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each of dimension 10. The matrix By was set to the identity matrix and the
matrices Ay, ..., A1s and By, ..., Bys were generated using the Matlab ran-
dom number generator, and symmetrizing. The matrices By, ..., Bi; were
then scaled by a factor 0.05 in order to ensure the existence of a reasonable-
sized domain with B(xz) > 0. All parameters have the same values as in the
previous example. The vector x is initialized with a random vector. The
results are given in Tables 3 and 4. The hybrid algorithm attempted to
switch to the local scheme at the thirteenth step since ||d*?|| < k. The step
was rejected, however, because it failed to achieve a reduction of Ap... The
operation count for v = 13 is the sum of the cost of one local step and one
iteration of the method of centers. The same phenomenon occurred at the
fourteenth step. The algorithm switched permanently to the local scheme
at the fifteenth step and quadratic convergence was established. The last
line indicates the limits of double precision computation. (The data for this
example is available from the authors.)

The multiplicity of Apax at the computed solution z* is 6, with block
multiplicities 1, 2 and 3. The hybrid algorithm reduces the gap between
A1 and Ag to 3.3 x 107!, while the method of centers reduces the gap to
1.4 x 107°. The final dual matrix U has block dimensions (1,2,3), sat-
isfies (7) and (9) to machine precision, and has eigenvalues 0.195 (first
block), 0.074, 0.126 (second block), and 0.002, 0.244, and 0.359 (third
block), demonstrating that (8) is also satisfied.

7 Conclusion

We have presented an algorithm for the optimization of the maximum eigen-
value of a symmetric definite pencil depending affinely on a vector of pa-
rameters. The algorithm combines a scheme based on the method of centers
developed by Boyd and El Ghaoui [1] and a new local scheme exhibiting
quadratically convergent behavior. The local scheme is an extension of the
methods introduced in [10,11,12] to the case of matrix pencils.
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T ] . [ lldll__ [Mflops [N ]
1 | 0.7989467570479351 2.889803 41.0 9
13 | 0.3073787506822123 | 6.222999e-03 | 40.9 9
14 | 0.3073365132846426 | 4.171214e-03 | 40.9 9
15 | 0.3073153048002088 | 2.824038e-03 | 40.9 9
16 | 0.3073045769895835 | 1.916467e-03 | 40.9 9
17 | 0.3072991033588865 | 1.290257e-03 | 40.9 9
18 | 0.3072962829954534 | 8.516237e-04 | 40.9 9
19 | 0.3072948149058472 | 5.446555e-04 | 40.9 9
20 | 0.3072940435712944 | 3.348214e-04 | 40.9 9
21 | 0.3072936352938653 | 1.976833e-04 | 40.9 9
22 | 0.3072934180681651 | 1.127953e-04 | 40.9 9
23 | 0.3072933021081565 | 6.278650e-05 | 40.9 9
24 | 0.3072932400776711 | 3.439867e-05 | 40.9 9

Table 4: Method of Centers

the global algorithm finds the neighborhood of the solution very reliably,
while the use of the local algorithm, once in the neighborhood of the so-
lution, rapidly locates the solution to full precision. Note, specifically, the
quadratic convergence of ||d|| to zero once the local scheme is in effect. The
eigenvalue A\p.x has block multiplicities 1, 0, 0, 1 at the computed solu-
tion z*. The hybrid algorithm reduces the gap between A\;(2*) and Az(z*)
to 1.4 x 107'%, while the method of centers reduces it only to 5.4 x 1077,
The dual matrix U has block dimensions (1,0,0,1), corresponding to the
multiplicity of A\pax, and is computed by the hybrid algorithm in Step 3
of the local scheme. Its final value is found to be Diag(.583,.417) (to 3
digits), verifying that the optimality condition (8) is satisfied. Optimality
conditions (7), (9) hold to machine precision.

The second example provides a better test of the new algorithm, since
Amax(2*) has block multiplicities greater than one. There are fifteen vari-
ables and the matrices A(x) and B(x) are block diagonal with three blocks,
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T ] . [ lldll__ [Mflops [N ]
1 | 0.7989467570479351 2.889803 41.0 9
2 1 0.5279030947496347 1.161417 41.0 9
3 | 0.4096247700327728 | 5.185782e-01 | 41.0 9
4 | 0.3564700009737637 | 2.556177e-01 | 41.0 9
5 | 0.3313368545063169 | 1.409038e-01 | 40.9 9
6 | 0.3190742531948093 | 8.384906e-02 | 40.9 9
7 1 0.3130620662624993 | 5.438315e-02 | 40.9 9
8 | 0.3101212297584327 | 3.939520e-02 | 40.9 9
9 | 0.3086835410941962 | 2.939005e-02 | 40.9 9
10 | 0.3079797136097306 | 2.094047e-02 | 40.9 9
11 | 0.3076340074134891 | 1.419033e-02 | 40.9 9
12 | 0.3074633984606852 | 9.392075e-03 | 40.9 9
13 | 0.3073787506822123 | 6.222999¢-03 | 46.3 9
14 | 0.3073365132846426 | 4.171214e-03 | 46.3 9
15 | 0.3072932213520559 | 8.185445e-03 5.7 0
16 | 0.3072931684710006 | 3.461869e-05 5.7 0
17 | 0.3072931684689409 | 1.382263e-09 5.7 0
18 | 0.3072931684689404 | 2.081514e-15 5.7 0

Table 3: Hybrid

method of centers alone. In both cases the results use our implementation
of the method of centers, as described in [1]. The number N denotes the
number of Newton steps required by the inner iteration which computes
the analytic center. This is zero once the hybrid algorithm has switched
to the local scheme. The expression ||d|| refers to the norm of z**! — z*.
The hybrid algorithm terminates when [|d|| < 107!°. In the case of Table 2,
the stopping criterion is p — Amax(Z) < 1071 The Mflops column displays
the number of floating point operations required, in millions. The large
number of operations reflects the fact that the inner iteration required by
the method of centers is being performed accurately; this number could

undoubtedly be reduced. The significant point, however, is the following:
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6 Numerical Results

We now present some numerical results. The algorithms were implemented

in Matlab.

H v ‘ Amax ‘ ||| ‘ Mflops ‘ N H
1 | 2.56696348918400 | 2.937e-01 | 1.20 | 7
2 11.65996563727620 | 1.597e-01 | 1.54 | 9
3 | 1.08305393696925 | 1.002e-01 | 1.54 | 9
4 10.75949101184420 | 8.061e-02 | 1.54 | 9
5 1 0.66424777849618 | 6.591e-02 | 1.37 | 8
6 | 0.66109151988020 | 3.149e-02 | 1.18 | 7
7 1 0.66063603170038 | 2.594e-03 | 1.19 | 7
8 1 0.66055966458506 | 1.785e-03 | 0.14 | 0
9 | 0.66055960982024 | 1.358e-06 | 0.14 | 0
10 | 0.66055960981957 | 5.684e-11 | 0.14 | 0

Table 1: Hybrid

[ v ] Amas [ lldll [ Mflops [N |
1 | 2.56696348918400 | 2.937e-01 | 1.20 | 7
7 1 0.66063603170038 | 2.594e-03 | 1.19 | 7
8 | 0.66057058873535 | 4.167e-04 | 1.19 | 7
9 10.66056118766552 | 5.915e-05 | 1.19 | 7
10 | 0.66055983654089 | 1.960e-05 | 1.36 | 8

Table 2: Method of Centers

We first consider the example presented in [1]. The matrices A(x) and

B(z) are block diagonal with four blocks of dimension 4. There are nine
variables. We set p = 0.0001, z4,, = 50, 0 = 0.001. The threshold value &,
determining when to attempt to switch to the local algorithm, is set to 0.01.
The vector x is initialized to (1,1,1,0,0,0,0,0,0). The results of the hybrid

algorithm are given in Table 1 while Table 2 contains the output from the
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Observe that no line search is performed. If the new iterate fails to
produce a reduction of An.x, the step d is rejected altogether, and a new
step i1s computed using the method of centers. This is discussed further in
the next section.

5 The Global Algorithm

The global algorithm is a two-stage process. In the first stage, a sequence of
iterates x” is computed using the method of centers (Boyd and El Ghaoui

v+l _ 2% is reduced below a certain threshold.

[1]) until the norm of the step
In the second stage, we proceed as follows. First, we compute a step d”
by solving the quadratic problem described in the previous section. If
the point «¥ + d is feasible, i.e. B(z” + d”) > 0, and if d” is such that
Amax(2” + d”) < Amax(2”), then we set "' = ¥ 4+ d”. Otherwise, 2" is
computed via the method of centers.

The algorithm of Boyd and El Ghaoui is thoroughly discussed in [1], so
we sketch only the basic step. Consider the matrix inequality C(z) > 0

where C(x) is the block diagonal matrix
C(z) = (pB(x)—A(z)) ©(B(2) = pI)®(2sup I —Diag(x)) @ (zsup I +Diag(z)).

Here p is a small constant used to ensure that B(z) remains in the interior
of the positive definite cone, while zg,, is a large constant used to ensure
that @ remains bounded. For a fixed p let 2*(p) denote the analytic center
of the inequality C(z) > 0. Now for p” and z¥ with C(z") > 0 let

and
pu-l-l — (1 o O-)Amax(xy) + 0_101/7

where 0 < o < 1 is a parameter kept fixed throughout the algorithm.
The analytic center is computed via Newton’s method applied to the log-
arithmic barrier function logdet C~*(z), using an exact line search for the
computation of the step length.
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Step 0. Initialize .

Step 1. Compute A(Z), B(&), the Choleski factor G(Z ), the multiplicity
estimate ¢, the eigenvalues Apax(2) and the eigenvectors Qumax(Z).

Step 2. Compute the matrix K and the vector h from (18) and compute
the QR-factorization of K7, which is used in the implementation of
the next two steps.

Step 3. Compute an estimate U = Ul @ ... D U! of the dual matrix. This
is done by computing the least square solution v to the equation

KTv = e,

where e; = (1,0,...,0) € R™*!. Note that the estimate from the
previous iterate is useless because the basis of eigenvectors may have
rotated an arbitrary amount. The vector v has dimension

ti(t; +1)

!
2

and can be assembled into the matrix U. Compute the eigenvalues of
U. If U has a negative eigenvalue, split the maximum eigenvalue as
explained in theorem 2 and go to step 5.

Step 4. Use the dual matrix estimate U to compute the matrix W and
solve the quadratic program (17), (18) to obtain a step d. If ||CZ|| <1,
a second order correction is computed to avoid the Maratos effect (see
[4]). This is unnecessary in most cases but the cost is negligible.

Step 5. If ||a?|| is less than a certain convergence tolerance, stop; otherwise,
set £ = & 4 d, and go to step 1.

Given a nonsingularity condition, the iteration just described is lo-
cally quadratically convergent to a minimizer of Apax(z). This property
is demonstrated by the numerical results in Section 6. Proving this asser-
tion requires extension of the results in [12] and is beyond the scope of this

paper.
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where:
1. H) ;= M, + M with
M, =—-Q 'L (GHY'QI Al

max = pg max max

2. H. , = M, + M] with
_ T 1 AicAN-T ¢ 7\T AJ
M = — Qi Li(G) T A(G) (L)' Q,

max~— p max

3. H!

P33 —

Ms + JMT with
_ T T
1‘4-3 — _Q] LJ(G]) IZ] max Qinath]](Gj) IZ]

max-——p max

4. Hpq4 = My + M} with My =0 if t; = n;, and otherwise
*7\4—4 = Q] TZ] i‘est( ])_ Qieg;Z] J

max— p max’?

where

S7 = Diag(Amax — AL, 415+« + 5 Amax — A%, )-
Observe that the computation of M, seems to require explicit knowledge
of all the eigenvalues and eigenvectors of (A7, B?) rather than just the first
. However, a clever obselvation of Xianjian Ye [13] allows us to compute
JL using only AmaX and Q)

max"*

T = Amax B — A7 + BIQ?. Q)T B

max

Then the term Qrest( 7)1 .2 in My is given by
rest( ) Qrest - ( ) mameax

Hence all references to Qrest and AreSt can be eliminated from the equations
for H;q.

Remark: In the case B(z) = I and A(z) is affine there is only one term
contributing to the Hessian, namely H,, 4 with Zp and 2q replaced by Ap
and Aq respectively [10,12]. The reason is that the second derivatives of
A(z) are identically zero. In the case of an affine pencil, however, the
second derivatives of A(z) and B(x) are zero, of course, but those of the
Choleski factor G(z) are not. Indeed, they are the matrices L;;(z). Hence
the terms H,,1, H,y 2, and H,, 3.

We now describe our implementation of the local algorithm.
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skew-symmetric, and it follows that (z,Y,w, 8) solves (18) if and only if the
pencil (47(z), B’(z)) has eigenvalues

(w,...,w,eiﬁl,...,eij).
t]
In the case t; = 0, the latter condition is an empty one, indicating that

the block F’ can be omitted from F in this case. The idea of replacing the
nondifferentiable constraints (16) by an equation of the form (18) based on a
matrix exponential formulation goes back to [6]. Indeed, consider the case
where the number of variables and constraints in the quadratic program
(11), (12) are the same, i.e. K is square, or equivalently, the quantity in
(13) equals m + 1. Then, provided K is nonsingular, the solution of the
quadratic program is completely defined by the constraint (12). In the
case that B(x) = I, this essentially reduces to the step defined by Modified
Method I'in [6], the only difference being that in [6], the multiple eigenvalue
Amax 18 prescribed. This iteration can be viewed as a variation on Newton’s
method for solving (18), but the analysis is somewhat complicated because
(a) the definition of F, which depends on Q, changes at every step of the
iteration and (b) it is necessary to remove the leading ¢; by ¢; block of the
variables Y7 from the formulation of F, in order to obtain a well posed
iteration, leading to a sequence of nonlinear equations which are solvable
only in the limit. Further details are available in [6], [12].

The matrix W is derived from the Hessian of the Lagrangian function
associated with the nonlinear program (17), (18), evaluated at = = Z,
w = /\max, Y/ = 0, and @7 = Aiest A detailed discussion in the case
B(z) = I is given in [12]. Specifically, W is an m x m symmetric matrix
whose (p, g)-entry is given by

l
=X ()

where ng is a symmetric t; X t; matrix computed as follows. It is empty

if t; = 0. Otherwise let Gl = G7(2) be the Choleski factor of B/(%), let j};
denote the matrix defined by (2) for the block B’(#) and similarly j}%q for
the matrix defined by (4). Finally write Z; = Z](x). Then

Hzgq = H;qJ + szq,i) + H;qﬁ + H)

g4

13



subject to

Ma)=...=X(1)=w, 1<j<L (16)

The objective function is now a smooth function of x and w, but the con-
straints, of course, are not. We replace these nondifferentiable constraints
with a system of nonlinear equations to get the following nonlinear program:

min  w (17)
subject to
F(z,Y,w,0) =0, (18)

where F(z,Y,w, ) is a block diagonal symmetric nx n matrix
F(z,Y,w,0) = FY(2,Y,0,0) 3 ...® F'(z,Y,w,6).
The matrices F’(z,Y,w, §) are defined as follows. The vector 6 is given by

_ 1 1 { {
0= (6" 4pr 866,

We write '
e = Diag((%]_l_l, o8,

b Ty

Let
Y=Y'p...pY!

where Y7 is a skew symmetric n; X n; matrix, and let
D=D'®...6D
with D7 = wl & ©7, where I is the ¢; x t; identity matrix. Then
Fi(a,Y,0,0) = DI — 7 QiT(GF) ™ () 43 (2)( @) T ()@,
where G/ () is the Choleski factor of B7(x) and @7 is the matrix of eigenvec-

tors for the pencil (A%(2), B’(&)). Observe that the definition of F' depends

Y7

on # through (). The matrix exponential ¥’ is orthogonal since Y7 is

12



with U’ empty if t; = 0. If (d,w) is a solution of (11), (12), then the
optimality conditions for quadratic programs give

l
S0, QL (A — M BY) Q) + (Wd): =0, (14)

7=1
for 1 < <m and
!
trU=> trU/ =1, (15)
7=1
Now observe that if the multiplicity tolerance 7 = 0, the vector h is zero
and (12) can be rewritten as

Z d; QUL (Al = NaxBY) Qhp =wI, 1<j <1,

and, since the matrices Q7 L (A! — A\, B/)Qi _ are the diagonal blocks of
the matrix QL (2)(A4i(2) — Amax(#)Bi(2))Qmax(#) of corollary 1, we con-
clude that a solution (d,w) of (12) satisfies

A (3d) =w.

max

If, moreover, (d,w) is a solution of (11) then
Loy
since (0,0) is feasible. But W is positive definite so that

AN o(#:d) < —%dTWd <0.
Hence d 1s a descent direction for Ap.c unless d = 0. But if d = 0 then
(14) and (15) show that all optimality conditions for Anay are satisfied at &
except possibly the nonnegative definite condition on U. If U does have a
negative eigenvalue theorem 2 shows how to obtain a descent direction by
splitting Apax.

We next describe how to compute the matrix W. If the multiplicity ¢
of Apax at the optimal value z* is known, the problem of minimizing Apax
over x can be rewritten as

11



midn w+ %dTWd (11)

](Cg::h, (12)

where w € £ and W is a positive definite matrix that will be described

subject to

below. The matrix K is given by

K!
IX’ - :
K'

where K7 is the matrix

~ .

[VGCI - Vec(@ini(fi{ - XlfﬂaXBe{)C?znax) T VeC(an;Fx(Ain - XHlaxBe?]v'v,)C?znax)]7

with I the identity matrix of size t; x t; and A = Ai(2), Bl = BI(2).
Clearly, K’ is empty if ¢; = 0. The vector h is given by

Bl
h - :
hl
where
h? = vec(Al L. — Amax!)

if t; > 0 and A’ is empty otherwise.

The formulation of the quadratic program can be motivated as follows.
The constraints (12) consist of

zl: tj(tJQ—l_ 1) (13)

scalar constraints. The multipliers of these scalar constraints can be as-
sembled into a block diagonal dual matrix estimate

U=U'g...oU!

10



~

Moy = Amax(Z), Ai = Xi(Z), we order the eigenvalues of each block in
decreasing order, '
N>..>M, 1<)<]

and we define ¢; > 0 by

~

Amax — /A\ij < 7 max(1, |/A\max|)7

and

~ ~ ~

Amax — /\{J_H > 7max(1, [ Amax|)-

We write ' '
Aoy = Diag(Af, ..., A7),

for the diagonal matrix consisting of the first ¢; eigenvalues of the j"*-block.
Ift; =0, AJ__is an empty matrix. Let

Aiest = Diag(X{J+17 R /A\fz])

and

Vo= Ao &

max rest -

Let ) be a matrix whose columns form a complete set of eigenvectors for
the pencil at &. Clearly @) is also block diagonal,

QO=0"a...20"

We now write Qmax for the matrix obtained from Q by discarding all but
the first ¢; eigenvectors of the j* block, for 1 < j < I. It is also block
diagonal, i.e.

A e Al
Qmax = Qinax D...0 Qmax7

where Q] of size n; x t;, corresponds to the j*-block and is empty if

max’?

t; = 0. Finally let Qfest be such that
Q] = [Aznax Aiest]'

The quadratic program that is solved to compute the step d is given as
follows:



Since optimality conditions (7) and (9) are satisfied, this equation reduces
to

5 = 46,
The conclusion follows. |

It is now easy to generate a descent direction for Apax(z) if U is indefi-
nite. Indeed, U has a negative eigenvalue 6 < 0, so choosing 3 negative in
the previous theorem produces d with A/, (z;d) < 0.

max

4 The Local Algorithm

Consider a block diagonal pencil (A(z), B(x)) and let [ denote the number
of blocks. Thus

Alz) = Al(aj) D...8 Al(x), B(z) = Bl(:c) D...8 Bl(:c)

with A'(z), Bi(z) in SR™*™, Bi(z) > 0,for 1 <: <1 Letn=n;+...+n
be the dimension of the pencil and let Ayax(z) denote the largest eigenvalue
of (A(z), B(x)).

We also assume that A(z) and B(z) are affine functions of . Thus

A($) = AO -+ :IflAl + .. .meAm,

and

B($) = BO + IlBl + ... xmBm

Most of the content of this section is still valid for a twice continuously dif-
ferentiable pencil-valued function (A(z), B(x)) with the notable exception
of the computation of the matrix W introduced below.

Given an initial point z° in a neighborhood of a local minimizer z* of
Amax(2 ), we show how to generate a sequence of iterates converging to z*.
Let & denote the current point. The new iterate is set to & + d where d
is the solution of a certain quadratic program. Let ¢t = (¢1,...,%) be the

o = Amax(2), ie. t; > 0 is the multiplicity
of \.. in the block (A7(z*), B/(x*)). Of course, t is not known and needs

max

vector of multiplicities for A*

to be estimated. This is done with the use of a multiplicity tolerance 7,
based on the eigenvalues at the current iterate . More precisely, we write



Now for v € OApax(x) we have

m

(v,d) = Zvjdj

j=1

- i 05 (U, QFe(2) (A5(2) — Aunan(2)B;(2)) Quune(2))

= (0.3 Q) (A5(2) ~ Au(B(2) Q2]

The result follows from equation (1). |

We next discuss how to generate a descent direction for Ayax(z) that
splits the maximum eigenvalue in case we have found a dual matrix U
satisfying all the optimality conditions except (8).

Theorem 2 Let x and U satisfy (7) and (9). Let 8 be an eigenvalue of U
with normalized eigenvector v, and let § € R. Suppose d € R™ and 6 € R
form a solution of the following equation

Z 4 Qrmax(®) (4;(2) = Amax(2)Bj()) Quax(w) — 6 = ov’. (10)

z;d) is given by

max (

o[B8 if >0
A d)_{—ﬁG if B<0

Then the directional derivative N\

Proof: Let us write
Z d; Qma.x ( )_ /\max( ) ( )) Qmax( )

Then equation (10) gives
M(d) =8I + oo™,

so that all the eigenvalues of M(d) are equal to ¢ except one which equals
6+ 3. Thus N|(z;d) = max{6,6 + 3} by corollary 1. Now, taking the inner
product of equation (10) with the matrix U yields

S A (0, QT (2) (A(2) — Aan(2)By(2)) Quuas(2)) — 6t U = 6.

J=1



QuaxZi(2)Qmax = Quax[Aj(2) — Li(2)G ™" (2)A(x)
—A(2)G™" (2) L] (2))Qumax
= Quax4i(2) = Amax(Lj ()G (2)B(2)
+B(2)G™" ()L (2))]Qumax
= Quuax4i(2) = Amax(Lj(2)G" (2) + G(2) L] (2))) Qmax
= Qz]:lax[Aj(:C) - /\maXBj(Jj)]QmaX'
The result follows. |

A necessary condition for x to minimize Apax(2) is that 0 € OApax().
By theorem 1 this can be rewritten as follows. Let ¢t denote the multiplicity
of Amax(2). Then a necessary condition for « to minimize Ayay is that there
exists a dual matrix U € SR such that

trU = 1 (7)
v >0 (8)

and, for 1 <3 <m,
(U, Quuax(®) (4j(2) = Anax(2) Bj()) Quax(x)) = 0 (9)

where Qmax(®) is as in theorem 1.
As a corollary of theorem 1 we compute the directional derivative of

Amax(2).

Corollary 1 Let A, (z;d) denote the directional derivative of Amax i1 the

max
direction d, i.e.

AInax d - Amax
A ax(@;d) = lim (2 + ed) (x)

max Elo €

Then X .(x;d) is equal to the largest eigenvalue of the matriz

max

m

Z: d;QL (@) (Aj(2) — Anax(2)Bj (7)) Quax(2).

Proof: Since Ay is regular at @ the directional derivative A, (x; d) exists

and is given by (see [3, Proposition 2.1.2])
A (z;d) = max{(v,d) | v € Ohmax(2)}.

max



and define Q(z) = G™!(z)P(z).

We are now ready to compute the generalized gradient of Ayax().

Theorem 1 Assume that the multiplicity of Amax(x) is t and let Qmax(®)
be the submatriz of Q(x) whose columns form a complete set of eigenvectors
for Amax(x). Then the generalized gradient of Amax(x) 1 the set

Ohax() = {0 € R™ | 1) = (U, Qpua(#) (A(2) = Aumax(2) B () Qax()) }
(5)
where U runs over all nonnegative definite symmetric t X t matrices with

tr U =1.

Proof: Let C denote an n x n symmetric matrix. The generalized gradient
of the maximum eigenvalue Apax = Amax(C) viewed as a function of C' was
computed in [11]. If the multiplicity of Apax(C) is t and if Ppax is an n x ¢
matrix whose columns form a complete set of orthonormal eigenvectors for

Amax(C') then
Mmax(C) = {V € SR™ |V = PpaxUPL. 1,

where U runs over the ¢t x ¢ symmetric matrices with U > 0 and tr U =
1. We call these matrices dual matrices. The generalized gradient of the
maximum eigenvalue Apay(z) of the symmetric matrix G=!(z)A(z)G~1 (z)
now follows from the chain rule (see [3]). We get

Ohaas() = {0 € R™ | v; = (V.G (2)Z;(2)G" ()} (6)

with V' as above. We have an equality in (6) instead of a mere inclusion
because Apax(®) is a regular function [3]. Indeed, equation (1) expresses
Amax(7) as the maximum over the matrices V of (V,G7!(z)A(z)G~T(2)),
and, for a fixed V', the function

z = (V.G7H(2)A(2)G™ (2)

is differentiable, hence regular (see [3, theorems 2.8.2 and 2.8.6.]). We have
Prax = Pmax(2) and we write Qmay = Qmax(7) = G71(2)Ppax(z). Observe
that

(PmaxUPL

max?

G (2)Zj(2)G™(2)) = (U, PG~ (2) Zj(2)G™" (2) Prnax)-

max

Now the columns of Quax are generalized eigenvectors for Apax = Amax(®)
and we have



3 Optimality Conditions

Consider a symmetric definite pencil valued function (A(z), )) of a vec-

B(x
tor of real parameters x € R”. We assume that A(z) and B(z) are twice
continuously differentiable in « and we write A;(x), B;j(z) for the partial
derivatives of A(z) and B(x) with respect to x;.

Let G(z) denote the Choleski factor of B(x) and let L;(x) denote the
partial derivative of G(x) with respect to x;. Thus L;(x) is the unique

lower triangular matrix that solves the equation

Li(x)G"(2) + G(2)L] (z) = Bj(x). (2)
Moreover, it follows that
567 (0) = 6 L6 o),
and 5
a—%(G_l(”ﬁ)A(JE)G_T(é’?)) =G () Zi(2)G (v),
where the matrix Z;(z) is given by
Zj(x) = Aj(x) — Li(x)G™ (2)A(z) — A(2)G™" (2)L] (). (3)
For future reference, we also define
Li(e) = m(Li(2)). @

Thus L;j(x) is that lower triangular matrix which solves the following equa-
tiomn.

Lij(x)G" (2) + G(2)Lj;(x) = Bij(x) — [Li(x)Lj () + Lj(x)L] (2)]-
Clearly, L;;(z) = Lji(z).

Finally, write
Amax(2) = Ai(x) > ... > Aa(2)
for the eigenvalues of (A(z), B(z)), let P(z) be an orthogonal matrix of
eigenvectors for G71(z)A(z)G T (z), so that

PT(I)G_l(:L’)A(SL’)G_T(I)P(I) = A(z)



that B is positive definite. A symmetric definite pencil (A, B) consists of
a pair of matrices A, B in SR™*" with B > 0.

We write (,) for the Frobenius inner product on the space of n x n
matrices. Thus

(M,N) =tr MTN.
Let “vec” denote the operator mapping SR™™ into R“"+1)/2 defined by

vecA = (an, \/ialg, ceey \/ialn, asy, \/iagg, ceey \/iagn, ass, \/§a34, e 7ann)

for A = (a;;) € SR™". Observe that for two symmetric matrices M and
N we have

(vecM )T (vecN) = (M, N).
Also, let
Cid...0C,

denote the block diagonal matrix with blocks C1, ..., Cy.

Given a symmetric definite pencil (A, B), let G denote the Choleski
factor of B. Hence G is a lower triangular matrix with positive diagonal
entries such that GGT = B. Then the symmetric matrix G™* AG~7T has the
same eigenvalues as the pencil. Let us write Apax = Ay > ... > A, for these
eigenvalues and A for the diagonal matrix

A = Diag(A1, ..., An).

Let pi,ps,...,p, denote a set of orthonormal eigenvectors for G1AG™T,
and let P = [p;...p,] denote the orthogonal matrix with columns p;,
1 <i < n. Then the columns of the matrix Q = G™TP =[G Tpy,...,G Tp,)
are eigenvectors for the pencil. Hence we have

PTG'AGTP=A, PTP=1
and

AQ = BQA, QTBQ =1.

We have the following characterization of Apax [11].

Amax = max{ (U, GTAG™) | U € SR™", tr U =1, U > 0} (1)

In particular, we see that Ana.x 1s a convex function of A; however, it is only
quasiconvex as a function of B [1].



bounds for the structured singular value and the computation of structured
Lyapunov functions [2]. The salient feature of this problem is the lack of
smoothness. Indeed, it is well known that the eigenvalues of a matrix are
not differentiable as functions of the entries of the matrix when their multi-
plicity exceeds one. The optimization process, however, tends to force the
first few eigenvalues to coalesce. Thus standard optimization techniques
cannot be applied.

The special case B = I, that is the problem of minimizing the maximum
eigenvalue of a symmetric matrix A(xz), has been studied extensively (see
[11] and the references therein, as well as [5,8]). The case where B(x)
is constant is entirely similar and is briefly discussed in [11]. Algorithms
have been developed in [1] and [9] to solve the problem when the pencil
depends affinely on the parameter vector, and in [7] for the general case.
The algorithm of Boyd and El Ghaoui in [1] is based on the method of
centers and exhibits very good global behavior but slow local convergence.

We propose a hybrid algorithm, combining the robustness of the method
of centers with rapid local convergence, to efficiently solve the affine case.
More precisely, we propose to follow the path of centers to the vicinity of
a solution and then to switch to a quadratically convergent local scheme.
Such an approach was suggested in [1]. The local algorithm results from
an extension of the work presented in [10,11,12] to a pencil valued function
(A(z), B(z)). The algorithm is implemented so as to take full advantage of a
block diagonal structure, if present. Block diagonal pencils occur frequently
in applications from control theory.

The paper is organized as follows. Some notation and conventions are in-
troduced in Section 2. The generalized gradient and directional derivatives
of the maximum eigenvalue are computed in Section 3 and the optimality
conditions are derived. The local algorithm is described in Section 4, and
the global algorithm in Section 5. In Section 6 we present two numerical
examples.

2 Preliminaries

Let SR™" denote the set of n x n symmetric matrices. For B € SR™*",
the notation B > 0 means that B is nonnegative definite, and B > 0 means
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Abstract

We present an algorithm for the optimization of the maximum
eigenvalue of a symmetric definite pencil depending aflinely on a vec-
tor of parameters. The algorithm uses a hybrid approach, combining
a scheme based on the method of centers, developed by Boyd and
El Ghaoui, with a new quadratically convergent local scheme. A
convenient expression for the generalized gradient of the maximum
eigenvalue of the pencil is also given, expressed in terms of a dual
matrix. The algorithm computes the dual matrix which establishes
the optimality of the computed solution.

1 Introduction

In this paper we consider the problem of minimizing the maximum eigen-
value of a symmetric definite pencil (A(z), B(z)) depending on a vector
parameter * € R™. Many problems arising in control theory can be for-
mulated in these terms. Most notable among these are the computation of
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