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Abstract

We consider the Dirichlet problem for the Schrédinger operator in a
half-space with boundary data having an arbitrary growth at infinity. A
solution is constructed as the generalized Poisson integral. Uniqueness of
the solution is investigated too.

1 Introduction. Statement of results

Denote X = (2,2n+1),Y = (¥, Yn+1), - - -, generic points of a half- space RT’I,
n > 1, where z, y € R* = BRT'l, and z,41,Ynt1 > 0. Alsolet r =| X |, p=|Y|
,0 = X/r, ¥ = Y/p, where | - | is the euclidean metric. This article is devoted
to the Dirichlet problem

{ Leu(X) = —Au(X) + ¢(X)u(X) =0 for X e R}, (1)
u(z) = f(=) for e.a. z € R,

where A is the Laplace operator; assumptions on the function (potential) c(X)
will be formulated later.

Firstly let us consider the classical case ¢ = 0. If the integral
S 1 FW) | (14 |y |)~(*+1) dy converges, the solution of the problem (1) can be
written as (absolutely convergent) Poisson’s integral

e f(y)P(| -y |7$n+1) dy, (2)
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where
P(t, 313n+1) = (2/0n+1)$n+1(13i+1 +t2)_(n+1)/2

is the harmonic Poisson’s kernel for the half-space and ¢, 41 is the area of the
unit sphere in R**!.

If the integral (2) diverges, a solution to the problem (1) can be given as
some regularization of this integral. In particular, M. Finkelstein and
D. Sheinberg [3] have constructed a solution to the problem (1) with an ar-
bitrary continuous function f. This solution is the integral with a modified
Poisson’s kernel derived by subtracting of some special harmonic polynomials
from P(t,2n+1). This methoda, ascending to the Wejerstrass’ theorem about
canonical representations of entire functions, has been used by several authors -
see e.g., [3, 4, 6, 7, 15, 16, 18]. If ¢ = 0, D. Siegel [18] has studied the uniqueness
of this solution to the problem (1) under the following condition: the integral
Jrn | F(w) | (1+ | y |)~Ndy converges with certain N > 0.

We will construct the solution to the problem (1) as a Poisson’s ¢ -integral
corresponding to the operator L.. We will modify this kernel and get the solution
for a boundary data f having an arbitrary growth at infinity. The modified
Poisson’s ¢ -kernel was introduced in [9].

Under some additional conditions this solution is unique; note that the
uniqueness proof uses heavily the Phragmen-Lindelof principle for the opera-
tor L. [11].

Now we state the results of our article. The potential ¢ is always supposed
to be non-negative and locally-integrable, namely, ¢(X) > 0 for X € R'_|L_+1, and
c€E Lfoc(R’_:_H) with some p > (n+1)/2asn > 3,and p=2asn = 1,2. Under
these assumptions the operator L. can be extended in the usual way from the
space C§° (Ri“) to an essentially self-adjoint operator on Lz(Ri‘H); we will
denote it L. as well. This last one has a Green’s function G(X,Y’) possesing all
the necessary in sequel analytic properties. We norm it as follows: G(X,Y) ~
Ynt1¥nt1(| X —Y |) as | X — Y |— 0, where 42 = 1/(2x), ¢2(r) = In(1/7),
and v, = 1/[(n — 2)oy], ¥ = 727" for n > 3. Hence G is positive on R’_";“
and its inner normal derivative dG(X, y)/8n(y) > 0 - we denote this derivative
P.(X,y); it is called the Poisson’s c -kernel for the half-space Riﬂ.

The potential theory for the operator L., including existence of the Green’s
function G, was developed by M. Cranston, E. Fabes, Z. Zhao [2] (see excellent
survey by M. Bramanti [1]) for more general potentials. Under the assumptions
above the theory with all the needed details was independently developed by B.
Ya. Levin and the author [11, 9].

Let B*(zo,t) = {X € R¥™ | X — 20 |< t, 20 € R™, Tp41 > 0} be
an (n+1)-dimensional half-ball in RT’I. Further let us suppose that every
boundary point zg € R™ = BRT'I has a neighbourhood B*(z,t) such that ¢ €
LPo(B*(zo,t)) with some po > n + 1. These assumptions imply the regularity
of the half-space for the Dirichlet problem for the operator L. (F.-U. Maeda
[13]) and also continuity of the Poisson c-kernel P.(X,y) for X € RZ_H, yER"



[1, 9].

We denote C the class of the potentials ¢ satisfying all the above-mentioned
conditions. Let C, stands for the subclass of the radial potentials, i.e., ¢(X) =
¢(| X |). We will also consider the class A, consisting of the potentials ¢ € C,
such that there exists the finite limit lim,_ o 72¢c(r) = ¢ < oo, and moreover,
r=1 | r2¢(r) — q |€ L(1,00), i.e., the last quantity is integrable over the interval
[1,00). This class was introduced in [11]. At last let

To(é) ={X = (z,2n41) € BRI |2 — € |[< azny1}, @ >0
be a non-tangential cone in Ri‘H with vertex £ € R".

Theorem 1 Let ¢ € C and f be a locally-summable function on R™ such that
the integral

[ 1w X m)dy (3

converges at some point X € RZ_+1 (and consequently everywhere in R:_’Ll).
Then the Dirichlet problem (1) has the solution

uO(X) = f(y)Pc (Xa y) dy. (4)
Rn
For this solution there ezists the limit Nimp_(¢)3x¢ uo(X) = f(£) at almost
every point £ € R™. If f is a continuous function, then ug tends to the non-
tangential boundary values f(€) at every point &€ € R™. Ewvidently ug > 0 in the
case f > 0.

It should be noticed that the integral (3) may be convergent for an essen-
tially extensive function class then (2), because the Green’s function G(X,Y)
of the Schrodinger operator L. can decrease at infinity faster then the har-
monic Green’s function g(X,Y). For example let be ¢(X) = ¢ = const in Ri.
Straightforward calculation shows that

1+¢'? | X —y|
PolX,9) = 2 | X —y

z3 exp{—q"/? | X —y[}, X = (21,2, 23),

— i.e., the Poisson g -kernel decreases exponentially as | X — y|— oo.

Under the conditions of this theorem the solution to the problem (1) is not
unique in general. Even if the integral (3) is convergent, the function f can grow
very quickly at infinity (on a small set) and consequently the function ug (the
integral (4)) can have an arbitrary fast global growth in the closed half-space

R’ [8]. Hence to guarantee the uniqueness of the solution to the problem (1)
one has to restrict aprior: growth of the solution at infinity. For this estimate
of growth it is naturally to make use of the limit growth occuring in the above-
mentioned Phragmen-Lindel6f theorem [11]. To give an exact formulation we
need some more notions.



We let St (zo,t) = {X € R’_T_H | X —=®o|=t, o € R, 2ny1 > 0} denote
a half-sphere in Ri‘H, and A* be a Laplace-Beltrami operator (spherical part
of the Laplacian) on the unit sphere. It is known (see, e.g., [17, p.41]) that the
eigenvalue problem

{ A*p(0) + Ap(8) =0, 6€ ST(0,1),
p(6) =0, 6€ast(0,1)

has the eigenvalues A = k(k + n — 1) with the corresponding multiplicities

v = (n+k=2)!/[(n—1)!(k—1)!],k=1,2,...; note that 11 = 1. Let ¢z, (6),1 <
v < ug, stand for the corresponding eigenfunctions. We norm the eigenfunctions
in L?(S*(0,1)), moreover, 91 = @11 > 0. Straightforward calculation gives
p1(X) = (2(n + 1)/0'n+1)1/2:cn+1, if | X |= 1. But ¢k, are the spherical har-
monics "odd” with respect to ®,41, namely, @r, (2, —@nt1) = —Pr (T, Tny1)-
Hence well-known estimates (see, e.g., [14, p. 14]) imply the inequalities

| 0k (8) < QRTV2, | gy, (8)/0m(8) |< QKD

where symbols @ denote different constants depending on n only. Consequently
the following inequalities are valid:

| oru(8) | < QEHD/24, (6),

S e (B)pen (#) | < Q7 (5)

| iwky(9)8¢ku(¢)/an(¢) |S Qk2n—1‘

Let g(r) > 0 be a locally summable function on the ray 0 < » < co. We
denote W and V; respectively, the main solution and the dominant one (i.e.,
non-increasing and increasing solutions as ¢ — +oo [3, ch. 11] ) of the equation

y'(r) +nr Y (1) — (™% +g(r)}y(r) = 0,0 <7 < oo, (6)
normed under the condition Wy(1) = Vi(1) = 1. We denote the wronskian
of these solutions by wi,k = 1,2,.... We will omit the index &k = 1, i.e.,
V=01, = @1,

Theorem 2 Let ¢ € C and q be any measurable radial minorant of c:
0<q(lz]) <c(z), = € Ri‘H. If f is a function such that the integral (3)
converges, then the problem (1) has the unique solution in the class of functions
satisfying the condition

7— 00

lim inf V~!(r) /;er ) |u(X)| ¢(6)da(6) =0,

- this solution is given by the Poisson c -integral (4).



Note that if ¢ = 0, then the theorem 2 implies the theorem 2.1 [18] and its
generalization to any dimensions n = 2,3,....

More efficient conditions for convergence of the integrals (3) - (4) can be
given if some additional information is available about the potential ¢. For
example, let ¢ be a radial potential of the class B [11], i.e., lim;_, o t?c(t) = oo
and solutions of the equation (6) have JWKB-asymptotic as r — oo [5]. Then
the convergence of the integral

/ T £0) | 6 (el) M expl / " 2 1)t} dp

is a sufficient condition for the integral (3) to exist.

In the case ¢ € A these results can be essentially improved and strengthened.
If ¢ is a radial potential, it is known the following expansion for the Green’s
function G [11, 9]:

G(X,¥) = Y wi Vi(min{r, p}) Wi(max{r, ;){Y  0rs (O)prs ()}, 7 # .

k=1 v=1
(7)
This series converges uniformly if either r < yp, or p < 47, ¥ = const,
0 < v < 1. In the case ¢ = 0 this expansion coinsides with well-known result by
J. Lelong-Ferrand [12]. The expansion (7) can be rewritten in the terms of the
Gegenbauer polynomials. The formula (7) gives reason to introduce the kernels

GIPH(X,Y) = G(X,Y) = Y wi Vi (r)Wi(p){D ¢ (8)0rn (¥)},

p=12,..., and G1% = G.

Let f(t) = sup{| f(y)|: | y |< t} be the best radial nondecreasing majorant
of f. Consider an integer-valued function p(¢) = 1 + [ln(tefH'e (t))] , where ¢
is any positive number and [-] denotes the entire part of a number. If f has
a finite order A, i.e., | f(y) |< K. | y |**¢, where ¢ > 0 is arbitrary small, we
introduce the quantity

_ [/ -n+{@A+n—1)? —ag}/N)F, if (2A+n-1)2> 4q,
PA=1 o, if  (2A+n—1)% < 4q.
(8)
Recall, that ¢ € A, ¢ = lim,_,o 72¢(r) < co and as usual, a* = max{0;a}. Note
that py = [A] in the case ¢ = 0.

For any N =1, 2,..., we introduce the class Uy of functions u such that
lim inf Vy'(r) / | w(X) | ¢ (8)do(8) = 0. (9)
7—00 5+(0,1)

Here ¢ denotes an arbitrary eigenfunction corresponding to the eigenvalue Ay .



Theorem 3 Suppose ¢ € A and f(y) be a locally-summable real function on
R™, having an arbitrary growth as | y |— oco. Then the problem (1) has the

solution
B aG{p(lyl)}(X, v)
wx) = [ 1w g (10)

Moreover limp_ (¢)3x—¢ w(X) = f(§) for e.a. £ € R™. If f is a continuous
function, then the last relation is valid for all £ € R™.

If the function f has a finite order A, the solution u has the same order.

If a continuous function f has a finite order A, then the general solution to
the problem (1) in the class Un has the form

{pa}
[ ™5 e )

Here P is an arbitrary ”c -harmonic polynomial” of degree not greater than
N -1, ie.,

POX) = T VU anvenn(8)}-

In the case ¢ = 0 this statement implies the theorems 4.1-4.1’ [18] and the
results of [3].

We prove the theorems 1-3 in the section 3; the section 2 is devoted to
some estimates of the kernels G1?} needed in the sequel. These estimates are
similar to known ones in the case ¢ = 0 [16]. In the case of a whole space, not
a half-space the analogous estimates are in [9].

Remark at last that all results of the paper take place for any cone in R**!
with a sufficiently smooth boundary.

Statements of the results of this article were published without proofs in
[10].
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2 Estimates of the kernels G{#}

Let be ¢ € A; hence lim, _,o, 7?¢(r) = ¢ < co. Denote

ke = {(1—n)? +4(qg+ M}? = {(2k + n — 1)? + 4¢}*/?



and ,u,,f = (1 — n % kg)/2. Tt is known [5] that in the case under consideration
the solutions to the equation (6) have the asymptotics

+ -
Vi(r) ~ birFe, Wy ~ bar#x | as 7 — oo,

where b, ; are some positive constants and it is possible to differentiate these
relations.

Lemma 1 Let ¢ € A. For every p = 0,1,..., and for any fized v € (0,1) the
following inequalities are valid with the value s € (0,1) to be specified in the

proof:
|G, Y) IS QPP (1 = 8) " 0(0)e(¥) Vot (N Wpra(p)  (11)

asr < vyp.
The factor Q = Q(n) here and below depends only on the dimension n.
Ifp<yr,1<7r=|X|< oo, then

| GIPH(X,Y) |< QP 1r#s pl ™. (12)

Further, in the case r < yp, v € (0,1)

8G\P} (X, y) . dp(¥)
——— 2 | < QPP (11— 5) T 2p(6 “ly W, . (13
iy 1< Q=) RO 1 Ve (W (o). (19)
At last, if 1 < p < 7, then
0GP (X, y) +
—— [ < Qp ity pn 14
o) ()
Proof. Let be r < «4p with any fixed 0 < ¥ < 1. It is easy to see that
wr > K,k =1,2,.... We will use the known inequalities [9]

| wi Vi (1) Wi (p) <] wpds Vosr (Woaa(p) |, k 22+ 1,

and .
| wp Vi (r)Wi(p) | < mg trts ot

Hence the definition of G{?} and the inequalities (5) imply the estimates

(o) B n B "
(GPXY) <@ Y wptrpn smp(6)(¥) <
k=p+1

(o)
< Q¢(9)€0(1/’)7'#:+‘P#;+1 E K2 bl —Hgs g ~Fan <

kE=p+1
e _ +_,+
< Vor1 (M) Wora (0)e(0)e(¥) D k2 lyks i,
k=p+1



Moreover the relation u,‘: - :“';+1 = (kk — kp+1)/2 > R(k — p — 1) is valid for
p+1<k < oo, where R = (k 4+ p+ n){(2k + n — 1)? + 4¢}~1/2. In the case
0<p<ooandk >p+1one can check that R > Q = Q(g,n). Consequently
,U'l-: - ,“';-}-1 >Q(k—p—1)and

| Gir}|<

o

QVp41 (W1 (p)e(0)p(y) D K2ty t—r=1) =
k=p+1

= QVpr1 (N W1 (p)e(0)e(¥) >~ s*(k+p+ 1)1,

where s = v? < 1. Making use of the following elementary inequality
[oe]
Zsk(k +p+ 1)271.—1 < Q(P+ 1)2n—1(1 _ 8)—271.,
k=0

we get the estimate (11):

| GPHX,Y) < Q™" (1~ ) Vour (1) W1 () 0(8) ().
Now let be 1 < p <47, 0 <+ < 1. Then we have the inequality

¥4
| GPHX,Y) < G(X,Y) + Qu(0)p(¥) Y k2 1rki pii <
k=1

P
<g(X,Y)+ Qp™letr Y phu,
k=1
where p > 1, p;; < —n —k —1 and g stands for the harmonic Green’s function.
Now the known relation
9 X, Y) < AYny1 | X —Y['""=0(1)as | X|— oo,

implies the inequality Y 5_, p** < Y po, pP** < Qp'~™ and the estimate (12)
is proven.

The inequalities (13) and (14) follow immediately from (11) and (12) respec-
tively. The lemma is proven completely.

3 Proofs of the theorems

Proof of the theorem 1. The kernel P.(X,y), i.e., the inner normal
derivative of the Green’s function G satisfies the equation L.u(X) = 0 as



X € Q,y € 90 - such functions are called ¢ -harmonic functions. So the
absolutely convergent integral (4) is a solution to the boundary problem (1).
We will investigate its boundary behavior.

The situation under consideration has one essential distinction to the case
¢(X) = 0. Namely, the kernel P, fails generally to be an approximate identity.
It is known that the half-space Ri’H is a regular domain with respect to the
Dirichlet problem for the operator L. (see, e.g., [13, 9]). Hence the integral
fR,, P.(X,y)dy is a ¢ -harmonic function having boundary values 1. But the
known relation G(X,Y) < g(X,Y) implies the inequality

PC(va)SPO(va):P(|$_y|awn+1)a (15)
thus
| Pxwdy< [ Ple-ylandy=1,
™ Rn

and this is strickt inequality unless ¢ = 0 almost everywhere. Consequently 1 is
not a ¢ -harmonic function if ¢ # 0.

This obstacle can be overcomed due to the fact, that every boundary point
of the half-space is ¢ -regular under our suppositions.

Let £ € R™ be a Lebesgue’s point of the function f, so that, in particular,
| f(€) |< oo. Let us fix any € > 0 and split the difference

wX) @)= [ - AR du

+f(€){ Pc(Xa y) dy_ 1}+
ly—€l<e
+/ fWPA(X,y)dy = I + I3 + I5.
ly—€|>e

Due to the inequality (15) and known inequalities for the harmonic functions
[19, ch. 3] we have the estimate

sup |I|<
XeT.(€)
< sup f £(5) = F©)| Pollz — v, ens1)dy <
XeTa(€) J|y—€l<e
< Ao (MF)(E),

where fe(y) = f(y) — f(€), Mf is the maximal function:

(M5)@) =swpnr ot [ 5(w) |
>0 ly—z|<r

and the constant A, depends only on a and n. Now the equality

limp_ (¢)3x—¢ I1 = 0 follows from the analogous property of the usual harmonic

functions.



The integral I, = fly—£I<E P.(X,y)dy is a solution of the problem (1) with
boundary data 1as | y— & |< e and 0 as | y — € |> ¢; hence there exists the
limit imp,_ (¢)5x—¢ fa = 1 due to the known estimate 0 < const < P.(X,y) <
P(X,y) [2], which is uniform in Xandy. It is also known [9] that the constant
in this inequality is tending to zero, if the domain is shrinking to a point. But
| f(ﬁ) |< o0, thus limpa(g)ax_,g _[2 = 0.

Now let us consider the summand Is. If | y — € |> € and T () 3 X — &,
then the Poisson kernel P(| z — y |, #n+1) tends uniformly to zero. The same
is valid for the kernel P.(X,y), as follows from the inequality (15). Using the
convergence of the integral (3) and the theorem from [2] on estimation of the
ratio P.(X1, y)/P:(X2, y), we apply the theorem on the dominated convergence
to conclude that limp,(¢)3x_¢ I3 = 0. The theorem 1 is proved.

Further we need the Phragmen-Lindelof principle for the operator L. in a
half-space [11]. Let u be a subfunction of the Schrédinger operator L, i.e.,
upper-semicontinuous function u : Ri+1 — [—00, 00), which locally satisfies the
generalized mean-value inequality

wi< [ ) ) da(v),

where G¢(X,Y) is the Green’s function of L. in a ball | X — Y |< ¢, vanishing
at its boundary | X — Y |=1 - about the theory of these so-called generalized
subharmonic functions see, e.g., [13, 11, 9] and the references cited there.

The theorem 2 is an immediate corollary of the following particular case
of the theorem 1 [11]:

if u is a generalized subharmonic function in R’l“ such that

lim u(X) < A=const

Tp41—0
for every x € R™ , and

lim inf V_l(r)/ ut(r,6) ¢(6) do(8) = 0,
5+(0,1)

r—0co

where V and ¢ are as above, then u(X) < A% everywhere in Ri’H.

Proof of the theorem 3. The kernel G{P(I¥D} (X, y)/0n(y) is a
¢ -harmonic function of X € Ri’*’1 for every fixed y € R™, hence if the integral
(10) converges, it is the ¢ -harmonic function too. To prove the convergence of
this integral we fix X € Ri"’l and estimate the remainder

{o(ly)}
el X|<ly] on(y)

The inequality (13) with ¥ = 1/e implies the estimate

aG{p(Iyl)}(X, v)
on(y) -

10



< Qe y N)* Va(lyhy+1 (") Wa(ia+1(p) <
< Q(p(p))rtren T s < Q(p(p))* " exp{i ) -

Therefore the following inequality is valid

| I5 | < L<|y| Fly 1) @™ (p) ™ expint 41} dy =

=Q /;T F#)t~1p*™(p) exp{—,u;(p)_l_l}dt.

But ,u;_H > p+1, so that we can choose 7 as large as we need, and p > er, such
that 2nlnp(p) < p(p)/2. Consequently the last integral is dominated by the
convergent integral Q [~ t~17¢dt, e > 0, if p(t) > 2ln{tE]31+€ (t)}. Obviously, if
f is a bounded function, then the theorem 1 is applicable and we can let p = 0.
If f has a finite order A > 0, and py has the form (8), then the integrand can
be dominated by the quantity

+ -
sznr#p+l_1 p>‘+e+#1’+1 = O(p_l_el) as p — oo.

Now we study a boundary behavior of the integral (10). Fix a point £ € R
from the Lebesgue set of the function f and a point X = (2, n4+1) € To(€). We
represent the function u as u(X) = Is + I7, where

aG{p(Iyl)}(X, v)
Is = Iy
° /|y|<z|X| ) on(y) Y

and Ir = u — Is. The definition of the kernels Gt?} implies the equality

_ 0G(X,y) ,
IG_/|y|<2|X| ) on(y) dy

k(2|y|) . aSOk('l/))
-y F@)wr V(| X ) We(ly [) #x(6) dy,
= Jua<yi<aix) n(¥)
where 3, are jump points of the function p(t).
The following relations
. dpr ()
lim FO V(| X DWe(| y ) ex(0 dy=0
X=¢ Jr<lyl<alx] WTAXD Ty o) 0 )

are obviously fulfilled for every of the last integrals, 1 < k < k(2 | y |). As
for the first integral, it was proved in the theorem 1, that it tends to f(£), as
X — &

The proven estimate of the integral I; implies the uniform convergence of

the integral I; on any compact set in Ri‘H, and consequently the relation
limp, (¢)3x—¢ Iz = 0 follows.

Now we estimate the growth of the solution u(X) for a function f having a
finite order A. In this case p = py = const and

11



Iu(X)Islf |+|f <
ly|<2]|X]| 2| X<yl

< [y|52|X| f){P(lz—y| zns1) + Q’;Vk(r) Wi(p) p~ '} dy +

+Q / e |y e el ay,
21X <[yl

Making use of the equality [,, P(] 2 — y |,2n41)dy = 1 for the harmonic
Poisson kernel P, we have

P 27
W) ]S QIXPF QI Vi) [ P dp
k=1 Y

(oo}
+ —
+ Qrtrhs / prretnT it gp,
27

The first k integrals converge as p — 0 due to the definition of the index
P = pa, and the last integral converges as p — oo ( because the inequality
Ky > pp is valid as k < pa ). The calculation of the integrals above implies the
required estimate of the solution.

At last we consider the solution to the problem (1) under the condition
(9)- In our case (¢ € A, p = px = const) the difference v(X) of any two so-

lutions is continuous in Ri‘H and v |g== 0. Hence v can be extended to a ¢
-harmonic function in the whole space R"*! as an odd function: v(z, —2n41) =
—v(®, Znt1), Tnt1 > 0. Extended function v satisfirs the condition (9) every-
where in R**!, whereas

v(z,0) =0, Vo € R™. (16)

Now we introduce the functions
ye(7) :/ v(r,0) pr(0)da(8), k=1,2,...,
5+(0,1)

where ¢r = g, being any spherical harmonics corresponding to the eigen-
value A, odd with respect to z,4+1. Making use of the equality (16) and
self-adjointness of the Laplace-Beltrami operator A*, one can check directly
(by differentiating under the integral sign) that the functions y, k = 1,2,...,
satisfy the equation (6) with ¢ = ¢. This equation has a general solution
y(r) = AVi(r) + BWy(r), A, B are some constants. Since y(r) is bounded
as r — 0, we have B = 0, and yx(r) = AxVi(r), Ax = const. Now the condition
(9) implies Ay = 0 as k > N, so that yx(r) =0,k =N, N +1,....

To this end we expand the function v(X), X € R**1, in the Fourier- Laplace
series on the spherical harmonics. This expansion contains only odd harmonics

12



¢k, because v(X) is an odd function with respect to @,41. Thus

oK) = YLD e 0 (0) Valr).

k=1 v=1
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