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Abstract

We show that given two vertices of a polytope one cannot in general find a hyperplane containing
the vertices, that has two or more facets of the polytope in one closed half-space. Our result
refutes a long-standing conjecture.

We prove the result by constructing a 4-dimensional polytope that provides the counter-
example. Also, we show that such a cutting hyperplane can be found for each pair of vertices,

if the polytope is either simplicial or 3-dimensional.



1 Introduction

In many problems concerning polyhedra (eg. Simplex algorithm) one is required to find paths
(having certain properties) between a pair of vertices. Another example (of such problems) is
the following unresolved conjecture: Let v and w be any two vertices of a d-polytope P. Does
the 1-skeleton of P contain a refinement of Ky tn which v and w are d-valent [1]¢ For yet

another example please refer [2].

One would have a powerful inductive tool for solving all such problems, if the following
question had an affirmative answer: Given any two vertices v and w of a polytope P, does there
exist a hyperplane containing v and w, that has at least 2 facets of P in one of its closed half-
spaces? (For terminology, please refer [3].) In this paper we answer the following more general
question: Given a subset of vertices of a polytope P, can one find a hyperplane containing the

chosen subset, that has two or more facets of P in one closed half-space?

The answer to the question is clear if either P is a simplex or if | W | = 1. If |W | =
d, then the cutting hyperplane might be fully determined by W. Also many polytopes admit
hyperplanes that intersect the relative interiors of all the facets. Hence it is not surprising that
when |W | = d, the answer to our question is in the negative in general; the following example

elaborates.

Ex. : Consider the d-cube : 0 < 2; < 1,1 <1 < d, d > 3. One can verify that the
hyperplane xy + x5 + ... + x4 = 2 intersects all the facets of the cube. Also one can easily find

d vertices of the cube that affinely span the hyperplane.

So we restrict attention to the range 2 <|W|< d — 1. The rather surprising result we prove
is that the answer to our question is in the negative in general, even when |W | = 2. However, if

d = 3 or if the given polytope is simplicial the question has an affirmative answer for |W | = 2.



2 Results

In Theorem 1, we describe the construction of a 4-polytope P and pick a pair of vertices in P,
such that no hyperplane containing the pair can have more than one facet of P in either closed

half-space. For the construction we need:
Lemma 1 There ezist tetrahedra T and T in R® such that:

1. The origin 1s in the interior of both the tetrahedra and

2. No closed half-space whose boundary plane passes through the origin contains more than

one of the eight facets of the two tetrahedra.

Proof : Note that a half-space contains a facet of a tetrahedron whenever the half-space
contains three vertices of the tetrahedron. Furthermore, condition 1 ensures that no half-space
whose boundary contains the origin contains all four vertices of either tetrahedron. Therefore,
condition 2 is equivalent to the assertion that no closed half-space whose boundary plane passes

through the origin contains 3 vertices from each tetrahedron.

We now dualize the problem. Let vq,...,v, and vy, ..., v, denote the vertices of T and T'.
For a point p # 0, let p denote the closed half-space containing p whose boundary plane passes
through the origin and is normal to the position vector of p. Note that any closed half-space
whose boundary contains the origin can be written as ¢ for some point ¢, and furthermore p € ¢

iff ¢ € p. Hence conditions 1 and 2 are equivalent to the following:

There are eight closed half-spaces vy, ..., 04,0, ...,0, in R® with boundary planes passing

through the origin such that:

(¢) 5, U...U0,=0,U...Ut, = R® and

(b) No point of R other than the origin lies in more than five of the v; and v;.



Observe that there are four nonintersecting great semicircles on the unit 2-sphere S* (figure
1). They can be widened to four nonintersecting crescents which determine the eight half-spaces;
each crescent is the intersection of S? and two half-spaces corresponding to a pair of vertices
from the same tetrahedron. Any point other than the origin lying in six of the half-spaces
would (when projected radially onto S?) lie in two of the crescents, which is impossible, proving
(b). Similarly, (a) follows from the statement that the two crescents corresponding to each

tetrahedron do not intersect. O

We use the foregoing lemma to prove

Theorem 1 There is a convez 4-polytope P C R* with vertices v and w for which no hyperplane

containing v and w has more than one facet of P in either closed half-space.

Proof : Let T and T  be the tetrahedra from Lemma 1 sitting in R®. Coordinatize R* with
t,z,y and z axes and identify R® with the hyperplane z = 0. Translate T along the z-axis to
the hyperplane z = 1 and similarly T' to the hyperplane z = —1. Let € be small enough that
every line containing a point of T' and the point v = (0,0,0,1 + €) intersects T, and every
line containing a point of T and the point w = (0,0,0,—1 — €) intersects T (Such an e exists
because of condition 1 in Lemma 1.) Let C denote the cone with vertex v and cross-section
T; let C' denote the cone with vertex w and cross-section T'; then P = C' N C’ is a convex
4-polytope with eight facets — four in the star of v and the other four in the star of w. If
possible, let H be a hyperplane containing {v,w}, that has two facets of P on one side. If the
star of v (resp. w) contains both the facets then all the four edges incident on v (resp. w) would
lie in one closed half-space of H, hence H N P 2 {v,w}. On the other hand, if the stars of v
and w contribute one facet each then the orthogonal projection of H onto the hyperplane z = 0
would produce a plane in R® with a facet of T and a facet of T' in one closed half-space (w.r.t.

R?), contradicting Lemma 1. O



We can counteract this negative result by restricting our attention to subclasses of poly-
topes. We illustrate two such instances below. By restricting our attention to 3-polytopes or to

simplicial polytopes, we prove the existence of the hyperplane of Theorem 1.

Theorem 2 Let P C R? be any convez 3-polytope; let v and w be two vertices of P. Then
there 1s a plane H containing v and w such that at least two facets of P lie in one of the closed

half-spaces of H.

Proof : If v and w lie on the same facet of P, the theorem is clear. Otherwise, let G be a
plane normal to the segment [v,w]. Let f, and f, be vertex-figures of v and w; they can be
projected orthogonally onto G to give polygons f, and f,. Clearly the point 0 = [v,w] N G lies
in the relative interiors of both £, and f,. Let u be any vertex of f,; the line L — Ou intersects
the relative interior of at most one side of f, and at most two sides of f,; hence at least three
sides of the two polygons are contained entirely in the closed half-planes of L. So three facets
of P are contained entirely in the two closed half-spaces of the plane H = af f(u,v,w); two of

them must lie on the same side of H. O

Theorem 3 Let P C R? be a simplicial d-polytope. Let v and w be vertices of P. Then there

18 a hyperplane containing v and w with two facets of P in one closed half-space.

Proof: We can assume that v and w do not lie on the same facet of P. If every (d — 3)-face
in the link of v lies in only three facets of P, it is easily checked that P must be a simplex, in
which case the theorem is trivial. So we can assume that there is at least one (d — 3)-face G
in the link of v which lies in at least four facets of P. Then [k(G) is a topological circle; let
Ik(G) = ol ... 1, where [y = [,, = v, all the other [; are distinct, the line segments [I;,[;11] are
in the link and n > 4. Let F' = G * v (* denotes join) and let H be the hyperplane containing
v, w and G. The facets F *[; and F *[,_; are in opposite closed half-spaces of H; if we can
find one other facet of P not intersecting H we are done. Let us call the two half-spaces of H
‘above’ and ‘below’; say [; lies above H and [,_; lies below H. Then we are done unless [, lies

below H and [, above. (For example, if [; lies above H, then the facet G * [y * [ lies entirely in



and above H.) Hence the line segments [l1, ] and [l,_3,,—1] both intersect H at points which
we call p and ¢. Now the (d — 2)-flats G * p, G * ¢ and G * v are distinct and all lie in H and
intersect the relative boundary of P but not its relative interior. Hence each divides H into two
parts — a part that contains points of P and a part that does not. In particular, p and ¢ are
on the same side of G * v, p and v are on the same side of G * ¢ and ¢ and v are on the same
side of G * p. Projecting R? onto a plane in such a way that G goes to a point, we obtain four
points G',p’, ¢’ and v’ in the plane such that each pair of p’, ¢’ and v’ is on the same side of the
line passing through the third and G’. But this is impossible. Hence H fails to intersect at least

three facets of P and we are done. O

3 Related Work

[4] shows that for any hyperplane H intersecting a d-polytope P, there exist two faces of P lying
in different closed half-spaces of H with total dimension at least d — 1. [5] proves a stronger
version of the above assertion. [4] and [6] also show that it is not possible to cut all the j-faces

of a d-polytope P, j < L%J, by a hyperplane that does not pass through any vertex of P.
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