DIAGONAL EDGE PRECONDITIONERS
IN p-VERSION AND SPECTRAL ELEMENT METHODS
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Abstract. Domain decomposition preconditioners for high-order Galerkin methods in two di-
mensions are often built from modules associated with the decomposition of the discrete space into
subspaces of functions related to the interior of elements, individual edges, and vertices. The restriction
of the original bilinear form to a particular subspace gives rise to a diagonal block of the precondi-
tioner, and the action of its inverse on a vector has to be evaluated in each iteration. Each block can
be replaced by a preconditioner in order to decrease the cost. Knowledge of the quality of this local
preconditioner can be used directly in a study of the convergence rate of the overall iterative process.

The Schur complement of an edge with respect to the variables interior to two adjacent elements is
considered. The assembly and factorization of this block matrix are potentially expensive, especially
for polynomials of high degree. It is demonstrated that the diagonal preconditioner of one such block
has a condition number that increases approximately linearly with the degree of the polynomials.
Numerical results demonstrate that the actual condition numbers are relatively small.

Key words. p-version finite element, spectral element method, Schur complement, diagonal
preconditioner.

AMS(MOS) subject classifications. 65F35, 65N22, 65N30, 65N35, 65N55

1. Introduction. Polynomials of high degree have been used extensively to ap-
proximate second order elliptic partial differential equations in the plane. Two well-
known discretization schemes are the p-version finite element method [22], and the
spectral element method [12, 13].

In the conforming formulation of these schemes, the domain is partitioned into
a union of elements so that the intersection between two distinct elements is either
empty, one vertex, or a whole edge. In each element, the discretization space consists
of polynomials of degree N; the discrete solution approaches the exact one when N
increases. Previous theoretical and practical work shows that these methods take full
advantage of the regularity of the solution of the partial differential equation; see [2,
3, 10, 13, 22]. The basis of this polynomial space is usually chosen so that it can be
partitioned into sets of functions associated with the interior of the element, individual
edges, or the vertices.

Let the stiffness matrices corresponding to the p-version and spectral element meth-
ods for the homogeneous Dirichlet problem defined in one element be denoted by K,
and K, respectively. Let the usual bases for these methods, which will be described
in Section 2, be used to generate these matrices. Then, the condition numbers satisfy:

(1) k(K,) < N* and k(Ky) =< N?

see [5] and [21]. Here, and in what follows, < means that the ratio of the quantities
being compared is bounded from above and below by constants independent of the
degree N. These conditioning results are even worse for a domain partitioned into
many elements, and they suggest that an unpreconditioned conjugate gradient method
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is likely to require many iterations; this is actually seen in numerical tests. Diagonal
preconditioning of these full matrices has also been used, but the condition number still
increases quadratically with N; see [5, 21].

Many domain decomposition preconditioners can be viewed as block-Jacobi precon-
ditioners after an appropriate change of basis has been made. Each block is determined
by a subspace of the discrete space, and by an exact or inexact solver; see [9]. The
decomposition into subspaces corresponds to the elimination of the coupling between
different sets of basis functions. We note that it has been determined experimentally
that there is a very strong coupling between the interior and the standard interface basis
functions [4]. A block-Jacobi preconditioner that eliminates the problem associated with
this strong coupling has been proposed by Babugka, Craig, Mandel, and Pitkdranta [2]
for the p-version finite element method. A change of basis is performed by computing
the Schur complement with respect to the interior degrees of freedom; the new interface
basis functions are orthogonal to the interior ones. In this new basis, the preconditioner
is built from one block of relatively small dimension associated with a global problem,
one block for each edge of the triangulation into elements, and one block for the interior
of each element; exact solvers are used for all blocks. The condition number of this al-
gorithm is bounded from above by C'(1+log(/N))?; see [2]. This result can be extended
straightforwardly to the spectral element method.

However, for all the implementations that we know of, the Schur complement blocks
associated with the edges are preconditioned by their diagonals; in other words, inexact
solvers are used to totally decouple the edge degrees of freedom. This substantially
reduces the amount of work in constructing and evaluating the action of the precondi-
tioner, because it eliminates the need to assemble and factor the edge Schur complement
blocks, or, alternatively, the need to solve, in each iteration, Dirichlet problems in the
unions of pairs of subregions; see [2, 9]. The use of this diagonal preconditioner has been
found not to increase the condition number of the overall iterative process appreciably,
if at all; see [2, 3, 4, 14]. No theoretical result is derived in [2] to support this particular
variant of the algorithm.

The goal of this paper is to prove that the blocks of the Schur complement associated
with each edge, preconditioned by their diagonal, have condition numbers that grow
approximately linearly with N, both for the p-version and for the spectral element
method; see Theorems 1 and 2.

There are at least two applications of our results: the first immediate consequence
is that, for the algorithm as actually implemented in [2] and [3], the condition number
k grows faster than polylogarithmically in N. In fact, s satisfies

CN(1+log(N)) < & <CN(1+log(N))>.

A very similar estimate holds for the spectral element case. The numerical results
presented here demonstrate that the linear growth predicted by this estimate is present
for large N, but also that the actual condition numbers are relatively small, even for N
on the order of 50; see Figs. 1 and 2.

Many domain decomposition algorithms have also been developed for problems in
three dimensions; see, e.g. [8, 15, 16, 18, 19, 20]. Again, the Schur complement blocks
associated with the faces play a major role. We expect that diagonal preconditioners for
these blocks have to be modified in order to produce reasonable condition numbers. Our
results might be a starting point for deriving efficient (although possibly non-diagonal)
preconditioners for the face blocks.



2. On Polynomials and Trace Norms. Let Q = [-1,+1]?, with the side
[—1,41] x {~1} identified with A = [~1,41]. Let PV (A) be the space of polyno-
mials of degree less than or equal to N, and let P} (A) be the set of polynomials in
PN(A) that vanish at —1 and 1.

The space PN (Q) is given by tensorization of PN (A); analogously, PN (Q) is the
tensor product of PV (A) with itself.

The Legendre polynomial basis {L,,},>0 results from applying the Gram-Schmidt
procedure to the set 1,z,z%,..., and norr_nalizing so that L, (1) = 1. The following
properties are classical, and can be found in [5]:

(2) ((1— xZ)L;(m))’+ n(n+1)L,(z) =0 (n>0),
3) [ = s wo,
(4) [ Lt = (@) - Lisa (@) (02 ).

For each N, the Gauss-Lobatto-Legendre quadrature of order N is denoted by
GLL(N) and satisfies:

1 N
(5 vpe PNW), [ pla)de = 30 p(s
_ =
Here, the quadrature points &; are numbered in increasing order, and are the zeros of
(1 — 2% L] (z). The weights p; are given by:
2

(6) pj:N(N+1)L]2V(£j) (OSJSN)

The GLL(N) quadrature has the following important property:

N

(7) Von € PN(A), lpwllFeeay < D0 pa(E)ps < 3lipnlI72(a)-
7=0

We next describe the basis functions used in the two methods. Following Babuska
and Szabé [22], a polynomial basis for the p-version finite element method on PN (A)
is defined by ¢o(z) = (1 —2)/2, ¢1(z) = (1 4+ z)/2, and

1 z .
" /_lLi_l(t) dt (i>2).

(8) ¢i(x) = =

A p-version polynomial basis for PN (€2) is given by tensorization of this one dimensional
basis.

The basis for the spectral element method on PN (A) is given by {Ej}ﬁ«vzo, the
Lagrange interpolation basis at the GLL points, i.e. £;(&;) = §;;. The spectral element
basis in two dimensions is also given by tensorization of the one dimensional basis.

The remainder of this section describes some Schur complement and trace norm
properties. They are valid for both the p-version and the spectral element method. In
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each case, the basis can be partitioned into two sets of functions. The first is formed
by the basis functions vanishing on J<; these are the interior (i) basis functions. The
others are the boundary (b) basis functions. The Schur complement is defined by
S = Ky — beKglKib, where the subscripts refer to blocks of the stiffness matrix K,
ordered appropriately.

Let w be the restriction of a function of PN (Q) to 09, let w, be the vector of its
boundary degrees of freedom, and let || - [|g1(qy and | - |g1(q) be the standard Sobolev
norm and semi-norm, respectively. We easily ﬁnd that

(9) whSw, = ming|ulfn g = [Hw|h g

where the minimum is taken over all functions u € PN (Q) such that u|sq = w, and
Hw is the function achieving the minimum. It is also easy to see that (w;, w;)" = Hw
satisfies:

Kiw; + Kpwyp = 0.

The first expression of (9) defines a Schur complement symmetric bilinear form that
only depends on the boundary values of the function, and can be estimated in terms of
a trace norm. Let H'/2(99) be the trace space of H'(Q), which can also be defined by
the K-method of interpolation as Hl/z((?Q) = [L?(09), Hl((’)ﬂ)]l/g; see [11]. Then, by
Theorem 7.4 of [2], for any w € PN (Q), there is a u € PV (Q) with v = w on 9%, such
that

(10) [ullm@) < Cllwllgp)-

Throughout the paper, we use the standard convention that ¢ > 0 and C' < oo are
constants independent of V.

The space HégQ(A) is the space of functions v € H'/2(9Q) that vanish outside A,
endowed with the norm ||v| |H1/2(39)' This space is isomorphic to the interpolation space

[L*(A), H5(A)]; /2; see [11]. An equivalent norm for HégQ(A) is given by:

1) = [ [ =gy [

see [17].

Let vp be the trace on A ~ [—1,1] x {—1} of a function of PN () that vanishes on
JQ\ A. Let v, be the vector of degrees of freedom associated with the interior of A,
and let Sy be the Schur complement restricted to these degrees of freedom. Then, by
using (9) and (10), we obtain, Yvs € PV (A):

(12) cl[vall¥ < aSava < ClluallZ.

3. Diagonal Preconditioning. In what follows, we only work with Sy, the Schur
complement restricted to A, as in (12), and we therefore drop the subscript A. Accord-
ingly, the vectors consist of the degrees of freedom associated with the interior of A.
The p-version and spectral element Schur complements are denoted by S, and Sy,

respectively.
THEOREM 1. Let D, be the diagonal of S,. Then, Yu € PN (A),

(13) Mnin(' Dy) < w'Spu < Ay g’ D),
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(14) ¢ < Aaz < C,

c < <Clog(N)‘
Nlog(N) = "'min ="}

Proof. Let u(z) = YN, a;¢:i(z). By using (12) and the Courant-Fischer charac-
terization of the extreme eigenvalues via Rayleigh quotients, we only need to prove
estimates of ||u||2 in terms of SN, a?||#;]|2. We start by showing that ||é]|2 =< 1/i.
Indeed, from (2), we have

i —1/2

(16) i = —— (1—23)Li_,.

Then, by integrating by parts and using (2) again, the second term of (11) is easily seen
to be of order 1/i%. To compute the first term of (11), we note that it is the square of
the L2%-norm of a polynomial of total degree less than or equal to i — 1. We use the
GLL(7 — 1) quadrature rule which, by (7), gives the value of the integral, to within a
multiplicative constant. The use of this quadrature results in a double sum that can be
reduced to

i—1

AN

7=0
since the £; are zeros of the ¢;, by (16). This last sum can be computed exactly by
using (6) and (8) for N =i — 1, and we find that ||¢;||? < 1/i.

We prove only the right inequality of (14), since the left inequality is clear by
taking u = ¢y. Given u € PY(A), we define an extension of u, E(u) € PN(Q) such
that E(u) = »w on A, and E(u) vanishes on 02\ A. By (9) and (12), it suffices to
show that |E(u)|12‘ﬂ(9) < YN, (a?/i). We choose E(u)(x,y) = YoV, a;és ()i (y), for
some ¥; € PV(A), ¥;(—1) =1, ¥;(1) = 0, that will be chosen momentarily. A simple

computation shows that

N

|E(U)|12111(A) = E aza]((¢;7 ¢;)(¢27 lr/)]) + (¢27 ¢J)(lf/)2/7 Lb;))

1,7=2

Here, (-,) is the L?(—1,1) inner product. By using (3), (4), and (8), we find:

1

Moreover, we also have (¢}, ¢%) = 0if i # j, and (¢;,¢;) = 0if [ — j| > 2. These
estimates together with the Cauchy-Schwarz inequality imply

N
[E(W)fiy < O a(l[billFzay + /G2 )-
i=1
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The piecewise linear interpolant using the GLL(N) points I]}{, is defined for any
vy € PN(A) and is given by v, = I (vn), vn (&) = vn(§;), for j = 0,1,..., N. The
inverse of I]}{, is denoted by I}]LV. By using results of Canuto [7], we have:

(18) lonllz2ay < onllrzay and [Jonllz2ay < vkl 2 (a)

For i = 2,..., N, let {;(;y be one of the GLL(N) points, with a distance to —1
proportional to 1/i. Let 9; ,(z) be the piecewise linear function that goes from 1 to 0
linearly between —1 and &;(;), and is zero for z > {;;), and choose ¢; = I}iv('¢i7h). By
(18), we have ||¢i||%2(1\) = 1/i, and ||¢Z’»||%2(A) =< 1, since this is true for ;. Then,

|E@)lfnny < CZG +(1/i%)i),

which implies the right inequality of (14).
We next prove the left inequality of (15). We recall that u(z) = Zf\iz a;¢;(z).
Since {¢!} is an orthonormal set in L%(A), we have

(19) a4 = /1 o () (2) da

By integration by parts and a duality argument, we get

a; < |/ z)¢! (z) dz |
< lull ||¢"|| 2y
< ||U||*||¢¢||H1/2
< lulley/i = /2| Licall gz,

where the penultimate inequality follows from [11, Proposition 12.1]. The H'/2-norm
of L; has been computed in [1], using Gaussian quadrature rules, and is known to be

bounded from above by C(log(i))'/2. Therefore,

N N
doalleilll < C(Q_log(i — 1)llullZ,

which implies the left inequality of (15).

We prove the right inequality of (15) only for the case of N even. For N odd, the
same proof applies, with N replaced by N — 1. Let u(z) = (Lny(z) — 1) € PN (A). By
(19) and integration by parts, we obtain, for 2 < i < N:

a = 2—1/2/ I, (@ /ILN( )L (2) da )
= 2/i—1/2,

if ¢ is even, and zero, otherwise. Again by results of [1], ||Lxy — 1]|2 < C'log(N).
Therefore:

N
Sl C_ §
||u||3 B log(N) teven, t>2

6
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which implies the right inequality of (15). O
THEOREM 2. Let Dy be the diagonal of Sy. Then, Yu € P (A),

(20) ’\%m(” Dyu) < u'Syu < A, qz(u! Dyu),
with

(21) ¢ < Ataz < C,

and

(22) ¢ w8

Nlog(N) = “min = N°

Proof. Let u(z) = N7 u(&): n(z), where {€; x} is the Lagrange interpolation
basis related to the GLL(N) points. By (12), we only need to estimate ||u||? in terms
of oI, u? (&)1 vl 2.

Let vV € P (A). A consequence of (18) is that not only are the L2- and H'-norms
of vy and v, = I]}{,(UN) equivalent, but also

(23) [lon s« = [[on]l+;

a detailed argument can be found in [8].
We start by showing that ||¢; v|[« < 1. Let £; = I]}\L[(EZ'7N)7 hi = &4+1 — &, and
n; = arccos(&;). Then, for 1 <i< N —1,

(N—i-(/2r_  (N-i+Dr
N - = N '

see [5, p. 76]. This relation implies that h;y; < h;, for 0 < i < N — 1. A simple
computation shows that for 1 < 7 < N — 1, ||£i7h||%2(1\) < Ch; and ||£i,h||%}1(A) <

(24)

C'/h;. By interpolating between these two spaces and using (18), we obtain ||{; ;|| <
C. A rather tedious, yet elementary, computation using (11) shows that one of the
positive terms which form ||/; 5||? is greater than a positive constant, and this shows
that [|; ||« < 1. Then, by (23), we find that ||¢; y||« < 1.

The left inequality of (21) follows by taking u = ¢; n, and using that ||u|[. < 1.
To prove the right inequality, we use (23) and restrict ourselves to piecewise linear
functions. Let E(up)(z,y) = YN un (&)l n(2)0: (y), for some 95 , with ¥ (—1) = 1
and 9; ;(1) = 0. We go through the same steps as in the previous proof, and since
the mass and stiffness matrices corresponding to the ¢; ;, are tridiagonal, we obtain, as

before:
N-—
|E(ur) 1 (a) Z (un (€2 ((1/ha) il [T2ay + (R [1(205,0) 172(a))-

By (18), we can choose the 9;; so that the coefficients of (uy(&;))? can be bounded
above by a constant, thus proving (21).

Our task is now to prove (22), and we start with the left inequality. For u € PJ¥(A),
it is well known that

(25) [l Loy < C(1+log(N))]Jul|Z;
7



see Theorem 6.2 of [2]. Then,

N-1 N-—
> lu@)* < Z (1 + log (N))[[ull%,

and this, in turn, implies the left inequality of (22).

For the right inequality, let ux(z) = 1 — |z|, and let uy = I}¥(up). A standard
argument of interpolation between L%(A) and H}(A) and a simple computation shows
that ||u|. < 1. We also have

N-1
> (u(&)?

=1 i:fN/2-|

v
N
=
o
=

= N Z %(1—COS(’I’]¢))2,

1

where, by (24), the 7; are asymptotically equidistant on the interval [0, 7/2]. This last

sum is a Riemann sum for (1/7) 7r/2(1 — cos(n))? dn, and therefore,

N-1

> (u(&))* > CN,

=1

completing the proof of (22). O

REMARK 1. The Schur complement associated with an edge for a finite element
space based on a quasi-uniform triangulation with a parameter h has a condition number
on the order of 1/h; see [6]. The techniques used to prove Theorem 2 can be used to
establish that this condition number is between 1/h and |log(h)|/h. Although this is
a slightly weaker result, our methods can be used in a context more general than for
quasi-uniform meshes, e.g. for the GLL mesh of Theorem 2.

We have performed numerical experiments to determine the actual values of the
eigenvalues of Theorems 1 and 2. The results for 4 < N < 50 are given in Figures
1 and 2. They agree, in a clear cut way, with the theoretical results developed here.
We remark that for these values of N, the approximate linear growth of the inverse of
the smallest eigenvalue is clear, and that the graph of the largest eigenvalue appears
to approach a horizontal asymptote. We note that the relatively small values of the
resulting condition numbers help explain the good convergence rates experienced with
the algorithm implemented in [2].
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