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Abstract. Preconditioned conjugate gradient methods based on two-level overlapping Schwarz methods often
perform quite well. Such a preconditioner combines a coarsespace solver with local components which are defined
in terms of subregions which form an overlapping covering ofthe region on which the elliptic problem is defined.
Precise bounds on the rate of convergence of such iterative methods have previously been obtained in the case of
conforming lower order and spectral finite elements as well as in a number of other cases. In this paper, this domain
decomposition algorithm and analysis are extended to mortar finite elements. It is established that the condition
number of the relevant iteration operator is independent ofthe number of subregions and varies with the relative
overlap between neighboring subregions linearly as in the conforming cases previously considered.
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1. Introduction. In this paper, the well-known two level Schwarz method, see,e.g.,
[15, Chapter 3], is extended to mortar finite element methods. Mortar finite element methods
were first introduced in [7]. They are nonconforming finite element methods based on a
partitioning, not necessarily geometrically conforming,of the regionΩ into substructures
Ωi. Thus, in three dimensions, vertices and edges of one substructure can fall in the interior
of edges and/or faces of its neighbors and in two dimensions vertices can divide edges of
neighboring substructures. In each of the substructures, we choose a conforming standard
finite element or a spectral element method without much regard for its neighbors. Even if
the substructures geometrically conform, e.g., when the set of substructures forms a regular
finite element triangulation, the local finite element meshes need not. We can also use spectral
finite element spaces of different order in different substructures and we can also mix finite
elements and spectral elements. In this paper, we will work out a theory only for the case
of piece-wise linear mortar finite elements; we treat both the more conventional mortar finite
elements and those introduced by Wohlmuth [16, 17].

We note that Achdou and Maday have considered a related problem in [1]. However, in
their paper, the principal issue is to establish the convergence and best possible error bounds
for finite element methods based on overlapping subdomains.Typically, the meshes in the
regions common to two or more overlapping subdomains do not match and mortar conditions
are used to introduce a weak continuity between the boundaryvalues of one component of the
finite element solution and the interior values of differentcomponents along the boundary of
the first subdomain. In the final subsection of their paper a convergence result similar to ours,
and that for standard conforming elements is formulated andestablished. We note that in our
paper, we instead consider overlapping Schwarz methods forthe standard mortar methods.
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For references to earlier work by Cai, Dryja, and Sarkis, which is related to Achdou’s and
Maday’s work, see the reference section of [1].

Finally, a word about the history of this project. The secondauthor worked on algo-
rithms of this kind almost ten years ago; the work was then notcompleted but some results
were presented in a talk at the 1996 ECCOMAS conference in Paris. The basic idea of using
three independent decompositions of the region, includingone for a conforming finite ele-
ment space on a regular coarse grid was inspired by a paper by Chan, Smith, and Zou [9].
Around the same time, Dan Stefanica conducted numerical experiments which demonstrated
that there is very little difference in the performance of the two-level overlapping Schwarz
method for a mortar case and a regular conforming finite element case if the subdomains and
the overlap are chosen similarly. The work then lay dormant until it recently was reexamined
by the present authors; many details have now been added and amore complete theory has
now been developed.

2. The Elliptic Problem and Mortar Finite Element Methods. To simplify the nota-
tion, we consider only Poisson’s equation. As usual, we formulate our elliptic problem as:
find u ∈ V, such that

(2.1) a(u, v) =

∫

Ω

∇u · ∇v dx = f(v) ∀ v ∈ V.

The definition ofV ⊂ H1(Ω) incorporates the boundary conditions and the regionΩ is
assumed to be bounded and polyhedral; a homogeneous Dirichlet condition is imposed on a
nonempty subset∂ΩD of the boundary∂Ω of Ω and a natural boundary condition is given
on ∂ΩN = ∂Ω \ ∂ΩD. (Inhomogeneous Neumann boundary data can be incorporated into
the right hand side of (2.1).) It is well known that the bilinear form a(·, ·) is self-adjoint,
elliptic, and bounded inV × V. Our analysis is equally valid for two and three dimensions.
The bilinear forma(u, v) is directly related to the Sobolev spaceH1(Ω) that is defined by
the semi-norm and norm

|u|2H1(Ω) = a(u, u) and ‖u‖2
H1(Ω) = |u|2H1(Ω) + ‖u‖2

L2(Ω),

respectively.
The discretization of an elliptic, second order problem starts by partitioning the compu-

tational domainΩ into a union of nonoverlapping substructures,{Ωi}Ii=1, and an interfaceΓ,
defined by(∪i6=j∂Ωi ∩ ∂Ωj) \ ∂ΩD, which is a set of points that belong to the boundaries of
at least two substructures. The restriction to an individual substructureΩi, of the mortar finite
element space considered in detail in this paper, will just be a standard piecewise linear finite
element space defined on a quasi uniform mesh. The meshes of two neighboring substructures
do not necessarily match on their common interface and the elements of the discrete space
V h are typically discontinuous across the interfaceΓ. Instead of pointwise continuity, the in-
terface jumps are made orthogonal to a carefully chosen space of trial functions. In our work,
we primarily consider the second generation mortar elementmethods for which continuity is
not even imposed at the vertices or wire baskets (the union ofthe edges and vertices) of the
substructures. Even if the meshes match across the interface between adjacent substructures,
the mortar finite element functions will not, generally, be pointwise continuous.

This weak continuity is introduced in terms of a set ofmortars{γm}Mm=1 obtained by
selecting open edges/faces of the substructures such that

Γ = ∪Mm=1γm, γm ∩ γn = ∅ if m 6= n.
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Each edge/face, and mortarγm, is viewed as belonging to just one substructure. The remain-
ing edges/faces are thenonmortarsand are denoted byδn. The restrictions of the triangula-
tions of the different substructures to the mortars and nonmortars typically will not match and
are denoted byγhm andδhn, respectively; discontinuous mortar finite element functions have
two different traces on the interfaceΓ given by one-sided limits of finite element functions
defined on the individual substructures. The continuity across the interface of a conforming
finite element method is replaced by weak continuity across the individual nonmortars: for
eachn, we define a space of test functionsM(δn) given by the restriction, to the nonmortar
δn, of the finite element space defined on the substructure of whichδn is an edge/face. In two
dimensions, the elements ofM(δn) are subject to the constraints that they are constant in the
first and last mesh intervals ofδhn. In three dimensions, the value of a test function ofM(δn)
at a node on∂δn is given by a fixed convex combination of nodal values at its next neighbors
in δn; cf. Ben Belgacem and Maday [5]. We will call this the standardLagrange multiplier
space. In the spectral case, we would use polynomials of a degree two less as test functions.

Lagrange multiplier spaces with dual bases have been developed by Wohlmuth [16, 17].
Each basis function associated with these Lagrange multiplier spaces is supported on a few
mesh intervals just as for the standard Lagrange multiplierspaces. They are discontinuous
and lead to a diagonal matrix instead of the mass matrix appearing in the standard mortar
matching condition. Our algorithm and our proofs can be applied both to the standard and
dual Lagrange multiplier spaces andM(δn) can therefore represent either the standard or the
dual Lagrange multiplier space.

In this paper, we consider partitions{Ωi}Ii=1, where theΩi are geometrically noncon-
forming. We assume that{Ωi}Ii=1 form a regular partition ofΩ, i.e., the size ofΩi is com-
parable to that of its neighboring substructures. We will impose some assumptions on the
meshes and the Lagrange multiplier spaceM(δn). A nonmortarδn ⊂ ∂Ωi can be partitioned
into several edges/faces{δn,j}j by mortar neighborsΩm(n,j) with boundaries which intersect
∂Ωi alongδn,j , i.e.,δn,j = ∂Ωm(n,j) ∩ ∂Ωi. We will use the following assumptions on the
meshes and the Lagrange multiplier space in some of our work.

ASSUMPTION1. Each subpartitionδn,j of a nonmortar is the union of entire elements.
ASSUMPTION2. The Lagrange multiplier spaceM(δn,j) are defined on each edge/face

of the partitionδn,j individually. Standard or dual Lagrange multiplier spacesare thus given
on eachδn,j which inherits the triangulation fromδhn. The Lagrange multiplier spaceM(δn)
on δn is then defined by

M(δn) =
∏

δn,j

M(δn,j).

With these assumptions, mortar methods provide a best approximation even for geomet-
rically nonconforming partitions. Without them, an additional factor|log(h)| will appear in
the error bound; see [2]. See also [3, 4, 5, 7] where error bounds of the same type as for stan-
dard conforming methods are derived. We will first analyze two-level overlapping Schwartz
algorithms for mortar methods under Assumptions 1 and 2 and we will later derive slightly
weaker result after removing these assumptions.

The mortar projectionπn maps all ofL2(δn) onto the finite element space defined on
the nonmortar meshδhn. For two dimensions and for a givenw ∈ L2(δn) with given values at
vn1 andvn2 , the endpoints ofδn, we defineπn(w,w(n)(vn1), w

(n)(vn2)) on δhn by

(2.2)
∫

δn

(w − πn(w,w
(n)(vn1), w

(n)(vn2))ψds = 0 ∀ψ ∈M(δn).
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We note that only the values at the interior nodes ofδn are determined by this condition;
the valuesw(n)(vn1) andw(n)(vn2) are genuine degrees of freedom. Similarly, for three
dimensions, the values in the interior ofδn are determined not only by the values on the part
of Γ opposite the nonmortar, but also by the nodal values on∂δn.

As when working with other nonconforming methods, the original bilinear forma(·, ·) is
replaced byaΓ(·, ·) defined as the sum of the contributions from the individual substructures
to a(·, ·):

(2.3) aΓ(uh, vh) =
I∑

i=1

aΩi(uh, vh).

Foruh = vh, we obtain the square of what is often calleda broken norm. The norm has been
broken alongΓ and it is finite for any element of the mortar space even if it isdiscontinu-
ous acrossΓ. The resulting discrete variational problem gives rise to a linear system with a
symmetric, positive definite matrix.

After these preparations, the mortar finite element spaceV h, and the problem as a whole,
can be fully defined. The discrete problem is then: findu ∈ V h such that

(2.4) aΓ(u, v) = fΓ(v) ∀v ∈ V h,

whereaΓ(u, v) is defined in formula (2.3) and, similarly,fΓ(v) is the sum of contributions
from the different substructures.

3. The Dryja-Widlund Algorithm. We now describe the additive Schwarz method in-
troduced in Dryja and Widlund [10]; cf. also Smith, Bjørstad, and Gropp [14, Chap.5] and,
for many details, Toselli and Widlund [15, Chap.3]. This additive Schwarz method for an
overlapping subdomain partition performs quite well even for partitions with small overlap
as first established in Dryja and Widlund [11]. The conditionnumber bound given in [11] has
also been proven to be optimal by Brenner [8]. We now use two additional decompositions
of the regionΩ, in addition to the set of substructures{Ωi}, used to define the mortar finite
element problem, namely a set of overlapping subregions{Ω̃j} and an independent coarse
mesh{τHl }. Let Xh

i be the finite element space on the substructureΩi equipped with a
quasi-uniform triangulationT h(Ωi). Throughout this paper, we will impose the following
assumptions on these partitions:

ASSUMPTION 3. The diameterHi of a substructureΩi is comparable to the diameter
H of any triangleτHl that intersects it.

ASSUMPTION4. The diameterHi of a substructureΩi satisfies

Hi ≤ CH̃j ,

whereH̃j is the diameter of any subregioñΩj that intersects it.
ASSUMPTION 5. The mesh sizes of the substructures that intersect along a common

edge/face are comparable.
TheΩ̃j can be quite arbitrary; a local subspaceVj will be associated with each of them,

essentially by making all genuine degrees of freedom associated with nodes outsidẽΩj equal
to zero. More precisely, the spaceVj is given by

Vj =

{
v ∈

I∏

i=1

Xh
i : v(x) = 0 for x ∈ Ω \ Ω̃j , or x ∈ δn

}
, j = 1, · · · , N,

whereδn denotes any nonmortar edges/faces. The spaceV0 is V H , the space of continuous,
piecewise linear functions on an independent coarse mesh given by its elementsτHl . We
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further impose zero Dirichlet conditions, on the elements of Vj , on∂Ω̃j ∩ ∂ΩD and on the
elements ofV0, on∂ΩD.

We remark that the overlap can be quite small. Thus, if no degrees of freedom are shared
between neighboring subregions, the overlap is on the orderof h, the diameter of the elements
of the fine discretization. Our analysis applies in this caseas well in which case our Schwarz
method corresponds to a block Jacobi preconditioner augmented by a coarse solver.

It is now appropriate essentially to follow the descriptionand analysis of Schwarz meth-
ods given in Smith, Bjørstad, and Gropp [14] and Toselli and Widlund [15]. Our iterative
method is given in terms of N+l finite element spacesV hj , j = 0, . . . , N,which are subspaces
of V h and are associated with the spaceVj :

V hj = Im(Vj).

The interpolation operatorIm :
∏I
i=1 C(Ωi) → V h is defined by

(3.1) Im(u) =
I∑

i=1

(
Ihi (u) +

∑

δn⊂∂Ωi

π̃n

(
Ihm(δn)(u) − Ihi (u)

))
,

whereIhi (u) is the nodal value interpolant in the spaceXh
i andπ̃n(w) is the zero extension

of πn(w) to Ωi. Hereπn(w) denotesπn(w, 0, 0); see (2.2). (In the following, we will use this
simple notationπn(w) in stead ofπn(w, 0, 0).) It has been shown thatπn(w) isL2-stable but
notH1-stable; see [17, Chap.1]. We recall thatδn denotes a nonmortar edge/face of∂Ωi and
that{δn,j}j is the partition ofδn described in Section 2, i.e.,δn,j = ∂Ωm(n,j) ∩ ∂Ωi. The

interpolantIhm(δn)(u) is defined by

Ihm(δn)(u) = Ihm(n,j)(u) on δn,j,

and it can thus be discontinuous across the boundaries ofδn,j . The mortar finite element
spaceV h can then be represented as the sum

(3.2) V h = V h0 + V h1 + · · · + V hN .

REMARK 1. The local spaces{V hj }Nj=1, in which our Schwarz algorithm will be consid-

ered, consist of functions defined on the whole domainΩ not just on the subregioñΩj as in
the standard Schwarz algorithms described in [15, Chap.3].Therefore the trivial extension
operator fromV hj to V h will not appear in our algorithm. We note that the support of each
function inV hj is contained in the union of the substructuresΩi that intersect the subregion

Ω̃j .
It is often more economical to use approximate rather than exact solvers for the subspace

problems. The approximate solvers can be described in termsof inner products̃aj(·, ·) de-
fined onV hj ×V hj . One assumption that needs to be checked for each of them is the existence
of a constantω such that

(3.3) aΓ(u, u) ≤ ωãj(u, u) ∀u ∈ V hj .

In terms of matrices, this inequality becomes a one-sided bound of a submatrix of the stiffness
matrix, given byaΓ(·, ·) andV hj , in terms of the matrix given bỹaj(·, ·).

A projection-like operatorTj : V h → V hj , is now defined for eachj by

(3.4) ãj(Tju, φh) = aΓ(u, φh) ∀φh ∈ V hj .
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It is easy to show that the operatorTj is positive semidefinite and symmetric with respect to
aΓ(·, ·) and that the minimal constantω in equation (3.3) is‖Tj‖a, i.e.,

(3.5) ‖Tj‖a ≤ ω;

see [15, Chap2]. Additive and multiplicative Schwarz methods can now be defined straight-
forwardly in terms of polynomials of the operatorsTj. We note that if exact solvers, and thus
genuine projectionsPj , are used, thenω = 1. The operator relevant to an additive Schwarz
operator isT =

∑N
j=0 Tj. In the case of no coarse space and the local spaces forming a direct

sum, this operator is a block-Jacobi operator, with one block for each subspace.
In order to estimate the rate of convergence of our special, or any other, additive Schwarz

methods, we need upper and lower bounds for the spectrum of the operator relevant in the
conjugate gradient iteration. A lower bound can be obtainedby using the following lemma;
see, e.g., Zhang [18], Smith, Bjørstad, and Gropp [14], or Toselli and Widlund [15, Chap 2].

LEMMA 1. Let Tj be the operators defined in equation (3.4) and letT = T0 + T1 +
· · · + TN . Then,

a(T−1u, u) = min
u=

P
uj

∑
ãj(uj , uj), uj ∈ V hj .

Therefore, if a representation,u =
∑
uj , can be found, such that

∑
ãj(uj , uj) ≤ C2

0a(u, u) ∀u ∈ V h,

then,

λmin(T ) ≥ C−2
0 .

For the algorithms considered in this paper, and many other domain decomposition algo-
rithms, it is easy to show that there is an upper bound forT which is proportional toω.

In this paper, our results are only formulated for additive algorithms and with exact
solvers for the subdomain problems. The corresponding bounds for the multiplicative vari-
ants, etc., can easily be worked out using the general Schwarz theory; see, e.g., Smith,
Bjørstad, and Gropp [14], or Toselli and Widlund [15, Chap.2].

4. The lower bound. We will find a lower bound of the two-level Schwarz algorithm.
A stable decomposition ofu =

∑N
j=0 uj will be provided with

C2
0 = C max

j=1,··· ,N
{(1 +Hj/δj)} .

HereHj is the diameter of the subregioñΩj andδj is the overlapping width of̃Ωj , i.e., the
minimal width of the subset of̃Ωj which is common to some neighbors, andC is a constant
independent of the mesh sizes, the subregion diameters and the number of subregions; see
Figure 1. We first assume that the five assumptions hold and later derive a bound forC2

0

with an additional log(H/h) factor for the general case for which Assumptions 1 and 2 are
removed.

4.1. Technical Tools. In this section, we will collect a number of technical tools that
are used in proving our main results. Some of the tools can be borrowed directly from Toselli
and Widlund [15, Chap.3], but some work also needs to be done that is directly related to the
mortar finite element method.
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Ω

Ω∼ j

i
Γi,δ

Ωi,δ

Ω∼ ,j δ
δ

FIG. 1. The substructureΩi intersects the subregioneΩj (interior of the dashed circle);eΩj,δ (the part between

the dashed and the solid circles) is the support of∇θj , Ωi,δ is the part ofeΩj,δ which belongs toΩi, andΓi,δ is a
part of the boundary ofΩi,δ that dividesΩi into two parts.

As before,Ω ⊂ Rd, d =2 or 3, is a bounded, polygonal region,{Ωi}Ii=1 is a nonover-
lapping decomposition ofΩ into substructures, and{Ω̃j}Nj=1 that of a set of overlapping

subregions. Let{θ̃j}Nj=1 be a partition of unity for the overlapping partition{Ω̃j}Nj=1 of Ω,
with the following properties (see, e.g., [15, Section 3.2]):

0 ≤ θ̃j(x) ≤ 1, x ∈ Ω̃j ,

supp(θ̃j) ⊂ Ω̃j ,

N∑

j=1

θ̃j = 1,

|∇θ̃j | ≤
C

δj
.

We will employ a modified partition of unityθj obtained by interpolating̃θj on the triangu-
lations{T h(Ωi)}Ii=1. Theθj will be discontinuous across substructure interfaces. However,
we can easily check that the modified partition of unity{θj}Nj=1 has the same properties as

{θ̃j}Nj=1 when restricted to any substructureΩi because these properties hold for each ele-
ments of{T h(Ωi)}Ii=1.

We now consider the case in Figure 1. The substructureΩi intersects the subregioñΩj .
We denote the support of∇θj by Ω̃j,δ and the intersection ofΩi andΩ̃j,δ by Ωi,δ. As in the
Figure 1, we selectΓi,δ, as a part of the boundary ofΩi,δ that divides the domainΩi into two
parts. We will prove the following lemma that is similar to the one provided in [15, Lemma
3.10]:

LEMMA 2. Letu be an arbitrary element ofH1(Ωi). Then,

‖u‖2
L2(Ωi,δ) ≤ C δ2

(
(1 +Hi/δ)|u|2H1(Ωi)

+ 1/(Hiδ)‖u‖2
L2(Ωi)

)
,

whereHi denotes the diameter ofΩi andδ is the overlapping width of̃Ωj , a subregion that
intersectsΩi.

Proof. Let us coverΩi,δ by shape-regular patches{Pl}l with O(δ) diameters. We may
assume that thePl,Γ(:= ∂Pl ∩ Γi,δ) have positive measure. By using a Friedrichs inequality
(see Toselli and Widlund [15, Lemma A.17]) for each patchPl and summing over all patches,
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we obtain

(4.1) ‖u‖2
L2(Ωi,δ) ≤ C

(
δ2|u|2H1(Ωi,δ) + δ‖u‖2

L2(Γi,δ)

)
.

From the embeddingH1/2(Γi,δ) ⊂ L2(Γi,δ), a trace theorem, and a scaling argument, we
obtain

‖u‖2
L2(Γi,δ) = Hd−1

i ‖û‖2
L2(bΓi,δ)

≤ CHd−1
i ‖û‖2

H1/2(bΓi,δ)

≤ CHd−1
i ‖û‖2

H1(bΩi,1)

≤ CHd−1
i

(
|û|2

H1(bΩi)
+ ‖û‖2

L2(bΩi)

)

≤ CHd−1
i

(
H2−d
i |u|2H1(Ωi)

+H−d
i ‖u‖2

L2(Ωi)

)
.

Here the hat designates a dilated domain with diameter 1 or a function defined on the scaled
domain, andΩi,1 is a part ofΩi divided byΓi,δ. By combining the above estimate with (4.1),
the desired bound follows.

We also have the following generalized Poincaré-Friedrichs inequality (see Nečas [13]).
LEMMA 3. LetΦ be a seminorm onH1(Ω) with the following properties

(1) Φ(φ) ≤ C1‖φ‖1,Ω, ∀φ ∈ H1(Ω),

(2) For a constant functionc, Φ(c) = 0 iff c = 0.

Then we have a generalized Poincaré-Friedrichs inequality forH1(Ω)

‖φ‖0,Ω ≤ CHd/2
(
H(2−d)/2|φ|1,Ω +Hk(Φ)Φ(φ)

)
∀φ ∈ H1(Ω),

whered is the dimension of the domainΩ, H is the diameter ofΩ, and the constantC is
independent ofH ; Φ(φ) is homogeneous of degreek(Φ), i.e.,k(Φ) is the real number which
makesHk(Φ)Φ(φ) invariant to scaling.

A prime example is provided by

Φ(φ) =

∣∣∣∣
∫

γ

φds

∣∣∣∣ , ∀φ ∈ H1(Ω).

Then, the two assumptions of Lemma 3 hold forΦ(φ) and the application of the Poincaré-
Friedrichs inequality forφ with a zero average onγ, i.e.,Φ(φ) = 0, gives

(4.2) ‖φ‖0,Ω ≤ CH |φ|1,Ω.

We will now consider two cases. In the first, the meshes and Lagrange multipliers sat-
isfy Assumptions 1 and 2 on the nonconformity of the subdomain partition{Ωi}Ii=1. In the
second, we will drop these assumptions. In the later case, the Lagrange multiplier space
M(δn) is then a standard or dual Lagrange multiplier space defined on the triangulationδhn,
without partitioning it into{δn,j}j . The following approximation properties hold for both the
standard and the dual Lagrange multiplier spaces; see [7, 12, 17].

LEMMA 4. Let0 < α ≤ 1/2. For v ∈ Hα(δn,j), there exists aψ ∈M(δn,j) such that

‖v − ψ‖0,δn,j ≤ Chα|v|Hα(δn,j),
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whereh denotes the diameter of the elements of the nonmortarδn.
LEMMA 5. Let0 < α ≤ 1/2. For v ∈ Hα(δn), there existsψ ∈M(δn) such that

‖v − ψ‖(Hα(δn))′ ≤ Ch2α|v|Hα(δn),

whereh denotes the diameter of the nonmortar elements and(Hα(δn))′ is the dual space of
Hα(δn).

LEMMA 6. Let the meshes and Lagrange multiplier spaces satisfy Assumptions 1 and 2.
Then, forv = (v1, · · · , vI) ∈ V h, we have

‖vi − vj‖0,δn,j ≤ Ch
1/2
i

(
|vi|1,Ωi + |vj |1,Ωj

)
,

whereΩi andΩj are the nonmortar and mortar substructures of the interfaceδn,j = ∂Ωi ∩
∂Ωj .

Proof. We have

‖vi − vj‖2
0,δn,j

=

∫

δn,j

(vi − vj)(vi − vj − ψ) ds

≤ ‖vi − vj‖0,δn,j‖vi − vj − ψ‖0,δn,j .

This inequality holds for an arbitraryψ ∈ M(δn,j). Applying Lemma 4 withα = 1/2 and a
trace theorem, we obtain

min
ψ∈Mδn,j

‖vi − vj − ψ‖0,δn,j ≤ Ch
1/2
i

(
|vi|1,Ωi + |vj |1,Ωj

)
.

We now consider a general case without the extra Assumptions1 and 2 on the meshes
and Lagrange multiplier spaces. The set of nonmortars{δn}n is selected from the edges/faces
of the subdomain partition and the Lagrange multiplier spacesM(δn) are defined on the finite
elements associated with the nonmortar interfacesδn. We recall that any nonmortar edge/face
δn ⊂ ∂Ωi is partitioned into

δn = ∪jδn,j , δn,j = δn ∩ ∂Ωnj .

The mortar matching condition is then

(4.3)
∫

δn

(vi(n) − φ)ψ ds = 0, ∀ψ ∈M(δn),

whereφ is given byφ = vnj on δn,j. We see thatφ ∈ H1/2−ǫ(δn) for any0 < ǫ ≤ 1/2.
Moreover the following estimate holds forφ; see [6]:

LEMMA 7. Let each subdomainΩnj be scaled byHi, the diameter of the subdomainΩi.
Then, for any0 < ǫ ≤ 1/2, we have,

√
ǫ‖φ‖H1/2−ǫ(δn) ≤ C

∑

j

‖vnj‖1,Ωnj
,

whereφ is given byφ = vnj on δn ∩ ∂Ωnj .

In the general case, without Assumptions 1 and 2, the spaceV h consists of functions
v = (v1, · · · , vI) satisfying the mortar matching condition (4.3) on each nonmortar edge/face

9



δn. Let us denote by{ψl}l a basis for the Lagrange multiplier spaceMh(δn). We also select
{ψjk}k from {ψl}l such that supp(ψjk) ⊂ δn,j (= δn ∩ ∂Ωnj ), and setψn,j =

∑
k ψjk ;

we assume that at least one suchψjk exists for everyδn,j . We will then show that theL2-
norm of the jump acrossδn is bounded by the sum ofH1-seminorms of the functions on the
subdomainsΩk for which∂Ωk intersectsδn with a positive measure.

LEMMA 8. Let δn ⊂ ∂Ωi be a nonmortar edge/face. For the general case, without
Assumptions 1 and 2, we have

‖vi − φ‖0,δn ≤ Ch
1/2
i

(
log

Hi

hi

)1/2

|vi|1,Ωi +

∑

j

|vnj |1,Ωnj


 ,

for v = (v1, · · · , vI) ∈ V h whereφ is given byφ = vnj on δn,j .
Proof. We first dilateΩi andΩnj so that the diameter ofΩi is 1. The triangles/tetrahedra

of each subdomain are then also scaled by the diameterHi. We obtain,

‖vi − φ‖2
0,δn

=

∫

δn

(vi − φ)(vi − φ− ψ) ds

≤ ‖vi − φ‖H1/2−ǫ(δn)‖vi − φ− ψ‖(H1/2−ǫ(δn))′

≤ C‖vi − φ‖H1/2−ǫ(δn)h
2(1/2−ǫ)
i |vi − φ|H1/2−ǫ(δn)

≤ Ch1−2ǫ
i ‖vi − φ‖2

H1/2−ǫ(δn).(4.4)

Hereψ ∈M(δn) is the best approximation andhi is the scaled mesh size. We have also used
the mortar matching condition and Lemma 5 for the functionvi − φ ∈ H1/2−ǫ(δn).

We now define

ṽi = vi − cij , φ̃ = vnj − cij on δn,j,

where

cij =

∫
δn,j

viψn,j ds∫
δn,j

ψn,j ds
=

∫
δn,j

vnjψn,j ds∫
δn,j

ψn,j ds
.

The equality above holds because of the mortar matching condition for v = (v1, · · · , vI) ∈
V h and the fact that the functionψn,j ∈Mh(δn) is supported inδn,j. We also have

ṽi − φ̃ = vi − φ in L2(δn), ṽi − φ̃ ∈ H1/2−ǫ(δn).

From these properties and applying (4.4) toṽi − φ̃i, we obtain

‖vi − φ‖2
0,δn

≤ Ch1−2ǫ
i ‖ṽi − φ̃‖2

H1/2−ǫ(δn).

Applying Lemma 7 tõvi andφ̃ gives

‖vi − φ‖0,δn ≤ Ch
1/2−ǫ
i ǫ−1/2

∑

j

(
‖vi − cij‖1,Ωi + ‖vnj − cij‖1,Ωnj

)
.

Let

Φij(w) =

∣∣∣∣∣

∫

δn,j

wψn,j ds

∣∣∣∣∣ .

10



Sinceψn,j is bounded from above by a constant, independent of the mesh parameters, and∫
δn,j

ψn,j ds > 0, Φij(w) satisfies the two properties of Lemma 3; positivity of the integral
also holds for the dual Lagrange multiplier case. By applying Lemma 3 tovi − cij and
vnj − cij , with the seminormΦij , we obtain

‖vi − cij‖1,Ωi ≤ C|vi|1,Ωi , ‖vnj − cij‖1,Ωnj
≤ C|vnj |1,Ωnj

.

Therefore,

‖vi − φ‖0,δn ≤ Ch
1/2−ǫ
i ǫ−1/2


|vi|1,Ωi +

∑

j

|vnj |1,Ωnj


 .

Letting ǫ = 1/| log hi| gives log(h−ǫi ) = 1 and results in the bound

(4.5) ‖vi − φ‖0,δn ≤ Ch
1/2
i |loghi|1/2


|vi|1,Ωi +

∑

j

|vnj |1,Ωnj


 .

By considering the scaling, we find

(4.6) ‖v‖0,δn = H
(d−1)/2
i ‖v̂‖0,δ̂n

, |v|1,Ωi = H
(d−2)/2
i |v̂|1,Ω̂i

.

Hereδ̂n andΩ̂i denote the scaled domains andv̂ denotes the function defined on the scaled
setδ̂n or Ω̂i. We then obtain

‖vi − φ‖0,δn = H
(d−1)/2
i ‖v̂i − φ̂‖0,δ̂n

≤ CH
(d−1)/2
i ĥ

1/2
i | log ĥi|1/2



|v̂i|1,Ω̂i
+
∑

j

|v̂nj |1,Ω̂nj





≤ CH
(d−1)/2
i H

−(d−2)/2
i ĥ

1/2
i | log ĥi|1/2


|vi|1,Ωi +

∑

j

|vnj |1,Ωnj




≤ CH
1/2
i

(
hi
Hi

)1/2(
log

Hi

hi

)1/2

|vi|1,Ωi +

∑

j

|vnj |1,Ωnj


 .

Here we have used (4.5), (4.6) and thatĥi = hi/Hi.

4.2. The Stability of a Certain Interpolation Operator. Let IH : V h → V H be a
stable quasi interpolant in both theH1- andL2-norms in the following sense:

I∑

i=1

|IHu|21,Ωi
≤ C

I∑

i=1

|u|21,Ωi
,

I∑

i=1

1

H2
i

‖u− IHu‖2
0,Ωi

≤ C

I∑

i=1

|u|21,Ωi
,

whereHi denotes the diameter ofΩi. We then obtain the same bound foru0 = Im(IHu).
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LEMMA 9. Letu0 = Im(IHu) for u ∈ V h. Thenu0 satisfies

I∑

i=1

|u0|21,Ωi
≤ C

I∑

i=1

|u|1,Ωi ,

I∑

i=1

1

H2
i

‖u− u0‖2
0,Ωi

≤ C

I∑

i=1

|u|21,Ωi
.

Proof. We find, using (3.1), that

|u0|21,Ωi
≤ C

{
|Ihi (IHu)|21,Ωi

+
∑

δn⊂∂Ωi

∣∣∣π̃n
(
Ihm(δn)(I

Hu) − Ihi (IHu)
)∣∣∣

2

1,Ωi

}
.

From theH1-stability of the nodal value interpolantIhi for functions inV H (see [15, Lemma
3.8]), the first term above is bounded by

(4.7) |Ihi (IHu)|21,Ωi
≤ C|IHu|21,Ωi

.

We estimate the second term by

∣∣∣π̃n
(
Ihm(δn)(I

Hu) − Ihi (IHu)
)∣∣∣

2

1,Ωi

≤ Ch−1
i

∥∥∥πn
(
Ihm(δn)(I

Hu) − Ihi (IHu)
)∥∥∥

2

0,δn

(4.8)

≤ Ch−1
i

{
‖Ihm(δn)(I

Hu) − IHu‖2
0,δn

+ ‖Ihi (IHu) − IHu‖2
0,δn

}

≤ Ch−1
i





∑

δn,j⊂δn

hm(n,j)|IHu|21,Ωm(n,j)
+ hi|IHu|21,Ωi



 ,(4.9)

whereδn,j = ∂Ωm(n,j) ∩ ∂Ωi. We have used an inverse inequality, the stability ofπn in
L2(δn), and the approximation property of the nodal value interpolation operator forIHu ∈
V H provided by [15, Lemma 3.8]. Adding (4.7) and (4.9) over all nonmortar sides and
subdomains and using Assumption 5 and theH1-stability of the coarse interpolation operator
IH , we obtain

I∑

i=1

|u0|21,Ωi
≤ C

I∑

i=1

|u|21,Ωi
.

We now estimate

‖u− u0‖2
0,Ωi

≤ C

{
∥∥u− Ihi (IHu)

∥∥2

0,Ωi
+

∑

δn⊂∂Ωi

∥∥∥π̃n
(
Ihm(δn)(I

Hu) − Ihi (IHu)
)∥∥∥

2

0,Ωi

}
.(4.10)

The first term is bounded by

‖u− Ihi (IHu)‖2
0,Ωi

≤ 2‖u− IHu‖2
0,Ωi

+ 2‖Ihi (IHu) − IHu‖2
0,Ωi

≤ C
{
‖u− IHu‖2

0,Ωi
+ h2

i |IHu|21,Ωi

}
.
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FIG. 2. The regionwK divided by a geometrically nonconforming subdomain partition.

By using (4.8) and (4.9), we bound the second term of (4.10) asfollows:

∥∥∥π̃n
(
Ihm(δn)(I

Hu) − Ihi (IHu)
)∥∥∥

2

0,Ωi

≤ Chi

∥∥∥πn
(
Ihm(δn)(I

Hu) − Ihi (IHu)
)∥∥∥

2

0,δn

≤ C



h2
i |IHu|21,Ωi

+
∑

δn,j⊂δn

hihm(n,j)|IHu|21,Ωm(n,j)





≤ C



H2
i |IHu|21,Ωi

+
∑

δn,j⊂δn

H2
m(n,j)|IHu|21,Ωm(n,j)



 .

In (4.10), summing the second term over the nonmortar sides gives

‖u− u0‖2
0,Ωi

≤ C



‖u− IHu‖2
0,Ωi

+
∑

δn⊂∂Ωi

∑

|∂Ωl∩δn|>0

H2
l |IHu|21,Ωl



 .

From the assumption that the diameter ofΩi is comparable to those of its neighborsΩl, a
coloring argument, and theL2- andH1-stability of the interpolationIHu, we obtain the
second bound of the lemma.

We now introduce our coarse interpolation operatorIH : V h → V H . Let K be a
triangle/tetrahedron in the coarse triangulation ofΩ. Each vertexyl of the triangle belongs
to at least one substructureΩk (or to ∂Ωk) of the nonoverlapping partition. We denote the
subdomain containing the vertexyl by Ωl. The setwK is the union of the elements inTH

of which boundary intersects the boundary of the given elementK. We consider a case as in
Figure 2. The interpolation is defined by the values

(IHu)(yl) =
1

|wyl
|

∫

wyl

u dx,

wherewyl
= wK ∩ Ωl and|wyl

| denotes the volume ofwyl
. In the following, we show that

this coarse interpolation operator is stable in both theH1- andL2-norms.
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LEMMA 10. The coarse interpolantIH : V h → V H satisfies

I∑

i=1

|IHu|21,Ωi
≤ C

I∑

i=1

|u|21,Ωi
,

I∑

i=1

1

H2
i

‖u− IHu‖2
0,Ωi

≤ C
I∑

i=1

|u|21,Ωi
.

Proof. We first estimate

(4.11) ‖IHu‖2
0,K ≤ C

3∑

l=1

|(IHu)(yl)|2‖φl‖2
0,K ≤ C

3∑

l=1

‖u(x)‖2
0,wyl

|K|
|wyl

| ,

whereφl is the nodal basis function of the vertexyl of the coarse triangleK. In general, we
can have more than one subdomainΩk which intersectsK and does not contain any vertices
of K. For simplicity, we assume that we have only one such subdomain and denote it byΩ4

(see Figure 2).
Let us denote bycl the average ofu over the subdomainΩl, and byKl the common part

of K andΩl, and let

(4.12) cl =
1

|Ωl|

∫

Ωl

u dx, Kl = K ∩ Ωl, ∀ l = 1, · · · , 4.

We then obtain

‖u− IHu‖2
0,K = ‖u− c1 − IH(u− c1)‖2

0,K

≤ 2‖u− c1‖2
0,K + 2‖IH(u− c1)‖2

0,K

≤ C

{
‖u− c1‖2

0,K +

3∑

l=1

‖u− c1‖2
0,wyl

|K|
|wyl

|

}
(4.13)

≤ C

{
3∑

l=1

‖u− c1‖2
0,wyl

+ ‖u− c1‖2
0,K4

}
.(4.14)

Here we have used the identityIH(c1) = c1, the estimate (4.11) and the fact that the factor
|K|/|wyl

| is bounded from above independently of any mesh parameters.
From the Poincaré inequality and Assumption 3, we have

‖u− cl‖2
0,wyl

≤ CH2
K |u|21,Ωl

, l = 1, 2, 3.

We now consider

‖u− c1‖2
0,wy2

≤ 2‖u− c2‖2
0,wy2

+ 2‖c2 − c1‖2
0,wy2

.

Let

c12 =
1

|Γ12|

∫

Γ12

u|Ω1 ds =
1

|Γ12|

∫

Γ12

u|Ω2 ds,

whereΓ12 is the common edge/face ofΩ1 andΩ2. The identity follows from the mortar
matching condition for the functionu. We then have

‖c2 − c1‖2
0,wy2

≤ C
{
|c2 − c12|2 + |c1 − c12|2

}
|wy2 |.
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The first term in the above equation is written as

c2 − c12 =
1

|Ω2|

∫

Ω2

u2 dx− 1

|Γ12|

∫

Γ12

u2 ds

=
1

|Ω2|

∫

Ω2

(
u2 −

1

|Γ12|

∫

Γ12

u2 ds

)
dx,

whereu2 = u|Ω2 . Let

ũ2 = u2 −
1

|Γ12|

∫

Γ12

u2.

Applying the Poincaré inequality tõu2 and using the Hölder inequality, we obtain

|c2 − c12|2 ≤ CH2−d
2 |u|21,Ω2

.

Similarly, we obtain

|c1 − c12|2 ≤ CH2−d
1 |u|21,Ω1

.

We then have

‖c2 − c1‖2
0,wy2

≤ CH2
K(|u|21,Ω1

+ |u|21,Ω2
).

Here we have used that|wy2 | ≤ Hd
K , for d = 2, 3 and Assumption 3. The estimate of the

remaining terms in (4.14) can be done similarly and it gives

(4.15) ‖u− IHu‖2
0,K ≤ CH2

K

4∑

l=1

|u|21,Ωl
.

By summing the above inequality over allK which intersectΩi, we obtain

1

H2
i

‖u− IHu‖2
0,Ωi

≤ 1

H2
i

∑

K∩Ωi 6=∅

‖u− IHu‖2
0,K

≤ C
1

H2
i

∑

K∩Ωi 6=∅

H2
K




∑

Ωl∩K 6=∅

|u|21,Ωl


 .

The fact that theHi is comparable toHK and a coloring argument give the first estimate of
the lemma. We note that we also have the following estimate from (4.13) and (4.15)

(4.16) ‖u− c1‖2
0,K ≤ CH2

K

4∑

l=1

|u|1,Ωl
.

We now estimate

|IHu|21,K = |IHu− c1|21,K
≤ CH−2

K ‖IHu− c1‖2
0,K

≤ CH−2
K

(
‖IHu− u‖2

0,K + ‖u− c1‖2
0,K

)
,
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FIG. 3. Nonconforming subdomain partition: mortar sides of interfaces (black bars), support of the functions
ui ∈ V h

i (= Im(Vi)) corresponding to the overlapping subdomaineΩi (interior of the dotted line); the subdomain
Ωk3

meetsΩk1
andΩk5

along the nonmortar interfaceδn.

wherec1 is the constant defined in (4.12). We have used an inverse inequality. By using
(4.15) and (4.16), we obtain

|IHu|21,K ≤ C

4∑

l=1

|u|21,Ωl
.

The second estimate of the lemma follows by summing the aboveterm over all trianglesK
and a coloring argument.

REMARK 2. For the general case, without Assumptions 1 and 2, we choose

c12 =

∫
Γ12

u|Ω1ψ12 ds∫
Γ12

ψ12 ds
=

∫
Γ12

u|Ω2ψ12 ds∫
Γ12

ψ12 ds
,

whereψ12 is the sum of the basis functions forMh(δn) that are supported inΓ12. The
identity holds foru ∈ V h. The arguments in the proof of Lemma 10 can also be applied to
this general case and give the same bounds.

LEMMA 11. Under Assumptions 1 and 2, and foru ∈ V h, there exists a stable decom-
position

u = u0 + u1 + · · · + uN

such that

N∑

i=0

aΓ(ui, ui) ≤ C max
i=1,··· ,N

{(
1 +

Hi

δi

)}
aΓ(u, u),

whereHi andδi denote the diameter of the subregionΩ̃i and the overlapping width of̃Ωi.
Proof. We takeu0 = Im(IH(u)) using the interpolantsIm andIH provided in Lem-

mas 9 and 10. We then define

ui = Im(ũi), ũi = θi(u − u0) for i = 1, · · · , N.

Fromu− u0 ∈ V h and
∑N

i=1 θi = 1, we see that

u− u0 = Im(u − u0) =

N∑

i=1

ui.
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The functionui is supported as in Figure 3 and it can be written as

ui = Im(ũi) =

6∑

l=1


Ihkl

(ũi) +
∑

δn⊂∂Ωkl

π̃δn

(
Ihm(δn)(ũi) − Ihkl

(ũi)
)

 .

HereIhm(δn)(ũi), onδn in Figure 3, is given by

Ihm(δn)(ũi) =

{
Ihk1(ũi) on δn,1 = ∂Ωk1 ∩ δn,
Ihk5(ũi) on δn,5 = ∂Ωk5 ∩ δn.

We will now prove that

N∑

i=1

aΓ(ui, ui) ≤ C max
i=1,··· ,N

{(
1 +

Hi

δi

)}
aΓ(u, u).

The required bound then follows by combining with Lemma 9. Weconsider

aΓ(ui, ui) =

6∑

l=1

|ui|21,Ωkl

=
6∑

l=1

∣∣∣∣∣∣
Ihkl

(ũi) +
∑

δn⊂∂Ωkl

π̃δn

(
Ihm(δn)(ũi) − Ihkl

(ũi)
)
∣∣∣∣∣∣

2

1,Ωkl

.(4.17)

We note that̃ui|Ωkl
is a continuous and piecewise quadratic function defined onT h(Ωkl

).
From [15, Lemma 3.9], we have

(4.18) |Ihkl
(ũi)|21,Ωkl

≤ C|ũi|21,Ωkl
.

For the second term of (4.17), we obtain

∣∣∣π̃δn

(
Ihm(δn)(ũi) − Ihkl

(ũi)
)∣∣∣

2

1,Ωkl

≤ Ch−2
kl
hkl

∥∥∥πδn

(
Ihm(δn)(ũi) − Ihkl

(ũi)
)∥∥∥

2

0,δn

≤ Ch−1
kl

∥∥∥Ihm(δn)(ũi) − Ihkl
(ũi)

∥∥∥
2

0,δn

.(4.19)

Here we have used an inverse inequality, the quasi-uniformity of the triangulation in the
subdomainΩkl

, and theL2-continuity of the mortar projectionπδn . We now consider the
term‖Ihm(δn)(ũi) − Ihkl

(ũi)‖2
0,δn

, for δn andl = 3 in the Figure 3:

∥∥∥Ihm(δn)(ũi) − Ihk3(ũi)
∥∥∥

2

0,δn

=
∥∥Ihk1(ũi) − Ihk3 (ũi)

∥∥2

0,δn,1
+
∥∥Ihk5 (ũi) − Ihk3(ũi)

∥∥2

0,δn,5

≤ C
(∥∥Ihk1 (ũi) − ũi|Ωk1

∥∥2

0,δn,1
+
∥∥Ihk3(ũi) − ũi|Ωk3

∥∥2

0,δn,1
+
∥∥ũi|Ωk1

− ũi|Ωk3

∥∥2

0,δn,1

+
∥∥Ihk5(ũi) − ũi|Ωk5

∥∥2

0,δn,5
+
∥∥Ihk3(ũi) − ũi|Ωk3

∥∥2

0,δn,5
+
∥∥ũi|Ωk5

− ũi|Ωk3

∥∥2

0,δn,5

)
,

whereδn,j = ∂Ωkj ∩ ∂Ωk3 for j = 1, 5.
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Letw = u− u0. We now consider

‖ũi|Ωk1
− ũi|Ωk3

‖2
0,δn,1

= ‖Ihk1(θ̃i)w|Ωk1
− Ihk3(θ̃i)w|Ωk3

‖2
0,δn,1

≤ C




∑

l=1,3

‖(Ihkl
(θ̃i) − θ̃i)w|Ωkl

‖2
0,δn,1

+ ‖θ̃i(w|Ωk1
− w|Ωk3

)‖2
0,δn,1



 .(4.20)

Using the approximation property of the nodal value interpolant, ‖∇θ̃i‖∞ ≤ C/δi, and a
trace theorem, the first term above can be estimated

‖(Ihkl
(θ̃i) − θ̃i)w|Ωkl

‖2
0,δn,1

≤ ‖Ihkl
(θ̃i) − θ̃i‖2

0,δn,1
‖w|Ωkl

‖2
0,δn,1

≤ Chkl
|θ̃i|21,Ωkl

‖w‖2
1,Ωkl

≤ Chkl

1

δ2i
|Ωkl,δi |‖w‖2

1,Ωkl
,

where|Ωkl,δi | denotes the volume of the setΩkl,δi , that is the support of∇θ̃i contained in
Ωkl

. In general, we have|Ωk1,δi | ≤ Cδd−1
i Hkl

with d = 2 or 3. Using this, we obtain

(4.21) ‖(Ihkl
(θ̃i) − θ̃i)w|Ωkl

‖2
0,δn,1

≤ Chkl

(
1 +

Hkl

δi

)(
|w|21,Ωkl

+
1

H2
kl

‖w‖2
0,Ωkl

)
.

Using Lemma 6, the second term in (4.20) is bounded by

∥∥∥θ̃i(w|Ωkj
− w|Ωk3

)
∥∥∥

2

0,δn,j

(4.22)

≤ C
∥∥∥θ̃i
∥∥∥

2

∞,δn,j

∥∥∥w|Ωkj
− w|Ωk3

∥∥∥
2

0,δn,j

≤ Chk3

(
|w|21,Ωkj

+ |w|21,Ωk3

)
, j = 1, 5.

Combining (4.20) with (4.21) and (4.22), and the approximation property of the nodal in-
terpolation operatorsIhkj

, j = 1, 3, 5, for the functions̃ui, that are continuous and piecewise

quadratic onT h(Ωkj ), lead to the following estimate:

∥∥∥Ihm(δn)(ũi) − Ihk3(ũi)
∥∥∥

2

0,δn

≤ Chk3



∑

j=1,3,5

|ũi|21,Ωkj

+

(
1 +

Hi

δi

) ∑

j=1,3,5

(
|w|21,Ωkj

+
1

H2
kj

‖w‖2
0,Ωkj

)
 ,

(4.23)

whereHi is the diameter of the subregioñΩi. Here we have used Assumptions 4 and 5.
Combining the estimates in (4.23), (4.19), and (4.18) with (4.17), we obtain

aΓ(ui, ui) ≤ C

(
∑

l∈Si

|ũi|21,Ωkl
+

(
1 +

Hi

δi

)∑

l∈Si

(
|u− u0|21,Ωkl

+
1

Hkl

‖u− u0‖2
0,Ωkl

))
,
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whereSi = {l : Ωkl
∩ Ω̃i 6= ∅}, the set of indiceskl of the substructures which intersect the

subregioñΩi. The first term of the above equation is estimated as follows:

|ũi|21,Ωkl
=
∥∥∥∇
(
θ̃i(u − u0)

)∥∥∥
2

0,Ωkl

≤ C

{∫

Ωkl

∣∣∣(u− u0)∇θ̃i
∣∣∣
2

dx+

∫

Ωkl

∣∣∣θ̃i∇(u − u0)
∣∣∣
2

dx

}

≤ C

{
1

δ2i

∫

Ωkl,δi

(u− u0)
2 dx + |u− u0|21,Ωkl

}
,

whereΩkl,δi is the support of∇θ̃i contained inΩkl
. We then obtain by applying Lemma 2 to∫

Ωkl,δi

(u− u0)
2 dx

1

δ2i

∫

Ωkl,δi

(u− u0)
2 dx ≤ C

((
1 +

Hkl

δi

)
|u− u0|21,Ωkl

+
1

Hkl
δi
‖u− u0‖2

0,Ωkl

)
.

Using Assumption 4, we have

aΓ(ui, ui) ≤ C

(
1 +

Hi

δi

)(∑

l∈Si

|u− u0|21,Ωkl
+
∑

l∈Si

1

H2
kl

‖u− u0‖2
0,Ωkl

)
.

By summing the above estimate over all the subregionsΩ̃i, using a coloring argument and
the estimates in Lemma 9, we obtain

N∑

i=1

aΓ(ui, ui) ≤ C max
i=1,··· ,N

{(
1 +

Hi

δi

)}( N∑

l=1

|u− u0|21,Ωl
+

N∑

l=1

1

H2
l

‖u− u0‖2
0,Ωl

)

≤ C max
i=1,··· ,N

{(
1 +

Hi

δi

)}
aΓ(u, u).

REMARK 3. In the above Lemma, we use Assumption 5 that the mesh sizes arecompa-
rable between neighboring subdomains. On any interface of two subdomains, denote byhm
andhnm the mesh sizes of the mortar subdomain and the nonmortar subdomain, respectively.
If they satisfy

(4.24) hm ≤ Chnm

then the result of Lemma 11 holds without the assumption of comparable meshes between
neighboring subdomains. However condition(4.24)is the opposite from the one considered
in previous work on the mortar methods.

By combining the bound in Lemma 11 with Lemma 1 and the upper bound (3.5), we
obtain the following condition number bound:

THEOREM 4.1. With Assumptions 1 and 2, the two-level additive algorithm satisfies

κ

(
N∑

i=0

Ti

)
≤ C max

i=1,··· ,N

{(
1 +

Hi

δi

)}
,

whereC depends on the constantω in (3.5).
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For the general case, we bound the term in (4.22) by using Lemma 8

∑

j=1,5

‖θ̃i(w|Ωkj
− w|Ωk3

)‖2
0,δn,j

≤ Chk3 log

(
Hk3

hk3

) ∑

j=1,3,5

|w|21,Ωkj
.

This gives the bound in the general case.

N∑

i=0

aΓ(ui, ui) ≤ C max
i=1,··· ,N

{(
1 +

Hi

δi

)
max

Ωkl
∩ supp(V h

i ) 6=∅

{
log

(
Hkl

hkl

)}}
aΓ(u, u),

where supp(V hi ) denotes the support of the functions in the spaceV hi . By combining this
bound with Lemma 1 and the upper bound (3.5), we obtain the following condition number
bound:

THEOREM 4.2. Without Assumptions 1 and 2, the two-level additive algorithm satisfies

κ

(
N∑

i=0

Ti

)
≤ C max

i=1,··· ,N

{(
1 +

Hi

δi

)
max

Ωkl
∩ supp(V h

i ) 6=∅

{
log

(
Hkl

hkl

)}}
,

whereC depends on the constantω in (3.5).
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