SOME RESULTS ON OVERLAPPING SCHWARZ METHODS FOR
THE HELMHOLTZ EQUATION EMPLOYING PERFECTLY
MATCHED LAYERS
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Abstract. In this paper, we build a class of overlapping Schwarz preconditioners for a finite
element approximation of the Helmholtz equation in two dimensions. Perfectly Matched Layers are
employed to build the local problems and two kinds of boundary conditions are employed to match
the local solutions. Numerical results are presented to compare the different preconditioners.

1. Introduction. In recent years, a considerable effort has been devoted to the
the study of preconditioners for scalar and vector Helmholtz equations; see [9, 10, 5, 14].
The standard preconditioners employed for elliptic, positive-definite problems (see
[17]) are not effective for propagation problems and new classes of preconditioners
have been introduced.

Given a partial differential equation on a bounded domain €2, a domain decompo-

sition method for its solution can be outlined in the following way:
Partition the domain into subdomains, solve local problems on the subdomains and
connect the local solutions by imposing the continuity of suitable quantities defined
on the local boundaries, in order to obtain a global solution on €. More precisely, an
iteration scheme can be obtained, in which, at each step, local problems are solved
on the subdomains, in sequence or in parallel, with boundary conditions determined
by the solution at the previous steps. The whole procedure can then be employed to
build a preconditioner to be used with a Krylov—type accelerator; see [17] for a more
detailed discussion.

The characteristics of the method depend on

e the equation solved in the subdomains (either the original or a modified one);
e the way in which the local solutions are matched across the subdomain bound-
aries;
e the partition of Q (with or without overlap).
In this paper, we show that, by modifying the equation for the local solvers using
Perfectly Matched Layers (PMLs), faster convergence can be achieved.

Our model problem is a scalar Helmholtz problem with a first-order Sommerfeld
condition. We consider an overlapping partition of the domain © and employ PMLs
when building the local problems. PMLs are only employed for the local solvers that
form a component of the preconditioner, and a modified equation is, then, solved on
the subdomains. In order to connect the local solutions, one imposes the continuity
of pointwise values or fluxes, giving rise to Dirichlet and Robin—type local problems,
respectively. The use of a coarse solver is also considered.

Our work has been inspired by [5], where some variants of overlapping Schwarz
preconditioners are studied.

In the next section, we introduce our model problem. In Section 3, we recall some
properties of a class of PMLs, and in Section 4, we build the Schwarz preconditioners.
In Section 5, we present some numerical results and compare the different variants.
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2. Model problem. Let Q C IR? be a bounded connected polygon. We consider
the following Helmholtz problem for the complex—valued function u:

(1) Pu)=-Au—ku=f inQ
2 a—u—i—iku:O, on 09,

0

n

where the frequency k is positive and the source f has support contained in €.

Equation (1) is obtained from the full 3D Maxwell’s equations for time-harmonic
fields, when considering waves with the electric and magnetic fields, respectively, par-
allel and perpendicular to the xy—plane (TM waves). Then, (1) is the equation for the
z-component of the magnetic field. The time dependence of the field is assumed to be
et where i = \/—1, w is related to k by w = ck and c is the speed of light of the
medium. The Sommerfeld condition (2) is derived from the first—order Silver—Muller
condition; see [15].

We then consider a triangulation 73 of 2, made of quadrilaterals, and the standard
bilinear finite element (FE) space Vj, C H'(Q). Triangular linear FE spaces could also
be employed; see [16]. The FE approximation of equations (1) and (2) amounts to
finding u € V},, such that

(3) b(u,v) = / fvdedy, VYveVy,
Q
where

b(u,v) = / (grad - grad v — k*uv) dedy — zk/ uv ds.
Q aQ
For a study of the well-posedness, stability and accuracy of Problem (3), see [12, 13,
11]. In particular, we recall that the following stability estimate holds for a domain €2
with unit diameter

|“|H1 <Ck |f|H—1 )

for the FE solution u, if kh < 1; see [12]. Additional restrictions on h are required for
the accuracy of the FE solution. As is well-known, a restriction on kh requires that
there are enough discretization points per wavelength. If the wavelength is defined as
A = 27/k, the number of points per wavelength, ppw, is

_ 2
PP =

3. Perfectly Matched Layers. Electromagnetic scattering problems generally
involve one or more objects and an incident electromagnetic wave. The presence of the
objects gives rise to a scattered field. In order to find an approximation of the scattered
wave, the scatterers are generally enclosed in a bounded computational domain, and
Maxwell’s equations are approximated inside it. The field outside D must also be
modeled suitably. Typically, incident waves on 9D must be completely transmitted,
or reflected as little as possible.

The idea underlying a PML, is to surround the domain D by a layer of absorbing
material Dy, of thickness d, such that:

e there is no reflection at the boundary between D and Dy, or, equivalently, the
two media have the same dielectric and magnetic constants,
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e the electromagnetic wave is damped when traveling in the layer.
Homogeneous Dirichlet, Neumann or Sommerfeld-type conditions are enforced on the
outside boundary of the layers.

In two dimensions, the domain D is normally a rectangle. In practice, the original
form of Maxwell’s equations is either changed by splitting one or more field components
(see [3, 4]), or is preserved. In the latter case, damping terms are added to the
equations and absorption properties are derived either by physical (see [18]), or pure
mathematical considerations, (see [2, 1]). We note that PMLs can be extended to
curvilinear coordinates; see [8]. See also [8] for a discussion of practical issues of
PMLs.

In our analysis, we will choose to work with the PMLs described in [18]. Let D
be the unit square. We extend D in each direction, by surrounding it by a layer Dy
of thickness d, and obtain a square of side 1 + 2d. Layers parallel to the x and y axis
will be referred to, respectively, as PM L, and PM L, edges, while the intersections
between PM L, and PM L, edges are called PM L, corners.

The scattered field u satisfies the modified Helmholtz equation

(4) Pd(u) =F, in DU Dy,
where the operator Py(u) is defined by

_Au — k2u7 lIl D
(5) Pa(u) = { —div (A grad u) — k%a,u, in Dy.

Here A = diag{az(z,y), ay(z,y)} and a,(z,y) are suitable functions, and F describes
the sources, as well as non-homogeneous conditions on the scatterers. Just as (1),
equation (4) gives the z-component of the magnetic field of a TM wave.

The absorption coefficients are defined by

w; in PML; edges,

Ay = Wy, in PM L, edges,
Wy/wy, at PM Ly, corners,

Wy, in PM L, edges,
Ay =< w in PM L, edges,
Wy /wy, at PM Ly, corners,

W, in PM L, edges,
a, = Wy, in PM L, edges,
wg wy, at PM Ly, corners.

The functions w, and wy describe the absorption in the PM L, and PM L, edges,

respectively. They are complex and equal to one at the boundary between D and Djy.
In [18], they are chosen as

(6) wp(z) = 1% (g)m wy(y) =1-i2 (%)m

In our experiments, we have also considered absorption coefficients that are inde-
pendent of the frequency

x

(7) we(z) =1 —ia (E)m, wy(y) =1 — ta (%)m
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In the following, absorption given by (6) and (7) will be called, respectively, variable
and constant, referring to its dependence on k. See [8] for a detailed discussion of the
form of the absorption coefficients. We remark that the characteristics of the layer are
determined by the thickness d, the coefficients oy or «, and the exponent m > 0.

4. Schwarz methods. In the following, we suppose, for simplicity, that the do-
main Q is a rectangle and the triangulation 7, is uniform. We want to build a pre-
conditioner for Equation (3), and consider an overlapping decomposition, built in the
following way:

We first consider a decomposition of the rectangle € into M nonoverlapping rect-
angles. We, then, extend each rectangle and let §ph be the thickness of the extended
part. We further extend the subdomains, by putting PMLs around them, with thick-
ness d = 1 h, and obtain a family of overlapping subdomains {€2/}. The decomposition
is thus

Q=uM Q.

Each local subproblem is thus a Helmholtz problem with PMLs, given by the operator
P; defined in (5). The total overlap ovl is given by

(8) ovl = ((50 +5L)h250h+d

We obtain different preconditioners, by choosing different boundary conditions for the
local problems. We consider Dirichlet conditions (Algorithm 1L) and Sommerfeld
conditions (Algorithm 2L). We define the following linear iterations. We start with an
initial vector u®. A full iteration step is performed through M fractional steps, where
u"+37 is the solution of the following problem on the subdomain Q;», j=1,---, M:

e Algorithm 1L (Dirichlet 4+ Layers)

©) Py <u7+ﬁ - u""'%) =f-P (u""'%) ,in Qf,
ntin nt i on 09

u; = Uy M, -

e Algorithm 2L (Sommerfeld + Layers)

nt 4 iz1 iz1 .
Pd<uj M—u""’M):f—P(u”"’M), in Q7
(10) 5 n+% P n+j]\—/[1 i1
u; . n+s7 du . nti—
7 _ M _ __ out _ M !
o — ik = ——gut— —iku,, M, on Q.

Here n;,;: and n,,; are the outward and inward normal vectors to 89}, respectively.

-1
The function UZJ;T is the iterate at step n + %, defined in Q\ Q7.

In the definition of the fractional steps (9) and (10), we have chosen to solve
the local problems in sequence and obtained multiplicative algorithms, but additive
algorithms can also be considered. We have also chosen to update the solution at
step n + j/M on the whole ﬁ;, but restricted algorithms can also be considered. In
practice, it may be convenient to color the subregions {Q}} using different colors for
subregions that intersect. The original decomposition is then partitioned into sets of
subregions with the same color, reducing the number of subregions, and consequently
the fractional steps. These basic iterations can be employed to build preconditioners
to be combined with a Krylov—type accelerator. A coarse solver can also be added in
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a standard way, by using the FE discretization of Equation (3) on a coarse mesh Ty,
H > h. See [17] for a general discussion of these issues and [6] for an introduction to
restricted Schwarz preconditioners.

We note that the corresponding algorithms with no absorption (@ = 0) have
already been studied: see Algorithms 1 and 2 in [5].

5. Numerical results. In this section, we compare the performance of the two
algorithms introduced in the previous section, when varying the overlap, the number
of subregions and the diameter of the coarse mesh.

We can make the following preliminary remarks; the supporting results are not
shown here.

e Multiplicative algorithms give far better performances than standard and re-
stricted additive ones. Therefore, we will only present results for multiplica-
tive preconditioners.

e For a fixed value of the overlap (see (8)), the best performance is achieved
when §y = 0, i.e., when the whole overlapping region is a PML:

ovl =drh = dh.

Therefore, in the following, we will always assume dg = 0.
e As far as the convergence of the preconditioner is concerned, constant absorp-
tion gives faster convergence than the variable one (see Section 3). Therefore,
in the following, we will only consider absorption coefficients given by (7),
with m = 2.
In the following, we will denote by overlap both the integer d and the length
ovl = dh, where there is no ambiguity.
Experience in overlapping preconditioners for Helmholtz problems, has shown that
an important parameter that determines the convergence rate is the wavelap; see [5].
It is defined as the fraction of a wavelength that is covered by the overlap:

wilp = X ppw
We summarize the parameters we use:
n Number of discretization nodes in each direction.
h Step-size, equal to 1/(n — 1).
nsub Number of subdomains in the z and y direction (the total number of subdo-
mains is nsub?).
ne Number of discretization steps in each direction for the coarse mesh.
Number of layers of elements that are added to the nonoverlapping subdo-
mains, to produce the overlapping ones (ovl = §h).
ppw Number of mesh points per wavelength.
wlp Wavelap.
a Absorption coefficient; see Equation (7).
Our numerical results are obtained with Matlab. GMRES acceleration and right pre-
conditioning is employed, with restart equal to 40, a maximum number of iterations
equal to 70 and a reduction of the relative residual of the preconditioned system, by a
factor of 107°. We have taken Q = (0, 1)
The first set of tables (Table 1 for Algorithm 1L and Table 2 for Algorithm 2L)
shows the dependence of the number of iterations on the absorption coefficient and on
the overlap §, when ppw and nsub are fixed and no coarse space is used.
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TABLE 1
Algorithm 1L: number of GMRES iterations, versus 6 and a; n = 33, ppw = 10, k = 20.7,
nsub = 2, nc = 0.

L [ 1 [2[3]4[5]6]
a=0 [19]20]26]18]23]2I
a=05 17|14 14|12 11|11
a=1 |15 |12 [11][10] 909
a=32 [13|11[10]9 938
a=3 [13|11[10]9 95
a=4 |13 |11 [10][10] 9|9
a=5 |13 |11 |11 |11 |10]10

TABLE 2
Algorithm 2L: number of GMRES iterations, versus 6 and a; n = 33, ppw = 10, k = 20.7,
nsub = 2, nc = 0.

L [ 1[2]3[4[5]6]
a=0 [12]10]10]9[9]9
0=025|11[10] 9 |9 |89
a=05 |11 9|8 |8 7|7
=075 11| 9 |8 |9 |83
a=1 |11 8|9 |8 8|7
a=2 |10 9|9 |8 8|3
a=4 |11 [10]10|10]9]8

For a fixed value of the overlap, the number of iterations initially decreases, reaches
a minimum and then starts increasing with the absorption coefficient, consistent with
the fact that too much absorption makes the local problems unstable (see [8]) and
that the standard theory for Schwarz preconditioners for indefinite problems requires
that the local problems be stable to ensure fast convergence (see [7]). We also remark
that in Algorithm 1L, without absorption, the local problems may not be solvable or
unstable 1n practice.

For the two methods, an optimal range of values of the absorption coefficient «
has been found, which is fairly insensitive to the frequency, the number of points per
wavelength, the number of subregions and the diameter of the coarse triangulation.
We have chosen a = 2.0 for Algorithm 1L and a = 0.75 for Algorithm 2L.

As expected, the number of iterations decreases if the overlap increases. Algo-
rithm 2L gives better performances than Algorithm 1L for moderate values of the
overlap. When 4 is large, the two methods give comparable numbers of iterations.

The second set of tables shows the dependence on ppw (or n, equivalently), the
overlap and the number of subregions, for a fixed value of the frequency and no coarse
space; see Table 3 for ppw = 10.1 and Table 4 for ppw = 13.5. The tables show results
for Algorithm 1L with o = 2.0, Algorithm 2L with a = 0.75 and Algorithm 2L with
a=0.

As expected, without a coarse space and for a fixed §, the number of iterations
increases with the number of subregions. By comparing the results for Algorithm 2L,
one can see that the increase is larger if no absorption is present. We also remark that
Sommerfeld boundary conditions for the local problems ensure faster convergence; see
also [5]. In this case, results for @ > 0 are somewhat better than those for e = 0 for

6



TABLE 3
Number of GMRES iterations, versus § (wlp) and nsub; n = 121, ppw = 10.1, k = 75, nc = 0;
first rows for Algorithm 1L with o = 2.0, second rows for Algorithm 2L with oo = 0.75 and third
rows for Algorithm 2L with a = 0.

) 1 2 3 4 5 6

wavelap 0.10 | 0.20 | 0.30 | 0.39 | 0.49 | 0.59
nsub =4 | >70 | 37 29 27 26 25
21 20 18 18 17 17
24 19 19 20 18 21
nsub =5 | >70 | 44 32 29 28 26
25 22 21 20 19 18
28 22 23 23 23 26
nsub =8 | >70 | 61 43 36 33 31
35 31 28 27 26 23
41 34 38 48 44 | >70

TABLE 4
Number of GMRES iterations, versus § (wlp) and nsub; n = 161, ppw = 13.5, k = 75, nc = 0;
first rows for Algorithm 1L with a = 2.0, second rows for Algorithm 2L with o = 0.75 and third
rows for Algorithm 2L with o = 0.

) 1 2 3 4 5 6

wavelap 0.07 | 0.15 ] 0.22 | 0.30 | 0.37 | 0.44
nsub =4 | >70 | 48 33 28 28 27
26 21 20 19 19 19
56 21 20 21 22 22
nsub =5 | >70 | 64 40 32 30 28
29 24 22 22 21 20
>70 | 25 24 25 27 27
nsub =8 | >70 | >70 | 53 43 39 36
42 33 32 31 30 29
>70 | 38 37 42 65 65

a few subregions, and considerably better for many subregions. In particular, some
absorption ensures a steady decrease of the number of iterations when the overlap is
increased.

By comparing Tables 3 and 4, one can see that, for a fixed number of subregions,
a constant value of the wavelap gives comparable numbers of iterations. This shows
the importance of this parameter in the analysis of overlapping methods for Helmholtz
problems. This has already been pointed out in [5, 14] for other Schwarz algorithms.

Tables 5 and 6 show the results when a coarse space is added. For a fixed value
of ppw and nsub, they show the number of iterations when varying the wavelap and
the size of the coarse space, for different values of the frequency. Results are given
for Algorithm 1L with o = 2.0, Algorithm 2L with a = 0.75 and Algorithm 2L with
a=0.

We observe an initial deterioration of the performances when a very coarse space
is added, but note a considerable improvement, when the number of coarse points per
wavelength (eppw) is sufficiently large (greater than or equal to 4).

As for Tables 3 and 4, we remark that for Algorithm 2L, some absorption ensures
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TABLE 5
Number of GMRES iterations, versus § (wlp) and nc; ppw = 20, nsub = 8, n = 121, k = 38;
first rows for Algorithm 1L with o = 2.0, second rows for Algorithm 2L with oo = 0.75 and third
rows for Algorithm 2L with o = 0.

) 1 2 3 4 5 6
wavelap 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30
nc =10 >70 | >70 | >70 | 58 51 49

cppw = 0.0 | 68 55 43 39 41 47
>70 | >70 | 52 47 52 | >70
nc =8 >70 | >70 | >70 | 61 52 45
cppw = 1.3 | >70 | 56 42 38 38 42
>70 | >70 | 51 45 52 85
nc = 16 >70 | >70 | 61 44 42 40
cppw = 2.6 | >70 | 63 44 46 52 68
>70 | >70 | 51 55 | >70 | >70
nc = 24 30 31 28 27 25 24
cppw = 4.0 | 51 28 24 22 22 22
>70 | >70 | 27 24 25 53
nc = 32 25 25 24 23 23 21
cppw = 5.3 | 43 21 18 19 19 21
>70 | 43 18 18 27 33

better performances. We also remark that, for a fixed value of the wavelap and the
number of coarse points per wavelength, the number of iterations increases with the
frequency.

We conclude with some remarks.

We do not show any results for Algorithm 1L with @ = 0. This case was considered
in [5] and it performs very poorly. From the numerical results, we can deduce that,
in general, adding PMLs to the local problems, improves the performance of Schwarz
methods for Helmholtz equations.

The key parameters of the algorithms are the wavelap for the one-level algorithms
and the wavelap, the number of coarse points per wavelengths, and the frequency, for
the two—level algorithms.

The methods developed in this paper can be easily generalized to the full Maxwell’s
equations, using the theory of PMLs developed in [18] for the three—-dimensional case
and results are forthcoming.
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