Logic of Information Knowledge

Alexei Yu. Muravitsky
Department of Computer Science

Courant Institute of Mathematical Sciences
251 Mercer Street
New York, New York 10012

Internet: mrvtskya@acf4.nyu.edu

Abstract

We share with some philosophers the view that a state of knowl-
edge, being a part of the real world, can bring contradiction into it.
Such an ontological reading of knowledge is very important when one
deals with information knowledge, which arises as the content of the
computer’s memory when the computer is placed into changeable in-
formation environment (”information flow”), and “must” be able to
tolerate any information (not excluding contradictions) from the com-
puter’s users. Continuing research begun in [KM 93], we consider in
length one kind of Scott-continuous operations introduced there. Each
such operation [A — B], where A and B are formulas in a propositional
language, called a rule, moves the computer to a "minimal” state of
knowledge, in which B is true, if in a current state A is true. Note that
the notion of rule is used here in an information-transforming sense,
rather than in the ordinary truth-sound sense. We distinguish between
global and local rules and show that these notions are decidable. Also,
we define a modal epistemic logic as a tool for the prediction of possi-
ble evolution of the system’s knowledge and establish decidability of
this logic.

1 Introduction

The question of the toleration of inconsistency has a long tradition, often as
“admission, or insistence, that some statement is both true and false, in a
context where not everything is accepted or some things are rejected” (cf.
[PR 89]). However, formal elaborations of this approach have been mostly
epistemological, considering, on the one hand, the “inherently consistent” real
world and, on the other hand, admitting the possibility of its inconsistent
description. In other words, “the real world can tolerate inconsistency of the
reasoner’s beliefs, since the latter may not be grounded in the reality” (cf.
[KL 89]). Nevertheless, some philosophers have attempted to advocate the
view that the state of knowledge being a part of the real world can bring
contradiction into it (cf. [RB 79]). Such an ontological reading of knowledge
is very important when one deals with nformation knowledge. The latter
is the content of the computer’s memory, which “must” be able to tolerate
any information (not excluding contradictions) from the computer’s users.
Thus there is no need to distinguish knowledge from belief when working
with information knowledge, because the computer believes all it knows, and
knows all its beliefs.

It is clear that information knowledge is never complete. Although much
recent work in artificial intelligence has developed new formal techniques for
working with incomplete knowledge, the means for changing the computer’s
knowledge associated with the new approach, as in the case of classical logic,
have been oriented towards consistent knowledge bases (cf. [Gin 87]). The
crucial point here, however, is that the consistency orientation inherent to
nonmonotonic logic, in particular to the logic of default reasoning, is not
necessary and in practice not even possible when dealing with information
knowledge.

Now the question arises: Which kinds of operations should we use to
change information in a knowledge base that admits contradiction? This
certainly depends on how knowledge has been represented. In 1975 N.Belnap
suggested (though implicitly; cf. [Bel 75, Bel 76]) to consider information
knowledge as a data type employing Dana Scott’s axiomatic definition of the
notion of data type (cf. [Sco 71]). According to this approach we can only
admit continuous functions in the Scott topology (see [Sco 72, GHKLMS 80])
to change a state of the knowledge base. This point of view was extensively

developed in [KM 93]. (See [KM 90] as a preliminary abstract).

We suppose that the knowledge with which we deal is expressed in the
formal propositional language, that is, it can be expressed by truth-valuable
propositions (comp. [Isr 93]). In the suggested approach, a declarative
dynamic knowledge base consists of a finite number of finite pairwise in-
comparable setups that in entirety form a minimal (epistemic) state — a
current actual epistemic state of the computer. The collection of minimal
states forms a lattice (AFE) that is an effective basis of the lattice AGE of
all generalized epistemic states — the field of activities of the continuous
operations, to which we, following Scott’s approach, would like to limit our-
selves. Thereby, an intelligent system is thought of as including a collection
of continuous operations acting on AGE as a topological space to modify the
computer’s epistemic states as elements in AFE. Moreover, those operations
are supposed to be coordinated with the basis AFE in the sense, that any re-
sult of such an operation from points in AFE belongs to AFE (Scott Principle;
cf. [KM 93)).

Among three kinds of the Scott-continuous operations on AGE introduced
in [KM 93], one is of particular importance. Each such operation corresponds
to an expression A — B called a rule (or a conditional), where A and B are
formulas in our language, and moves the computer to a minimal state of
knowledge, in which B is true, if in a current state A is true. Note that the
notion of rule is used here, however, rather in an information-transforming
sense, than in the ordinary truth-sound sense.

We distinguish global (proper and improper) and local rules. The former
helps separate the rules which comprise explicit imperative knowledge of the
system from those which are a part of its procedural knowledge. Local rules,
in turn, concern the question how a particular rule A— B acts in a particular
state of knowledge «¢.

Finally, we consider the possibility that the computer knows about its own
state of knowledge and how it can evolve. The simple propositional language
is apparently not enough to answer that question. Therefore, we attract a
language of modal epistemic logic and solve the problem of decidability of
the class of epistemic formulas valid in every minimal epistemic state.

2 Preliminaries

According to our intention to admit contradictory information into a knowl-
edge base, we (following [Bel 75, Bel 76]) introduce the set & of four truth
values: f (falsehood), ¢ (truth), L (unknown), T (both truth and false-
hood), partially ordered by the relation C as the “information lattice” A4
(=< $;1,U >) (see Fig. 1). Formulas of the adopted propositional lan-
guage are built up of atomic ones that constitute a set Var (= {p1,p2,...,})
of propositional variables with connectives: A (conjunction), V (disjunction)
and — (negation). We denote formulas via A, B, C,... and a variable via T,
possibly with indices. The truth value of a formula A in a setup is defined
with respect to Belnap’s “logical lattice” L4 (=< S5 A,V >) (see Fig. 1) that
is partially ordered by the relation < according to the following rules:

s(BAC)=s(B)As(CO),
s(BVv C)=s(B)Vs(0),
s(—B) = ~s(B),

where s is a setup, that is a mapping s : Var — &, and the operation - is
defined by means of the following conditions: -t = f, =f =t and -7 =7,

if e {Ll, T} (cf. [Bel 75, Bel 76]).

Figure 1: Lattices A4 and L4.

A4 L4

-
_|
}_

Lattices A4 and L4 took together and with the operation — form the
simplest nontrivial bilattice in the sense of [Gin 88].

Proposition 1 The operation I on the lattice A4 is monotonic with respect
to the ordering < on the lattice L4, that is,

a1 < by and as < by implies a; Mag < by [by
for any aq,as,b,,by € 3.
Proof. Suppose the contrary, that is, there are a1, as,b;,b; € & such that
a; < by, ay < by and a; May £ by M bs.

Let us consider the following cases.
Case: a;Mas =T and b; M by = L.

Then a; = ay = T, by,by € {T,t} and, hence, b; M by € {T,t}.
Case: a;Mas =1 and b; by = T.

Then b; = b, = T and, hence, a;,a; € {f, T}. Therefore, a; Ma, € {f, T}.
Case: a;May; =T and b; Mby; = f.

Then a; = a; = T and, hence, by,b; € {T,t}. Therefore, b, b, € {T,t}.
Case: a;May; = L and b; Mby; = f.

Consider two subcases:

a)a; =by = fand az,bp € {f, T}, b) az=by = f and a1,b, € {f, T}.

In both subcases we receive a; M as = f.
Case: a;May; =t and b; M by = f.
Again, we have the same subcases as in previous case. And again, we receive
a;MNay = F.
Case: a;Mag =t and b;Mby = T.
Then b; = b, = T and ay,a5 € {f, T}. Therefore, a; May € {f, T}.
Finally, case: a; Ma; =¢ and b; Mby = L.
Then a;,a; € {T,t} and, hence, b;,b, € {T,t}. Therefore, by Mb, € {T,t}.

All cases lead to contradictions.

The reader can find motivations of the following definitions in [Bel 75,
Bel 76] and [KM 93].
All the setups form the lattice AS with the order:

s < 1 if and only if s(7) C s1(n) for every = € Var.

A setup s is finite if the set {m|s(w) # L} is finite. An epistemic state is a
set of setups. We will often use epistemic states of the form T'set(A) and
Fset(A) for any formula A, defined as follows:

Tset(A) € {s|s € AS,t T s(4),V(s) C V(4)},

Fset(A) & {s|s € AS, f C s(A4),V(s) CV(4)},
where V(s) = {m|s(w) # L} and V (A) is the set of variables in A. An

assignment of formula A in epistemic state ¢ is defined as follows:
def
e(A) = N{s(A)|see}.

A finite set of finite setups is called a finite (epistemic) state. Notice that
Tset(A) is a finite epistemic state for any formula A. For any finite epis-
temic state ¢, the set m(e) of minimal elements in € is nonempty, because of
Descending Chain Condition. The computer’s knowledge is supposed to be
represented by means of minimal (epistemic) states — nonempty finite sets
of incomparable finite setups. Thus, a finite state is minimal if and only if
m(e) = e. All the minimal states form the lattice AFE with order defined as
follows:

¢’ < ¢ if and only if for any s € € there is s’ € &’ such that s’ < s.

We will consider so defined relation as a relation on the set of all epistemic
states as well. Though in this case, it does not determine a lattice. For the
purpose of introducing knowledge revision procedures we define the lattice
AGE of generalized (epistemic) states, that is, the collections € of the form
{e'|¢' = e} for every epistemic state ¢, where

¢/ = ¢ means €' (A) = ¢ (A) for any formula A,
with the order:
€ < gy if and only if € (A4) C &; (A) for every formula A.

It is obvious that if ¢ = {s}, where s(7) = T for every m € Var, then € is the
unit in the lattice AGE.

We call an operation F : AGE — AGE continuous (more precisely, Scott-
continuous) if F' is a continuous operation with respect to the Scott topology
[Sco 72, GHKLMS 80] on AGE. An element € in AGE is called a fized point of
the operation F if F(g) = €. Let Y C AGE. An operation F is called U-stable

if every element in ¢/ is a fixed point of F.

Proposition 2 Let F' be a continuous operation. Then F is AGE-stable if
and only if 1t 1s AFE-stable.

Proof. Let €5 € AGE. According to the Theorem 6.4 and the embedding
¢ — € from the proof of the Theorem 4.3 both from [KM 93] we know that

g0 = L{e|e € AFE,e < & }.

Then by means of the Scott’s limit theorem (the Proposition 2.5 in [Sco 72]
or the Proposition II-2.1 in [GHKLMS 80]),

F(g0) = U{F(e)|e € AFE,e < &} = Eo.

We will further deal with restrictions, more precisely, with down-restrictions.
Therefore, we recall that the down-restriction of a setup s over a set of vari-
ables V (V-down-restriction, for short) is the setup s¥* defined as follows:

GV def s(r) formeV
N 1L formrgV.

Then, we define down-restrictions of epistemic states, ordinary and general-
ized, in the following way:

def _ def —y 1
eVl = {sVl |s € 6} and gVt = V1L

(cf. [KM 93]).

3 Global Rules

The sequence A — B, where A and B are formulas, is called a (global) rule.
With every rule A — B, we associate the operation [A — B]| on the lattice
AGE, which is Scott-continuous on AGE and coordinated with the basis AFE
in the sense that all results of the operation from points in AFE belongs
to AFE (see the precise definition and details in [KM 93]; comp. [Bel 75]).
Informally, the operation [A— B] changes a current state of the computer
with respect to the condition if A then B, giving, thereby, a procedural
interpretation of entailment.

Being built into the intelligent system, the global rule acts as the reason-
ing device of the system. It does so properly if this rule itself is not a part
of the system’s procedural knowledge. However, if the rule A — B is repre-
sented by the operation [A — B] which is AFE-stable, it is hardly worthwhile
to include such superfluous information.

Thus, we call the rule A — B proper (or ezplicit) if the corresponding
operation [A — B] is not AFE-stable, or not AGE-stable which is equivalent to
the former in view of the Proposition 2. Otherwise, we call the rule improper
(or implicit). In other words, an implicit rule generates an operation which
never changes the system’s epistemic state. We could say that all the implicit
rules constitute as a whole the system’s internal logic *.

The following theorem is a criterion which gives deciding procedures for
the class of proper global rules.

Theorem 1 For any formulas A and B the following conditions are equiv-
alent:

i) e(A) <e(B) for every € € AFE;

! Conception of logic as reasoning device appears to have first been expressed in modern
time by J.Lukasiewics in his seminars in the 1920s (cf. [Pra 65], p. 98). The importance
of this point of view for artificial intelligence has been reiteratively emphasized by David
Israel (cf., for example, [Isr 93]).

i1) €(A) < &(B) for every € € AGE;
i11) [A— B] is improper;
i) s(A) < s(B) for every s € AS;

v) l_Efde A— B;

here < means the order on L4.

Proof. 1) = it) follows immediately from the following lemma.

Lemma 1.1 For every epistemic state ¢ and any list of formulas A, ..., A,,
there is a minimal state €1, i.e. €1 € AFE, such that €1(A;) = €(4;) for every
1=1,...,n.

Proof. Let V mean V(A4;)U...UV(A4,). Then " is a finite epistemic
state. Denote m(c¥1) via €;. By Proposition 4 in [KM 93], we have

e(A;) =e"4H(4;) fori=1,...,n.

And by Theorem 3.1 in [KM 93], we have ¢; =¢¥*. It is obvious that
€1 € AFE.

11) = 1) follows from the Theorem 4.3 in [KM 93].
i) < tv) follows from the Proposition 1 and the Proposition 4 in [KM 93].

1) = tit) Assume that) is true. Then, so is tv). Let ¢ € AFE. Then
[A— B]'(¢) is a finite state, where

(A= B'(e) = U{[A=B]'(s)[s € ¢},

and

(A B](s) & { {sUs|s E{T}(Tset(B))} if t Cs(A)

otherwise

(cf. [KM 93]).
Using the Theorem 4.3, the Theorem 7.7 and the Theorem 3.1 all in [KM 93],

we conclude that [A— B|(e) = m([A—> B]'(s)) . Now we shall show that

m([A— B'(e)) =e. (2)
Let s € ¢. Consider two cases.
Case 1: tC s(A).
Since s(A) < s(B), by means v) we have s(B) € {t, T},ie. t C s(B). By
the Proposition 4 in [KM 93], s¥(B)L € T'set(B). And since s U sV(B)L = s,
Therefore, by definition s € [A — B]'(¢). Hence, m([A—> B]I(s)) <e.

Case 2: t[Z s(A).
By definition we have [A — B]'(s) = {s}. Again, we received m([A — B]'(s)) <
€.

Conversely, it is obvious that ¢ < m([A—>B]'(6)). So, the equation (2)
is proved.

112) = tv). We shall previously prove two lemmas.
Define for any 7 € S,

1 ifr=T

r ifre{t f}
T ifr=_1

Lemma 1.2 The operation x commutes with operations A\, V and —, that 1s,
(MAR) =1 AT, (V) =7 V7 and (-7)* = -7*
hold for any 7,19 € 5.

Proof is extracted from the following two tables. We should merely re-
member about idempotency and commutativity of operations A and V in

L4.

10

| T || T | IAT |V | TTAT | VT [(mAT) | (V)
flt|f|t f t f t f t
flL|Ff1T f 1 f T f T
fF1T|f| 4L f T f 1 f 1
t | L|t|T 1 t T t T t
t | T |t | L T t 1 t 1 t
1| T |T|L f t f t f t

T |7 | o7 | ot | (—7)F

E e[7 F| 7

Flelt| t | ¢

1T, L| T T

T|L|T| L 1

Let us define s*(7) as meaning (s(7))* for any = € Var.

Lemma 1.3 For any formula A and setup s, the equation s* (A) = (s (A))*
holds.

Proof (by induction on the length of A) follows from the Lemma 1.2.

Now suppose that s(A4) £ s(B). By virtue of Proposition 4 in [KM 93],
we may count that V(s) C V(A) UV (B). Let ¢ be {s}, and consider two

cases.

Case 1: s(A) € {T,t} and s(B) e {f,L}.
Then [A— B]'(¢) = [A— B]'(s) = {sUs'|s' € Tset(B)}. If it was the case
that s € [A— B]'(s), then there would be s’ € m(Tset(B)) such that s’ <s.
It would follow ¢ C s'(B) C s(B). A contradiction. Thus, s & [A— B]'(¢)
and, hence, s ¢ m([AHB]'(e)), ie. € # [A— B](¢).

Case 2: s(4) e {L,t}and s(B) e {f, T}.
Then in virtue of the Lemma (1.3), s*(A) € {T,t} and s*(B) € {f,L}.
Consider the setup s’ defined as (s*)V(A)UV(B)-L. According to the Propo-
sition 4 in [KM 93], s'(A) € {T,t} and s'(B) € {f, L}, and, moreover,
V(s') CV(A)UV (B). Thus, we reduce to the case 1.

11

1) < v). This equivalence is proved in [AB 75]. Also, see [Bel 75].

The proof of the Theorem 1 is completed.

4 Local Rules

Introducing new rules poses another question concerning the modification of
the system’s imperative knowledge. Indeed, we could want to know if some
rule, say A — B, does or does not lead to a change of the minimal state ¢.
From the logical point of view, we could say that A implies B in a state
(symbolically, A 5 Bis true), if [A— B](¢) = . Such an implication may
stop to be true after the system has received new information as shown in
the following example 2.

Example Let s be a setup such that s(w) = t if and only if 7 = py
or ™ = py; otherwise s(w) = L. Furthermore, let € be {s}. Then, though

€ [=p1](e)
p1 — P2, but not p; =" ps.

Proof. By definition we have
[pr—] (¢) = [p1— p2]'(s) = {s U s' |s € m(T'set(p2)) }

Let s; be a setup such that s;(ps) =t and s;(7) = L for @ # p,. It is easy
to observe that m(T'set(ps)) = {s1}. Thus,

[pr—pa]'(e) = {sUsi} = {s}

Hence, [p1 — p2)(€) = ¢, i.e. p1 5 P2
On the other hand, let £; be [-p;](¢). We know from [KM 93] that

&1 = {s} Um(Fset(p1)) = {s} L {2} = {ss},

2We write below [4] for A in [KM 93] for any formula A.

12

f if . T ifﬂ':pl
where 32(71'):{ HT= ,and s3(m) =4 t if 7 = p,

L otherwise 1 otherwise

Continuing, we receive:

[p1— p2)'(€1) = [pr— p2]'(s3) = {ss U s' | € m(Tset (p2)) } = {sslls1} = {s4},

T ifwr=p

where s4(m) = { t ifr=py So, s3 & [pm —>p2]l(63). Hence, p; E>p2
1 otherwise.

does not hold.

From the procedural point of view, 4 = B (=[A— B](¢)) is an operation
dependent on three parameters. We call it a local rule. If A— B is a proper
rule, one can address whether or not it leads to an increase in a current state
of the computer’s knowledge, that is, whether A %, B holds. We will further
seek to find a criterion to effectively decide this problem.

For any epistemic state ¢ and formula A, we denote:

ey if ey # 0
the unit in AGE otherwise.

d, def

62:§{ﬂs€QtEs@M}MMeA::{

Theorem 2 Let € be a minimal state (i.e. ¢ € AFE). Then the following
conditions are equivalent:

i) [A— B(e) = &;

ii) e = m(U{[A— B]'(s) s € £ });

iii) e C U{[A— B]'(s)|s € e };

iv) 6-;1 - {s Ls'|se 6—;1, s’ e m(Tset(B))};

v) m(Tset(B)) <ey.

Proof. 1) < it) follows immediately from the equality
[A— Bl(e) = m(U{[A— B]'(s)|s € ¢ }),

which is proved in [KM 93|.
1) < 412). It is obviously enough to prove the implication) = i3). So,
assume

e CU{[A— B (s)[s € e }. (3)

13

Let so € €. Then s¢ € U{[A—>B]'(s) |s € 6}. Because of Descending Chain

Condition, there is a state s; € m(U{[A—>B]'(s) |s € 6}) such that s; <.
Now, we notice that

e <U{[A=BJ(s)[s € ¢ }. (4)

holds, in fact, for any epistemic state € (cf. (1)). In virtue of (4), there is
83 € ¢ such that s; < s;. Thus, we have both s, < s; < s and 33,8 € ¢.
However, ¢ is an antichain. Hence, s; = s; = s. The latter follows that

s € m(U{[AHB]I(s) |s € 6})
Now suppose that

S0 € m(U{[AHB]I(s) |s € 6})

According to (3), there is s; € & such that s; < so. By means (4), we
conclude that

81 € U{[A—>B]'(s) |s € 6}.

Again, because of Descending Chain Condition, there is
83 € m(U{[A—>B]I(s) |s € 6})

such that s, < s;. However, m(U{[A—>B]I(s) |s € 6}) is a minimal state
(cf. [KM 93]). Therefore, s; = s1 = so and, hence, sg € €.
111) < 1v). Notice that

U{[A=B]'(s)|sec}=(s\et)uu{sus

(cf. (1)).

1) < v). Assume that

s € 6-;1, s' € m(Tset (B))}

6Z§{s|_|s'

s € 6_;1, s’ e m(Tset(B))}

Let so0 € €4. Then there exist s; € 6-;1 and sy € m(T'set(B)) such that
so = 81 U 83. Therefore, s; < so. However, ¢ being a minimal state is an
antichain. Hence, sq = s;. Therefore, s, < 3.

Now assume that m(T'set (B)) < € 4, and let so € 6‘;1. From our premise
follows that there is s; € m(T'set (B)) such that s; < sq, that is, soLIs; = so.
Hence

89 € U{s Us'

s € 6-;1, s’ e m(Tset(B))}.

14

The proof of the Theorem 2 is completed.
We will bind with every setup s a partial function 7* (here: = € Var) as

{ T if s(m)=1

follows:

-r ifs(r)=Ff
aAN-m if s(m)=TT.

For the next Theorem 3, we need the following lemma.

Lemma 2.1 Let s and s; be setups. If s < s, then bg,,, 751 — 7° for every

w € V(s).
Proof. We have to consider five possible cases:
T—T

TN T—T

a8l % = T — T

TN T — T
TN\ —mTm—7m AN 7.

All right entailments are derived in Eyq. (cf. [AB 75]).

Theorem 3 Let € and ¢’ be finite states. Then, ¢’ < ¢ if and only if
FEp VIMT® [m e V(s)} s €= VN m € V(s)}|s €'}

Proof. Suppose ¢’ < e. According to the Theorem 1, it is enough to prove
that

s(V{N{r*|lm e V(s)}|se€e}) <s(V{N{r*|lr € V(s)}|s€e'})

for any setup s. Let so be any fixed setup. Let us consider any function f :
e — €' such that f(s) < s for any s € €. Notice that in virtue of the previous
Lemma 2.1, Fg,,, =° — wf0) for any m € V(f(s)), and V(f(s)) C V(s) for
any s € €. Thus by means the Theorem 1, we conclude that

so(M{m* |m € V(£(5))}) < so(A{n?C) |m € V((5)) })

15

and
so(AM* Im € V(5)}) < so(A {7 |x € V(£(s) })
for any s € €. Hence,

so(V{A{m* [m € V(s)}[s € e}) < so(V{M{m* | € V(f(s))} [s € f(e)}).
However,
so(M{N{m*|[m e V(s)}|s € f(e)}) < so(V{N{m*|m € V(s)}|s € €'}).
Conversely, assume that
FEp VIMT® [m e V(s)} s €= VM [m € V(s)}|s € €'}

Let so € . First of all, we notice that t T so(w%0) for every 7 € V(so).
Hence,
tCoso(VIA{m®|m € V(s)}|s € e}).

Then in virtue of the Theorem 1,
T <so(V{A{m* |mr e V(s)}|s€€'})
There is a setup s; € ¢’ such that
T < so(7°1) (5)
for every m € V(s;). Firstly, we will prove that
V(s1) € V(so)- (6)

Suppose the contrary: there exists @ € V(s1) \ V(s0). It is obvious that
so = L and s; # L. The latter follows that %1 is defined, and the former
follows that so(w®1) = L. That is contrary to (5). So, V(s1) C V(so).

Now we want to prove that s;(m) C so(7) for every # € V(s1). If it is not
the case then there is 7o € V(s1) (and, hence, mg € V(s0)) such that

s1(mo) | so(mo) 71'591 30(71'591)
f t o f
t ! To f
T f mo N\ —To f
T t mo N\ g f

16

Again, we receive a contradiction to (5). Thus (5) and (7) give together
that s; < sg. Therefore, we conclude that ¢’ < e.
The desirable criterion for local rules is established in the following

Theorem 4 Lete be a minimal state, A and B be formulas. Then, [A— B](e) =
e if and only if

Foga V{AMT [T € V() }|s € e g = VA {x* [T € V(s)}|s € Tset (B)},
provided that 6-;1 £ 0. If 6-;1 = () then the equation [A— B]|(g) = € is true.

Proof follows immediately from the Theorems 2 and 3.

5 An Epistemic Logic

Now we want to ask what a computer knows about its own state of knowl-
edge and how this state can evolve. We suppose that an intelligent system
is formed to include facilities for knowledge revision in the form of contin-
uous operations in the space of AGE, which are coordinated with AFE, and
some epistemic logic as the computer’s knowledge of its epistemological ca-
pacity. This knowledge being embodied in such an intelligent system must
be effectively accessible. In our case, it can be expressed in an epistemic lan-
guage by means of epistemic formulas (e-formulas, for short) that are built
up from atomic e-formulas of the form (A : 7), where 7 € S, using ordinary
propositional connectives A, V, = and modality <.

Thus, we define A as being an e-formula whenever A is an atomic e-
formula or of the form (B A C), (B V C), =B or ©B, where B and C are
e-formulas.

According to [KM 93], some minimal epistemic state is accessible to a
current epistemic state if the computer can move from the latter to the former
using some rules or operations of the form?® [A] for some formula A. We limit
ourselves here with the consideration of an intelligent system with no rules,
though the notion of rule is retained for our knowledge of the improper rules *.

3Recall: we write [A] for AT in [KM 93].
#As I have recently established in [Mur 94b], that limitation is only apparent: consid-
ering all the C AC-operations as basic actions leads to the same epistemic logic.

17

We say that the minimal state &; is accessible from ey (symbolically,
Reoe1), if there exists a formula A such that [A](eo) = €1, that is, eLUT'set (A)
(cf. [KM 93]). It seems that we need to introduce the transitive closure of
the relation of accessibility. However, we prove elsewhere that R is transitive
and, hence, equivalent to its transitive closure (cf. [Mur 94al).

Now, we define the notion of validity of e-formula in minimal epistemic
state (symbolically, ¢ |= A) as follows:

eE(A:7) Hff e(A)=r1, where 7 € S

eE(BAC) iff e¢l=B and ¢ [C;

eE(BVC) iff eEBorel=C;

e =B iff not ¢ | B;

e E OB iff there is a state g9 such that Reeo and ¢ = B.

We regard ¢ = (A : 7) as meaning that the computer knows that an
assignment of the formula A takes the value 7 at the state .

Let S be the set of all the e-formulas valid in every minimal epistemic
state. We may call S a logic, because it is not empty and closed under modus
ponens. Our purpose is to show that S is decidable.

Theorem 5 The logic S is decidable.

Let V everywhere below be a finite fixed set of propositional variables.
Denote

£ = {e|e € AFE and eV = ¢}
and f:e— m(aVL) as a mapping from AFE onto €.

Lemma 5.1 < &,U > s an up-semilattice and f 1s a homomorphism from
< AFE,U > onto < &,0 >.

Proof. What we need is to prove the equation:

fle)U fler) = f(eUer)

for any minimal states ¢ and ¢;.

Let 67! be the reverse mapping to the mapping ¢ — Z introduced in [KM 93].
Using in order the Theorem 4.3, the Theorem 3.1, and the Lemma 6.1, all
in [KM 93], we receive:

fe) U f(er) = m(e) Um(eVt) = 57 (m(e"H) um(eVY)) =

18

6—1(m<€VJ_) L m(g}u)) _ 5—1(6V—¢|_| d’—L) _ 5—1(EV¢ L aVJ_) _

S (EUE)™) = 6 IETE") = 5z Ul T) =
6‘1(m<s L s}u)) = m((e L 61)‘“) = f(eUe)

Now, let us consider < AFE, R, |=> and < &,R',=> as (Kripke) model
structures, where R’ is a binary relation (of accessibility) on £, defined as
follows:

R'ce; means e, = ¢ L m((m(Tset(A)))Vl> for some formula A.

We recall that a mapping h is called a pseudo-morphism (p-morphism, for
short) from < W, R, |=> onto < W', R',|=">, if the following holds:

t) h is onto;

1) Rzy implies R'h(z)h(y);

112) if R'h(z)h(y) then there is z € W such that A(z) = h(y) and Rzz;

w) z = aiff A(z) | a for every atomic formula a.
In fact, we will consider a p-morphism, where the item ¢v) is replaced by the
following;:

w') z E a iff h(z) | o for every a in some fixed set of atomic formulas.
The next proposition gives the basic property of p-morphism.

Proposition 3 ([Seg 68]) Let h be a p-morphism from < W, R, => onto
< W',R',E'> with respect to a set X of atomic formulas. Then, for any
formula ¢ built up of X, the following holds:

z = ¢ if and only of h(z) =’ ».
Proof see, for example, in [HC 84].

Our concern to the notion of p-morphism is in connection to the

Lemma 5.2 The mapping f is a p-morphism from < AFE,R,=> onto
<ER,E=>.

Proof. We have to check items ¢) — ¢i7) and ¢v') above. The item ¢) is

obvious.
Let Reeq, that is, e = e LUm(T'set (A)) for some formula A. By means of
the Lemma 5.1, we have the equation f(e1) = f(e) U f(m(Tset(A))), that

is, R'f(e)f(e1)-

19

Conversely, beginning with R f(e)f(e1), we receive the equation f(e;) =

f(eUm(Tset(A))). Let e, ef m(Tset(A)). It is clear that Ree,.

Finally, in virtue of the Theorem 3.1 and the Proposition 4, both in [KM 93],
f(e)(A) = €(A) for any formula A built up of V.

Let for definiteness V = {y,...,7,}, and denote
A= {ﬂ'lt,...,ﬂ'nt}U{7r1f,...,7rnf}.

Furthermore, we associate with every A C A a setup, which will denote by

A1, defined as follows:

t if7rt€sand7rf€s
f ifﬂ'tgsandﬂ'fES
T ifrtesand nf s
1 ifﬂ'tgsandﬂ’fgs.

At(r) &

For any setup s such that V(s) C V, in turn, we define a subset of A as

r=t and tLC s(m)
w7 € s iff or
{ r=Ff and fLC s(n).
It is easy to check that mappings “4” and “—” establish mutually-reverse one-
one-correspondences between ? sV = s} and {A|A C A}. Thereby, s < s;
if and only if s~ C s] for setups in £, and X C); if and only if AT < Al for
the subsets of A.
For every 7" € A, we define:

(x7)" déf{ w forrT =t

-n for 7 = f.

follows:

S

And for every ¢ € £, define:
Ae E VI{A{(x") |xm € s }|s € e}
Lemma 5.3 For every ¢ € £, the equation ¢ = m(T'set (Ag)) holds.

Proof. It is easy to notice that for every 77 € s, t C s((77)*). Therefore,

tC s(M(r7) v € 57).

20

It implies that
if s € e thent C s(4g). (7)

Notice, thereby, that V(s) C V(Ag). It means that ¢ C T'set (Ag).

Let s € € and assume s; < s. Then, first of all, s C s~. Notice that for
any A C A, A =(A\s7)U(ANs7). We have s7 \ s #0. For any A C A
and 77 € X\ 87, consider the following cases:

Case 1: 7 = t. Then (n7)* = w. If f e sy then s;((77)*) = f.
Otherwise, s1((77)*) = L.

Case 2: 7 = f. Then (#")* = —-7. If xte s; then s;((#7)*) = f, again.
Otherwise, s1((77)*) = .

Thus, for every A C A,

si(AM{(77)* [=7 € A}) € {L, f},

that is, s1(Ae) € {L, f}. This completes the proof of that ¢ C m(T'set (A¢)).

Conversely, let s € m(T'set (Ag)). That is, t C s(Ag) and t £ s'(Ag) for
s’ < s, because of V(s') C V(s) C V(4g). It follows that there is a setup
s1 € ¢ such that ¢ C s((n7)*) for every #” € s;. For any n” € si, consider
three cases:

(r) =t. Then (7rt)* = m and, hence, t C s(7).

Case 2: si(7) = f. Then (7rf)* = - and, hence, f C s().

Case 3: s1(7) = T. Then both f e 87 and xt e 81, and, hence, both
f C s(w) and ¢t C s(7) hold. Therefore, s(w) = T.

As a consequence, we receive s; < s. In virtue of (7), t T s1(4¢).
Consequently, we have simultaneously s € m(Tset(A¢)), s1 < s and s; €
Tset(Ag). It implies the equation s; = s.

Proof of the Theorem 5. First of all, the set £ can be effectively listed.
Then, in virtue of the Lemma 5.3, for any €,e; € £, if ¢ < ¢; then

e1 = e Lim((m(Tset (4e,))"),

Case 1: s;

that is, the restriction of < on £ and R’ coincide. However, the relation <
on £ is recursive. Hence, in virtue of the Lemma 5.2, for any e-formula A
built up of V, A is valid in S if and only if A is true in the model structure
<&, <,BE>.

Theorem 6 For any minimal state € and e-formula A, the relation ¢ = A
18 recursively decidable.

21

Proof. For fixed ¢ and A we can take V so that V() C V and all propo-
sitional variables of A be in V. Then, notice that for such V', the mapping
f gives the equivalence

< AFE,R,e >= Aif and only if < €y, Ry, f(e) >= A

(cf. Lemma 5.2); thereby, £y is recursively listed and Ry is a recursive
relation on £y.

References

[AB 75] A.R.Anderson and N.D.Belnap, Jr., Entailment: the Logic of
Relevance and Necessity, Vol. 1, Princeton, Princeton University

Press, 1975.
[ABD 92] A.R.Anderson, N.D.Belnap, Jr., and J.M.Dunn, Entailment: the

Logic of Relevance and Necessity, Vol. 2, Princeton, Princeton
University Press, 1992.

[Bel 75] N.D.Belnap, A Useful Four-Valued Logic, in: J.M.Dunn and
G.Epstein (eds.), Modern Uses of Multiple-Valued Logic, Proceed-
ings of International Symposium on Multiple- Valued Logic, 5th,
Indiana University, D. Reidel Publ. Co., 1975, pp. 9-37; Also see
§81 in [ABD 92].

[Bel 76] N.D.Belnap, How a Computer Should Think, in: G.Ryle (ed.),
Contemporary Aspects of Philosophy, Proceedings of the Ozford
International Symposium, 1975, Oriel Press, 1976, pp. 30-56; Also
see §81 in [ABD 92].

[HC 84] G.E.Hughes and M.J.Cresswell, A Companion to Modal Logic,
Methuen-London-New York, Methuen & Co., 1984.

[GHKLMS 80] G.Gierz, K.H.Hofmann, K.Keimel, J.D.Lawson, M.Mislove
and D.S.Scott, A Compendium of Continuous Lattices, Springer-
Verlag, 1980.

[Gin 87] M.L.Ginsberg, Introduction, in: M.I.Ginsberg (ed.), Readings in
Nonmonotonic Reasoning, 1987, pp. 1-23.

22

[Gin 88]

[Ist 93]

[KL 89]

[KM 90]

[KM 93]

[Mur 94a]

[Mur 94b]

[Pra 65]

[PR 89]

[RB 79]

M.I.Ginsberg, Multivalued Logics: A Uniform Approach to Infer-
ence in Artificial Intelligence, Computational Intelligence, Vol. 4,
no. 3, 1988, pp. 265-316.

D.J.Israel, The Role(s) of Logic in Artificial Intelligence, in:
D.M.Gabbay, C.J.Hogger and J.A.Robinson (eds.), Handbook of

Logic in Computer Science, Vol. 1, 1993, Oxford University Press,
pp- 1-29.

M.Kifer and E.L.Lozinskii, RI: A Logic for Reasoning with Incon-
sistency, Proceedings of 4th IEEE Symposium on Logic in Com-
puter Science, Asilomar, California, 1989, pp. 253-262.

Y.M.Kaluzhny and A.Yu.Muravitsky, Modification of Epistemic
States, 10th Soviet Conference on Mathematical Logic, Abstracts,
1990, Alma-Ata, p.73 (Russian).

Y.M.Kaluzhny and A.Yu.Muravitsky, A Knowledge Representa-
tion Based on the Belnap’s Four-Valued Logic, Journal of Applied
Non-Classical Logics, Vol. 3, no. 2, 1993, pp. 189-203.

A .Yu.Muravitsky, A Framework for Knowledge-Based Systems,
1994, submitted to Journal of Applied Non-Classical Logics.

A .Yu.Muravitsky, Knowledge Representation as Domains, unpub-
lished manuscript, 1994.

D.Prawitz, Natural Deduction: a Proof-Theoretical Study,
Almqvist & Wiksell, Stockholm, 1965.

G.Priest and R.Routley, First Historical Introduction. A Pre-
liminary History of Paraconsistent and Dialethic Approaches,
in: G.Priest, R.Routley and J.Norman (eds.), Paraconsistent

Logic. Essays on the Inconsistent, Philosophia Verlag, Minchen-
Hamden-Wien, 1989, pp. 3-75.

N.Rescher and R.Brandom, The Logic of Inconsistency, Rowman

& Littlefield, Totowa, 1979.

23

[Sco 71] D.S.Scott, Outline of a Mathematical Theory of Computation,
in: Proceedings of Princeton Conference on Information Science,

1971, pp. 169-176.

[Sco 72] D.S.Scott, Continuous Lattices, in: Lecture Notes in Mathematics,
Vol. 274, Springer-Verlag, 1972, pp. 97-136.

[Seg 68] K.Segerberg, Results in Non-classical Logic, Lund, Berlingska
Boktryckeriet, 1968.

24

