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ABSTRACT
Several link-based algorithms, such as PageRank [19], HITS
[15] and SALSA [16], have been developed to evaluate the
popularity of web pages. These algorithms can be inter-
preted as computing the steady-state distribution of various
Markov processes over web pages. The PageRank and HITS
algorithms tend to over-rank tightly interlinked collections
of pages, such as well-organized message boards. We show
that this effect can be alleviated using a number of modifica-
tions to the underlying Markov process. Specifically, rather
than weight all outlinks from a given page equally, greater
weight is given to links between pages that are, in other re-
spects, further off in the web, and less weight is given to
links between pages that are nearby. We have experimented
with a number of variants of this idea, using a number of
different measures of “distance” in the Web, and a number
of different weighting schemes. We show that these revised
algorithms often do avoid the over-ranking problem and give
better overall rankings.
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1. INTRODUCTION
The ranking of Web pages returned in response to a user query com-
bines a measure of the relevance of the page to the query together
with a query-independent measure of the quality of the page. The
latter measure is based on the structure of the Web, considered as
a directed graph of pages and links: A page with many in-links is
presumed to be a high-quality page, particularly if (circularly) the
links come from pages that are themselves high-quality.

A number of techniques have been developed to rank Web pages
based purely on the structure of hyperlinks. The best known of
these are the PageRank algorithm[19], used in Google; the HITS
algorithm [15], proposed by Kleinberg; and the SALSA algorithm
[16]. (The original proposal for HITS and SALSA is to apply them
to a collection of pages found to be relevant to a query, but the same
algorithms can be applied to any collection of web pages.) These
and similar algorithms can be viewed as computing the steady-state
distribution of various Markov processes over Web pages.

Algorithms of this kind tend to over-rank tightly interlinked col-
lections of pages, such as message boards. Intuitively, a Markov
process executing a random walk through the Web tends to get
stuck inside such a collection, crossing links from one of the pages
to another. However, the large number of links between these pages
does not constitute any independent endorsement of quality, or at
best is a comparatively weak endorsement of quality. We call this
the “Circular Contribution effect”; effectively, each of the pages in
such a collection boosts the evaluation of all the others, and hence,
indirectly, of itself.

To counteract this undesirable effect, we propose to modify the un-
derlying Markov processes by giving different weights to different
outlinks from a page. A link from P to Q1 is weighted as more
important than a link from P to Q2 if, in some sense, Q1 is “further”
than Q2 from P in the Web. We present three different definitions
of this notion of “distance in the Web” and a number of different
weighting schemes. Adapting each of these modifications to the
PageRank and HITS algorithms, we show experimentally that the
revised algorithm is much less prone to the circular contribution
effect. The modifications do not have a measurably favorable effect
on the SALSA algorithm, which, in any case, is much less prone to
the circular contribution effect.

1.1 Major link-based ranking systems and their
properties

We begin by discussing the three algorithms PageRank [19], HITS
[15], and SALSA [16] and some of their properties. The detailed
algorithms will be presented in Section 4.1.



The stochastic model used in PageRank is a random-walk through
the web. In its original model, the web surfer follows the out
link from his current page, and jumps to linked pages with equal
probabilities; with small probability (0.15) he jumps randomly in
the web. The PageRank is the steady-state distribution of this
stochastic process.

HITS and SALSA are based on a model of the web that distinguishes
hubs and authorities. Each page is assigned a “hub” value and an
“authority” value. The hub value of page H is a function of the
authority values of the outlinks from H; the authority value of page
A is a function of the hub values of the inlinks into A. Borodin et al.
[4] show that this can be interpreted in terms of a stochastic process
that alternates traveling forward and backward across links.

In the computational models of these stochastic processes, if there
exists a path from node i to node j and also a path from node j
to node i in the selected web graph, then the rank value of node
i will boost the rank value of node j and vice versa; indirectly,
each node ends up “endorsing” itself. We call this effect Circular
Contribution. In general, Circular Contribution tends to be a
feature of stochastic models, and often a useful one. But it can also
lead to incorrect results. It has often been observed [16, 3, 17, 7]
that the mutual reinforcement effect in Kleinberg’s HITS algorithm
can produce bad ranking distribution for certain web graphs. In
general, if there is a Web Local Aggregation in the web graph,
discussed in the next section, the Circular Contribution effect can
mislead these algorithms into inaccurate rankings.

1.2 Web Local Aggregation effect in stochastic
ranking systems

A hyperlink implies some relationship between the linked docu-
ments. We divide hyperlinks into two major categories based on
their functionalities:

Category 1: Links are used for information reference and informa-
tion association. For example, students may add university home
page to their personal home pages because the university home page
is an important information source for university community. Such
links works as information reference based on human knowledge.
Topic-related pages may link to each other as information associ-
ation. The author of the source page creates the links because he
considers the destination page of value; hence, from the point of
view of the search engine, the link is evidence that the user carrying
out the search may also consider the destination page of value.

Category 2: Links are used for directories. This makes web brows-
ing meaningful. These links probably provide strong information
reference or association. For example, Yahoo! main page con-
tains many links to its subcategories. These links provides strong
information reference to help people to navigate the web in order
to locate the information they need. But directory links frequently
provide weak information reference and association. A discussion
board may add links to many messages. The topics of messages
may be very diverse and there may be even no association between
father page and child pages.

In addition, some links may be used for advertisements, or even no
meaningful functionality. These links give much weaker association
of the web pages. But since it is almost impossible to identify them
based on the web link structure, we won’t discuss these effects.

When the hyperlinks functioning as directories gives weak infor-

mation reference and association, they may cause negative effect in
global web ranking. It is very common that the father page hosting
many directory links may gain many back links from its children.
Thus the father page and child pages form cycles and the Circular
Contribution effect happens. In ranking systems that use stochastic
models, all pages in such collections will have their ranking raised
as a result. The father page will gain high rank with the contribu-
tion of many child pages, and consequently all the child pages will
benefit from the high rank of father page. We call this effect Web
Local Aggregation. A Web Local Aggregation is characterized
by the property that the number of intra-links within the collection
is very large and is significantly larger than those of the in-bound
links entering the collection and out-bound links leaving the collec-
tion. When information reference and association of the hyperlink
is weak in such situation, the ranking biased by Web Local Ag-
gregation does not correctly evaluate the global importance of web
pages.

In the dataset that we have used in our experimentation, there is a
concrete example of Web Local Aggregation; its negative effect on
the accuracy of these ranking algorithms is very clear. From a crawl
on NYU web in Oct. 2002, there exists a tightly linked discussion
message archive in the NYU Medical School. Four pages host
directory links to 958 messages sorted by thread, date, subject and
author respectively. Each message has links to the four directory
pages, two links to the previous message and two links to the next
message. The intra-links of this collection make up 99.6% of all
the links which have at least one node in this collection. Running
PageRank on the entire NYU web (about 100,000 different pages)
gives the rank of these four directory pages from 9 to 12, which is
entirely out of scale with the actual importance of these pages to
the average user of the NYU web site. Further details are given in
section 4.

The issue of local connectivity in the Web was addressed by Lem-
pel and Moran [16], who introduced the concept of Tightly Knit
Community (TKC) and discussed an artificial example. TKC effect
is not intensively explored in the real web and could be identified
only when the ranking is computed using HITS algorithm. The
presented concept of Web Local Aggregation here is more general,
and is topic-independent and ranking-independent.

1.3 Our work
To overcome the negative effect of local aggregation and improve
the effectiveness of ranking systems, we propose the ideas of Hy-
perlink Evaluation and Evaluation-based Web Ranking.

In the stochastic models discussed in section 1.1, the transition co-
efficients associated with the link from P to Q is, in PageRank a
function of out-degree(P); in HITS a constant value; and in SALSA
either a function of out-degree(P) or a function of in-degree(Q),
depending on the direction of the transition. In all three, all the
outlinks from P or all the inlinks to Q are evaluated equally. The
modifications that we propose, by contrast, give different weights
to different links, so as to avoid or alleviate the effect of Web Local
Aggregation. Since our objective is to improve topic-independent
and global ranking systems, our hyperlink evaluation can only be
derived from the web graph structure, not query or topic based.
Based on link evaluation and the frameworks of existing stochas-
tic web ranking algorithms, new ranking algorithms are proposed
which can alleviate the negative effect of Web Local Aggregation
effectively.



The remainder of this paper is organized as follows: Section 2
presents three different methods for hyperlink evaluation: collection-
interlink amplification, collection-rank-based evaluation, and
minimal back-distance based evaluation. It also describes an
algorithm to compute minimal back-distance efficiently. Section
3 discusses how the PageRank, HITS, and SALSA algorithms can
be modified to use the methods of hyperlink evaluation. Section 4
presents several experiments on New York University web site and
analyzes the effectiveness of the new algorithms.

2. METRICS OF HYPERLINK EVALUATION
We propose two general methods to reduce the effect on rankings of
Web Local Aggregation. The first method is to weight cross-links
between different domains more strongly than links between pages
in a single domain. Presumably local aggregations in the Web will
generally lie in a single domain. Moreover, for any two pages P and
Q, it is more likely that P and Q represent substantially different
sources of information (authors, organizations, cyber-communities
etc.), if P and Q are from different domains than if they are from the
same domain; hence, a link from P to Q is, on average, a stronger
endorsement of Q if P and Q are from different domains.

The second general method is to weight the link from P to Q more
strongly as a function of the length of the shortest path in the Web
from Q to P. This directly attacks the Circular Contribution effect,
as the contribution of short cycles in the Web to the evaluation of
web pages is reduced.

Based on these two methods, we present three metrics of hyperlink
evaluation here: collection-interlink amplification, collection-rank-
based evaluation and minimal back-distance based evaluation. And
for each of these metrics, we discuss the web surfer behavior in the
random walk of the stochastic process guided by the link evaluation.

2.1 Metric 1: collection-interlink Amplifica-
tion

A number of different approaches for clustering the web into non-
overlapping web collections (e.g. [21]), but these are mostly based
on similarity of content, and thus not link-based. Our analysis
simply clusters the web using host information. That is, two pages
are placed in the same collection if and only if they belong to
the same host. This metric evaluates cross links between different
collections greater than links within the collections by a fixed ratio.
Mathematically, denote vij as the value of link i → j, Coll(i) as
the collection index of page i. Let mi be the number of out links
from page i within the collection and ni be the number of out links
from page i that leave the collection. Let Ci = δmi + ni. The
value of link (i, j) is given as

vij =

8

<

:

δ/Ci if Coll(i) = Coll(j)

1/Ci otherwise
(1)

where δ is a constant within [0, 1]. The coefficient Ci normalizes
the values vij such that the sum of vij is 1 respect to index j. When
δ = 1, the evaluation is exactly the uniform link evaluation used
by the ranking systems discussed in section 1.1. The value 1/δ
gives the ratio how cross links between collections are evaluated
greater than local links. By giving more evaluation on cross links,
the surfer can obtain higher probability to jump out of web local
aggregation that frequently happens within a collection.

2.2 Metric 2: collection-rank-based evalua-
tion

The second metric is also devised using web collection informa-
tion but an improvement of Metric 1. We consider not only the
cross link between collections, but also the reliability of the desti-
nation host of a link. We use a two-stage evaluation approach to
evaluate the importance of pages in the web graph: the collections
are evaluated first then hyperlink evaluation can be improved using
collection evaluation. For collection evaluation, if a collection is
well linked by others, it would be very valuable. This argument
encourages us to adopt the existing stochastic model in link-based
ranking algorithms. As a demonstration, we show how to evaluate
collections using a PageRank-like algorithm. Suppose there are q
different collections in the web graph and let NColl

ij be the number
of outer links from collection i to collection j. Then the transition
matrix T Coll is

T Coll = εUColl + (1 − ε)MColl (2)

where UColl, UColl
ij = 1/q, and MColl is

MColl : MColl
ij =

NColl
ij

P

k NColl
ik

(3)

The ranking value vector of collections, denoted as V Coll, is the
stationary distribution of transition matrix T Coll. Compare to the
mathematical representation of PageRank discussed in Section 3.1,
we can see they are in the same mathematical framework.

When the collection evaluation V Coll is given, we can define the
hyperlink evaluation as follows

vij =

8

>

>

<

>

>

:

δ×S(V Coll
Coll(j))

Ci
if : Coll(i) = Coll(j)

S(V Coll
Coll(j))

Ci
otherwise

(4)

where Ci is the normalization coefficient such that the sum of vij is 1
respect to index j, and S : R → R is an increasing function to scale
the results of collection evaluation. This link evaluation corresponds
to the following surfer behavior in a random walk: during the walk,
the surfer can “see” the collection information of its neighbors.
When he makes the transition selection, he prefers to jumping to the
page whose collection is more trustable. A great difference between
this evaluation to Metric 1 is that the pages in highly valuable
collection gain higher values. In fact, the directory links in highly
valuable collections tend to give stronger information reference
and association. A notable web directory collection is much more
helpful for people to navigate the web than a discussion board served
to a small community group. If Web Local Aggregation happens in
both collections, the effect in the latter would be worse than that in
the former. In this context, Metric 2 is an improvement of Metric 1.

2.3 Metric 3: minimal back-distance (MinBD)
based evaluation

This metric directly identifies the cycle information in the web
graph and evaluates the links accordingly. In Circular Contribution,
we know the mutual contribution of two nodes is affected by the
length of the path between them. The smaller the length is, the
greater the contribution is. Thus, for each link i → j, the backward
contribution of node j to node i is dominated by the minimal length
of all possible paths from node j to node i in the web graph. We call
this length minimal back-distance (MinBD). Denote MinBDij

as the minimal back distance from j to i. For each link i → j the



mathematical representation of this metric is

vij =

8

>

<

>

:

f(Ω)
Ci

if MinBDij ≥ Ω

f(MinBDij )

Ci
otherwise

(5)

where Ω is a threshold, Ci is the normalization coefficient such that
the sum of vij is 1 respect to index j, f : R → R is an increasing
function satisfying f(0) ≥ 0. A threshold Ω is set because MinDB
could be infinite if there exists no backward path. Any finite MinDB
is less than or equal to the diameter of the web inferred from the
definition of MinDB. Albert et al. [1] theoretically estimated that
the web diameter is 19 in 1999. Broder et al. [5] experimentally
determined that the diameter of the web is at least 28. Although
the web increases dramatically, it is shown that the diameter of web
increases very slowly with the degree of the logarithm of the web
size [1]. Thus, the threshold Ω is set as 30 which can fit the current
web size quite well.

Let’s consider the random walk guided by this link evaluation. Sup-
pose the web surfer can “see” further than the neighbors at any page.
An effective web walk strategy should explore the web as much as
possible and not go back to the visited local pages frequently. When
determining the next transition, the surfer preferentially jump to the
linked pages with higher MinDB. Consequently, the probability
that the surfer goes back to the current node is reduced compared
with uniform transition selection. Furthermore, as those links with
small MinDB are evaluated less, the Circular Contribution effect is
reduced, which can effectively alleviate the negative effect of Web
Local Aggregation whose web graph contains many short cycles.

People may argue why not comprehensively evaluate all cycles in
the web graph other than those with minimal length. The compu-
tation and memory cost of evaluating all cycles in the web graph is
very high considering the huge size of the web. As a trade-off, our
evaluation employs MinDB only which can be efficiently computed
with the algorithm presented in Section 2.3.1.

2.3.1 Compute MinDB efficiently
The biggest problem in Metric 3 is that there is no good algorithm
to compute minimal back distance very efficiently. At a glance,
this is a all-source shortest path problem, which can be solved in
O(|V | × |E|) where |V | and |E| are the number of vertices and
number of edges of a given graph. Consider the size of global
web, an accepted algorithm MUST run linear or almost linear as
PageRank or HITS does. As we are only interested in computing
minimal back distance of neighboring pages, it is not necessary to
compute all-source shortest path. Here we present an algorithm
which can compute MinDB efficiently.

For simplicity, we assume the web graph is a directed unweighted
graph without any link from and to the same page. Our algorithm
starts with a depth-first-search (DFS), repeatedly updates the mini-
mal back distance in the DFS when new cycles are encountered. We
color each graph node with WHITE, GREY and BLACK represent-
ing whether it is unvisited, visited but not finished and finished
in DFS. For each page i, the algorithm stores a list of cycle an-
cestors, each of which locates in the DFS path from root page to
page i and there exists a cycle containing the cycle ancestor and
i. And for each cycle ancestor of page i, the algorithm stores the
minimal distance from i to the cycle ancestor in convenience of
future update of MinDB in DFS. The algorithm picks a root page
and runs recursively on the following procedure:

DFS (page i)

BEGIN

Color page i as GREY

FOR each link i->j

IF page j is WHITE /* tree link */

DFS(j)

ELSE IF page j is GREY /* back link */

UPDATE_DFSPATH(j,i)

ELSE IF page j is BLACK /* cross link */

FOR each cycle ancestor k of page j DO

IF k is GREY

UPDATE_DFSPATH(k,i)

Color page i as BLACK

END

where the procedure UPDATE DFSPATH() is defined as

UPDATE_DFSPATH(page p, page q)

BEGIN

FOR each link k->l along DFS path p to q DO

update MinDB of link k->l

store cycle ancestor p in node l

update minimal distance from l to p

END

The procedure UPDATE DFSPATH() here is rather scratch. The
actual procedure involves many conditional checks to correctly up-
date MinDB. The correctness of this algorithm comes from the
following lemmas:

Lemma 1. In DFS, if a back link (a link pointing to a
GREY node) is found, a new cycle is found.

Lemma 2. In DFS, if a cross link (a link pointing to a
BLACK node) i → j is found, there exists a cycle containing
this link if and only if there is a cycle containing j with
ancestor of a GREY node.

The first lemma is obvious. We state the proof of the second one
here:

Proof. For an inter link i → j, if there is a cycle containing
j with ancestor of a GREY node k, then there exists a DFS path
from k to i, denoted as k ; i. Denote the arc from j to k in the
cycle containing j and k as j ; k. We see i → j, j ; k and
k ; i is a cycle containing the link i → j. On the other hand,
if there exists a circle C within all the links found so far in DFS,
which contains link i → j, C must contain at least one GREY node
because the page i is the current node in DFS and it must be linked
by its parent, which is a GREY node. Furthermore, the nodes with
minimum DFS depth in such a cycle must also contain a GREY
node. Otherwise, their exists a link on this cycle satisfying that it
links from a BLACK node to a GREY node and the BLACK node
has smaller DFS depth. This contradicts with the property of DFS.
Proof done.

The main structure of this algorithm is a DFS. It is highly possible
there exist more than one DFS tree. This situation will not damage



our algorithm as any cross-link between different DFS trees will
never be in a cycle. The actual web graph may contain a huge
number of cycles. As we only store the cycle ancestors for each page
and the minimum distances from the page to cycle ancestors, we
avoid to repeatedly check all possible cycles in computation. This
saves a lot of computation and memory to improve the efficiency
of our algorithm. Since DFS is certainly linear, the computing
complexity of a single DFS node depends on its DFS depth of the
graph. If the graph is malformed, and the DFS search ends with a
very large depth, the computing cost may be high with high average
DFS depth. Empirically, we compare this algorithm with another
linear, but very limited algorithm described as follows:

In the DFS of the graph, for each page, we use breath-first-search
to search a limited steps, say up to depth 4. From current literature
and our own data set, the average number of outer links per page
is about 8. This will contribute a constant factor 84 ∼ 4000. Our
experiments in Section 5 show our algorithm is much faster than this
one. Our experiments also show that even the strongly connected
component of the web is significantly large, the DFS depth is still
relatively small due to the sparse nature of the web.

3. MODIFY STOCHASTIC PROCESS US-
ING HYPERLINK EVALUATION

Supported by the three metrics of hyperlink evaluation, we propose
a new ranking strategy named Evaluation-based Web Ranking.
The basic idea here is that by applying link evaluation to the stochas-
tic ranking algorithms, the new algorithms can improve ranking
effectiveness compared with the original ones. We first review
the mathematical frameworks of three different algorithms here:
PageRank [19], HITS [15] and SALSA [16]. Then we discuss
how to apply hyperlink evaluation into these ranking frameworks
to produce new improved algorithms. The improved algorithms are
independent with what actual link evaluation metric is used.

3.1 The mathematical framework of three ex-
isting ranking algorithms

3.1.1 PageRank algorithm
A web graph of n pages can be represented using an n-by-n adja-
cency matrix A, where A(i, j)-element is 1 if page i links to page
j, and 0 otherwise. The PageRank algorithm first constructs a prob-
ability transition matrix M by normalizing each row of adjacency
matrix A to sum to 1. The idea of this algorithm is inferred from
random walk within a graph. When a person is at page i, with
probability (1 − ε), it uniformly picks a URL link from this page
and transits to the target page of this link. With probability ε, it
jumps to any other page in the web with uniform probability. The
final transition matrix T is

T = εU + (1 − ε)M (6)

where U is an n-by-n matrix of uniform transition probabilities
having Uij = 1/n for all 1 ≤ i, j ≤ n. The vector of PageRank
scores p is then defined to be the stationary distribution of this
Markov chain. The stationary distribution is the eigenvector of the
transition matrix and satisfies

(εU + (1 − ε)M)T p = p (7)

The vector p gives the importance scores which can be ordered as
ranks.

3.1.2 HITS algorithm
The HITS algorithm points that a page has high “authority” weight
if it is linked to by many pages with high “hub” weight, and that
a page has high hub weight if it links to many authoritative pages.
Given a set of n web pages , the HITS algorithm firstly forms the
n-by-n adjacency matrix A, whose (i, j)-element is 1 if page i links
to page j, and 0 otherwise. It iterates the following equations:

at+1 = AT · ht (8)

ht+1 = A · at+1 (9)

where a and h are the vectors of authority values and hub values.

For each iteration, a normalization step is then applied, so that the
vectors a and p become unit vectors in some norm. Kleinberg [15]
proves that for a sufficient number of iterations the vectors a and
h converge to the principle eigenvectors of the matrices AT A and
AAT .

A more stable HITS is given by Ng et al. [18]. It introduces a small
uniform jump probability to any other page for each transition as
PageRank algorithm does. The mathematical representation of the
stable HITS algorithm is:

at+1 = ε
−→
1 + (1 − ε)AT · ht (10)

ht+1 = ε
−→
1 + (1 − ε)A · at+1 (11)

3.1.3 SALSA algorithm
The SALSA algorithm is built in the same framework of authority
and hub like HITS algorithm. It normalizes the adjacency matrix A
of the web graph by rows and columns respectively to obtain new
transition matrices for authority and hub computation. Denote by
R the matrix which results by dividing each nonzero entry of A by
the sum of the entries in its row, and by L the matrix which results
by dividing each nonzero element of A by the sum of the entries
in its column. Then the SALSA algorithm iterates the following
equations:

at+1 = LT · ht (12)

ht+1 = R · at+1 (13)

where a and h are the vectors of authority values and hub values.
The computation model is very similar to HITS algorithm given
in Section 3.1.2. The authority and hub vectors converge to the
principle eigenvectors of matrices LT R and RLT .

3.2 PageRank-based algorithm using link eval-
uation

In PageRank algorithm, the small coefficient of uniform jumping
probability, ε, counts for an important factor of PageRank algorithm
[18] and can be used to bias PageRank value distribution [13]. We
propose two levels of Evaluation-based Web Ranking for PageRank-
like algorithm: the first level of evaluation is that the PageRank
transition probabilities can be evaluated by link evaluation; the
second level of evaluation is that the uniform jumping probability ε
for each page can be evaluated by the link evaluation on that page.
These findings lead to the discovery of two improved algorithms
in the mathematical framework of PageRank algorithm: fixed ε
algorithm and evaluation-based non-fixed ε algorithm.



3.2.1 Level 1: fixed ε algorithm
The original PageRank transition matrix M in Section 3.1.1 is
modified as

M̃ : M̃ij = vij (14)

Where vij is any one of the link evaluations given in Section 2.
Since the link values have been normalized, M̃ is a well formed
transition matrix. Clearly, we replace the original matrix M with
M̃ in Section 3.1.1 and apply the fixed uniform jumping probability
to form the final transition as Eq.(6) does.

3.2.2 Level 2: evaluation-based non-fixed ε algo-
rithm

The hyperlink evaluation is the first level evaluation in reducing the
local aggregation of the web. In the second level, we evaluate the
overall quality of all out links from a page, then decide how to choose
ε. For any page i, we calculate the average of hyperlink values of
all out links on page i. Because the normalization of hyperlink
evaluations in Section 3 is performed on different bases for pages
with different number of out links, we use the non-normalized
evaluation to calculate average quality of links on a single page.
The average quality of the out links on page i is defined as

AvgQual(i) =

P

j:i→j Vij

Ni

(15)

where Vij = vij ×Ci is the unnormalized link value and Ni is the
number of outlinks on page i. The uniform jumping probability for
page i, εi, is then evaluated as

εi = εbase + εadjust × g(AvgQual(i)) (16)

where εbase is the global base and εadjust is the adjustment range.
g() is an decreasing function and maps AvgQual(i) into [0, 1].
For example, if AvgQual(i) is in [1,∞], g(x) = 1

x
satisfies. The

greater value AvgQual(i) has, the smaller probability it will jump
to an arbitrary page.

Let pt be the ranking vector after iteration t. Iteratively computing
rank is shown as follows,

pt+1
i =

X

j

εj × pt
j

n
+

X

j:j→i

(1 − εj) × vji × pt
j (17)

where n is the total number of pages in the web graph. To reduce
complexity, the first term must be calculated only once for each
iteration. And after each iteration, vector pt must be normalized.

3.3 HITS-based algorithm using link evalua-
tion

To modify stochastic process in HITS ranking system, we can apply
the link values as the weights to HITS algorithm. The non-zero
entries of new transition matrix Ã is defined as

Ã : Ãij =
vij

maxj:i→j vij

(18)

where i → j is a link in the web graph. All entries of Ã are within
[0,1] in this mathematical representation. Let Ni be the number
of out links on page i. In uniform link evaluation, link values are
vij = 1/Ni in the normalized form, and maxk:i→k vik is also
1/Ni . Therefore the new algorithm under uniform link evaluation
is exactly the original HITS algorithm. Replacing AT and A in the
stable HITS algorithm Eq.(10) and Eq.(11) with (Ã)T and Ã, we
get our improved HITS-based algorithm.

Table 1: Selected rank of PageRank

Rank URL
1 www.nyu.edu
2 www.nyu.edu/bin/phfnyu
3 www.nyu.edu/library/bobst
4 www.stern.nyu.edu/acc/about
5 www.nyu.edu/gsas
6 www.law.nyu.edu
7 www.med.nyu.edu
8 monod.biomath.nyu.edu/index/papers.html
9 mchip00.med.nyu.edu/lit-med/archives/messages/date.html

10 mchip00.med.nyu.edu/lit-med/archives/messages/index.html
11 mchip00.med.nyu.edu/lit-med/archives/messages/author.html
12 mchip00.med.nyu.edu/lit-med/archives/messages/subject.html
13 www.law.nyu.edu/index.html
14 rmm-java.stern.nyu.edu/jmis/toppage/index.html
15 www.law.nyu.edu/search

3.4 SALSA-based algorithm using link evalu-
ation

We keep the mathematical model of our algorithm consistent with
that of SALSA provided in Section 3.1.3, but biased by our link
evaluation. Two new normalized matrices, R̃ and L̃, are defined
corresponding to matrices R and L defined in Section 3.1.3.

R̃ : R̃ij = vij (19)

L̃ : L̃ij =
Ni × vij

Kj

(20)

where Ni is out-degree of page i, and Kj is the in-degree of page
j. In uniform link evaluation, where vij = 1/Ni in the normalized
form, matrices R̃ and L̃ are exactly the same of R and L. Replacing
R with R̃, L with L̃ respectively in the mathematical model of
SALSA given by equations Eq.(12) and Eq.(13), we obtain our
improved SALSA-based algorithm.

4. EXPERIMENTS
Our experiment data set is built on a crawl on the entire web of
New York University in October, 2002. The crawler narrows its
downloading to the URLs with host name ending with “.nyu.edu”.
After removing repetitions of web pages and non-text pages, the
total number of URLs is 98,349, which is compatible with the num-
ber of results returned by Google [12] at the same time using query
“-abc3dfg9 site:nyu.edu”, which is about 102,000. The current
size may have some increase due to the web expansion. These
URLs make up a web graph consisting 723,380 hyperlinks. The
ratio between number of hyperlinks and URLs is 7.4, which is re-
markably in agreement with previous work [5, 9]. The study of
the in-link and out-link distributions shows they obeys power law
with power coefficients of 1.94 and 2.24. Both of them are in very
good agreement with previous work studied by Broder el al. [5]
and Barabasi and Albert [2]. Although the university web site is
not significantly large, it has some good properties: unlike many
commercial web sites, most of the web pages are stored statically
on server side, not generated by web tools like CGI and ASP; the
web pages are geographically close and well linked such that link-
based algorithms can produce meaningful results; the university
web site is proved experimentally to satisfy many known statisti-
cal properties of the global web such as in-degree and out-degree
distribution. Basically, PageRank-based algorithms are run on dif-
ferent data sets as HITS-based or SALSA-based algorithms. For



Table 2: Selected authority rank of stable HITS

Rank URL
1 apple.cs.nyu.edu/proteus/local/data/OnlineProc-

/ACL02/MAIN/index.htm
2 apple.cs.nyu.edu/proteus/local/data/OnlineProc-

/ACL02/EMNLP/index.htm
3 apple.cs.nyu.edu/proteus/local/data/OnlineProc-

/ACL02/S2S/index.htm
4 apple.cs.nyu.edu/proteus/local/data/OnlineProc-

/ACL02/DIALOG/index.htm
5 apple.cs.nyu.edu/proteus/local/data/OnlineProc-

/ACL02/DEMOS/index.htm
6 apple.cs.nyu.edu/proteus/local/data/OnlineProc-

/ACL02/WSD/index.htm
7 apple.cs.nyu.edu/proteus/local/data/OnlineProc-

/ACL02/BIO/index.htm
...

25 apple.cs.nyu.edu/proteus/local/data/OnlineProc-
/ACL02/BIO/contents.htm

26 www.nyu.edu
27 apple.cs.nyu.edu/proteus/local/data/OnlineProc-

/ACL02/WSD/contents.htm
28 www.nyu.edu/bin/phfnyu

PageRank-based algorithms, they can be applies directly on a well
linked web graph. For HITS-based or SALSA-base algorithms,
they are generally applied on topic related data sets and require to
build the “base set” before doing iterations [15, 16]. But in Section
1.1 and Section 3.1.1, we have known that their computation mod-
els are independent with data set. Therefore, we apply HITS-base
and SALSA-based algorithms directly on our data set for analyzing
purpose. To make ranking unique in each of such ranking systems,
we choose authority ranking as the evaluation of importance of
web pages because authority pages are computed based on in-links.

We have found that Web Local Aggregation in the NYU web does
indeed have a negative effect on the rankings output by the standard
algorithms. Table 1 shows the top 15 pages given by PageRank
algorithm by setting ε = 0.15 in Eq.(6). The pages ranked from
9 to 12 are the directory pages of a message board archive in the
medical school of NYU. Each of the directory pages hosts the links
to the same collection of 958 message pages of different orders.
And each message page has links to the four directory pages and
links to previous and following messages. These directory pages are
ranked unexpectedly high in the whole collection of about 100,000
pages, as compared to their actual significance, intuitively judged.
However, since there are many short cycles in this collection, the
Circular Contribution effect is significant and produces this inac-
curate ranking distribution. Table 2 shows the selected top ranked
pages using stable HITS algorithm by setting ε = 0.2 in Eq.(10)
and Eq.(11). A local collection describing a project called “Pro-
teus” takes top 25 positions higher than the portal page of NYU.
This collection contains some mirrors of several online conference
proceedings which gain high ranking in the mutual reinforcement
environment.

In support of our theoretical analysis in the previous sections, we
implement the following algorithms: the original PageRank, stable
HITS, and SALSA algorithms; PageRank-based Level 1 evalua-
tion algorithms using link evaluations of Metric 1 and Metric 2;
PageRank-based Level 1 and Level 2 evaluation algorithms using

link evaluation of Metric 3; HITS-based and SALSA-base algo-
rithms using link evaluations of Metric 1, Metric 2 and Metric
3. There are 13 different algorithms in total. We use the fol-
lowing abbreviations to denote them in the same order: PR, HT,
SA, PRM1, PRM2, PRL1M3, PRL2M3, HTM1, HTM2, HTM3,
SAM1, SAM2, SAM3. All these algorithms are applied on the
same data set stated before. The precise algorithms use the follow-
ing configurations: in PageRank-based algorithms we set ε = 0.15
as Google does; in HITS-based algorithms we adopt the model of
stable algorithm of Eq.(10) and Eq.(11) and set ε = 0.2 as Ng el
al. [18] does; in link evaluations we set the in-collection coefficient
δ = 0.2 in both Metric 1 and Metric 2, S : S(x) = 3

√
x in Eq.(4)

to scale collection rank in Metric 2, and f : f(x) =
√

x in Eq.(5)
to scale MinDB values in Metric 3; in PageRank-base algorithm
using Level 2 evaluation we set εbase = 0.1, εadjust = 0.1, and
g : g(x) = 1/x since AvgQual() maps into [1,∞). Some of these
configurations are made to compatible with previous works and
some are made for computational correctness. For example, with

the chosen εbase and εadjust, the first term in Eq.(16) ,
P

j

εj×pt
j

N
,

converges to 0.151 after tens of iterations, which is almost equiv-
alent to the same setting of ε in the original PageRank algorithm.
In computing MinDB of links used in Metric 3, we compare our
algorithm proposed in Section 2.3.1 with the limited algorithm also
described in the same section. The time expense of the first al-
gorithm on our data set takes less than 10% of the time cost by
the limited one. This shows empirically the algorithm to compute
MinDB is efficient. The depth-first-search starting at the university
main page ends with maximum depth of 1645. As all URL can be
reached from this portal page according to the crawl, this number
is relatively small compared with the size of whole collection.

Given those improved ranking algorithms, the greatest challenge is
how to evaluate them compared with the original one. Kendall’s
τ distance measure can be utilized to compare ranked list and its
effectiveness in applying to web ranking has been discussed in [11,
13]. This measure is very limited for our evaluation purpose be-
cause it can only tell how different ranking agree with one another.
We use an aggregation-tracing method to evaluate the effective-
ness for different ranking algorithms in avoiding negative effect of
Web Local Aggregation: first, we manually identify several sub
collections of local aggregation in our data set; second, we trace
how their ranks change for different ranking systems.

The manually selected sub collections of local aggregation are given
in Table 3. Collection MCHIP and END98-01 have similar struc-
ture which contains four directory links hosting the same message
archives. PROT is the collection taking the top positions in the
ranking computed by HITS algorithm. For in-bound links entering
the collection and out-bound links leaving the collection, only those
within NYU web are counted. In the collection of ARTG, 844 out-
bound links point to www.cs.nyu.edu/artg/telecom/fall99/index.html,
which links to the directory page of collection ARTG. A common
property of these collections is that the number of intra-links within
the collections is very large. The ratios of intra-links versus col-
lection size are 13.5, 8.5, 14.8, 15.2, 15.0, 15.0, 8.2, displayed in
the same order of the selected collections in Table 3. These ratios
are larger than the average ratio 7.4 of our data set. The percent-
ages of intra-links respect to the involved links (i.e. the sum of
intra-links, in-bound links and out-bound links) are 99.6%, 99.6%,
99.2%, 99.2%, 97.5%, 95.1% and 81.0%, which are also displayed
in the same order of the selected collections in Table 3. The local
structures of these collections comply with our description of Web
Local Aggregation. In the following discussions, we’ll see that the



Table 3: Humanly identified sub collections of Web Local Aggregations

Abbrev. URL prefix dir. URL suffix (.html) Size Intra-links In-bound Out-bound
MCHIP mchip00.med.nyu.edu/lit-med/archives/messages/ index, date, subject, author 962 12967 2 45
PROT apple.cs.nyu.edu/proteus/local/data/OnlineProc/ ACL02/MAIN/index.htm, etc. 875 7469 6 26

END98 endeavor.med.nyu.edu/pipermail/lit-med/1998/ index, date, subject, author 193 2850 10 12
END99 endeavor.med.nyu.edu/pipermail/lit-med/1999/ index, date, subject, author 255 3876 10 21
END00 endeavor.med.nyu.edu/pipermail/lit-med/2000/ index, date, subject, author 223 3336 10 76
END01 endeavor.med.nyu.edu/pipermail/lit-med/2001/ index, date, subject, author 345 5162 10 255
ARTG www.cs.nyu.edu/artg/telecom/fall99/lecture notes/ lecture notes 504 4148 3 966

Table 4: Effectiveness of improved PageRank-based algorithms than PageRank algorithm

Coll. Avg(PR) ADiff(PRM1,PR) ADiff(PRM2,PR) ADiff(PRL1M3,PR) ADiff(PRL2M3,PR)
MCHIP 12015.7 1744.2 2084.8 5927.8 5743.2
PROT 59670.4 -1985.2 -2490.5 -8751.0 -8144.7

END98 14199.5 1963.6 2490.5 3768.1 3507.8
END99 14485.9 1986.4 2547.7 3854.7 3717.7
END00 15666.9 1700.9 2243.4 2543.1 2388.9
END01 17634.0 1459.0 1850.9 1863.7 1719.1
ARTG 25024.9 65.1 299.4 539.3 916.9
Coll. Top(PR) HDiff(PRM1,PR) HDiff(PRM2,PR) HDiff(PRL1M3,PR) HDiff(PRL2M3,PR)

MCHIP 9 9 26 25 24
PROT 496 127 108 55 56

END98 139 67 82 59 59
END99 95 60 70 54 55
END00 129 55 66 42 40
END01 73 44 53 42 38
ARTG 47 6 7 20 21

top rank of these collections are very high in the overall ranking
given by three original algorithms as we predicted in Section 1.
Tracing the rank change of these local aggregations will give us the
clue how our algorithms can improve ranking quality.

In measuring the change of different ranking, we use the average dif-
ference ADiff and difference of highest rank HDiff to evaluate
the rank change of a sub collection between two different ranking
distributions. Let Φ be a sub collection of local aggregation, R1(i)
and R2(i) be the ranks of page i ∈ Φ in two different ranking
distributions. The measures of ADiff and HDiff are defined as
follows:

ADiff(Φ, R2, R1) =

P

i∈Φ(R2(i) − R1(i))

Size(Φ)
(21)

HDiff(Φ, R2, R1) = min
i∈Φ

R2(i) − min
i∈Φ

R1(i) (22)

Suppose the negative effect of Web Local Aggregation happens on
collection Φ in rank R1. If the value of ADiff(Φ, R2, R1) or
HDiff(Φ, R2, R1) is positive, it shows such negative effect has
been alleviated by R2, otherwise not. The larger such value is, the
more effective the ranking R2 is. Table 4, Table 5, and Table 6 give
our main results. Analyzing the data in these tables, we draw the
following conclusions as our major results of this paper:

PageRank and HITS algorithms are much more sensitive to
Web Local Aggregation than SALSA algorithm. In PageRank
and HITS algorithms, all selected collections except PROT have
average rank within top 27% of the whole data set. The highest rank
of MCHIP given by PageRank is 9 as we have pointed out in Table 1.
The top rank of PROT given by HITS is 1 which is surprisingly bad
as pointed out by Table 2. But all the average ranks given by SALSA

algorithm for the collections other than MCHIP are lower than the
top 55% of the total data set, which shows SALSA algorithm is
much less affected by Web Local Aggregation. Even for MPICH, it
is 25% lower than that of PageRank and HITS. The top ranked pages
of all selected collections, i.e. the Top(PR), Top(HT), Top(SA) in
Table 4, 5, 6, are all ranked very high in the whole collection. All of
them are in the top 496 pages and are within top 0.5% of the whole
data set. And the average for Top(PR), Top(HT) and Top(SA) are
141.0, 153.3, and 120.7 respectively.

PageRank and HITS algorithms give similar rank distribu-
tion. The average ranks of the selected collections given by
PageRank and HITS algorithms obey the same order: MCHIP <
END98-01 < ARTG < PROT. For the four collections of END98-
01, the average ranks are close to one another both in the ranking
given by PageRank and HITS algorithms. The standard varia-
tions of them are 1401.8 and 491.5, and are within 9% and 3% of
the cumulative average of Avg(PR) and Avg(HT). The average of
|Avg(PR)− Avg(HT )| for selected collections is 5184.1, which
counts for 5.3% of the size of total data set.

The ranking systems using our hyperlink evaluations are very
successful to improve ranking effectiveness in PageRank-based
and HITS-based algorithms. Table 4 presents the results given
by PageRank-based algorithms. Since PROT is least affected by
Web Local Aggregation, we consider the collections other than
PROT. Compared with the original PageRank algorithm, all new
algorithms successfully improve the ranking biased by Web Local
Aggregation. The magnitude of the improvement on ADiff re-
spect to link evaluations follows the same order: Metric 1 < Metric
2 < Metric 3. Furthermore, the positive values of HDiff measure
show that the highest ranks of these collections decline. For the



Table 5: Effectiveness of improved HITS-based algorithms than HITS algorithm

Coll. Avg(HT) ADiff(HTM1,HT) ADiff(HTM2,HT) ADiff(HTM3,HT) Top(HT) HDiff(HTM1,HT) HDiff(HTM2,HT) HDiff(HTM3,HT)
MCHIP 7394.9 3140.2 14296.7 16374.6 104 93 -24 279
PROT 40691.4 9603.3 17353.3 26145.8 1 0 607 2478

END98 19288.4 4935.3 8644.1 11957.2 273 291 -12 957
END99 18112.1 4729.9 10611.2 13041.2 211 237 -6 785
END00 18410.0 4776.7 10292.5 14193.1 250 248 -19 868
END01 18064.1 4560.1 12004.8 10513.1 133 167 37 650
ARTG 25825.3 6107.7 4602.6 16812.5 101 89 -4 1826

Table 6: Effectiveness of improved SALSA-based algorithms than SALSA algorithm

Coll. Avg(SA) ADiff(SAM1,SA) ADiff(SAM2,SA) ADiff(SAM3,SA) Top(SA) HDiff(SAM1,SA) HDiff(SAM2,HT) HDiff(SAM3,SA)
MCHIP 36960.3 -8972.3 -17672.0 5327.5 28 7 6 -4
PROT 58713.0 -312.2 -2588.9 -10373.3 229 69 123 61

END98 55176.6 -6373.2 -29034.9 11558.9 173 26 4 -25
END99 55601.6 -5468.4 -28752.1 11191.2 138 20 8 -22
END00 54706.6 -5698.4 -28133.2 -18.5 153 33 9 14
END01 55591.5 -4671.0 -27433.3 550.4 105 8 8 2
ARTG 60030.4 -7291.9 -28787.4 -1888.6 19 9 22 77

two-level evaluations proposed in Section 3.2, Level 2 evaluation
has no improvement respect to Level 1 evaluation. This does not
comply with our theoretical motivation and the answer still remains
open for larger scale experimenting. Table 5 presents the results
given by HITS-based algorithms. The improvement of new rank-
ing distribution is significant. The top rank of PROT drops from
1st to 608th in HTM2 and 2479th in HTM3. The magnitude of
the improvement on ADiff respect to link evaluations follows the
same order as PageRank-based algorithms: Metric 1 < Metric 2 <
Metric 3. As for results induced by Hdiff measure, the situation
is not always better as shown for Metric 2 evaluation. The strength
of HITS-based algorithm using Metric 3 is significant in the top
rank decline for all selected collections.

SALSA-based ranking algorithms using our link evaluations
have limited success to improve ranking effectiveness. Ta-
ble 6 shows the results of similar experiments using SALSA-based
algorithms. SAM1 and SAM2 does not improve the ranking ef-
fectiveness under ADiff measure. SAM3 has limited success to
improve ranking on 4 of the 7 selected collections. The improve-
ment under HDiff measure is sound in SAM1 and SAM2, but not
SAM3. As we have pointed out, SALSA algorithm is much less
affected by Web Local Aggregation. It is reasonable that out strat-
egy could not make significant success since the original ranking
system of SALSA is strong enough to resist the bias of Web Local
Aggregation.

Our discussion focuses on alleviating the over-ranking problem.
As a complement, we present some snapshots of top ranked pages
given by improved algorithms as a demonstration how high quality
pages win in these ranking systems. Table 7 presents 15 top ranked
pages using algorithm PRL2M3. It preserves some high quality
pages in Table 1 but removes many low quality pages. The page
ranked second is the portal page to search NYU web, which is
reasonable getting such high rank. Table 8 presents 15 top ranked
pages using HTM3. The quality is not as good as PRL2M3, but it
makes significant progress compared with top HITS ranking given
by Table 2. We have already known SALSA algorithm is insensitive
to local aggregation on the scale of average rank. It is interesting to
know whether its top ranking is better than our improved algorithms,

Table 7: Top ranked pages in PRL2M3

Rank URL
1 www.nyu.edu
2 www.nyu.edu/bin/phfnyu
3 www.nyu.edu/gsas
4 www.nyu.edu/prospects.nyu
5 www.nyu.edu/library/bobst
6 www.law.nyu.edu
7 www.nyu.edu/cas
8 www.law.nyu.edu/index.html
9 www.nyu.edu/presidential.installation

10 www.nyu.edu/athletics/varsity teams.html
11 www.nyu.edu/parentsday
12 www.nyu.edu/msep
13 www.nyu.edu/students.nyu
14 www.nyu.edu/alumni.nyu
15 www.nyu.edu/parents.guide

especially PRL2M3. Table 9 gives top ranked pages in SALSA. We
see the results of PRL2M3 is still better than SALSA based on
human judgement. This shows SALSA algorithm does not win all
the time.

5. CONCLUSIONS AND FUTURE WORK
In the stochastic models of web ranking systems, web pages are
ranked via co-citation and competition with each other. These
models are often biased by Web Local Aggregation and produce
bad ranking distribution. Empirically, such bias can be alleviated
when the ranking are guided by some hyperlink evaluations. We
address the issue of query-independent hyperlink evaluations that
can be inferred from the web graph structure. A futher work based
on our framework is the study of using query-oriented hyperlink
evaluations to improve web ranking. There are some related works
in this area [13, 20, 3, 4, 6, 8, 17, 14], but most of their approaches
are addressed for only a certain ranking system and not applicable to
different ranking systems. Ding et al. [10] has built a unified math-
ematical framework for PageRank, HITS and SALSA algorithms.



Table 8: Top ranked authority pages in HTM3

Rank URL
1 www.nyu.edu
2 www.nyu.edu/bin/phfnyu
3 www.nyu.edu/gsas
4 www.med.nyu.edu/ethics.html
5 www.law.nyu.edu
6 www.nyu.edu/library/bobst
7 www.med.nyu.edu/som/departments.html
8 www.nyu.edu/cas
9 www.nyu.edu/athletics/varsity teams.html

10 www.stern.nyu.edu/acc/about
11 rmm-java.stern.nyu.edu/jmis/toppage/index.html
12 www.med.nyu.edu/webmastermail.html
13 www.cims.nyu.edu
14 www.law.nyu.edu/sitemap
15 www.nyu.edu/its

Table 9: Top ranked authority pages in SALSA

Rank URL
1 www.nyu.edu
2 www.nyu.edu/bin/phfnyu
3 www.med.nyu.edu
4 www.law.nyu.edu
5 www.nyu.edu/gsas
6 www.stern.nyu.edu/acc/about
7 rmm-java.stern.nyu.edu/jmis/toppage/index.html
8 www.nyu.edu/library/bobst
9 www.law.nyu.edu/sitemap

10 mcrcr2.med.nyu.edu:8765/medind.html
11 www.med.nyu.edu/disclaimer.html
12 www.med.nyu.edu/ethics.html
13 www.med.nyu.edu/facstud.html
14 www.nyu.edu/cas
15 www.nyu.edu/athletics/varsity teams.html

This encourages people to use the framework of our approach to
target the issue in a more general way.
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