label

Partitioning for Sublinear Ranking. In ICML 2013, Proceedings of the 30th Interna-

tional Conference on Machine Learning, pages 181–189.

[Williams et al., 2017] Williams, Adina, Nangia, Nikita, and Bowman, Samuel R.

(2017). A Broad-Coverage Challenge Corpus for Sentence Understanding through

Inference. CoRR, abs/1704.05426.

[Wong and Mooney, 2006] Wong, Yuk Wah and Mooney, Raymond J. (2006). Learning

for Semantic Parsing with Statistical Machine Translation. In ACL 2006, Human

Language Technology Conference of the North American Chapter of the Association

of Computational Linguistics.

[Wong and Mooney, 2007] Wong, Yuk Wah and Mooney, Raymond J. (2007). Learn-

ing Synchronous Grammars for Semantic Parsing with Lambda Calculus. In ACL

2007, Proceedings of the 45th Annual Meeting of the Association for Computational

Linguistics.

[Wu et al., 2016] Wu, Yonghui, Schuster, Mike, Chen, Zhifeng, Le, Quoc V., Norouzi,

Mohammad, Macherey, Wolfgang, Krikun, Maxim, Cao, Yuan, Gao, Qin, Macherey,

Klaus, Klingner, Jeff, Shah, Apurva, Johnson, Melvin, Liu, Xiaobing, Kaiser,

Lukasz, Gouws, Stephan, Kato, Yoshikiyo, Kudo, Taku, Kazawa, Hideto, Stevens,

Keith, Kurian, George, Patil, Nishant, Wang, Wei, Young, Cliff, Smith, Jason, Riesa,

197

Jason, Rudnick, Alex, Vinyals, Oriol, Corrado, Greg, Hughes, Macduff, and Dean,

Jeffrey (2016). Google’s Neural Machine Translation System: Bridging the Gap be-

tween Human and Machine Translation. CoRR, abs/1609.08144.

[Yang et al., 2017] Yang, Zhilin, Hu, Junjie, Salakhutdinov, Ruslan, and Cohen,

William W. (2017). Semi-Supervised QA with Generative Domain-Adaptive Nets.

In ACL 2017, Proceedings of the 55th Annual Meeting of the Association for Com-

putational Linguistics, pages 1040–1050.

[Yang et al., 2016] Yang, Zichao, Yang, Diyi, Dyer, Chris, He, Xiaodong, Smola,

Alexander J., and Hovy, Eduard H. (2016). Hierarchical Attention Networks for

Document Classification. In NAACL HLT 2016, The 2016 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 1480–1489.

[Yanover et al., 2008] Yanover, Chen, Schueler-Furman, Ora, and Weiss, Yair (2008).

Minimizing and Learning Energy Functions for Side-Chain Prediction. Journal of

Computational Biology, 15(7):899–911.

[Zaremba et al., 2014] Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol (2014).

Recurrent Neural Network Regularization. CoRR, abs/1409.2329.

[Zelle and Mooney, 1996] Zelle, John M. and Mooney, Raymond J. (1996). Learning

to Parse Database Queries Using Inductive Logic Programming. In AAAI 96, Pro-

ceedings of the Thirteenth National Conference on Artificial Intelligenceand Eighth

Innovative Applications of Artificial Intelligence Conference, pages 1050–1055.

[Zettlemoyer and Collins, 2005] Zettlemoyer, Luke S. and Collins, Michael (2005).

Learning to Map Sentences to Logical Form: Structured Classification with Prob-

198

abilistic Categorial Grammars. In UAI 2005, Proceedings of the 21st Conference in

Uncertainty in Artificial Intelligence, pages 658–666.

[Zhang et al., 2016a] Zhang, Chiyuan, Bengio, Samy, Hardt, Moritz, Recht, Benjamin,

and Vinyals, Oriol (2016a). Understanding Deep Learning Requires Rethinking Gen-

eralization. CoRR, abs/1611.03530.

[Zhang and Gildea, 2008] Zhang, Hao and Gildea, Daniel (2008). Efficient Multi-Pass

Decoding for Synchronous Context Free Grammars. In ACL 2008, Proceedings of

the 46th Annual Meeting of the Association for Computational Linguistics, pages

209–217.

[Zhang et al., 2015a] Zhang, Shiliang, Jiang, Hui, Xu, Mingbin, Hou, Junfeng, and Dai,

Li-Rong (2015a). The Fixed-Size Ordinally-Forgetting Encoding Method for Neural

Network Language Models. In ACL 2015, Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics, pages 495–500.

[Zhang et al., 2016b] Zhang, Saizheng, Wu, Yuhuai, Che, Tong, Lin, Zhouhan, Memi-

sevic, Roland, Salakhutdinov, Ruslan, and Bengio, Yoshua (2016b). Architectural

Complexity Measures of Recurrent Neural Networks. In NIPS 2016, Advances in

Neural Information Processing Systems 29, pages 1822–1830.

[Zhang et al., 2015b] Zhang, Xiang, Zhao, Junbo Jake, and LeCun, Yann (2015b).

Character-level Convolutional Networks for Text Classification. In NIPS 2015, Ad-

vances in Neural Information Processing Systems 28, pages 649–657.

[Zhao and Xing, 2013] Zhao, Bin and Xing, Eric P. (2013). Sparse Output Coding for

Large-Scale Visual Recognition. In 2013 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3350–3357.

199

[Zhu et al., 2015] Zhu, Yukun, Kiros, Ryan, Zemel, Richard S., Salakhutdinov, Ruslan,

Urtasun, Raquel, Torralba, Antonio, and Fidler, Sanja (2015). Aligning Books and

Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading

Books. In ICCV 2015, 2015 IEEE International Conference on Computer Vision,

pages 19–27.

200

	Dedication
	Acknowledgements
	Abstract
	Contributions
	List of Figures
	List of Tables
	Introduction
	Motivation
	Overview of the Problem
	Representations of Meaning in NLP
	Background: Neural Language Modeling
	Background: Recurrent Neural Networks
	Organization of this Thesis

	Using Sub Word Information
	Introduction
	Character-Aware Word Embeddings: Model
	Character-Aware Word Embeddings: Experiments
	Adaptive Character Level Encoding: Model
	Adaptive Character Level Encoding: Experiments
	Discussion

	Speeding up Word Level Language Modeling
	Introduction
	Background
	Adaptive Tree Model and Learning Algorithm
	Theoretical Properties of the Objective
	Experiments
	Discussion

	Globally Normalized Language Modeling
	Introduction
	A Markov Random Field Language Model
	Efficient Learning of a Chain MRF
	Experiments
	Discussion

	Towards Better Learning Objectives
	Introduction
	Background
	Discourse Inspired Objectives
	Experiments
	Discussion: Further Work on Discourse
	Towards Formalizing Meaning for NLP Tasks

	Conclusion
	Bibliography

