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Abstract. Preconditioned conjugate gradient methods based on web-deerlapping Schwarz methods often
perform quite well. Such a preconditioner combines a cospsee solver with local components which are defined
in terms of subregions which form an overlapping coveringhefregion on which the elliptic problem is defined.
Precise bounds on the rate of convergence of such iterattbats have previously been obtained in the case of
conforming lower order and spectral finite elements as veelha number of other cases. In this paper, this domain
decomposition algorithm and analysis are extended to mfinite elements. It is established that the condition
number of the relevant iteration operator is independerth@number of subregions and varies with the relative
overlap between neighboring subregions linearly as in tiifoeeming cases previously considered.
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1. Introduction. In this paper, the well-known two level Schwarz method, ®eg,,
[15, Chapter 3], is extended to mortar finite element methbtistar finite element methods
were first introduced in [7]. They are nonconforming finitereent methods based on a
partitioning, not necessarily geometrically conformiind,the region{) into substructures
Q;. Thus, in three dimensions, vertices and edges of one swghste can fall in the interior
of edges and/or faces of its neighbors and in two dimensientices can divide edges of
neighboring substructures. In each of the substructures;hwose a conforming standard
finite element or a spectral element method without muchrcefya its neighbors. Even if
the substructures geometrically conform, e.g., when thefssubstructures forms a regular
finite element triangulation, the local finite element meastmeed not. We can also use spectral
finite element spaces of different order in different sulsttires and we can also mix finite
elements and spectral elements. In this paper, we will wotkactheory only for the case
of piece-wise linear mortar finite elements; we treat bothrttore conventional mortar finite
elements and those introduced by Wohlmuth [16, 17].

We note that Achdou and Maday have considered a relatedgonabl [1]. However, in
their paper, the principal issue is to establish the coramerg and best possible error bounds
for finite element methods based on overlapping subdomdiygically, the meshes in the
regions common to two or more overlapping subdomains do mttimand mortar conditions
are used to introduce a weak continuity between the bounadurgs of one component of the
finite element solution and the interior values of differeamponents along the boundary of
the first subdomain. In the final subsection of their papemaemence result similar to ours,
and that for standard conforming elements is formulatedestablished. We note that in our
paper, we instead consider overlapping Schwarz methodtdostandard mortar methods.
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For references to earlier work by Cai, Dryja, and Sarkis,clhs related to Achdou’s and
Maday'’s work, see the reference section of [1].

Finally, a word about the history of this project. The secamthor worked on algo-
rithms of this kind almost ten years ago; the work was thencoatpleted but some results
were presented in a talk at the 1996 ECCOMAS conference is.Pdre basic idea of using
three independent decompositions of the region, includimg for a conforming finite ele-
ment space on a regular coarse grid was inspired by a papehdry, Smith, and Zou [9].
Around the same time, Dan Stefanica conducted numericararpnts which demonstrated
that there is very little difference in the performance & tlvo-level overlapping Schwarz
method for a mortar case and a regular conforming finite et¢cese if the subdomains and
the overlap are chosen similarly. The work then lay dormatit it recently was reexamined
by the present authors; many details have now been added mogdeacomplete theory has
now been developed.

2. The Elliptic Problem and Mortar Finite Element Methods. To simplify the nota-
tion, we consider only Poisson’s equation. As usual, we tdate our elliptic problem as:
find u € V, such that

(2.1) a(u,v):/QVu-Vvdx:f(v) Yve V.

The definition of V' ¢ H'() incorporates the boundary conditions and the regdiois
assumed to be bounded and polyhedral; a homogeneous Bfradidition is imposed on a
nonempty subsei)p of the boundary) of Q2 and a natural boundary condition is given
on 9Ny = 9N\ IQp. (Inhomogeneous Neumann boundary data can be incorporsated i
the right hand side of (2.1).) It is well known that the bilm€forma(, ) is self-adjoint,
elliptic, and bounded iV x V. Our analysis is equally valid for two and three dimensions.
The bilinear forma(u, v) is directly related to the Sobolev spaf€ (2) that is defined by
the semi-norm and norm

|u|§—[1(§2) = a(u,u) and HUH%U(Q) = |U|%11(Q) + HuHiz(sz)a

respectively.

The discretization of an elliptic, second order problemtsthy partitioning the compu-
tational domair into a union of nonoverlapping substructurgQ, }_,, and an interfacg,
defined by(U;,;0; N 0K;) \ 9Qp, which is a set of points that belong to the boundaries of
at least two substructures. The restriction to an indiidubstructure?;, of the mortar finite
element space considered in detail in this paper, will jesh standard piecewise linear finite
element space defined on a quasi uniform mesh. The meshes éighboring substructures
do not necessarily match on their common interface and #mesits of the discrete space
V" are typically discontinuous across the interfcénstead of pointwise continuity, the in-
terface jumps are made orthogonal to a carefully choserespfadal functions. In our work,
we primarily consider the second generation mortar elemmeihods for which continuity is
not even imposed at the vertices or wire baskets (the unidineoédges and vertices) of the
substructures. Even if the meshes match across the iredséteveen adjacent substructures,
the mortar finite element functions will not, generally, lmérpwise continuous.

This weak continuity is introduced in terms of a setodrtars {~,, }*/_, obtained by
selecting open edges/faces of the substructures such that

I=UY_ T, YmNyn=0if m#n.
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Each edge/face, and mortgy,, is viewed as belonging to just one substructure. The remain
ing edges/faces are tm@nmortarsand are denoted by;,. The restrictions of the triangula-
tions of the different substructures to the mortars and ratams typically will not match and
are denoted by ands”, respectively; discontinuous mortar finite element fuorsi have
two different traces on the interfagéegiven by one-sided limits of finite element functions
defined on the individual substructures. The continuitysastthe interface of a conforming
finite element method is replaced by weak continuity acrbedndividual nonmortars: for
eachn, we define a space of test functioh&(d,,) given by the restriction, to the nonmortar
o, Of the finite element space defined on the substructure afwhiis an edge/face. In two
dimensions, the elements df (4,,) are subject to the constraints that they are constantin the
first and last mesh intervals 6f . In three dimensions, the value of a test function6fs,, )

at a node orJ,, is given by a fixed convex combination of nodal values at ite neighbors

in ,,; cf. Ben Belgacem and Maday [5]. We will call this the standisagrange multiplier
space. In the spectral case, we would use polynomials of @eégo less as test functions.

Lagrange multiplier spaces with dual bases have been gmalny Wohimuth [16, 17].
Each basis function associated with these Lagrange maltighaces is supported on a few
mesh intervals just as for the standard Lagrange multigfi@ces. They are discontinuous
and lead to a diagonal matrix instead of the mass matrix ajpyes the standard mortar
matching condition. Our algorithm and our proofs can be igddboth to the standard and
dual Lagrange multiplier spaces amfi(d,,) can therefore represent either the standard or the
dual Lagrange multiplier space.

In this paper, we consider partitiods); }/_;, where the); are geometrically noncon-
forming. We assume thgt2;}/_, form a regular partition of2, i.e., the size of2; is com-
parable to that of its neighboring substructures. We wilb@se some assumptions on the
meshes and the Lagrange multiplier spA£&,,). A nonmortaw,, C 9€2; can be partitioned
into several edges/facgs, ; }j by mortar neighborg,,,(,, ;) with boundaries which intersect
0Q; alongd,, j, i.e.,0p j = Oy, 5y N 0L We will use the following assumptions on the
meshes and the Lagrange multiplier space in some of our work.

AssuUMPTION1. Each subpartitiord,, ; of a nonmortar is the union of entire elements.

ASSUMPTION2. The Lagrange multiplier spack/ (4, ;) are defined on each edge/face
of the partitiond,, ; individually. Standard or dual Lagrange multiplier spa@@e thus given
on eachy,, ; which inherits the triangulation frori/’. The Lagrange multiplier space/(é,,)
oné, is then defined by

M(6,) =[] M(6n.j)-
On,j

With these assumptions, mortar methods provide a best sippation even for geomet-
rically nonconforming partitions. Without them, an adalital factor|log(h)| will appear in
the error bound; see [2]. See also [3, 4, 5, 7] where error i®ohthe same type as for stan-
dard conforming methods are derived. We will first analyze-tewel overlapping Schwartz
algorithms for mortar methods under Assumptions 1 and 2 amavil later derive slightly
weaker result after removing these assumptions.

The mortar projections,, maps all ofLs(d,,) onto the finite element space defined on
the nonmortar mes#f’. For two dimensions and for a givemc Ly (6,,) with given values at
vp, andu,,, the endpoints of,,, we definer,, (w, w™ (v,, ), w™ (v,,)) on s’ by

(2.2) [ 0= m 0 ). 0 0 ids = 0 o € MG,
3



We note that only the values at the interior node9,pfare determined by this condition;
the valuesw™ (v,,) andw(™ (v,,) are genuine degrees of freedom. Similarly, for three
dimensions, the values in the interior®f are determined not only by the values on the part
of I" opposite the nonmortar, but also by the nodal values&on

As when working with other nonconforming methods, the avdgbilinear forma(-, -) is
replaced by (-, -) defined as the sum of the contributions from the individuksuwctures
toa(:,-):

1
(23) ar(uh,vh) = Zagli(uh,vh).
i=1

Foruy, = vy, we obtain the square of what is often calledroken norm The norm has been
broken along™ and it is finite for any element of the mortar space even if digcontinu-
ous acros$'. The resulting discrete variational problem gives rise tmadr system with a
symmetric, positive definite matrix.

After these preparations, the mortar finite element spdgend the problem as a whole,
can be fully defined. The discrete problem is then: find V" such that

(2.4) a(u,v) = fF(v) Yo e VP

wherea! (u, v) is defined in formula (2.3) and, similarly (v) is the sum of contributions
from the different substructures.

3. The Dryja-Widlund Algorithm. We now describe the additive Schwarz method in-
troduced in Dryja and Widlund [10]; cf. also Smith, Bjgrstatdd Gropp [14, Chap.5] and,
for many details, Toselli and Widlund [15, Chap.3]. This #itld Schwarz method for an
overlapping subdomain partition performs quite well evengdartitions with small overlap
as first established in Dryja and Widlund [11]. The conditimmber bound given in [11] has
also been proven to be optimal by Brenner [8]. We now use tvditiadal decompositions
of the region(}, in addition to the set of substructurEQ,}, used to define the mortar finite
element problem, namely a set of overlapping subreg{@lﬁ and an independent coarse
mesh{71}. Let X! be the finite element space on the substrucfurequipped with a
quasi-uniform triangulatior? " (£2;). Throughout this paper, we will impose the following
assumptions on these partitions:

ASSUMPTION 3. The diameterH; of a substructure?; is comparable to the diameter
H of any triangler/ that intersects it.

ASSUMPTION4. The diametel; of a substructuré); satisfies

whereH; is the diameter of any subregiéh; that intersects it.

AsSsSUMPTION5. The mesh sizes of the substructures that intersect alongremom
edge/face are comparable.

The(; can be quite arbitrary; a local subspagewill be associated with each of them,
essentially by making all genuine degrees of freedom aaativith nodes outsi(féj equal
to zero. More precisely, the spabgis given by

I
‘/}:{’UEHX,L-h :w(z) =0forz e Q\ Q;, orxeén}, j=1,---,N,
=1

whered,, denotes any nonmortar edges/faces. The spaéeV ¥, the space of continuous,
piecewise linear functions on an independent coarse mesm @y its elements;’. We
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further impose zero Dirichlet conditions, on the elemerit¥ o on 9, N 92 and on the
elements ol, onop.

We remark that the overlap can be quite small. Thus, if noekegof freedom are shared
between neighboring subregions, the overlap is on the ofderthe diameter of the elements
of the fine discretization. Our analysis applies in this @seell in which case our Schwarz
method corresponds to a block Jacobi preconditioner autpdday a coarse solver.

It is now appropriate essentially to follow the descriptéomd analysis of Schwarz meth-
ods given in Smith, Bjgrstad, and Gropp [14] and Toselli andlwwid [15]. Our iterative
method is given in terms of N+l finite element spalz’(;*sj' =0,...,N,which are subspaces

of V" and are associated with the space

The interpolation operatadr™ : Hle C(£;) — V" is defined by

I

(3.1) I"(u) =) (Iﬁ<u>+ Y T (I$<an>(u>—ff(u>)>,

i=1 on COY;

wherel!(u) is the nodal value interpolant in the spa¥¢ and7, (w) is the zero extension
of 7, (w) to ;. Herer,, (w) denotesr, (w, 0, 0); see (2.2). (In the following, we will use this
simple notationr,, (w) in stead ofr,, (w, 0,0).) It has been shown that, (w) is L2-stable but
not H!-stable; see [17, Chap.1]. We recall tiatdenotes a nonmortar edge/faceddf; and
that{d,;}; is the partition ofs,, described in Section 2, i.e1,, ; = 05, ;) N 0. The
interpolantl’, s (u) is defined by

sy (w) =1}, 5 (u) ond, ;,

and it can thus be discontinuous across the boundariés pf The mortar finite element
spacel’ can then be represented as the sum

(3.2) V=V + V4 VR
REMARK 1. The local spacesvjh}j-\’:l, in which our Schwarz algorithm will be consid-
ered, consist of functions defined on the whole dorflanot just on the subregioﬁj asin

the standard Schwarz algorithms described in [15, ChapI3ierefore the trivial extension
operator fromth to V" will not appear in our algorithm. We note that the support atle
function ianh is contained in the union of the substructufesthat intersect the subregion
a,.

It is often more economical to use approximate rather thaotesolvers for the subspace
problems. The approximate solvers can be described in tefimaier productsi; (-, -) de-
fined oanh X th. One assumption that needs to be checked for each of theméxistence
of a constanty such that

(3.3) a (u,u) < waj(u,u) Yu € th .

In terms of matrices, this inequality becomes a one-sidedtof a submatrix of the stiffness
matrix, given bya' (-, -) andeh, in terms of the matrix given bg; (-, -).
A projection-like operatof; : V" — V", is now defined for eacfi by

(34) dj(Tjua ¢h) = ar(u7 (bh) v(bh € ‘/jh .
5



It is easy to show that the operafDy is positive semidefinite and symmetric with respect to
al'(-,-) and that the minimal constaatin equation (3.3) i§/7}]|,, i.€.,

(3.5) ITjlla < w;

see [15, Chap2]. Additive and multiplicative Schwarz melthoan now be defined straight-

forwardly in terms of polynomials of the operatdrs We note that if exact solvers, and thus
genuine projectiong’;, are used, thew = 1. The operator relevant to an additive Schwarz
operatorisl’ = Z;V:() T;. In the case of no coarse space and the local spaces formirgca di

sum, this operator is a block-Jacobi operator, with onelbfoceach subspace.

In order to estimate the rate of convergence of our speciahyother, additive Schwarz
methods, we need upper and lower bounds for the spectrurme afptarator relevant in the
conjugate gradient iteration. A lower bound can be obtalmedsing the following lemma;
see, e.g., Zhang [18], Smith, Bjgrstad, and Gropp [14], @ellband Widlund [15, Chap 2].

LEMMA 1. LetT} be the operators defined in equation (3.4) andllet= Ty + 11 +
<+ Tx.Then,

a(T™ u,u) = min a;(uj,uj), uj € th.
U=y u; :

Therefore, if a representatiom,= 3 u;, can be found, such that
Z&j(uj,uj) < C2a(u,u) Yu € V",
then,

Amin(T) > C52.

For the algorithms considered in this paper, and many othieadh decomposition algo-
rithms, it is easy to show that there is an upper boundTfarhich is proportional tew.

In this paper, our results are only formulated for additilgoathms and with exact
solvers for the subdomain problems. The correspondingd®tor the multiplicative vari-
ants, etc., can easily be worked out using the general Sehthaory; see, e.g., Smith,
Bjarstad, and Gropp [14], or Toselli and Widlund [15, Ch&p.2

4. The lower bound. We will find a lower bound of the two-level Schwarz algorithm.
A stable decomposition af = Z;V:O u; will be provided with

Cg =C - Imax {(1 +HJ/5J)}
j=1,---,N

Here H; is the diameter of the subregiély andd; is the overlapping width of);, i.e., the
minimal width of the subset d®; which is common to some neighbors, afids a constant
independent of the mesh sizes, the subregion diameterdiantimber of subregions; see
Figure 1. We first assume that the five assumptions hold aerd d@trive a bound fo€?

with an additional logH /k) factor for the general case for which Assumptions 1 and 2 are
removed.

4.1. Technical Tools. In this section, we will collect a number of technical todisit
are used in proving our main results. Some of the tools camiyewed directly from Toselli
and Widlund [15, Chap.3], but some work also needs to be duated directly related to the
mortar finite element method.



FI1G. 1. The substructur€; intersects the subregi(fnj (interior of the dashed circle)ﬁm (the part between

the dashed and the solid circles) is the supporvd;, €2; s is the part ofﬁm which belongs t@2;, andT’; s is a
part of the boundary of2; s that dividesQ; into two parts.

As before,Q) ¢ R?, d =2 or 3, is a bounded, poNIygonaI regioff);}._, is a nonover-
lapping decomposition of? into substructures, an{l; j-Vzl that of a set of overlapping
subregions. Le(gj}jyzl be a partition of unity for the overlapping partiti({@j}jil of Q,
with the following properties (see, e.g., [15, Section B8.2]

Ogéj(x)gl, SCEQj,
supp(6;) C Q;,

N ~
> 0 =1,
=1

~ C
VO] < =

We will employ a modified partition of unity; obtained by interpolatinéj on the triangu-
lations{7"(£2;)}1_,. Thed; will be discontinuous across substructure interfaces. évan
we can easily check that the modified partition of urﬁt}y}f’:l has the same properties as
{@}j-v:l when restricted to any substructuie because these properties hold for each ele-
ments of{ 7" (Q;)}L_,.

We now consider the case in Figure 1. The substrudiiriatersects the subregid@-.
We denote the support &f¢; by ﬁj,(g and the intersection d®; andﬁj_,(; by ©; 5. Asin the
Figure 1, we seled; s, as a part of the boundary £ 5 that divides the domaif?; into two
parts. We will prove the following lemma that is similar teetbne provided in [15, Lemma
3.10]:

LEMMA 2. Letu be an arbitrary element o *($2;). Then,

HUH%Z(QL&) < 052((1 + Hi/5)|u|%11(szi) + 1/(Hi5)|‘u|‘%2(szi)) )

where H; denotes the diameter 6F;, and? is the overlapping width dfzj, a subregion that
intersectd;.

Proof. Let us coveK); s by shape-regular patché#, }; with O(J) diameters. We may
assume that th& r(:= 0P, N T'; 5) have positive measure. By using a Friedrichs inequality
(see Toselli and Widlund [15, Lemma A.17]) for each paftland summing over all patches,
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we obtain
(4.1) el 2, ) < € (PMuld o, ) + Olluliaqe, ,)) -

From the embeddingl'/?(T'; 5) c L?(T;s), a trace theorem, and a scaling argument, we
obtain

d—1)~
lulBacr, ) = HE g,

< CH{ Y[l

H1/2(fi,6)
d—11~
< cH (Jal g + 101220,)

< CHIY (HE Yl o) + H ull3aqa,)) -

Here the hat designates a dilated domain with diameter 1 wnctibn defined on the scaled
domain, and}; ; is a part of2; divided byI'; 5. By combining the above estimate with (4.1),
the desired bound followsl
We also have the following generalized Poincaré-Frid¢drinequality (see Necas [13]).
LEMMA 3. Let® be a seminorm o (2) with the following properties

(1) ®(¢) < C1l|¢ll1, Vo € H'(Q),
(2) For a constant function, ®(c) = 0iff c =0.

Then we have a generalized Poinédfriedrichs inequality forr7 *(£2)
Illoq < CHY2 (HE=D/2(g] o + H D 0(g))  ¥o € H'(%),

whered is the dimension of the domafn, H is the diameter of), and the constant’ is
independent off; ®(¢) is homogeneous of degréed), i.e.,k(®) is the real number which
makesH *(®) & () invariant to scaling.

A prime example is provided by

/7¢ds

Then, the two assumptions of Lemma 3 hold &) and the application of the Poincaré-
Friedrichs inequality for) with a zero average op, i.e.,®(¢) = 0, gives

(4.2) l6]lo,0 < CHI@|1,0-

We will now consider two cases. In the first, the meshes anddrag multipliers sat-
isfy Assumptions 1 and 2 on the nonconformity of the subdorpa'rtition{ﬂi}le. In the
second, we will drop these assumptions. In the later cagel digrange multiplier space
M (6,,) is then a standard or dual Lagrange multiplier space defingtietriangulatiors”,
without partitioning it into{éw}j. The following approximation properties hold for both the
standard and the dual Lagrange multiplier spaces; see [1,7]12

LEMMA 4. Let0 < a < 1/2. Forv € H*(6,,;), there exists @ € M (4, ;) such that

O(p) = , Vo€ HY(Q).

v =4llo.s,,; < Ch[vlges, ),
8



whereh denotes the diameter of the elements of the nonmégstar
LEMMA 5. Let0 < o < 1/2. Forv € H*(d,,), there exists) € M (¢,,) such that

v =¥l (e (5,))y < Ch**v|gas,),

whereh denotes the diameter of the nonmortar elements(&iti(d,,))’ is the dual space of
H*(6y).

LEMMA 6. Let the meshes and Lagrange multiplier spaces satisfy Assums 1 and 2.
Then, forv = (vy,--- ,v7) € V", we have

oi = villo.s,, < Chi’? (vil10, + [vile,)

n,j —

where(); and(); are the nonmortar and mortar substructures of the interfége = 0; N
09);.
Proof. We have

N / (vi — 03)(vi — vy — ) ds

n,j

< lvi = vjllo,s, ;llvi —vi —Yllos, ;-

This inequality holds for an arbitrary € M (4, ;). Applying Lemma 4 withow = 1/2 and a
trace theorem, we obtain

. 1/2
0 o = v = llos,, < Chi’” (e, + lvjlie,)

n,j

d

We now consider a general case without the extra Assumpli@rsl 2 on the meshes
and Lagrange multiplier spaces. The set of nonmofi&$,, is selected from the edges/faces
of the subdomain partition and the Lagrange multiplier sga¢(4,,) are defined on the finite
elements associated with the nonmortar interfage$Ve recall that any nonmortar edge/face
0, C 09, is partitioned into

B = U0, Onj =00 10D,

The mortar matching condition is then

(4.3) / (viy — D)ds =0, Vi € M(5,),

n

where¢ is given byg = v,,, ond, ;. We see thap € H'/27<(5,) forany0 < e < 1/2.
Moreover the following estimate holds for see [6]:

LEMMA 7. Let each subdomai®?,,; be scaled by{;, the diameter of the subdomdin.
Then, foranyd < ¢ < 1/2, we have,

Vel ey <€ Iollia,,,
J

whereg¢ is given byp = v,,; oné,, N Q.

In the general case, without Assumptions 1 and 2, the spdceonsists of functions
v = (v, - ,vr) satisfying the mortar matching condition (4.3) on each noriar edge/face
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§,. Let us denote by, }; a basis for the Lagrange multiplier spaté (4,,). We also select
{thj, }r from {sy}; such that supgy;,) C 0n; (= 0, N OQy,), and set, ; = >, Pj,;
we assume that at least one sugh exists for every,, ;. We will then show that the.?-
norm of the jump acros§, is bounded by the sum df'-seminorms of the functions on the
subdomains;, for which 992, intersects,, with a positive measure.

LEMMA 8. Letd, C 0f; be a nonmortar edge/face. For the general case, without
Assumptions 1 and 2, we have

o\ /2
Jos = oo, < onl (1og 5t ) (e + Xlon i, |
J

forv = (vy,--- ,vr) € V" whereg is given byp = v,,, oné,, ;.
Proof. We first dilatef2; and(2,,; so that the diameter 61; is 1. The triangles/tetrahedra
of each subdomain are then also scaled by the dianigteiWe obtain,

o — 825, = / (05 — @) (vs — & — ) ds
On

< = Bl grre—e)llvi = ¢ = Yl (mrr2-<(s,)y
2(1/2—e
< Cllv; = ¢||H1/2*‘(5n)hi( 27y, — Bl prr2-<(s,)

(4.4) < Ch%_%”l’i - ‘b”%}l/%e@n)-
Herey € M(4,,) is the best approximation artd is the scaled mesh size. We have also used
the mortar matching condition and Lemma 5 for the functipr ¢ € Hl/Q‘é(dn).

We now define

Uj =0 — Cij, @ =Un; —Cij 0Ny,

where
s vitngds 5 vndnds
O agds [y, Gagds
The equality above holds because of the mortar matchingitondor v = (vy,--- ,vs) €

Vh and the fact that the functiop, ; € M"(6,,) is supported if,, ;. We also have
bi—¢=v;—¢ InNL%5,), Ui—de HY2(s,).
From these properties and applying (4.4)to- ggl we obtain
lvi = 81135, < Chi™ 1% = Gl 11/2-<(s,.)-

Applying Lemma 7 tas; and¢ gives

lv: = dllos, < ChI/* 12N (llvi = cijllie, + llvn, — cij

laan) N

Let




Since,, ; is bounded from above by a constant, independent of the masimeters, and
fén ; n,;ds > 0, ®;;(w) satisfies the two properties of Lemma 3; positivity of theegral
also holds for the dua_l Lagrange multiplier case. By apgyliemma 3 tov; — ¢;; and
Un; — Cij, With the seminorn®;;, we obtain

lvi = cijllie, < Cluilia,  llve, = cijllne,, < Clon, e,

Therefore,

lvi — &

0,6, < Chz/zfée_l/g lvil1,0, + Z |Unj|1,9n].
J
Lettinge = 1/| log h;| gives log(h; ©) = 1 and results in the bound

(4.5) v = Bllo.s, < Chy"2lloghil /> [ vili, + Y [vn, 1,0,
J

By considering the scaling, we find

_ gld=1b/2 H@-2)/2

(4.6) o]

0,6, 9ll05,, [vle = 1911 q,-
HerpSn apd()i denote the scaled domains aindenotes the function defined on the scaled
setd,, or ;. We then obtain
. . .
v = @llo.s, = H D" o; — 9]

K2

0,6,

d—1)/271/2 7 ~ ~
< CH" V232 og hy| /2 163l &, +Z|vnj|17§lnj

J

< CHYIR A=D1 j0g by 2 | vy 0, + > lon; e,

J
B\ /2 N\ 2
<cHM? (F) (Iogh—i) il + Y len i,
J

Here we have used (4.5), (4.6) and that= h;/H;. 0

4.2. The Stability of a Certain Interpolation Operator. Let I : V* — VH pe a
stable quasi interpolant in both tf#&!- and L2-norms in the following sense:

1 I
i=1 =1

I I
Z 1 Z

i=1 g i=1

whereH; denotes the diameter 6f;,. We then obtain the same bound fay = 1" (17 u).
11



LEMMA 9. Letug = I™ (I w) for u € V. Thenu, satisfies

I I
> luolt 0, < C Y luli o
=1 =1
I 1 I
> g lv - uollg 0, < C D Julig,.
1

=1 i=1

Proof. We find, using (3.1), that

luol? o, < C{Ilf(IHU)I?,Qi + Z

2
%o (I,’;(én)(fﬂu) - IZ-h(IHu)) ‘1 Q} .
8, COQ; T

From theH !-stability of the nodal value interpolai} for functions inV# (see [15, Lemma
3.8)), the first term above is bounded by
(4.7) I (ITu)[f g, < CHMuli g,

We estimate the second term by

2

o (T (I10) = LMW |

2
(1 (THu) — 1 )H
T (s (I) = I (1)) |

< Ot {125, ITw) = Tul 5, + 2 (1 0) = 17l 5, }

(4.8) < Ch;! ]

(4.9) SChT 4 Y b TMullq, . +halIPulig, ¢,
671,jc6n

whered,, ; = 9,5 N 08 We have used an inverse inequality, the stabilityrpfin
L?(5,,), and the approximation property of the nodal value inteapioh operator fod ¥ u €
VH provided by [15, Lemma 3.8]. Adding (4.7) and (4.9) over ahmortar sides and
subdomains and using Assumption 5 andXestability of the coarse interpolation operator
I, we obtain

I I
Z uolf o, < CZ |ul? g, -
i=1 i=1

We now estimate

lu = uollg o,

(4.10)§C{Hu—L—"(IHU)Hz,sziJr > |

6n CO2;

2
o (T (110) = 1T )| Q} .

The first term is bounded by

u— I} (I u)l|f o, < 20w — T ullf o, + 20 I (TP w) — TMul§ o,
< C{lju— IHUH(%,Qi + h?|IHU|iQi} .
12



FIG. 2. The regionw i divided by a geometrically nonconforming subdomain piartit

By using (4.8) and (4.9), we bound the second term of (4.1@)lksvs:

<Ch;

2
7 (1" (1Hu) — 1M(IH )H
T (Lo 1) = 2w ) |

2
los,

o (Ih 6y (Iu) - IZ-}L(IHU))

m

<C Mg + Y hibmeplIMulig,
On,jCon

<C | HIMulf o, + Z H?n(n,j)uHuﬁ,Q
On,jCon

m(n,j)

In (4.10), summing the second term over the nonmortar sitkes g

lu—uollg,o <C | lu—T"ulfo, + > Y  HIMulig,
6, CON |09 NG, |>0

From the assumption that the diameter(fis comparable to those of its neighbdig a
coloring argument, and th&2- and H'-stability of the interpolation/”«, we obtain the
second bound of the lemma.

We now introduce our coarse interpolation operatfr : V* — V. Let K be a
triangle/tetrahedron in the coarse triangulatioffEach vertexy; of the triangle belongs
to at least one substructufy, (or to 0€2;) of the nonoverlapping partition. We denote the
subdomain containing the vertgx by ;. The setwy is the union of the elements i
of which boundary intersects the boundary of the given etdgrie We consider a case as in
Figure 2. The interpolation is defined by the values

B |wy, |

(I u) () = —— / wd,

wherew,, = wg N §; and|w,,| denotes the volume af,,. In the following, we show that
this coarse interpolation operator is stable in bothAHe and L2-norms.

13



LEMMA 10. The coarse interpolant’” : V" — VH satisfies

I I
Z |IHU|%,QI» <C Z |U|iszia
i=1 i=1

I

I
1
Y mllu=Tullf g, <CY " Julf g,

i=1 1 i=1

=z

Proof. We first estimate

K|
|wyl|

)

3 3
(4.11) 1T ullg < €Y 1)) Pleils e < C Y u@)]F .,
=1 =1

whereg; is the nodal basis function of the vertgxof the coarse triangl&’. In general, we
can have more than one subdom@inwhich intersectd< and does not contain any vertices
of K. For simplicity, we assume that we have only one such subtoamal denote it by,
(see Figure 2).

Let us denote by, the average of over the subdomaift;, and byK; the common part
of K and,;, and let

1
(4.12) o=— [ wde, K,=KnQ, Vi=1,--,4
1] Jo,
We then obtain
Ju— T ull§ o = lu—c1 = T (u— 1)l
< 2llu— arll§ g + 217 (u— e)lIF &
» % , K]
(4.13) <C HU_CIHO,K"‘Z”U_CIHO,WZW
=1 v
3
(4.14) SC{Xlu—qﬁ%,wu—q%K$-
=1

Here we have used the identify’ (c;) = ¢, the estimate (4.11) and the fact that the factor
|K|/|wy,| is bounded from above independently of any mesh parameters.
From the Poincaré inequality and Assumption 3, we have

lu = cillg,w,, < CHi ulfq,, 1=1,2,3.
We now consider
= erll3,, < 20— calld,, +2llez— i3, -

Let

c12 ulq, ds = u|q, ds,

- Tl Jr, IT12| Jr,,

wherel';5 is the common edge/face 6f; and€),. The identity follows from the mortar
matching condition for the function. We then have

l[e2 — C1||(2>,wy2 < C{le2 - c1o]? + Jer — 012|2} |wy, .
14



The first term in the above equation is written as

Co — C12 Ug dx — Us ds

] Jao, IT12| Jro,

1 1
= Uy — —— Ug ds> dz,
Q2] Jo, < T12| Jr,,

whereus = ulq,. Let

1

Uo = Uy — ——
2T el U,

ug.

Applying the Poincaré inequality i@, and using the Holder inequality, we obtain
le2 — crof* < CHF[ulf g,
Similarly, we obtain
c1 — e < CHY uff g,
We then have
llca — Cng,wm < CHIQ((|U|%,£21 + |u|isz2)-

Here we have used thab,,| < H¢, for d = 2,3 and Assumption 3. The estimate of the
remaining terms in (4.14) can be done similarly and it gives

4
(4.15) lu— I"ullf o < CHE Y Julf g,

=1

By summing the above inequality over &l which intersecft?;, we obtain

1 1
ﬁ”u — Mg g, < e S fu—T7ullf «
i i K020
1
< Cm Z Hi; Z |u|iﬂl
TR0 QUNK#£D

The fact that the; is comparable td7, and a coloring argument give the first estimate of
the lemma. We note that we also have the following estimata {.13) and (4.15)

4

(4.16) lu—cll§ x < CHE S |ulg,
=1

We now estimate

|IHU|%,K = |IHU - Clﬁ,K
S CH2 M u — e[| &
S CH? (I w —ullf g + llu— g 1) »
15



FiG. 3. Nonconforming subdomain partition: mortar sides of intkeds (black bars), support of the functions
u; € Vih (= I"™(V;)) corresponding to the overlapping subdom&lp (interior of the dotted line); the subdomain
Qy, meets),, andy, along the nonmortar interface,, .

wherec; is the constant defined in (4.12). We have used an inverseiatigq By using
(4.15) and (4.16), we obtain

4
|IHU|%,K <C Z |U|iszl-
1=1

The second estimate of the lemma follows by summing the ateywe over all triangleds<
and a coloring argumerti.
REMARK 2. For the general case, without Assumptions 1 and 2, we choose

Jr,, ulehizds  [i ulo,iiads
Cio = > = >
jr‘lz P12 ds jplz P12 ds

where 5 is the sum of the basis functions fM"((Sn) that are supported if'y5. The
identity holds foru € V". The arguments in the proof of Lemma 10 can also be applied to
this general case and give the same bounds.

LEMMA 11. Under Assumptions 1 and 2, and ferc V", there exists a stable decom-
position

U=1Uy+ U+ -+ un
such that
N
Zar(ui u;) < C max 1+ H ab (u,u)
—~ ’ = =1, N 0; T

whereH; andd; denote the diameter of the subregﬁnand the overlapping width (ﬁi.
Proof. We takeuy = I™ (I (u)) using the interpolants™ and I provided in Lem-
mas 9 and 10. We then define

w = I"(u;), w; =60;(u—ug) fori=1,--- N.

Fromu — ug € V" and}_" | 6, = 1, we see that

N
u—ug=1"(u—1ug) = ZUZ
i=1

16



The functionu; is supported as in Figure 3 and it can be written as

6
=0 @)+ X (B, () — 1 @)

1=1 6 CO,
Herelﬁl(én)(m), onJd, in Figure 3, is given by

) = It () onéy, 1 = 0, N6y,
m(6,) \ Ui Ik( U;) ONOp 5 = Oy, N Oy

We will now prove that

H; r
Za (uj,u;)) < C° I%laXN{<1+6—i)}a (u, u).

=1

The required bound then follows by combining with Lemma 9. &vasider

uzauz Z|ul|1 Q,

2

(4.17) =M@+ Y 7, (Ij,;(én)(ai) .y (al-))
=1 50 COQ, 1.0
? l

We note thaﬂimkl is a continuous and piecewise quadratic function defineﬁfﬁrﬂh).
From [15, Lemma 3.9], we have

(4.18) |II}§Z (ai)ﬁ,szkl < Omiﬁ,szkl-

For the second term of (4.17), we obtain

2 2
7o, (Thago @) = I @) | < Chi2he |, (T, @) — 1 @) ) |

1, lkl

2
(4.19) < Chy! HL}Z(JH)(%) — I (i) 05

Here we have used an inverse inequality, the quasi-unifgrofithe triangulation in the
subdomairﬂkl, and theL?-continuity of the mortar projection;, . We now consider the
term|| " (o (Ui) — I,ﬂ(uz)HM , for §,, andl = 3 in the Figure 3:

2
|1, (@) = It (30)

= ||7& (u;) — 17, (@

2On

Ho S + HII}CL (ts) Ik'a u; Ho B

< c (||, @) — o, ||;

0,6n.1 + ||Il}cl3 (ui) — ui|9k3 HO,Jn,l + ||1~Li|9k1 - ﬂi|9k3 H(Q) 5

(|78 @) — Tl |2,

»On,5

|28 @) = @il [ 5

»On,5

+ Haz|ﬂk ul|Qk3HO ,0n 5)

wheres,, ; = 0Qy,, N O, forj = 1,5.
17



Letw = u — ug. We now consider

Hai|ﬂk1 - ﬁl|ng ”g,tin,l

= |1k, (B)wla,, — I, (B)wlay, |

2
O)(;n,l

(4.20) <O DU B:) = 0ywla,, 135, , + 10:(wla,, —wla,)E s,
1=1,3

Using the approximation property of the nodal value intéapg ||V§i||OO < C/é;, and a
trace theorem, the first term above can be estimated

(7%, (6:) = Oiwlay, 5.5, , < I, (8:) = Oillg 5, , wlaw, 117 5.,

n,l —

< Chy, |9i|iszkl Hw”iszkl

1
S Chk16_2|le,(§i w”iﬂkl’
K3

where|Qy, 5,| denotes the volume of the s, s,, that is the support ot0; contained in
Q,. In general, we havif), 5,| < Co%~* Hy, with d = 2 or 3. Using this, we obtain

~ o~ Hy, 1
(4.21) |[(Ig,(6:) = Oiywley, I35, , < Chi, (1 + 5. ) <|w|iszkl + E”W%,le) :
Using Lemma 6, the second term in (4.20) is bounded by

2
s

2yOn,j

(4.22) b:(wla,, —wlo,,)

2

<C g)l w|ij - w|Qk3

o0, n,j

07671,j

< Chy, (Jullg,, +lwq, ), =15

Combining (4.20) with (4.21) and (4.22), and the approxioraproperty of the nodal in-
terpolation operatorsgj, j = 1,3,5, for the functionsi;, that are continuous and piecewise

quadratic oril" (), lead to the following estimate:

(4.23)

2

~ 12
05 < Chy, E |ui|1,ij
on j=1.3,5

H; 2 1 2
(45 ¥ <|w|1,gkj+H—3j|w||o,ij> ,

v/ j=1,3,5

| . @) = 1 ()

whereH,; is the diameter of the subregi@Nn. Here we have used Assumptions 4 and 5.
Combining the estimates in (4.23), (4.19), and (4.18) with 7), we obtain

~ H; 1
Z |u1‘|ile + (1 + 5—1) Z <|U — U0|%)le + EH’UJ — U:OHg,le)> ’
LES; t

les; ¢

ar(ui,ui) <C <

18



whereS; = {l : Q, ﬂﬁi # (}, the set of indice; of the substructures which intersect the
subregiorf?;. The first term of the above equation is estimated as follows:

2
o, = |7 (=),

SC{/Qk ‘(u—uo) NZde—i-/Qk 0 (u—uo)rdx}

1
<C9 / (u—u0)2 dx + |u—u0|iﬂk ,
6 ka’éi '

whereQy, 5, is the support o¥6; contained i, . We then obtain by applying Lemma 2 to
kaM' (u — u0)2 dx

1 5 << H, > 5 1
— u—ug)?de <C|[14+==2)|lu—u 4+ ——lu
612 le’(gi( 0) 61' | 0|1,le sz(sz ||

Using Assumption 4, we have

) <€ (145 <Z|u wlt gy, + 3 ol o||%,g,w>.

les leS; ’ﬂ

By summing the above estimate over all the subregfénajsing a coloring argument and
the estimates in Lemma 9, we obtain

Za (ug,u;) < C r{laxN{<1+ —)} (Z |u—u0|1Ql —I—Z H2Hu u0|oszl>

i=1
H\
< Ci:r%}g?fN { (1 + 5—1) } a' (u,u).

REMARK 3. In the above Lemma, we use Assumption 5 that the mesh sizesnapa-
rable between neighboring subdomains. On any interfaceofsubdomains, denote by,
andh,,,, the mesh sizes of the mortar subdomain and the nonmortapsudid, respectively.
If they satisfy

O

(4.24) hm < Chapm,

then the result of Lemma 11 holds without the assumption mipeoable meshes between
neighboring subdomains. However conditi@gn24)is the opposite from the one considered
in previous work on the mortar methods.

By combining the bound in Lemma 11 with Lemma 1 and the uppentdd3.5), we
obtain the following condition number bound:

THEOREM4.1. With Assumptions 1 and 2, the two-level additive algorithtisfies

<Z%T> <C IlrlaxN{(1+?—:>},

whereC' depends on the constantin (3.5).
19



For the general case, we bound the term in (4.22) by using Lagim

~ H,
> [Bitolas, wla,)lRs,, < Olog (122) 3 fulia,
j=1,5

37 j=135

This gives the bound in the general case.

N
H; H;,
e, ) < -t il r
E a* (ui,u;) _Cizrlr}va&’N (1—|— 5i) max {Iog (hkl )} a (u,u),

o Qu, N supg V) #0

where suppV*) denotes the support of the functions in the spi¢e By combining this
bound with Lemma 1 and the upper bound (3.5), we obtain tHeviolg condition number
bound:

THEOREM4.2. Without Assumptions 1 and 2, the two-level additive albanisatisfies

N
Hi Hk
T, | <C 1+ — lo L ,
" Z =Y < i > szklmsﬁ%@h#@{ J <hm >}

i=0

whereC depends on the constantin (3.5).
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