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Abstract
Let X be a sum of real valued random variables and have a bounded mean E[X]. The generic
Chernoff-Hoeffding estimate for large deviations of X is: Pr{X—-E[X] > a} <miny,, e~ MatEX])E[eAX],
which applies with @ > 0 to random variables with very small tails. At issue is how to use this method
to attain sharp and useful estimates. We present a number of Chernoff-Hoeffding bounds for sums of
random variables that may have a variety of dependent relationships and that may be heterogeneously

distributed.
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Summary

In the analysis of probabilistic algorithms, some of the following problems may arise, possibly in

complex combinations.

1)

2)

3)

4)

Instance: A collection of n random variables, that are partitioned among k sets. Random
variables within a set are mutually independent, but worst case dependencies may exist among
members of different sets. In the case of Bernoulli trials, only a bound on k, the count n, and the

expectation of the sum of the n trials might be known, but nothing else.
Question: Give a good large deviation bound for the sum of the random variables.
Instance: {X;, X,,..., X} is a collection of dependent random variables.

Question: Find an effective large deviation bound for the sum of the random variables when the
bound from 1) turns out to be weak, due to the heterogeneity among the probability distributions.
Perhaps X; is the sum of n; mutually independent Bernoulli trials with p; = E[X;]/n,;, and only
sk (1-p;)? and T8, \/m are known.

Subquestion: What approximate Chernoff-Hoeffding bound for the case of mutually independent

Bernoulli trials is most suitable for this question?

Instance: S is a collection of n possibly dependent random variables, which are not necessarily
identically distributed. L; is a family of real valued functions defined on k-item subsets of S.
Perhaps all k-element subsets are equally likely to be selected. Perhaps not. Suppose L is

monotone in k: Pr{L; > a} < Pr{L, > a}, for k < m.
Question: What is an effective large deviation bound for L;?
Subquestion: Characterize a large class of functions that yield suitable L.

Instance: X = x; + x5+ ---+ xy is the sum of n mutually independent Bernoulli trials with
probabilities of success p;. The p; are not identical, and our known parameters are p = E[X]/n,
and o2 =, p;(1 - p;)/n. Perhaps 0% << p(1 - p).

Question: What is an effective large deviation bound for X7

Among the results we prove are the following, which, apart from 2.2 and 2.3, are all Chernoff-tight.
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1) Let X = Zle X;, where X;, 1 =1,2,...,k, are arbitrary possibly dependent real valued random
variables. A valid Chernoff-Hoeffding bound can be attained by pretending the X;’s are indepen-
dent and taking the k’th root of the resulting estimate. Formally, let ¥ = Ele Y;, where the

Y;

?

are mutually independent with Y; equal to X; in distribution: Pr{Y; < z} = Pr{X; < z}, for
i=1,2,...,k. Let B be a Chernoff-Hoeffding estimate for Pr{Y — E[Y] > a}. Then we have the
Chernoff-Hoeffding estimate

Pr{X - E[X] > a} < BYk.

This inequality gives the exactly appropriate Chernoff-Hoeffding bound when Xj is X, is - is
X} Interestingly, the bound can fail to hold for B = Pr{Y — E[Y] > a}.

2.1)Let X = X; 4+ X5+ ---+ X; be the sum of k£ dependent random variables. A strengthening
of 1 gives: Let a = ay + ay + --- + a; be partitioned so that Chernoff-Hoeftding estimates for
Pr{X; - E[Xj] > a1}, Pr{X, — E[X3] > a5}, ---, and Pr{X; — E[X;] > a;} are all bounded by the
value C. Then

Equivalently,
PriX -E[X]>a} < inf max H(X;,a;),

a1+a2+m+ak:a 7
aq,a9,..., akZO

where H(X;,a;) is the Chernoff-Hoeffding estimate for Pr{X; — E[X;] > a;}. This bound signifi-

cantly improves a related bound of Hoeffding [Ho-63].

2.2)Let X =21+ 29+ -+ xyn be the sum of n independent random variables, where 0 < z; < 1, and

p = E[X]/n. Then for 0 < a <1 - p, we have the expressive fairly strong estimate

GZTL
Pr{X - E[X] > an} < e 2p(1-p)+2a(1-2p)/3-242]9

There are no extra restrictions on a. (For @ > 1 — p, the probability, of course, is zero.) This
estimate, which follows simply from Hoeffding’s bound, is sharper, for almost all ranges of a and p
than the more expressive approximations commonly used, and implies, via trivial maximization,
the simpler but weaker estimates Pr{X — E[X] > an} < e-2¢"" [Ho-63]; Pr{X — E[X] > €E[X]} <
e=EIX1/3 for e < 1 [AV-T9]; Pr{X — E[X] < —eE[X]} < e~<’EIX)/2 [ASE-91].
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2.3)Let X = Xy +---+ X}, where E[X;]/n; = p;, and X, is the sum of n; mutually independent

3)

4)

random variables, each belonging to [0,1]. The X;’s may exhibit arbitrary mutual dependencies.

Combining 2.1 with a weak version of 2.2 shows, for a > 0:

- a? _ 3a
Pr{X - E[X] > a} < e S(CiVATmom) 4o 43,0702

For sufficient heterogeneity, this estimate improves the B/ bound stated in 1) by much more

than a constant factor in the exponent.

Let F(xq,29,...,25) be increasing in each variable (e.g. as in a measure of work), and let X; be
nonnegative random variables. Let by, bo, ..., b, be mutually independent Bernoulli trials that are

independent of the X;. Let m = |E[>; b;]]. Then
Pr{F(Xy by,....,Xp - bp)>a|> bj=m} <2Pr{F(X;y by,...,Xp-by) > a}.

Thus deviation bounds where selection of & events occurs can be attained from a simpler, possibly

independent process. The function F' need not be symmetric, and the E[b;] can vary.

Let X = 2y 4+ @9 + --- + x, be the sum of n independent Bernoulli trials. Let p = E[X]/n,

2
o? = (E[X?] - E?[X])/n, and put p = ! U 5—. Then for a > 0, we attain the estimate
-
—np D Sfa+pn( =P ya-p-am
PriX —np2na} < (72) 5= :

This bound sharpens a prior result of Hoeffding, by formulating the inequality as a function of
both mean and variance, but holds only for Bernoulli trials, and not for sums of arbitrary random
variables in [0,1]. The inequality is Chernoff-tight for all possible a2 and p. When the random
variables are identically distributed, p = p, whence the original Hoeffding estimate reappears.

Reformulations can admit expressive approximations.

These estimates combine quite naturally to give simple effective bounds for complicated problems.



1.0 Background

Probability theory has evolved very expressive notation to capture functional behavior over sample
spaces. Let X be areal valued random variable. The probability that an outcome of X is in the interval
[t,t + ¢€) is written Pr{X € [t,t + ¢)}. This notion includes differentials, so that Pr{X € [t,t + dt)}
represents the probability measure for X, which is also denoted by dPr{X < t} or just dP. This
measure would be a just sum of point masses if the random variable were discrete, and a density
function if no point masses exist. Formally, Pr{X € [t,t+ dt)} represents a positive Riemann-Stieltjes
measure of total mass 1, and can include point masses as well as a density function. The mean of the

random variable is represented by E[X], and is computed by

E[X] = /O; tPr{X € [t,t+ db)).

More generally, for any (measurable) function f,

E[f(X)] = /Z FOPrHX et,t+dt)).

Let X = 2y + 29+ ...+ x, be the sum of n bounded, mutually independent random variables.
Large deviation bounds, for such sums, concern estimates for the probability that Pr{X > E[X]+ a},
where a is usually relatively large, so that the probability is quite small. These estimates are often
based on the moment generating function! G, where G()\) = E[e*¥].

Chernoff [Ch-52] advocated using miny, e~ (@+EIXDAG(N) as a good estimate, as explained in
Section 1.1, for Pr{X > a + E[X]}. This estimation method, which applies Chebyshev’s inequality to
attain a weighted generating function, can be traced as far back as Bernshtein [Be-24].

A typical application would be when X =z + x5+ ---+ &y 1s the sum of n independent random
variables, each confined to some interval. The z;, for example, might be confined to the range [0, 1], or
perhaps be Bernoulli trials, which only take on the values zero and one. Hoeffding not only established
the best possible (worst case) results that can be found from this prescription for the sum of bounded

random variables such as Bernoulli trials [Ho-63], he also developed related bounds that are sharp in

a stochastic sense [Ho-56].

The formulation E[2%X] often acquires this name, for integer valued X.



To be specific, let X be the sum of n independent Bernoulli trials, so that X =y + a9+ ---+ xp,
where Pr{z; =1} = p;, and Pr{z; =0} =1 - p;. In addition, let p = E[X]/n, and take A > E[X] + 1.
For this case, Hoeffding [Ho-56] shows that

PrX 2 A} < PriB(np) 2 A = 3 (%) )1 - )", (1

zA
where B(n,p) is the sum of n independent identically distributed trials, each with probability of
E[X]

n

success p = . Thus as a function of E[X] alone, this bound is unbeatable, for Bernoulli trials. Now

the first term (%)p(1 — p)"~4 is an obvious underestimate, but if we approximate it with Stirling’s

n

2rA(n-A)

general Chernoff-Hoeffding bound [Ho-63] (%2 )4(%="F)"-4 expressed as a function of slightly different

formula and ignore the factor, the resulting expression turns out to be the same as the more
parameters in (2) below. Thus this bound, while inexact, is never as much as a factor of \/7n/2 too
large, for identically distributed Bernoulli trials. It should be noted that estimation methods have
been the subject of considerable study. Indeed, for small deviations, approximations by the Gaussian
distribution (or possibly the Poisson distribution, depending on np) give sharp results, and error
estimates have been investigated (c.f. [Pr-53], [Mo-70]). For large deviations, asymptotic expansions
have been studied extensively (c.f. [Ba-60], [Ne-83]).

Furthermore, the errors resulting from general Chernoff-Hoeffding estimates have also been a
matter of study, and asymptotic expansions have been attained. Among the more general results is
the fact that when a Chernoff-Hoeffding bound for the sum of n independent identically distributed
random variables gives a bound with exponential decay, Pr{X — E[X] > an} < e~"f(@)  the error
in the exponent is always o(n) (c.f. [SW-92]). Unfortunately, even the Chernoff-Hoeffding estimate
(2) is rather inconvenient to use, and the standard approach in the Computer Science literature (c.f.
[AV-T9], [ASE-92]) often uses approximations that, while based on the Chernoff-Hoeffding estimation
procedure, are exponentially worse but considerably more expressive. In summary, it is fair to say
that the contributions of Chernoff-Hoeffding bounds are likely endure, and the value of Chernoff-tight
bounds is considerable.

Moreover, exponential-based generating functions have turned out to be fundamental to the theory
of martingales (c.f. [Do-53], [KT-81], [Wi-91]), and have had significant application to specific processes
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such as Brownian motion. The relationship between Chernoff-Hoeffding bounds and martingales is
briefly discussed in Section 6.

In this paper, we explore the issue of attaining sharper expressive estimates. More importantly,
we expose techniques to export the Chernoff-Hoeffding method to many cases where dependencies and
conditionings prohibit the direct application of this method, and appear to complicate considerably
the problem of estimating large deviations. We also explore general cases where the random variables
are not identically distributed, and attain bounds ranging from Chernoff-tight to reasonably sharp
and expressive, for the parameters at hand. An application in Section 7, for example, analyses a
sum of dependent heterogeneous Bernoulli trials where the heterogeneity ensures that a deviation of
cy/nlogn occurs with polynomially small probability, as opposed to the (1) chance that corresponds
to identical collections of comparable (on average) dependent random variables. The exposition is
intended to reveal the underlying proof techniques, so that the reader in need can not only access the
relevant lemmata, but can also extend these developments as needed.

Despite the value of Chernoff-Hoeffding approximations and the precision of general asymptotic
estimation procedures, other methods for attaining probabilistic inequalities have also flourished. In
particular, the notion of strong stochastic domination, as exemplified by the Hoeffding bound (1), has
been significantly strengthened through the elegant concept of majorization, which imposes, for many
distributions, a partial ordering on vectors of independent random variables that is complete with
minimal elements. The point of the ordering is that it is preserved under the application of functionals
that exhibit Schur-convexity, such as the probability distribution function for suitable classes of random
variables z; and deviations a. In this sense, many bounds originally obtained as Chernoff-Hoeffding
estimates have been materially strengthened and refined over the last two decades.

Although Schur-convexity methods appear to be inappropriate for attaining inequalities of this
note, the results are quite interesting and worth summarizing. Let P and C_j be the ordered vectors
P = (P1;P25 -+ Pn), @ = (91,925---,qn), With py > py > --- > pyp, and ¢y > g2 > --- > qn. Following
[MO-T79], we write

B @ " {Elgz’gmpi < Yicicm is form=1,2,...,n—1;
Yoi<i<n Pi = Xi<i<n Ui
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In words, P is majorized by @ This partial order is extended to unordered vectors by applying it to
their coordinate values in sorted order.

The intuition is that P has a flatter (or more egalitarian) distribution of values, and the constant
distribution of values is the flattest, i.e. it is minimum. In this setting, the real valued functions of
interest, which are defined on vectors, are precisely those that are order preserving (or reversing), in
terms of the partial order <. A function f defined on a subset S c R" is defined to be Schur-convex
if vP < @ €S: f(]_ﬁ) < f(@) If equality holds only when P and C_j comprise the same set of values,
then f is strictly Schur-convex. Schur-concavity and strict Schur-concavity are defined analogously.

From [MO-T9], we have the following characterization, among others:

Theorem(Schur, 1923; Ostrowski, 1952). Let I ¢ R be an open interval, and let f : I" — R be

continuously differentiable. Necessary and sufficient conditions for f to be Schur-convex are:
1) f is symmetric on I™;

2) (xq1—x9) (ddTlf(x) - dci—zf(;v)) >0 for v = (21, 29,...,2p) € 1™ [
Thus, for example, the elementary symmetric functions are Schur-concave for I c [0, 0c] (Schur, 1923),
and numerous generalizations can be found in [MO-79]. The relationship between Schur-convexity and

probability is illustrated by the following theorem of Gleser (c.f. [MO-T79]).

Theorem(Gleser, 1975). Let X = a1+ a9+ -+ ay and Y = y; +yo + --- + yn each be the sum of
n independent Bernoulli trials, where E[X] = E[Y], and (E[z4],...,E[zs]) < (E[y1],...,E[yx]). Then
for a >3, Pr{X — E[X]| > a} > Pr{Y — E[Y] > a}. If E[X] is an integer, then the inequality also holds
down toa=2. []
In other words, the sum of Bernoulli trials with flatter distributions have greater tails for deviations
exceeding 3. A wealth of other random variables and mathematical structures have been put into this
powerful framework, and an excellent presentation of this material can be found in [MO-T79].

We will exploit methods based upon moment generating functions to attain estimates that do
not follow from Schur-convexity, since the constraints, for example, might restrict the admissible
probability sequences to a subregion that will not contain minimal members. Moreover, some of our
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bounding estimates will turn out to be satisfied by probability sequences that cannot be optimal for

all deviation values a.

1.1 Formal definitions and preliminary inequalities

To simplify the notation, we define, for a > 0, the deviation || - ||P? to bef
IX]2" = Pr{X - E[X] > a}.
It will be very convenient to define the C H-estimate || - ||SZ to be
XIS = mine-MetEXDE[AX],
A>0
It is also convenient to define || - ||§a to be, for a, A >0,
XI5, = e M FRDE[A],

so that || X||¢H = min)\zo ||X||§,a-

Many large deviation estimates begin with the following inequality.
Lemma A(Chebyshev, Markov et al). Let Y be a nonnegative random variable. Then for any b > 0,
1
PriY >b} < ZE[Y]'
Proof:

PriY > b} = /boo 1Pr{Y e[t t+dt)} < /boo %PT{Y €[t +dt)} < /Ooo %PT{Y e[t t+dt)} = %E[Y]. i

Lemma A illustrates the simplest instance of the method of moments, which states that for a > 0,
Pr{|X| > a} = Pr{X|F > dF} < E%M This family of estimates, which is a basis for Chernoft-
Hoeffding estimates, is often given the name Chebyshev’s inequality (c.f [Ch-67]), although some

forms are attributable to Markov and to Bienaymé, among others (c.f. [Lo-77]).

TUnfortunately, the || - || estimates and bounds are not norms; they do not even satisfy the triangle inequality.
Nevertheless, the expressive power provided by this overloaded notation, and their implicit connotations of size and

throw-weight would seem to outweigh any formal disadvantages.



The approach can also be used for one-sided estimates: Pr{z > a} < Pr{|x — A\| > a — A}, whence
the method of moments might be applied and A < a optimized to attain the best result.
Chernoff observed that Pr{X — E[X] > a} = Pr{c*(&-EX]) > eAa} for A > 0, whence Lemma A,

applied to the random variable Y = eMX-E[X]) and deviation b = e*, shows that

D CH
X < 11X

Chernoff’s prescription of computing the moment generating function E[e*X] and optimizing with
respect to A has turned out to provide excellent estimates for many problems. The method embeds the
estimation problem in a rich analytic domain, and imparts extra structure to a problem that (lacking
Schur-convexity results) appears to be combinatorial, in the case of discrete random variables.

We will also need to use Jensen’s inequality, which is an analytic quantification of a little geometry.

Lemma B(Jensen, 1906). Let f be convex. Suppose the coefficients a; are nonnegative with a; +ay +

.4+ a, =1. Then
f(z az'll?z') <> aif (wi).
Proof: See Appendix 1. |

A few simple facts about moment generating functions are also worth noting.

Lemma 0. Let X be a random variable with moment generating function G(\) = E[e*X]. Then

0) If X and Y are independent with respective moment generating functions G(X) and H()),
then X 4+ Y has the moment generating function G(A)H()).

TThe bound for k = 1 given in Lemma A was first published as a lemma in Markov’s probability textbook [Ma-13,
p. 86]. For £ = 2, the bound can be traced as far back as Bienaymé [Bi-53], who in 1853 gave the inequality
in an effort to convince Cauchy of the value of least squares methods [On-81]. Chebyshev attained the bound
independently in 1867 [Ch-67]. Later, he learned of Bienaymé’s work and subsequently attributed the method
of moments to Bienaymé in a Liouville’s Journal article of 1874 [On-81]. Markov attributed the method to his
mentor Chebyshev, and observed that it was Chebyshev who recognized the significance of these inequalities and,
for example, endeavored to use them to prove the central limit theorem ([Ma-14]). As for Bienaymé, he had the

chance, Markov observed, to reference himself in a translation of Chebyshev’s work, but did not choose to do so.
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1) If G(X) is bounded for A € (o, 8) then G is analytic for o < Re()) < 3, and we may differ-

entiate as often as we please to attain lekT? = E[X*e*X]. Moreover, limit arguments can be

applied to extend this formulation to the cases where A = a, 3.
2) G()\) = E[e*X] equals one at A = 0, and is strictly increasing (or infinite) for A > 0, provided
E[X]>0 and X #£0.

3) G(\) is strictly log-convex where it exists, provided X is not a constant.
Proof: See Appendix 2.1 1
In terms of the C' H-estimate, Bernoulli trials turn out to be extreme points, and this property is
exploited in the Hoeffding bound below. It will, therefore, be convenient to retain the definition of
B(n,p) as the the sum of n independent Bernoulli trials, where each has a probability of success equal
to p. We shall, in the following theorem and upon other occasions, explicitly rescale a so that X has

deviation na. The more general Hoeffding bound of [Ho-63] is as follows.

Theorem(Hoeffding, 1963). Let X = 1+ x5+ -+, be the sum of n independent random variables

where 0 < z; < 1, p; = E[z,], and p = E[X/n]|. Then for 0 <a <1 - p,

CH NWCH — (P \(pta)n_L
1 Xwa" < 11B(1,p)llwa (f)—l—a) (

g, 2

a

3|

Proof: The proof is based on three facts. First, since the random variables are independent, we

have:

E[e*X] = 11 E[e*i].

Second, for A > 0,

E[er] < pie* ! + (1 - p;)er? = B[APUp]; (3)
this follows from the inequality
AM<14(er=1t,  tel0,1], (4)

which says that on the interval (0,1), the curve e lies below the straight line that interpolates
the function between ¢+ = 0 and ¢ = 1. Inequality (4), in turn, follows from the convexity of e.
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Multiplying each side of (4) by z;’s probability measure Pr{z; € [t,t+ dt)}, and integrating on [0, 1]

gives fol eMPr{z; € [t,t+dt)} = E[e*®] < 1 + (e* — 1)E[z,], which, upon rearrangement, gives (3).1

The third fact is that f(p;) = p;er1=Pi) + (1 — p;)e=*?i turns out to be log-concave as a function
of p;: %log f(p) <0, where f(p) = pe*1-2) 4 (1 —p)e=*?. As a consequence of the log-concavity, we

may use Jensen’s inequality to deduce that [T f(p;) < (f(XF pi/n)".

Combining these observation gives:
H(X,an) < =300 [T, BleXi-n)] < e300 [T, (X000 + (1 - py)e=) < e=don (peA1-9) 1 (1 — pJe-7)".

p(1-p)+a(1-p)

S(1-7)-ap minimizes the last expression and gives (2). 1

Setting e* =

Of course || X||SH =0, for a > 1—p; we shall occasionally interpret (i%)(f"i‘“)”(l;fa

J(I=P-a)n a5 being
0 for such large deviations, and avoid writing explicit case statements.

For completeness, we also state Bernshtein’s deviation bound. It should be noted that for this

estimate, the deviation ¢ must be bounded by, approximately, the standard deviation \/E[XQ] - E[X]?,

which limits its applicability to modest deviations where the central limit theorem is applicable.

Theorem(Bernshtein, 1924). Let X = 2y + 3 + --- + 2, be the sum of n independent random
k-4
variables that have means E[z;] = 0, and bounded higher moments satisfying |E[z}]] < & (%) E[z%],
fori=1,2,...,n, k>5. Let My =" E[zF]. Then for a < ;5/2M,
az M. (3 M. a2 ¢ _a2
{5 e (42 < o
a2 17‘43

The recentering of the deviation interval from the nominal mean 0 to the center R is designed to

give symmetric bounds of e=%” for the corresponding one-sided estimates [Be-24].

We have seen that the €' H-estimate provides fairly strong estimates and simplifies many calcula-

tions. Moreover, it solves an implicit optimization question very fairly, as stated in Lemma 1.

e convexity argument actually shows that, among all random variables having mean p, the largest momen
tTh it g t actually sh that g all d iables having the largest t
generating function results from the distribution with the most weight at the largest possible value (which, according
2

to the constraints of this theorem, must be from the Bernoulli trial B(1,p)). For the true deviation || - Y two

point distributions turn out to be maximal, although they may not be scaled Bernoulli trials. See [KS-66].
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Lemma 1. Let xy,x9,...,2, be n independent random variables. Then for a > 0,

n n
1CH _ \CH
1) 12 lxz“a = a3, H1 2 lISH,  a>0.
1= 1=

a; >0

As a very weak consequence,
2) IX + Y98 > 1 X2, for independent X and Y.

Proof: See Appendix 2.2 1|

Thus the C H-estimate distributes the total deviation a quite judiciously among the z;. Of course

n n
Dv Dv CH
DY < 21D < I lizalle,
eamax, Tl <1 etiPr < | max T wl§F,
a;>0 1=1 7 ;20 1=1

so the Chernoff-Hoeffding approximation provides a simple vehicle to go from a multiplicative under-
estimate to a multiplicative upper bound. This formulation is quite expressive, and can sometimes
enable simplifying estimates to be made quite easily.

Lemma 1.1 and even the simple fact stated in Lemma 1.2 have application in some of the in-
equalities established in subsequent sections. Yet it should be noted that the analogous formulation of
Lemma 1.2 in terms of pure probabilities || - |2 is false. The Chernoff-Hoeffding formulation saves us
from the difficulty of quantifying and proving a theorem about something that is almost always true
and always almost true.

When estimating deviations for dependent random variables, a slightly different optimization prob-
lem occurs. The basic question, of course, is the same: how to distribute a large aggregate deviation
to a pool of random variables.

It will become evident that Lemma 0 could have listed a few more facts. For example, the function
I|IX]|I€H will turn out to be log-concave a function of a. As a function of a, the value of A where
| X||$H = ||X||£’a will turn out to be strictly monotone in a. The proof of Lemma 1.1 shows that the
maximizing a;’s have corresponding A’s (which minimize ||$i||£,ai) that must all be the same, as long as

the product is not zero. This is more than enough information to deduce that when X = z;+z,4- -+,

is the sum of n independent identically distributed random variables,

CH CH\"
IX 115" = (llea &)
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This fact is usually proved more directly by observing that the independence ensures multiplicativity of
moment generating functions: E[e*22%] =[], E[e**i]. Indeed, there is a fundamental duality between
C H-estimates and moment generating functions that can simplify probabilistic calculations. This

duality, which is a special case of Legendre! transformations, is captured by the following lemma.

Lemma C. Let h(A) be a convex function of A, and define f(¢) = miny(-Ac+h(A)). Then fis concave
and for A € Domain(k), h(A) = maxc(Ac+ f(c)).

Proof: See Appendix 2.3 1

The transformation ¢?(*) = E[¢*X] defines a convex function h (Lemma 0.3), and the Chernoff-
Hoeffding probability estimate ef(%) = miny e=2¢+h(}) defines f as the Legendre transform of h. Obvi-
ously, an upper bound for h translates into an upper bound for f and vice versa. In this sense, f(a) and
h()) are equivalent. From a computational perspective, we may take more liberties in computations

—Aath(}) for any value of A is certain to give an overestimate. For

with h, since the evaluation of e
sums of random variables, this difference is more significant. For independent X and Y., we see from
Lemma 1 that || X +Y||¢4 = maxa1+a2:a(||X||aclH||Y||aC2H). The Legendre transform presents the more
familiar formulation E[eA(Y+Y)] = E[e*X]|E[e*Y] as stated in Lemma 0. In the analysis of martingales,
where the random variables are not necessarily independent, both formulations produce correspond-
ing inequalities, when quantified with proper conditioning, but the latter representation seems to be
preferable.

This paper is organized as follows. Section 1 gives a generalization of the Chernoff-Hoeffding bound
that is specific to Bernoulli trials as a function of mean and variance (question 4). The subsequent
sections concern more general families of random variables. Section 3 presents some methods to
estimate the probability of large deviations in the presence of side conditioning on the number of
certain kinds of outcomes (question 3). Section 4 considers some dependencies that are graph or set

based (question 1). Section 5 presents approximations to the traditional Chernoff-Hoeffding bounds,

which combine sharpness with expressiveness (subquestion 2). More importantly, some of these bounds

TLegendre first investigated the transformation in 1789; prior discovery, however, can be credited to Euler in 1776

[Vi-90]. More about Legendre transformations and convex analysis can be found in [Se-89] and [ET-76].
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are shown to yield fairly strong expressive bounds when quantifiable set-based dependencies are known
(question 2). Section 6 illustrates further computational tradeoffs for probabilistic inequalities, and
their implications for martingales. Section 7 presents an example to illustrate how a number of these

estimates may be combined to solve complicated problems. Section 8 contains the conclusions.

2. Heterogeneous Bernoulli trials

Let X = xy 4 29+ -+ xn be the sum of n independent Bernoulli trials, where Pr{z; = 1} = p,,
and Pr{z; =0} =1-p;, and p = E[X]/n. Under this restriction, Hoeffding [Ho-56] established the

following strong stochastic domination bound for an > 1:
IX1120 < ||B(n,D)IIBY, na> 1.

If np is an integer, then the inequality extends down to @ > 0. If only n and p are known, we cannot

estimate || X||D¢ any better, and even ||B(n, p)|

|CH is a fairly sharp estimate for ||B(n,p)||22.

On the other hand, it is reasonable to expect applications where the variance of X is also known,
and perhaps p; or p satisfy some a priori bounds. Hoeffding addressed some of these problems as well
[Ho-63], but did not establish tight bounds for Bernoulli trials in these cases.

For example, suppose we have n/2 coins stuck at 0, and another n/2 stuck at 1. Then the
probability that the number of successes is at least n/24 1 is, of course zero, and an abstract measure
of the absence of randomness in this problem is that the variance is zero. Thus we can expect improved
deviation bounds if both the mean and variance are used. Moreover, the improvement can be much
more than a constant factor in the exponent of an exponential rate of decay, if the probabilities are
sufficiently biased to be predominantly near zero or one. Just what role a diminished variance plays
in large deviation bounds is the subject of this section. It should be emphasized that Theorem 1 and
Corollary 1 are specific to Bernoulli trials, and not arbitrary random variables confined to, say, [0, 1].

Define o2 to be the average variance of the z;, so that o2 = (E[X?] - E[X]?)/n = Y, p;(1 — p;)/n.

As a function of n, a, p and 02, we have the following estimate for || X||$Z,

Theorem 1. Let X =z +x9+---+x, be the sum of n independent Bernoulli trails. Let p = E[X]/n
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and o = (E[X?] - E?[X])/n. Then

(1-p)? o% | cH
XIS < ||B(n—— .
" L=p-0?"1=p nagls,

Proof: See Appendix 2.4 1

—\2
The estimate is sharp in the sense that a sequence of n Bernoulli trials comprising n% trials

. 2 552 _ o2 . ) _ )
with mean £ and n2=2=%- (constant) trials with mean 1 has mean p, variance 0% and the || - ICH-
-p 1-p-o

estimate stated above. Consequently the tightness is the same as for the subsequence where the
constant trials are omitted. It should also be noted that this formulation admits the more expressive
approximations of Section 5, since the formulation is in terms of a standard Hoeffding bound, for

suitably adjusted parameters.

A little algebra can recast the formula implicit in Theorem 1 into a simpler form.

Corollary 1. Let X = zy+x9+---+xp be the sum of n independent Bernoulli trails. Let p = E[X]/n

2
and o? = (E[X?] - E?[X])/n. Let p= ! 002 . Then
-7
CH [A) (a+p)n 1_p (1-p-a)n
1 X a S(pA——I—a) (71_13_61)

Corollary 1 follows from simplifying Theorem 1. |

For completeness, we note that if only the average variance o? is specified for a sum of Bernoulli
trials, then the Hoeffding bound derived for p < % with p(1 — p) = o2 turns out to be maximal as well

as tight. This can be established by observing

1) For p < 1/2 and A > 0, E[e*8(1p)] > E[e*B(L1-p)] where B(1,p) is a Bernoulli trial with

probability of success p.
2) For p < 1/2, E[e*(LP)] is log-concave as a function of p(1 — p).

Finally, it is worth noting that Hoeffding [Ho-63] established deviation bounds for 37; #; where the

x; have a common mean E[z;] = p and upper bound b, but differing variances.

Theorem(Hoeffding, 1963). Let X = xq+x5+ -+, be the sum of n independent random variables,
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where x; < b, and E[z;] =0, for i =1,2,...,n. Let 02 = E[X?]/n. Then for 0 < a < b,

724ba b2 _pa

2 " oTyp2 b m a2
CH g +
IXIIGH < (702—{—60/) (=) ™ o

3.0 Simple approximations to eliminate conditioning

Sometimes probabilistic algorithms use processes that are similar to Bernoulli trials with extra con-
straints. The most obvious example is that from a set of n random variables, exactly k are sampled,
and a large deviation bound is needed for some function of the sample. We shall use a slightly restricted

but reasonably general formulation of this problem.

Definition.
Let x1,29,...,2y be a sequence of n random variables, with no assumptions about independence.
Let by,bq,...,by be a sequence of n mutually independent Boolean trials, which are also independent

of the z;-s. Let f(y1,y2,...,yn) be an n-ary real function. Let H[X;a] be a real valued probabilistic
functional of the random variable X and the scalar a. Define the Bernoulli-sampler F(a) to be
F(a) = H[f(byx1,by,29,...,bpxy);a], and define the k-sampler Fi(a) as the conditional evaluation
Fi(a) =E[H[f(bix1,b,0,...,bnan);a] | 3;b; = k].

For example, f could be the sum of the n random variables, and H[X;a] might be Pr{X > a},
so that Fj(a) = Pr{bjzy +by+ x5+ -+ bpxn > a | 3; b; = k}. Alternatively, H[X;a] might be the
estimate miny, o E[eMX-9)].

The technical difficulty in bounding deviations for the k-sampler F} is that its selection events
are not quite independent, and consequently the results provided by Chernoft-Hoeffding are formally

inapplicable. Yet the dependencies are quite mild; surely they cannot cause much difference, for a well

behaved F'.

Definition.

Let the n-ary function f, the random variables xq,...,z,, the Bernoulli trials bq,..., by, and the
functional H define the Bernoulli-sampler F' and the k-samplers Fy, Fy, ..., F),. We say that the F} are
increasing if for all a > 0,
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Fila) < Fi(a), for 0 <k <l<n.

This increasing property for samplers can occur in practice. For example, it can be readily deduced
from Lemma 1.2 that if F(a) = miny, E[er#1tzat.+2n-0a)] then the F are increasing provided
E[z;] > 0, for ¢ = 1,2,...,n. This sections shows that Chernoff-Hoeffding estimates for suitable
k-samplers may be derived from the corresponding Bernoulli sampler, where the sampling has no
conditioning.

We shall, for the moment, assume that each k—set of events is equally likely to occur, although

more general assumptions will soon be accommodated.

Theorem 2. Let xy,z9,..., 2, be a sequence of n random variables, and by, ..., b, be fully independent
Bernoulli trials, each with probability of success p. Let B =3,b;. Let F' be a Bernoulli sampler with

an increasing family Fy, Fy, ..., F, of k-samplers. Then for k < np, a >0,
Fi(a) <2F(a).

Proof: We use a remarkable fact about Bernoulli trials, which is due to Jogdeo and Samuels
[JS-68], and based, in part, on the strong Hoeffding bound (1). In particular, [JS-68] shows that if B is
the sum of n independent Bernoulli trials with integer mean E[B] = k, then Pr{B >k} > 1; the mean
is the median. The individual trials need not have the same probability of success. If the expectation
is not an integer, then the median is one of the two adjacent integers. Accordingly, we have:

Fi(a) = E[F(a)| B = k],

<E[F(a)| B> k], because the Fj are increasing,

Interestingly, we may even allow the probabilities of success to be different, provided the expected
number of successes is k (or more, or perhaps between k—1 and k, in which case the factor of 2 should

be replaced by an estimate of ) When the number of events selected is conditioned to

1
i_Pr{B=k-1}"
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be k, straightforward conditioning shows that the effective probability of an event r; with Bernoulli

P Pi,---Pi .
—_ . . . 1" °2 k 7
, where S = 21511<12<~'<1k5n Tpi ) 0-ps,) 01 )" With

selection probability p; to be p;, =

)

Pi
8" (1-py)
these values, direct calculation verifies that a k-way selection of the r;’s has a conditional probability

that is just the product of the corresponding p’s.

Lemma 2. Let xy,x,,..., 2, be a collection of possibly dependent random variables, and b1, bq,..., by,
be n independent Bernoulli trials with E[b;] = p;. Let R = Uj:p, =112}, so that R depends on outcome
of the random variables b;. Let f be a real valued increasing function on subsets of {zy,...,zp}: if
A c B then E[f(A)] <E[f(B)]. Then E[f(R)|by + ---+ b, = k] is increasing in k.

Proof: The proof is by induction on (n, k). The base cases are n = k — 1, and k = 0. In either
instance, it is trivially seen that E[f(R)[by + by + -+ by = k+ 1] > E[f(R)|by + by + - - - + bp = k.

So we may suppose that the inequality holds for (n —1,k+ 1) and (n -1, k).

Lemma 3. Let £ = Pr{by = 1]by + by + -- -+ by, = k}. Then & is monotone increasing in k.
Proof: See Appendix 2.5 |

There follows:
E[f(R)lb1+ b2+ - + by =k + 1] =E[f(R)|by = 1,by + - -+ by = k] 1

+E[f(R)by = 0,by + -+ by =k + 1](1 - 41)
=E[f(R)|by =1,by + -+ b = k]¢,
+E[f(R)by = 1,0y + -+ by = k] (ép s — &&)
+E[f(R)by = 0,by + -+ by =k + 1](1 = 41)
> E[f(R)|by = 1,by + -+ b = k — 1]
+E[f(R)by = 1,0y + -+ by = k] (Eppy — &&)
+E[f(R)by = 0,by + -+ by = k](1 = 41
> E[f(R)by = 1,by + -+ by = k — 1]&;,
+E[f(R)[by = 0,0y + -+ by = k] (1 — &)
>E[f(R)|by+by+ -+ bu=k]. 1
Applying Theorem 2, for k < Y p;, gives E[f(R)|by + by + -+ + by = k] < 2E[f(R)].
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While the z; need not be independent, they are likely to be so in practice. The contribution of
Theorem 2 and Lemma 2 is due to the fact that the unconditioned random variable f(R) can usually
be bounded much more easily than (f(R) | k¥ = |R|) This might be especially true for a complicated f,
which depends on more than the sum of the selected z;. The Lueker and Molodowitch analysis of double
hashing [LM-88] illustrates this kind of problem. The main calculation is a large deviation estimate
for the number of probe possibilities, in double hashing, that would cause an item to be placed in a
fixed vacant slot of a hash table that has n slots and contains an items that are uniformly distributed
(i.e. not inserted by double hashing). The estimate is based on an approximation where each location
is occupied according to a Bernoulli trial with probability of success a. For this application, an item
is more likely to hash into the given location if additional items belong to the table, so the increasing
property holds. Section 7 presents this analysis in greater detail.

For completeness, it is worth noting that when f(R) = f(3; b;x;) for convex f, and each k-set
of the r’s is equally likely to be selected, then E[f(R)|B = k| turns out to be convex in k. Jensen’s
inequality establishes the equivalent of Theorem 2 without the factor of 2. For this case, a related

approach was given by Hoeffding [Ho-63].

Theorem(Hoeffding, 1963). Let xq,x9,..., 2, be a sequence of possibly dependent random variables.
Let Xy, X,,..., X} be k samples of the z; without replacement: each random variable produces at
most one random sample. Let Y7,Y5,..., Y, be k samples of the x; with replacement. Let f be a

convex real valued function. Then

k k
E[fQ_X)I<E[f(Q_Y)l. O

Choosing f(x) = e gives a useful method to estimate the deviation, since the Y; are identically dis-
tributed and E[e}Yi] = 1Ly~ E[e*Xi]. Moreover, the probability community has derived an astonishing-
ly rich diversity of generalizations for symmetric sampling schemes (c.f. [MO-79]). For example, Karlin
identifies a large class of symmetric Schur-convex-like f where Ep[f(Xl, o Xn)] < Eé[f(Xl, vy X))
when P < @, for a suitably defined partial order < [MO-79]. Here the expectation Egis the average
(among n! possibilities) of f applied to samples of the X; with repetition P;, where each of the n!
samples uses repetitions from a different permutation of the n integer components of P. The maximal
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vector has all of its weight concentrated at one coordinate. These inequalities use sampling schemes
that have the same total weight; they do not capture Theorem 2 because the factor of 2 is essential for
increasing F}. On the other hand, the use of Theorem 2 for Chernoff-Hoeffding estimates will require

an upper bound for E[F] - E[F}], which, as illustrated in Section 7, will often be suitably small.

4. Generic Dependencies

Sometimes a set of Bernoulli trials or other real random variables has dependencies that might be
very difficult to quantify. This might happen, for example, because of a probabilistic decomposition
of a problem with parameter n into & subproblems with positive parameters ny,ng,...,ng, where
ny+---+ng = n, but where the actual values of the n; are unknown. Suppose that the ¢-th subproblem
depends on n; independent Bernoulli trials with probability of success p, but there are unknown
dependencies among the subproblems. Let X; denote the sum of the Bernoulli trials in the :-th
subproblem. Finally, suppose we need a deviation bound for X = X; 4+ --. 4+ X;. We seek a tractable
quantification for the worst case deviation. Our intuition would suggest that the worst case ought to
occur when the X; are the same random variable. We show that although the intuition is false for
general random variables and exact probabilities, it is always true for Chernoff-Hoeffding estimates.
Let, for positive a;, a; +ay+---+aj = a. Then || X||Pv <8, ||Xz-||£”, and one question is how to
partition the a’s in an optimal manner. It will become evident, in this section, that this formulation
has already forfeited opportunities to exploit the full benefits of convexity. Hoeffding [Ho-63], for

example, uses convexity to attain the following deviation estimate.

Theorem(Hoeffding, 1963). Suppose X = p; X7 +po Xo + -+ pp X}, where the X, are not necessarily
independent, the p; are positive and 32, p; = 1. Then for A >0,
k
IXNTH < 3 piBleMeFlnd-a) g
1=1

Unfortunately, this bound does not appear to have a more natural (or closed) formulation. It also
forces the rescaling parameter A to be the same for all £ random variables. By exploiting convexity
to apportion the deviation a and by optimizing both the a apportionments and implicit p; weightings,
we get sharper and more tractable formulations with individually optimized \’s.
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Theorem 3. Let X = Ele X;, where X;, 1 =1,2,...,k, are arbitrary possibly dependent real valued
random variables. Let ¢ = ay + ay + --- + a;, and suppose that ||Xi||aCZ,H =(C,for:=1,2,....k. Then
XIS < C.

Proof: We may normalize the X;, so that they have zero means. Let p; be positive with p; 4+

po+ -+ p;. = 1. Evidently,

||ZX (CH < B[eXim 2 Ki=e)/vi) Ep AMXj=a)/p;] (5)

due to the convexity of e* and Jensen’s inequality. We seek the best A, p; and a;. It turns out that
a straightforward derivation suffices to solve this optimization problem, but a verification argument is
simpler still. Let the a; partition a as prescribed by the Theorem. Let \; be the optimum A defined
by ||.X; ||CH E[e(i(Xi-BlX]-a)] Put \ = 1/( —|— -+ —|— ), and set p; = A\/)\;. By construction,
> p; = 1. Substituting these values into equatlon (5) shows that || ZXi||aCH < ZpiC =C. 1
The bound is clearly Chernoff-tight. i i

There are, however, circumstances where the assumptions of Theorem 3 cannot be fulfilled. Sup-
pose, for example, that X; comprises a single Bernoulli trial B(1,4), and X, comprises 9 such trials,

|CH _

which are independent. Let X; and X5 be mutually dependent. Now || .X]| and || X;]|SH =0

27
for @ > 1, which means that the C' of Theorem 3 cannot have values in (0, }). Suppose we wish to
estimate ||X||ng; the probability of such a deviation is clearly below %

The problem is easily resolved in terms of the discontinuities of the Chernoff-Hoeffding estimates

||Xz-||aCZ,H; the following definition is intended to serve this purpose.

Definition.

Let the value at denote a plus an infinitesimal amount, and define the real evaluation f(a™) =

limy,, f(b).

Corollary 2. Let X = Ele X;, where X;,1=1,2,...,k, are arbitrary possibly dependent real valued
random variables. Let @ = ay + ay + -+ aj. Suppose that min; ||Xi||aCZ,H =(C, and for: = 1,...,k,
either || X;||S# = C or ||X,»||aCH = 0. Then

X151 < C.
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Proof: Let a=aq+ay+- -+ ag, and suppose that a; > 0, for e =1,2,..., k. We must show that
for any [,

[IX11EH < max(1X11G " max |1 X1 2). (6)

(3

The key point is that the C'H-estimate is continuous from the left: lim,, |Y[|SH = ||Y||§H for
a > 0. In fact, it is also continuous from the right unless b = max(Y — E[Y]). This because ||Y]|S# =0
for a > b, while ||Y||bCH is the discrete mass probability Pr{Y = b+ E[Y]}, which may be positive. For
a > b, the optimizing A will be infinite: ||Y||$# = |Y]|L , =0, a > max(Y - E[Y]).

Let ||Xl||aClH = mini(||Xi||aCZ,H), and consider the partition a; = a;— (k—1)e, and @; = a;+¢, for ¢ # [
This is a permissible partition of a for small €, and we may apply the convexity argument of Theorem
3. Those X, where ||Xi||acif_|{€ = 0, for all positive €, will have corresponding p; = 0, and contribute
nothing to the estimate. The resulting expression, as € | 0, is 3; pz-||Xz'||aCZ,H, with the aforementioned
p; set to zero. This averaging is bounded by the maximum Chernoff-Hoeflding estimate having a
non-zero weight, which establishes (6). 1
The general applicability of Corollary 2 comes from the fact that we can always optimize the q;,
with the result that either ||Xi||aCiH = minj(||Xj||aCjH), or the value is larger but cannot be diminished

because ||Xi||acf = 0. More abstractly,

CH : : CH CHY _ : CH
IX[lg ™ < min _max(min|[Xj[[g", max|/X;||5) = inf max|Xl[g",
1++a,=a i i a; ay+-+ay i i

aZ»ZO aq,ag,..., akZO

The first formulation has a partition of @ where the minimum must be achieved, but the second might
not achieve its minimum value; the use of the infimum, while denotationally equivalent to minimum,
is intended to emphasize this distinction.

As for our motivating problem, we see that X; should be assigned the deviation a1 = %—i_, and the
Chernoff-Hoeffding estimate becomes ||X2||£5H.

Section 5.1 examines the problem of deriving strong and expressive estimates from Theorem 3.
Meanwhile, it should be noted that probabilistic behavior sometimes ensures, with high probability,
that a dependent collection of random variables can be partitioned into only a few sets, which each
comprise mutually independent random variables. When the decomposition happens to be proba-
bilistic, the detailed information required for Theorem 3 and Section 5.1 may not be available. The
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following weak consequence of Theorem 3 may be adequate for some of these circumstances. The

deviation bound is still Chernoff-tight for a worst-case decomposition.

Corollary 3. Let X = Ele X;, where X;, ¢t =1,2,..., k, are arbitrary possibly dependent real valued
random variables, and let ¥ = Zle Y;, where the Y; are mutually independent with Y; equal to X, in
distribution: Pr{Y; <a} = Pr{X; <a},forz=1,2,...,k. Then

1/k
IXIEH < (g

Proof: Let ay,ay,...,a; be the partition of a yielding the estimate C' of Corollary 2, so that
I1X]ISH > C and | X||H < C. From Lemma 1.1, [|[Y||H > r, 1 XG11SH, whence [[Y|H > CF, and
hence X7 < ()"

Corollary 3 also results if the optimization in Theorem 3 is performed over free A and a; with p; =
b= =i = Lk

Natural applications for Corollary 3 would use estimates for Y. The X; might themselves be sums
of independent random variables, some of which might belong to more than one Xj.

The technical difficulty suppressed by the Chernoff-Hoeffding estimate is that deviation proba-
bilities are not concave functions, which is why the rescaling of deviations was necessary. Of course
k||Y||%) is a correct upper bound for || X||P?, and it is easy to see that this expression is optimal
among products of a scalar and a probability. On the other hand, the natural analog to Corollary 3,

1/k
(||Y||aD'”) / , turns out to be incorrect.

1/k
A counterexample to this Dv formulation of (||Y||aD”) / can be constructed as follows. Suppose

k-1
k+1°

that each X, equals +a with probability ﬁ and zero with probability By correlating the k
random variables so that they are all equal to —a simultaneously, while only one is positive at any
other time, we see that ||Ef X;||Pv = % If we take the X;’s to be independent and have k even,
then symmetry allows us to infer that the sum will be at least as large as a half the time it is unequal
to zero. The probability that the sum is zero is

k 27 k—29
k 1 k-1 J
> (or-2) 1) GF1)

i=0
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k
Taking the first two terms gives a value exceeding 2 (2‘%) . Our counterexample will be established
if we show that (% - (%) ) < % Simplifying gives the requirement % < <%) + <%) .

Letting k — oo gives, in the limit: } < e=2 + e~1. Upon multiplying by €2, we see that it suffices to
show that 22/2 — 2 —1|,_ < 0. But the roots of this quadratic are 1 + V3, and it suffices to show
that e < 1 ++/3, which follows since v3 > 1.73, and e < 2.72. Consequently, the inequality holds for

sufficiently large k. In fact, it is not difficult to show that (%) + (kl‘?) > % for k> 1.

5.0 Expressiveness and dependencies

While the Hoeffding bound (2) for the sum of n random variables with range in [0, 1] is quite strong,
and even better estimates can be attained based on the variance or a sharper analysis of binomial
distributions, most applications do not need such precision. Rather, proof techniques benefit more
from simpler formulations that express adequate bounds in a tractable form. This section introduces
simple approximations that are applied to instances of dependent random variables in Section 5.1, and

are sharpened in Section 5.2

Let X =377 X, be the sum of n independent random variables, 0 < X; < 1 with mean probability
of success p = > E[X;]/n. While we give estimates below for Pr{X —E[X] > an}, for a > 0, comparable

estimates for Pr{X — E[X] < —an} can be written by replacing p with 1 —p.

The most direct means for deriving deviation estimates is by approximating the (fairly) sharp
bound (2) stated explicitly by Hoeffding [Ho-63]. We can prove that (f(a))" < (g(a))” by showing
that log(f) and its first & — 1 derivatives, say, agree with those of log(g) at a = 0. If %log(f(a)) <
%log(g(a)) for @ > 0, then integrating the inequality from a« = 0 & times establishes the desired
bound. This approach works with & = 2 for each of the approximations listed below. In each case,
(f)* is the Hoeffding bound, and log f(0) = (log f), (0) = 0 = logg(0) = (logg), (0). We omit the
simple calculations for log g(0) and (logg), (0), and just list the straightforward (logg),, (¢). The last
entry is the Hoeffding bound f.
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Theorem. For 0 <a<1—p, Pr{X —E[X] > na} < (g(a))".

Proof: (log ¢)aa(a) > (log f)aa(a).
g(a) (log 9)aa References
a —a? a
e Ty, ¢ L S ASE-91]; [Ra-88
(T Do 0 (T4 (&S)eir | p+a’ T-p T-p+a | J; [Ra-88]
eT-7 -1
Be-62]-[Ho-63]
e oo =prai—p | Peow
e(l—ap)2 -1
(1+ U2y T o p(1=p) +a(l-p)?
eT-% -1
al(l- _a_4 r(1-p) p(l—p)+a(l-2p
(1 + p((ll_i)zg})1_2p (1-2p)2 ( ) ( )
p+a l-p-a
= (P Ll-p -1 n
f_<p—|-a) <1—p—a) p(1 —p)+a(l-2p) - a? [Ho-63]

Table 1

_a?
and its stronger counterpart e21-r) are intended to be used with small

The bound

(e
p for large deviations below the mean, which means with p and 1 — p interchanged. Fach of the
expressions in the above table is sharper than its predecessors, but all, apart from 62(%21'4) involve ratios
of increasing values. In this sense, these bounds are less expressive than the following preliminary
bound that, although incomparable but often weaker than the weaker bounds above, is never much

weaker; it has an exponent that is off by a modest factor. We emphasize its utility by stating it as a

theorem, and mentioning a few consequences; stronger formulations are given in Section 5.2.

Theorem 4. Let X = x1+ 9+ ---+ x, be the sum of n independent random variables, where

0<z;<1,and p=E[X]/n. Then for a > 0,

_ 3an

3an
¢ _ T a(1-p)2 ‘
IX)ICH < (14 2el=P)) 0 s@+ﬁ)4-
3p 3p

The estimate originates with Bennett [Be-62] for somewhat different bounds on the X;, and is discussed by Hoeffdin
g g
[Ho-63] within this modified context, but Hoeffding’s function inequalities are independent of the X;’s.
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Proof: It is not difficult to check that for g(a) = (1 + M) T , logg(0) =0 = (logg), (0).

Finally, straightforward calculations verify that

1 N 3a N 1
p(1-p)+2a(l-p)?  Bp+2a(1-p)?~ p(l-p)+a(l-2p—a)’

(logg),, (a) =

Hoeffding [Ho-63] also gives an approximation for his bound:

XI5 < emnetolo),

where
g(p)_{ﬁlogl%, for 0 <p <
)y 1 1,
TIEE for s<p<l

The drawback with this estimate is that it is weak in cases where p is very small, say, p ~ \/Lﬁ, and a is a
moderate multiple of the expectation np. Such circumstances are of interest in many computer science
applications. The bound also has cases, which may make its application more difficult in circumstances
where the p is not explicitly known.

The expressiveness of Theorem 4 is sufficient to permit a trivial weakening that gives the following

formulation.

Corollary 4. Let X = zy+z9+-- -+, be the sum of n independent random variables where 0 < z; < 1
and p = E[X]/n. Then for a > 0,

2 —an _a2n

||X||nH < e 2p(1-p)+2a(1-p)2/3 < e2(1-p)% 4 3p(1-p) ,

Proof: We use Theorem 4. The first inequality follows from the fact that log(1+4x) > 179, for
x >0 (and the inequality reverses when z < 0): substltutmg (1 2) for x, multiplying by ; W and
exponentiating completes the derivation.

The second inequality follows from noting that

a’n 2 : 1 1
A3 > ¢ iy By

where one of the two terms in the denominator is individually taken as dominant, according to whether
or not p(1 —p) <2a(l —p)?/3. 1
Other separation points are also quite natural. For example, the separation point 2p(1-p) = a(1-p)?/3

—an _a2n
gives || X||SH < eT-r)? 4 W=,
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The price for this simplification to pure exponentials is that the first term has an exponent that
is too small by a factor of log(1 + a/p), approximately, and the second term has an exponent that is
deficient by a factor of 3/2, or so.

The bounds compare fairly well with the estimate

ix|(oH < [ e iaelnl il < 2p/3,
e e~ 2np/2T if a >2p/3

listed by Alon and Spencer [ASE-91]. A direct expansion, as in [ASE-91], when applied to Corollary

4 gives

IXIGH < { <o e, e s 2p/(1 - p)
e—3an/5(1-p) , if a > 2])/(1 _p)‘

Modest improvements could be derived from Section 5.2. Of course any approximation that is an
exponential of a rational function will lose the factor of log(1 + a/p) in the exponent.

The use of expressive Chernoff-Hoeffding approximations originates with Angluin and Valiant [AV-
79], who presented the inequality ||X||€C]¥[{X] < e—'sz[X]/?’7 for 0 < € < 1. Comparable datings can be

lo €) ..
~ B[] , for € > 1. Recently, similar bounds have been

attained for the approximation ||X||?EIE’X] <e
established for limited independence; the strongest to date appear in [SSS-93], where the first bound is
shown to hold when every subset of e2E[X] Bernoulli trials is guaranteed to be mutually independent,

for € < 1, and the C H-estimate bound ||X||SEIE’X]’ as defined for full independence is shown to hold

provided the mutual independence occurs for any set of ¢E[X] Bernoulli trials, for ¢ > 1.

5.1 Good bounds from heterogeneous dependencies

Other kinds of dependence also occur quite naturally in probabilistic algorithms, including some that

are based upon sets of mutually independent random variables.

Theorem 5. Let X = X; + Xy, + -+ X} be the sum of k possibly dependent random variables.
Suppose that X;, for : = 1,2,... &, is the sum of n; mutually independent random variables having
values in the interval [0,1]. Let E[X;] = n;p;. Then

a2 3a

B 5.(1—p:)n. 2 B _5.)2
||X||aCH< e S(Ei\/m(lzpz) z) +e 422-(1 P;) .

Proof: If we estimate ||Xi||aCZ_H as e 22(1-P)ni+2¢;(1-2p;)/3 then selecting the a; to make each term
have the same value, as prescribed by Theorem 3, should give a strong bound. Executing this objective
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gives an overestimate of e=¢ where

a?
?

2pi(1 = p;) + 2a;(1 - p;)? /3’

c= r=1,2,...,

Solving for a; gives

a; = c(1 = p)2 /3 +/(e(1 = 5:)2/3) + 2pi(1 - pi)nse

Summing over ¢ yields:

a=3 c(l-p)?*[3+ Z\/(C(l —pi)?/3)% + 2pi(1 - pi)nic,

whence

a<Z (1 -p;) /3+Z< (1=pi)?/3 4 /2pi(1 - pz)M)-

It follows that

a
27 (1= p)2/3 4+ 5 1/2pi (1 = pi)n;

Separating the cases according to which term in the denominator is larger gives

)7

Ve >

a CL2

A5 (L =pi)? 37 g2, [pi (1 = pi)ny)?

¢ > min(

whence

HXMH<e<Ev ) 4 ST, I

As far as exponential estimates go, these inequalities are only off by small constant factors in

the exponent. The second term, of course, should capture a decay that has an additional factor of,

approximately, log(1l + a/p) in the exponent, but these aggregate bounds compare rather favorably

with the exponential estimates for the fully independent case. This estimate is shown to be useful in

Section 7.

5.2 Further tradeoffs between expressiveness and sharpness

The term e20-r)2 , in the estimate of Corollary 4, is unnecessary when p > % This snap action becomes

evident when, as suggested by rows 3 and 4 of Table 1, the factors (1 — p)? are replaced by the more

precise 1 — 2p, and such a strengthening can be performed, for example, to Theorem 4.
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Theorem 6. Let X = x1+ 29+ ---+ x, be the sum of n independent random variables, where

0<z;<1,and p=E[X]/n. Then

3an

Za(l—Zp) A2
X|¢, 1+ = :

Proof: It is not difficult to check that for g(a) = (1 + M) T , log g(0) =0 = (logg), (0).

Finally, straightforward calculations verify that

-1 n 3a(l - 2p) S -1
p(1=p)+3a(l=2p) = (3p(l -p)+2a(l-2p))? = p(1-p)+a(l-2p)—a®

(logg),, (a) =

While sharper than the bound of Theorem 4, this expression may be a little less natural to use, due

to its peculiar, albeit well-defined, behavior (removable singularity) at p = 1/2. A straightforward
azn
weakening of this inequality gives the more natural formulation || X||$H < e 220-p)+2e0-27)73 | which

can sustain a slight improvement as given below.

Theorem 7. Let X = x1+ 29+ ---+ x5 be the sum of n independent random variables, where
0<az;<1,and p=E[X]/n. Then

a’n
||X||CH <e " 2p(1- p)+2a(1 2p)/3 2a2/9

Proof: It is not difficult to check that for g(a) = —2p(1_p)+2a(“12_n2p)/3_2a2/9, g(0) = 0 = g4(0).

Finally,
2 2
—p —(1-p) -1 -1
gaa(a) = p + p = + a a
(p+a/3)3 (1-p-a/3)? P+a+ (1 +4) l-p-a+t 3(1:))(1 - 3(1_p))
S -1 n -1 -1
“pta l-p-a p(l-p)+a(l-2p)-a®
It is worth noting that the factor 2p(1_p)+2a(i12p)/3_2a2 75 achieves the maximum value —2 when a =
3(1 = 2p)/2. This demonstrates that, as originally observed by Hoeffding [Ho-63],
X NG < e, (7)

(This inequality is improved, slightly, in Section 6.1.) Similar reasoning verifies the estimates Pr{X >
(1+e)E[X]} < e~ 3EX] for e < 1 [AV-79]); Pr{X < (1 - ) E[X]} < e~<ElX]/2 [ASE-91]; and Pr{X >
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(I1+eE[X]} < e=83EIX] for € > 1. Theorem 4 improves this last estimate to Pr{X > (1+¢e)E[X]} <

—3E[X]log(1+2¢/3) —E[X]log(14¢)
4 <e 2 .

e
Interestingly, a moment’s thought shows that the three bounds containing the expression 1 — 2p,
and Hoeffding’s bound (2) all hold as written for ¢ < 0, with the understanding that for a < 0,

I1X(|§H# = Pr{X - E[X] < a}:

_ aZn
e 2p(1-p)+2a(1-2p)/3-2a2/9

3an
_ , np+na L n—np—na 2a(1-2p)\ ™ 4(1-2p)
Va : Pr {Xi}z[}(] Z 1} S <L) <117p) S (1 -I' 3p(1_p) )

an p+a -p—a _na_
el-2p
=
+5ay)

6.0 Martingales and sums of bounded heterogeneous random variables

For completeness and generality, we include a few standard results that have been shown to be of use
in the analysis of probabilistic algorithms. The derivations in this section also show, en passant, the
computational expressiveness of Theorem 7. These results are sharpened, very slightly, in Section 6.1.

Suppose X = x1 4+ x9 + -+ y 1s the sum of n independent random variables that have differing
ranges: ¢; < x; < d;, and E[z;] = m;. The estimate of Theorem 7 enables a direct estimate of the tail
distribution of X.

It is convenient to normalize z;, for the moment, by setting ¢; = 0; we shall use 6; to represent
d; —¢;, and p; to represent m; —¢;. Integrating (as before) the convexity statement: for ¢ € [0,6], A > 0,

t

M <14 (eM - 1) with respect to the probability distribution function for z;, and multiplying by

e~HiA gives the following.

Hy (8;—1;)
(zi—ni)A Bt OSSR NI o W (PR TE) DS G Y o | _Ti)‘ﬁi Ha T)‘(Si
Ele | < (1 5 Je + 5 € (1 5 Je + 5, € )

It follows, from the change of variables \§; — A, that ||z;[|S# < || B(1 mi_ci)||ac/f{d'_c').

=
mi=c;\||CH
diZ—CZ )“a/(dl—c

)

From this fact, Lemma 1, and the application of Theorem 7 to ||B(1,

) for each 1,

we conclude that

2

—ar

n 2
2(m;—c;)(d;—m;)=2a;(d;+c;—2m;)—2a2 /9
IXIEH < max ] tmimelhimmmielditeamg2as,
aq+taqg+--tan=a -
a;>0 1=1
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Now, this optimization problem is rather messy, but we can simplify it considerably by setting the
parameters m; on the right, to maximize each factor. This is done by maximizing each denominator

with the selection m; = (¢; + d;)/2 — a;/3, which yields,

n —Zag
IXNEH < max T el%,
- a1+a2+m+an:a .
;20 1=1

Equivalently, this product results from rescaling the Hoeffding bound (7). In any case, this product is
easily maximized by setting the a; so that the partial derivatives of the product with respect to a; are
all the same. This occurs when a; = a(d; — ¢;)?/3;(d; — ¢;)?. Substituting and simplifying gives the
Hoeffding bound [Ho-63] below.

Theorem(Hoeffding, 1963). Let X = 21+ x5+ -+, be the sum of n independent random variables
where ¢; < x; < d;.
Then
242
IXEH < e=ttimee g (8)
This inequality will be reestablished via standard, more general methods in the next section. But
first, a few observations are worth making. Since the bound (8) is independent of the underlying
probability distributions, we might expect the inequality to hold even if the distributions are modified
in an adversarial manner. That is, suppose the random variables produce sample values sequentially;
after the values zy,..., 7 are known, an adversary can select the worst distribution for z;,,, as long
as its range is restricted to the interval [c; 1, d; 1] and the (conditional) expectation is still m; ;. The
deviation bound (8) will still turn out to be valid. Then the bound must also hold for max;,, Elf x;,
since a deviation of @ or more for a current partial sum can be preserved simply by fixing all subsequent

random variables at their expected values.

6.1 Martingales

As noted in the discussion of Legendre transforms, many probabilistic inequalities can be attained a
little more easily by applying bounds directly to the resulting generating functions, and this difference
is especially useful for martingales.
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A martingale is a special kind of stochastic process, which, in turn, is a family of random variables
that might be viewed as a random variable evolving over time. Given n random variables zq,..., zy,
we can view, for example, the partial sums Y, = x1 + 294 - -+ x;, as a discrete time evolution process.

Other families may be indexed over a continuous parameter space.

Informally, a sequence of random variables Y7, Y, ... is a martingale if they represent a fair game:
ElY; | Y1,Y,,...,Y;_1] = Y;_1. Thus in the previous example, the Y’s would be a martingale if
the x; are independent and have mean zero. In fact, they need not be independent; the probability
distribution for z; can depend on the outcome of the previous z;’s, provided the mean is always zero.

A rigorous theory rests upon a foundation of measure theory; see [Do-53], [KT-81], [Lo-77] or [Wi-91].

Among the relevant developments is the following special case of Doob’s submartingale inequality.

Theorem(Doob). Let Y7,Y5,...,Y, be a martingale. Then for a > 0,

Pr{max Yy > a} < mine *E[e}7].
1<k<n A>0

Proof: Actually, the theorem is more general than this statement. See Appendix 3 for the details

and proof. |

? ?

Now, E[e*(¥2)] might be rather difficult to compute, especially when the increments Y1 - Y are
not independent. On the other hand, the increments might satisfy a priori bounds. To be specific, let
Y, = x1 4224 -4z be a martingale, and suppose that ¢; < z; < d;, for constants ¢;, d;, 1 =1,2,...,n,

and, let v; = d; — ¢;.

Let A()) be a function that bounds, for A > 0 the moment generating functions of any Bernoulli
trial: max,p 1 E[e*B(1Lp)-P)] < h(X). Then max,e[o 1] E[e?(B(Lp)-p)] < h(y)), and A(\y;) is an upper
bound for the function E[eA?: | Y1,Y5,...,Y;_1], since the moment generating functions of the rescaled
Bernoulli trials comprise the extreme points of the convex region defined by such expectations.
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A bound for E[e*¥n] is established as follows.
E[eM"] = E[E[e*r-1e27 | Y], V), ..., Y, 4]
= E[eMn1E[e? | Y, Y),. ., Y]]
< E[eMn-1h(Am)]
< EleMn-1]h(Ayn)

<

7

whence
P | X Y a | .“ _)\a | | h )\ y ] .
r{lskaSn k2 a)s )\>10 ° ; ( %) (9)
Hoeffding [Ho—63] uses the (slightly bemusing) inequality

E[e)\(B(l,p)—p)] < 6)\2/8 = h()\)7 (10)

for h in (9), and selects the minimizing A = 4a/ 3", (d; - Cg)z, which establishes (8) in the more general
_2a

context of martingales: Pr{max; ., Yy > a} < eXi4=)”  The bound (10) is usually proved via

some cleverness and sophistication (c.f. [Ho-63], [ASE-91]). An alternative proof is to apply (7): if

(10) were false at some Ay, for some B(1,p), pick a so that ||B(1,p)||£’a is optimized at Ag. The

resulting value would then be greater than miny e- @M HA?/8 — =24 which would contradict (7):

IB(L,p)|ISH < e-24%,

More abstractly, log(e‘2“2) is the dual (under the Legendre transform) of log e*?/8; the inequali-
ties are equivalent, in the respective spaces of Chernoff-Hoeffding estimates and moment generating
functions. Actually, it is worth observing that both the e=2¢" estimate (7) and dual e*’/8 bound (10)
are easily established by applying the logarithm and differentiating twice, in the respective variables
a and \. More generally, when these simple steps suffice, as in Table 1, to confirm that, say ef < e,
for convex f and g, then, as is easily verified, the same approach must also succeed for their Legendre

transforms.

Now, the underlying reason the inequality || X||¢# < 6‘2“2, for X : 0 < X <1, and its dual are not

+ 1-a-
Chernoff-tight is that solving for the exact bound, max, |[|B(1,p)||{# = max, (]%)a ? (ﬁ;fa) o
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leads to a transcendental equation. On the other hand, we can attain a slight improvement via the

a l1-a-
following observation. Let f(a) = (]%) v (11;%) ”. We have shown that fla) < e~2¢ by

observing that log f(0) = (log f)«(0) = 0, and calculating that (log f)aa(a) = m <-4 =
(=2a?)qq. Since (log f)u(t) = —m, for ¢ € [0,a], we may fix p=1 - %, and observe that these

(negative) values as a weighted set {(— dt)} are as large as possible, since the denominator

1
(p+t)(1-p-t)’
is as large as possible (and the numerator is negative.) Unfortunately, integrating this (log f)s(t)
twice does not give the maximal log f, but if we rearrange the collection of values to be monotone
decreasing, then we will get an overestimate for f. Informally, the greatest acceleration should come

first, if the maximum distance is to be traversed, and this fact is readily formalized! via integration

by parts. In any case, the consequence is

a2
og() < [1 [ e s - o | amraam gyt

This last expression is just log (||B(1,%)||a/2) = log (||B(4, %)H%H) If X;==xq,29,...,2; is the sum

of ¢ independent random variables, with 0 < z; <1, for each k, then

1 2n+2na 1 2n-2na
Pr{lrgzg(l(X E[X;]) > an} < ||B(4n 72)||2an: (1—|—a) ( ) '

Equivalently, the dual formulation reads, E[eMXn=E[Xn])] < (cosh(

N

)y,

This expression has the virtue of being a Chernoff-Hoeffding estimate for an actual probability
distribution, although it is only slightly sharper than the estimate of e)‘zn/g, since the optimal A
will be small. Moreover, this improvement only complicates the resulting optimization problem. On
the other hand, we may always use the most convenient formulation to calculate or estimate A, and
safely substitute the value elsewhere. This simple rearrangement approach can be readily sharpened
when the z; are, say, Bernoulli trials having expectations confined to some fixed subinterval of [0, 1].
Such estimates might occur from upper and lower bounds for the optimal p that yields the maximum

Chernoff-Hoeffding estimate.

tAlso needed is the following inequality of Chebyshev: Suppose f(z) and g(z) are nonnegative and monotone

increasing. Then [ f(z)g(xz)dz > [ f(z)g(m(z))da, where 7 is a measure preserving transformation.
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If Y; =2y + a9+ -+ x; happens to be a martingale with bounded increments, z; € [-b;, ¢ — b;],

then rescaling shows that

1 1 CH 1 2n+2an 1 2n—2an
PT{EIZIE}%XE>Q”}S||B(4n7§)||2an: <1—|—a) (1—@) .

For completeness, we note that the (mean zero) increments z; often belong to a symmetric interval:
z; € [-¢/2,¢/2]. For this case, Azuma [AZ-76] presented a lemma establishing the following Chernoff-

tight estimate.

1 1 1 n/2+an 1 n/2-an
PT{E T&%XE' > an} < ||B(n, §)||aCnH = (m) <m) :

The bound follows from the inequality E[e**i] < E[eC)‘(B(l’%)_%)], which, in turn, is derived from a

convexity argument similar to that given for Hoeffding’s bound (2). The lemma is sometimes called

the Azuma-Hoeffding inequality (c.f. [Wi-91]).

6.2 An easy extension

Hoeffding pointed out [Ho-63] that in the case of fully independent random variables, Doob’s Theorem
strengthens the inequalities to bound the probability that any (of the linearly ordered) partial sums
exceed the deviation. It is straightforward to observe that this strengthening also applies to the

Chernoff-Hoeffding bounds with conditioning in Section 3.

6.3 A very simple stochastic domination bound

In some computer science applications, items disappear according to a complicated Bernoulli process,
and estimates are needed to bound the likelihood that an unusually large number have survived, at
specific points of the process. Here the complication is that item ¢ may have a probability of survival
p; that depends on the survival properties of the other items. On the other hand, it is often the case

that the p; can be easily bounded by readily attained p;.

Theorem(Folklore). Let X} = Ele z; and Y = Ele y;, where x; and y; are Bernoulli trials. Let the

y; be mutually independent, and suppose that E[z; | X;_1] < E[y,]. Then va :

Pr{X, >a} < Pr{Y, > a}.
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Proof: Given Xj, we may compute z;,; and y;, jointly via the following simplified accept-
reject method. Let r;,y = E[z;,; | Xi], and compute a random yy_;, which is 1 with probability
Pre1 = Elyryq). I yppq = 0, we take x5, = 0 as well. Otherwise, we compute a second random
Bernoulli trial that has outcome 1 with probability r;,;/pgq < 1. If this second outcome is also 1, we
set 3,1 =1 as well; otherwise it is taken to be 0. It is easy to see that this method computes X4
according to its correct distribution. Moreover, the z’s will always have a summation that is bounded
by the y’s. The inequality follows. |
This elementary inequality illustrates two points. First, deviation bounds (from the mean) are more
sophisticated than some simple survival probabilities. Second, the proof shows how resampling can be
applied to use one process to attain bounds on another. The next section gives a more complicated
example of this resampling approach, and shows how many of the inequalities of the previous sections

may be useful en route to a complicated estimation result.

7. Applications

Hashing comprises a variety of methods for storing and retrieving data in an array A, based on
computed index probes. Formally, let S be a of an items, where o < 1. The array A will have
n locations and will be used to store the elements of S, or perhaps pointers to the elements. The
elements are referenced by their names, which are called hash keys. The idea behind hashing is to
have a simple function A that maps each hash key to an array location 5, 1 < j < n. Functions where the
keys are mapped 1 to 1 into the range of array indices are called perfect hash functions (c.f [FKS-84]).

Most classical hashing schemes use random functions to compute array indices. When two items
hash to the same location, we say that a collision has occurred. The issue of how collisions are resolved
is what distinguishes the bulk of the classical hashing schemes.

Closed hashing (also called hashing with open addressing) uses additional probes (randomly com-
puted array locations) into A to place a colliding item in the first vacant slot that is found. Double
hashing, for example, uses the key of an element z to compute an arithmetic progression of array in-
dices and places z in the first vacant location found in the progression. The analysis of double hashing
is the subject of Section 7.2.
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Open hashing links colliding items together in a linked list. Search proceeds to the hash index
and then along the linked list without subsequent hashing probes. The reason that these schemes
have variations is that the colliding items may be stored within the hash table A, or outside in some
auxiliary storage area. Alternatively, a mix of these two possibilities is feasible, and suitable hybrid
schemes turn out to have the best performance among this set of hash algorithms ([VC-87]). Such
schemes are called coalesced hashing because the linked lists can coalesce when list elements are located
within the hash table.

The analysis of coalesced hashing leads to the need to compute stopping times and the probability

of large deviations for such times.

7.1 A stopping time calculation

The basic stopping time problem for coalesced hashing can be formulated as follows.

At time T' = 0, an array has n vacant slots. A cellar count C is initially zero. At each time
T =7 >0, aslot is selected at random and, if it is vacant, marked full. If the the slot is already full,
C' is increased by one. In either case, the slot is kept available for subsequent selection. The stopping
time S is defined to be the time when the cellar count C first becomes an, for a fixed value a.

Part of the analysis of optimal coalesced hashing (c.f. [VC-87]) requires an estimate of the proba-
bility that S has a large deviation from its mean. Let z; be one if, at time 7" = j, the probe into the
array selects a full location, and let z; be zero if the location is vacant. Then we may model C' as the
sum of the Bernoulli trials: C(t) = E;Zl z;. Since the number of full locations, at the beginning of

time t+ 1, is t — C(t),

n

0 with probability 1 — #ﬁ
We may transform C(¢) into a martingale by noting that E[C(¢t+1) | C(t)] = 2=LC(¢)+L. In particular,

{ 1 with probability t—C(t)7
$t+1 =

set Z(1)=0, Z(t) = (:2:)-1(C(t) =t +n) —n+ L. Direct substitution shows that E[Z() | Z(t-1)]=

n—1

Z[t—1], so Z is a martingale.

Furthermore, the increment Z(t 4 1) — Z(t) = (%)t—1%7 which is easily seen to lie in

the interval [—(-2)!=1, (-27)!-1], since @441 = 1 if all n slots are already full. Thus the increments are

bounded by (:27)1, whence (8) is applicable to give Pr{Z; — E[Z;] > a(;27)1} < 6_2_(112. In terms of
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C, we see that Pr{C(t)-E[C(t)] > a} < e%. If ¢ is taken as E[S], then the cellar count will only have
a polynomially small probability of varying by more than c¢y/nlogn. We may infer that the probability

that the cellar first becomes full at a time outside of [E[S] —e¢y/nlogn, E[S]+ ¢\/nlogn] is polynomially

small.

Evidently, the number of filled slots, at this stopping time S will also fluctuate by a modest
O(\/nlogn), with high probability. Similarly, it would not be difficult to normalize the random variable
counting the number of filled table slots, to attain, thereby, a martingale with bounded increments.

To estimate n = E[S], we may reason as follows. If we stop the process at the exact time n, then
number of items in the cellar should be, approximately, an. E[C(8n)] ~ an Substituting these values
into the formulation for our Martingale at time s = #n gives 0 = E[Z(s)] ~ (%)*%C(s)—s—l—n)—n—l—l,
or e(a— B+ 1) =1, as a formulation for a sharp estimate. Even more can be deduced about these
stopping times by saddle point methods. See, for example, [Si-94].

As this section illustrates, martingale formulations give sharp and direct procedures for capturing

larger deviation estimates in some processes such as stopping times, despite the presence of dependen-

cies within the underlying Bernoulli trials.

7.2 Double hashing

Double hashing is a method for storing and retrieving data in an array A based on computed index
probes. The insertion procedure places an item x in a table of size n, for prime n, by inserting the item
in the first vacant location in the table slots A[h(z)—(k)f(z) mod n], k=0,1,2,...,n—1. Here h(z) is
assumed to be a random function uniformly distributed over [0,n — 1] and the stride f is independent
and uniformly distributed over [1,n —1]. Lookup works by testing the elements found according to the
same probe sequence.

The performance analysis of this method is complicated by the mild dependencies induced by
restricting the probe sequences to arithmetic progressions. Lueker and Molodowitch, in an elegant
analysis of double hashing [LM-88], show that the expected number of probes to insert the (an +
1)-st item, in double hashing, is bounded by the expected number of probes to insert the (an +
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O(\/ﬁlog5/2 n))-th item into a table where the items are distributed randomly! with each configuration
equally likely. It follows, therefore, that the expected number of probes to insert this item is H—Loz +
O(log™* n/ V).

The proof is inductive, and is based on a scheme that keeps the table configuration completely
random. They achieve this by selecting the next vacant slot for insertion according to a formal accept-
reject probabilistic calculation of the double hashing probability that is embedded within a uniform

selection procedure.

In particular, let A be currently filled with An items, and let p; be the probability that the
t-th vacant slot would get the next item were it to be inserted according to double hashing. Let
H = max;(p;), and consider a bar graph of the p; in a box of dimension H x (1 — #)n. Imagine tossing
a dart randomly, with uniform distribution, into the box. If the dart lands on the j-th bar, then the
item is inserted in the j-th vacant slot, and the insertion conforms to the double hashing distribution.
In the (moderately improbable) event that the dart lands above some bar, a dummy item is inserted in
the corresponding slot, and the (double hashing) insertion attempt is repeated for the datum at hand
with an updated bar graph. Thus vacant slots receive items according to the uniform distribution,
while the actual data is double hashed into the table, which happens to have endured the occasional

insertion of a few extra items by some other scheme.

Lueker and Molodowitch exploit monotonicity in the sense that the insertion of additional items
into a hash table can only increase the number of probes needed for subsequent insertions. This is a
form of probabilistic resampling, which replaces one algorithm by a similar one that is easier to analyze

and has a guaranteed performance that is worse (better) for upper (lower) bounds.

The technical portion of the proof is to show that for a random table containing #n items uniformly

distributed among all (),) possibilities, with overwhelming probability (over the table configurations),

TMoreover, the hashing model with uniform distribution and random probe selection is the optimum for this genre

of hashing [Ya-85].
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the box height H satisfies:

(0] 5/2n
H= (1+O(1 : )) (1_1ﬂ)n.

5/2
This bound guarantees that the next insertion will be a dummy with probability O(bg\//ﬁ “). Then

the (uninteresting) probability estimate of Section 6.3 can be used to show that with overwhelming

5/2
probability, only n x O(bg\/#) dummy items will be inserted into the table.
We now show that the Chernoff-Hoeffding bounds of the previous sections combine quite naturally

to simplify the calculations in the Lueker-Molodowitch proof strategy, and give the marginally better

error of O l%%—n), as opposed to O(@%)

Lueker and Molodowitch bound H by computing (1) a large deviation bound for the number of
different double hashing probe sequences (f,h) € [0,n — 1] x [1,n — 1] that hit vacant slot [ in a table

containing #n randomly placed items. This estimate is based on (2) a corresponding bound where each

location is occupied with independent Bernoulli probability 6 = 8 + ¢ 10%”. Each probe sequence
(f,h) is represented as an arithmetic progression (s, k) having strides of length s and requiring k steps
to reach I. A k-step sequence has a probability 6% that all k locations will be occupied, which would
cause location [ to be hit by the implicit double hashing probe sequence. But the Bernoulli trials
represented by the sequences are not independent. A specific k-step sequence will have locations in
common with at most k(k— 1) other k-step sequences. Lueker and Molodowitch use (3) a complicated
partitioning argument to partition the set of all n—1 k-step sequences into subsets where each location
(other than /) belongs to at most one sequence within a given subset, so that the implicitly represented
Bernoulli events within each partition will be independent. They then use (4) a Chernoff-Hoeffding
estimate to bound the probability that any of these subsets has a deviation that is in excess of some
share of the O(\/ﬁlog5/2 n) aggregate deviation.

Theorem 2 gives a generic method that in this application transforms the bound achieved for
step (2) to the model in step (1) very conveniently and with less cost than the approach in [LM-
88]. Corollary 3, plus the fact that a degree k(k — 1) graph is k% colorable gives a simplified and
stronger transition from (3) to (4). Now a trivial Chebyshev bound can used to bound k. Finally, the

expressive Chernoff-Hoeffding bound stated in Theorem 5 allows, as outlined below, a simple deviation
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of a = c¢\/nlogn to be allotted implicitly in a way which results in large deviation probabilities that
decay quite rapidly.

The net result is a fully systematic and completely simple emulation proof that inserts, with over-
whelming probability, O(y/nlogn) extra items instead of O(\/ﬁlog5/2 n). The streamlined calculations
are as follows. Given a table containing Sn items distributed at random, let slot [ be selected at random,
without regard, say, to its vacancy. In the case of random probing (without replacement), the proba-
bility that a probe sequence will reach [ before reaching a vacant slot is py = 1 + %, where the
first term is the probability for the case that [ is vacant, and the latter for the event that [ is occupied.
In double hashing, the probability for an individual slot depends on the distribution of the occupied
slots, but the expected probability for a randomly selected slot must be the same, since the occupan-

cy distribution is random. If each slot is occupied according to an independent Bernoulli trial with

probability 3, then the expected probability, in both cases, is pg = (1 + 3+ 4% +---+ ") = A-f2

(1-8)n"
Evidently, pg — py ~ %, and the expected number of double hashing probes that reach [ differ by
less than ﬁ, for the two models.
Let

P = Pr{ at least n(n— 1)py + ﬁ + cy/nlogn probe sequences hit slot [ }.

According to Theorem 2, P < 2Prg{ at least n(n—1)pg+c\/nlogn probe sequences hit slot [}, where
Prp uses a table that has each slot independently occupied with probability 3. Consequently, we have
that P < 2Prg{Z > 1} + 2||221:18an,€||§\7@, where Z and X, are defined as follows. X} is the
number of arithmetic progressions comprising k& occupied slots that terminate at [, in the Bernoulli
trial model. Z is the number of arithmetic progressions comprising ¢q logn filled slots that terminate
at location [. Prg{Z > 1} is an overestimate of the probability any probe progression to [ has length
¢1 logn or more, since the existence of a longer sequence implies that a length ¢;logn one also exists.
Its presence enables the summation for the X} to terminate at & = ¢;logn — 1. Now the random
variable X is a constant, it cannot contribute to the variance. Similarly, X; is the same constant
in double hashing and random probing without replacement, when the fgn items are distributed at

random, and its mean turns out to be unchanged for the Bernoulli model. Consequently, we may take

42



the index k in the summation to satisfy k> 2.

Altogether, Zzlzlggn X}, comprises (¢1 logn—1)(n—1) partially dependent Bernoulli trials, which we
shall count as eynlogn. X} is the sum of n—1 dependent Bernoulli trials with individual probability of
success 4%, and a k? colorable conflict graph. Corollary 3 says that the worst case Chernoff-Hoeffding
estimate occurs if we have k? copies of the same n/k? independent trials. Estimating Pr{Z > 1} as
E[Z] via Chebyshev’s inequality, and applying Theorem 5 (along with Corollary 3) to the remaining

term gives

2
c“nlogn Vv
B ( cq logn £2+/Bk (1-pk)n k2 ’ - SIC o ogn
8 1- n ) 4 N1 108T b9 gky2
k % > s (1-pk) )

P < IZnﬁcll‘)gn + 2e

2
The estimate is polynomially small because <Ek kv/Bk(1 — /Bk)n) is clearly linear in n, due to the

exponential decay of 3*. The other term is negligible because the summation stops at k = ¢; logn.
Note that Corollary 3 is not strong enough to be applied directly to the collection of all ¢;nlogn
trials because it is a worst case bound that knows nothing about how the sets are partitioned. Indeed,
we are saved by the fact that the less probable events exhibit the greater dependence, and not vice
versa. Restated, the heterogeneity of the problem and Theorem 5 combine to guarantee that a c¢y\/nlogn
deviation will occur with a polynomially small probability, as opposed to an estimate of e%, which

would result from Corollary 3, and which would indeed be Chernoff-tight in the homogeneous case,

where all set sizes and probabilities are the same as their average.

8. Conclusions

We have shown how to achieve deconditioning by translating selection problems into comparable
inequalities for Bernoulli problems, for random variables that exhibit a form of monotonic conditioning.
Furthermore, methods to handle complicated dependencies have been presented and shown to be sharp
and useful. Similarly, probability inequalities have been derived that exploit heterogeneity within
the underlying probability distributions. Moreover, these techniques can be combined to simplify
complicated problems while yielding improved deviation estimates.

The expressive Chernoff-Hoeflding estimate stated in Theorem 7 has the advantages of being case
free and readily applicable to decompositions with different probabilities. These properties may be of
especial benefit when probabilistic decompositions give subevents of different sizes and probabilities,
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and where global statistics are readily available. This is also true of Theorem 5, and the more general

estimation formulations in Theorem 3 and its corollaries.
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Appendix 1. Convexity and Jensen’s Inequality

A function f(t) on [a,b] is defined to be convex if for every ¢ € (a,b), and every z,y, where a <z <t <
y < b, the point (¢, f(¢)) lies below (or on) the line segment from (z, f(x)) to (v, f(y)).

Consequences of convexity are:

1) For each point (¢, f(t)), there is at least one line [ passing through it where no point on the

curve (z, f(z)) lies below [. Such a line is called a support line.
2) The function f is continuous on (a,b), and upper semicontinuous at a and b.

3) If f is convex and [ is a secant line through X; = (x, f(x)) and Xy = (y, f(y)) with = < y,
then for t <z or t >y, (¢, f()) lies above (or possibly on) .
4) A function f is convex iff % is nondecreasing (i.e. 3127; is a positive distribution.)

The first fact follows from observing that (¢, f(¢)) will have no support line iff there is a line [,
which passes through the point, and has points on the curve (z, f(z)) that lie below [ for z < ¢ and for
t > z, whence lowering [ slightly shows that f is not convex.

The second and third facts follow similarly.

The fourth fact follows from considering a secant line through Xy = (2, f(z)) and X, = (y, f(v)),
for @ < y. Since f is convex, the line must be rotated (at least zero radians) clockwise about Xj to
become a support line, and counterclockwise about X5. Hence the slopes of the support lines at X
are no larger than the slopes of those at Xj.

It follows that for a convex function f, the convex closure of the points (xq, f(z1)), (22, f(22)),

.oy (#n, f(xn)) lie on or above the curve (¢, f(1)).

Lemma B(Jensen, 1906). Let f be convex. Suppose the coefficients a; are nonnegative with a; +ay +

.4+ a, =1. Then
f (Eam) < Zaz’f(l‘z’)-
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Proof: The point defined by the convex average, in two dimensional space, >, a;(x;, f(z;)) lies
on or above the curve y = f(x), which is to say that f(3;a;2;) <> ;a;f(z;). |1
Of course the inequality is reversed for concave f. If log f is convex, then the lemma applies to
products: f (32, a;z;) < TI, (f(x;)™.
Appendix 2. Five Proofs

2.1. Lemma 0. Let X be a random variable with moment generating function G(\) = E[e*X].

Then

0) If X and Y are independent with respective moment generating functions G(X) and H()),
then X 4+ Y has the moment generating function G(A)H()).

1) If G(X) is bounded for A € (o, 8) then G is analytic for a < Re()) < 3, and we may differ-
entiate as often as we please to attain leka = E[X*erX]. Moreover, limit arguments can be

applied to extend this formulation to the cases where A = «, 3.

2) G()\) = E[e*X] equals one at A = 0, and is strictly increasing (or infinite) for A > 0, provided
E[X]>0 and X #£0.

3) G(X) is strictly log-convex where it exists, provided X is not a constant.

Proof:

0) X and Y are mutually independent if and only if Pr{X e [t,t+dt)\Y €[s,s+ds)} = Pr{X €
[t,t+dt)}yPr{Y €[s,s+ ds)}. Using this fact gives:

E[MXY)] = / ME)PrX e[t,t+dt) \Y € [s,s+ds)}
t,s

= [ MMPr{X elt,t+dt)}Pr{Y €[s,s+ds)}
t,s

= /e)‘tPr{X € [t,t—l—dt)}/e)‘sPr{Y €[s,s+ds)}
t s

= E[eME[AY].

1) These facts are based on standard analytic function theory. The gist is that a convergent
sum of analytic functions is also analytic provided there is sufficient regularity to permit the
differentiation operator to be passed through the summation (integration) operator.
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2) By definition, G(0) = E[1] = 1. Differentiating with respect to A gives £.G(0) = E[X], and
%G(A) = E[X2e*X] > 0. Hence @ is strictly increasing on A > 0.

3) Differentiating gives, G\ = E[Xe*X], G, = E[X2e*]. Now,

2
(108; G))\)\ = @ - (ﬁ)

G G
CE[X2MY] (B[]
o E[e*X] E[erX]
= E[Y?] - E[Y]?, where Pr{Y e[t,t+dt)} = e)‘t—PT{)é[ee[f\’;]"dt)},
=E[(Y -E[Y])?]>0. |
2.2. Lemma 1. Let xy,29,...,2, be n independent random variables. Then for a > 0,
o ICH — T i1l CH
1) ||iz_:1$z||a - a1+a2r-rl-l'~?;-§an=ai_l_[1“$1||ai ) a > 0.
As a weak consequence,
2) X + Y5 > X g e

Proof: 1) It suffices to show that
IX + Y& = maxgpeq 1XI5ANYES.
Now, for any A > 0 and b < a, || X + Y||£a > ||X||bCH||Y||CH since the right hand side is defined as a

ol a—b"

minimization over a pair of independent parameters. Hence
IX + VIFH > | XCH |V (CH
We need to establish the reverse inequality for some b. We may, without loss of generality, assume
that E[X] = E[Y] =0, and suppose that neither X nor Y is identically zero. Define the function A{a}
so that for A\ > 0, e~ E[¢*X] is minimized at A\ = Ma}. Similarly, define §{a} so that e-%0E[¢®Y] is
minimized at 6{a}.

Consider the factors ||X||bCH, and ||Y||4, and the parameters A, § where ||X||bCH = ||X||§b7 and

a-b’

||Y||ac_hg = ||Y||5L,a_b' Either A =0 or c?_)\”Xllf,b ‘)\:)\{b}: 0, because A{b} gives a minimum value for

||X||£{b},b = ||X||bCH. Assuming the derivative is in fact zero gives

e_bA{b}(_bE[e)\{b}X] + E[Xe)‘{b}X]) = 0. (11)
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Similarly, either 6 =0 or
e-(a-b)&{a—b}(_(a _ b)E[eé{a—b}Y] 4+ E[Yeé{a—b}Y]) —0. (12)

Now suppose that the product || X||¢H||Y[|S4 is maximal at the value ¢ =b. If 0 < b < a, then we
must have %HXH H||Y||C ; = 0, since b is a maximum. Evaluating the derivative, in this case, and

substituting equations (11) and (12) gives the following.

b||X||CH||Y||CH b||X||A{b}b||Y||5{a -

= ¢~ (a=0)8 (_AE[AXE[efY] + SE[eAX|E[efY]

+ B[X M B[] (jﬁ + B[ By )
BE[YIE[MY ]S — (a— DE[Y]ELY]S): A= AB), 6= 6la—b)
= ¢~W-(a-0)8(§ _ \E[AX]E[¢?Y]. (13)

Hence || XISV |8 = 0 implies that
§{a — b} = A{b}.

In this case, || X||SH]|Y]|C0 = ||X||)\{b} b”YH(S{a bash = ||X—|—Y||A{b} 2 X+ Y as desired.
The boundary constraints are readily handled. First, it is easy to see that for the optimal b,
Mb} = oo precisely when Pr{X > b} = Pr{Y > a— b} =0, in which case the lemma is trivially true.
For b > 0, &eME[eAX] |,_ = ~bE[l] + E[X] = —b, which shows that the minimum of ||X||£,b
cannot be at A = 0. Similarly, 6{a — b} cannot be zero for b < a.

Finally, we address the cases b =0, b = a. Since d SEle X],—o=0, and Cflsz[eAX] = E[X2eM],
which is positive for X # 0, it follows that ¢E[6)‘X] > 0 for A > 0 and hence A{b} |,_,= 0. But then
(13) shows that %||X||bCH||Y||C b |p—o 18 positive, if 6{a} > 0. In this case, b =0 cannot be a maximum,
while the case 6{a} = A{0} = 0 again establishes the desired inequality. The exact same reasoning also

holds if b = a.

2) This follows immediately from 1); in fact, 2) also follows from Lemma 0.2. 1
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2.3. Lemma C. Let h(A) be a convex function of A, and define f(c¢) = miny(—Ac+ h(A)). Then f is
concave! and for A € Domain(h), h(\) = maxc(Ac+ f(c)).

Proof: We may suppose that h(A) is continuously differentiable and strictly convex, as otherwise
we may construct a sequence of strictly convex continuously differentiable functions h,,, where h, | h
as n — oo. This gives a decreasing family f,. Passing to the limit and exploiting the continuity of
limits will establish the claims for convex h.

Let the derivative of h, hy(A), map A onto the range [a,b], and for ¢ € [a,b], define f(c) =
miny (—Ac+ h(X)). Let Aq satisfy

) = ¢ (14)

there is such a Ay, since ¢ € [a,b]. Moreover, the Ay must be a local minimum for —Ac + h(X), since h

is convex, and Cfl—)‘(—)\c + k(X)) ‘ = —c+ hy(Xg) = 0. The convexity of h ensures that there are no

local maxima, whence Ay must be a global minimum. Hence f(¢) = —Ac+ h()) ‘)\ o
=A0
We may use the chain rule to compute the first derivative of f, with the understanding that A is

a function of ¢, in the definition of f:
fe(e) = =A 4 (=c+hy(A)Ae = =2+ (0)Ac = =,

where we have used (14) to attain the zero factor. It follows that f.c = —\c, and we may differentiate

= 1. Hence
=AQ

(14) to compute ., which gives hyy(A)A¢ \

fcc(c) =-Ac= _1/h)\)\()‘0)'

It follows that f is strictly concave.
Moreover, for —A € Range( f¢), maxc(Ac+f(c)) = e+ f(c) ‘ , where ¢ satisfies A+ f¢(¢y) = 0. To
C=Cq
see that the range of f. is just the negative of the domain of h, we observe that for any A € Domain(h),

we may use (14) to set ¢ = hy(A); then f(¢) is computed from A at A, and f. = —A.

THere the notion of concavity (as well as convexity) needs to be extended under pointwise convergence to include
functions that are infinite outside of an interval. This accommodates, for example, the consequences of setting

h(z) = ax + b.
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Finally, let g(v) = maxc(yc+ f(c)). Then the g is computed at a value ¢y where fc(cy) = —v. But
the computation for f(¢g) is computed from h at A where fe(cg) = -A. So g(7) =veo+(—vyeo+h(7)) =

h(7), and h is computed from f as claimed. |

2.4. Theorem 1. Let X = xy + 29+ ---+ x,, be the sum of n independent Bernoulli trails. Let

p=E[X]/n and ¢ = (E[X?] - E2[X])/n. Then

1-p)? o | cnm
||X||€fs||B<n( ).
A Ak

Proof: Form the moment generating function G()) = E[e*X)] = [[;(1 +p;(e* —1)), and consider
the factors of G. We may take fractional powers of them, and pair them together to achieve the
balanced “dipoles” (14 (p—c)(e* = 1))(1+ (p+ &)(e* —1))¢. These factors correspond to a weighted
pair of Bernoulli trials where one trial has weight x and probability of success p — ¢, while the other
has weight ¢ and probability of success p+ k. The mean of the pair is p with joint weight ¢+ k. The
weighted variance of the pair is k(p—c¢)(1-p+¢)+c(p+£)(1-p—k) = (c+£)p(1-p)—(c+k)(ck). It is
convenient to normalize such a factor to have unit weight; so we will analyze w(c, x) = (1+(p—c)(e* —

1)#% (1 + (p+ &)(e* — 1))7 =, which has mean p with weight 1, and weighted variance p(1 — p) — ck.

Notice that an individual Bernoulli trial with mean p can be represented as a balanced dipole with
c=0and £ = 1-p. Thus any G()) can be decomposed as a product of (fractional) dipoles [Jw(c;, x;)fi

where the f; are positive, 3, f; = n, and 3" fi¢;x; = np(1 — p) — no?.

The objective is to dominate G/(A) by a maximal product; we must first find the maximum w(e¢, k),
for fixed A and fixed product ck = 4. The constraints are that 0 < ¢ < p and 0 < k <1 —p. Let
z(e, k) = log(w(e, k). We now show that subject to these constraints, Cfl—hz is positive, which ensures

that taking x to be a large as possible maximizes w.

Since ¢ = v/k, %c = —v/k?%. Differentiating = with respect to x gives
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= B+ L4 Flog(1 - 2)),
where 3 = 7,(:_:\;21)7 z=14+((p+k)(e*=1),and §=(k+c)(e}=1) = @(6)‘ - 1).

We need to show that for 0 < 6 < z, ﬁ + % + %log(l — %) > 0. It suffices to show that z&j + % +
2log(1 - &) > 0.

If 6 =0, the expression is zero. If we can show that its first derivative (with respect to ¢) is positive
on (0,x), then integrating shows that the expression is positive. Differentiating with respect to 6 gives
W +1- zlj = ﬁ > 0 on (0,z). We conclude that for ¢k fixed at v, & should be maximal,
which means k = 1 — p unless a priori bounds on the size of p; constrain them to be smaller.

We now show that for fixed k, w(¢;, k) is log-concave, whence Jensen’s inequality ensures that
[Tw(c;, &)fi is maximized by setting all ¢; to their mean, which is w. Let

() = log ((1+ (- )(e> ~ 1)) (1 + (p+ w)(e> — 1)),
Differentiating twice with respect to ¢ gives

2k o (e 2k (er=1)
ety B =N T G- - 1)

K (er —1)2 2
cth(l+(p-c)(er-1))2 (c+r)
65 62
=4 <log(:z:) to 53 log(x + 5)) ,
where 3 = (2—';)3, =1+ (p-c)(e*-1), and § = (c+ r)(e* - 1).

Zee =

og(1+ (p+ k)(e — 1))

c+

We wish to show that log(z) + & — 2‘;—22 — log(z + 6) is nonpositive. When 6 = 0, the expression
is zero. Differentiating with respect to & gives 1 — z% - zlﬁ = m - z% < 0, for 6 > 0. It follows

7)2
that w(c) is log-concave, and X is maximal in the C' H-estimate when it comprises n% identical

Bernoulli trials having mean %, and ni’l__ig__;z (constant) trials with mean 1. Theorem 1 now follows

from Hoeffding’s bound (2) applied to the nonconstant trials. 1
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2.5. Lemma 3. Let b; be Bernoulli trials, and set & = Pr{b; = 1|61 + b+ --- + b, = k}. Then ¢ is
monotone increasing in k.
Proof: Let (;, = Pr{by + b3+ ---+ b, = k}, and recall that p; = Pr{b; = 1}. Now, & =
m, and it follows that &4 > & iff C;fﬁ > C’Z—;l Thus we must show that (Z > (5411
Put Q@ =[I7(1 - p;), and let r; = p;/(1 = p;). Then ¢ =Q > riTiy -+ Ti,, Whence

17 <1< <1y,

k .
2k — 2;
C]?ZQZZ Z ( k_jj>ri1ri2.-.ri2k—j Z 7’517"52"'7“3]»

7=0 i1<i2<"~<i2k_j {51a52a~-~a5j}c{i1a“"iZk—j}

Moreover,

PRt 2% — 2
Ck—le+1_Q Z Z k—j—l Tl'lrz'2~~~7‘z'2k_j Z rslrsz..,rsj

]:0 i1<i2<"~<i2k_j {51’SZV"’S]'}C{ila""zék—j}

Thus C}% contains a superset of the terms in (;_;(;,;, and with corresponding coefficients of

Q2(2z:§j) as opposed to Qz(zfﬁ]l), which shows that the inequality is in fact strict, unless (; =0. |

Appendix 3. Doob’s Submartingale inequality

Informally, a sequence of random variables Y7,Y5,... is a submartingale if they represent a game with
winning expectations: E[Y} | Y1,Y5,..., Y, 1] > Y ;.

It is critical to understand just what the notion of conditional expectation means. A family of
random variables must have a joint probability distribution if the probability of joint events is to be
defined. Informally, this means they are defined as random functions on a single probability space S
that has a probability measure P. Martingales and submartingales such families. The interesting part
concerns conditional expectations. Formally, E[Y} | Y7,Y5,...,Y]] is equal to a new random function g
that is defined (or indexed) over a j dimensional space. The randomness results from the randomness
in assigning values to the Y, for: =1=2=... 5. In the discrete case, we may write the deterministic

_ s ¢ K _ E S.’EPT{Yk:CL‘,Yl:Zl,Y2:ZQ,...,}/j:Zj}
value returned by g, for ¥; = z;,1=1,2,...,7 as g(z1,2,...,2;) = ==¢ PriYi=z1,Yy=2,,....Y;=2;} .

Restated, the constraints Y; = z;, for ¢ = 1,2,...,7 define a sample region S; c S, and by definition,

E[Y; | Y1,Y2,...,Y;] is constant on this subset; the value of the constant is just the average value of

Y, on S;. Of course E[Y} | Y7,Y5,...,Y]] is really defined on the probability space S. Given an s € S,
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s defines the values for Y7,Y5,...Y;. The subset of S where Y;,Y5,...,Y; have these specific values is
the averaging region used to compute the value of the conditional expectation E[Y} | Y7,Y5,...,Y;](s).

In light of this, we see that the submartingale requirement

E[Yk |Y717}/27"'7}/k—1] > }/k—l

is an inequality about functions defined on S, and the inequality holds everywhere, except, perhaps,

for some set of probability zero.

It is important to note that averaging on subsets conserves the mean on coarser sets. For example,
E[EY | W]] = E[Y]. More generally, E[E[Y | W, X]| | X] = E[Y | X]. The finest partition, in
some sense, that is admissible for Y is defined by Y itself, which is the collection sets Y"?(z), for
zeR: E[Y | Y] =Y. Even finer partitions can be used, although they have no computational effect:
E[Y | W,Y] =Y. The coarsest partition is the whole space S (defined by, say, constant functions on
S, which contain no information whatsoever): E[Y | 1] = E[Y]. That is, the average value of Y, when
1=1,1is E[Y].

A key question is the following. When can we assert that, for a subset R c S, [pE[Y | X]dP =
[rYdP? The answer is that if for every s € R, E[Y" | X](s) is computed as an average of Y on some
subset (s ¢ R, with no contributions from S — R, then the integrals will be the same. Indeed, the
definition of conditional expectation dictates that Jogs) ElY | X]dP = Joes) Y dP for the s’s averaging
region ()(s). This explains the idea of coarseness: R should comprise a union of subsets that have been
used in the averaging process. Finally, constants can be factored through expectations. For example,
E[XY | X,W] = XE[Y | X, W], since the random variable X is constant on points (X = a,W = b)

which comprise the averaging regions used to compute the random variable E[Y | X, W].

A rigorous presentation of conditional expectation requires the notion of measurability, since the
individual averaging regions may have measure zero. Nevertheless, this brief digression on conditional
expectation, it is hoped, might be sufficient preparation to present Doob’s elegant submartingale
inequality and its consequences.
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Theorem(Doob). Let ¥1,Y5,...,Y, be a non-negative submartingale. Then for a > 0,
Pr{maxY; > a} < E[Y,]/a.
1<n

Proof: Let S be the probability space with probability measure Pr{ -} for the joint distribution
of the ¥;’s. Define S; c S to be the subregion where Y; > a, but Y}, < a, for h < 2. Then the S;’s are
disjoint and

Pr{maxY; > a} = Pr{Ul 5,
by definition of the S;. There follows:
aPr{maxY; > a} = aPr{U’_,5;},
1<n
<Y [ Y.
~ /s
< Z/ E[Y, | Y1,Y2,...,Y;]dP since Y is a submartingale,
—~ /s;
< Z/ YndP since S; is completely defined by the behavior of Y7,.... Y],
;75
g/ Yn.dP since the S; are disjoint,
USi
g/ Yp,dP since Y, is non-negative. |
S
Finally, let X; = 2+ 2544 ; be a martingale. This is equivalent to the requirement that E[z; |
X1,Xo,...,X;_1] =0. We now show that for any real \, ¥; = e*i is a non-negative submartingale.
We must verify that E[Y; | Y7,Y5,...,Y;_1] > Y, ;.
ED/Z | }/17}/27 . '7}/;—1] = E[)/;—le)\zi | }/17}/27 . '7}/;—1]
= }/i—lE[e)\zi | }/17 }/27 LR Y;—l]
> Y;_IGE[AzZ»|Y1,Y2,...,YZ»_1] S R
where the inequality follows from Jensen’s inequality and the convexity of eA®.
Consequently, Doob’s submartingale theorem can be used to attain Hoeffding bounds for martin-

gales, and

Pr{maxX; > a} < e ME[eMn],
1<n
as claimed in Section 6.1. |
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The partitioning technique via disjoint 5; originates with Kolmogorov, who used it to derive a second
moment version of the theorem for the partial sums of independent random variables with mean zero

[Ko-28].
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