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ABSTRACT

Based on a new version of Hopcroft and Tarjan’s planarity testing algo-

rithm, we develop an O (mlogn)-time algorithm to find a maximal planar sub-

graph.
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1. Introduction

In [15], Wu defined the problem of planar graphs in terms of the following four subprob-

lems:
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P1. Decide whether a connected graph G is planar.

P2. Find a minimal set of edges the removal of which will render the remaining part of G

planar.

P3. Give a method of embedding G in the plane in case G is planar.

P4. Give a description of the totality of possible planar embeddings of G in the plane in

case G is planar.

Linear-time algorithms for P1, P3, and P4 have been known for a long time. The first

linear-time solution (which we call the H-T algorithm) for problem P1 ( the planarity-testing

problem) was given by Hopcroft and Tarjan [7] in 1974 using depth-first search (DFS) trees. A

P-Q tree solution for P1 based on an earlier algorithm given by Lempel, Even, and Cederbaum

[11] was proved to have a linear-time implementation in 1976 partly by Even and Tarjan [4] and

partly by Booth and Lueker [1]. The P-Q tree approach is conceptually simpler, but its implemen-

tation is more complicated than that of the H-T algorithm. Linear-time solutions for P3 and P4,

also based on P-Q trees, were given by Chiba et al. [2] in 1985.

Wu [15] gave an algebraic solution for all four problems. He proved that a graph is planar if

and only if a certain system of linear equations is solvable. In case the graph is planar, an actual

embedding can be obtained by considering another system of quadratic equations. His solution is

elegant, but his algorithm takes O (m2) time on an m-edge graph.

Recently, Jayakumar et al. [9] studied problem P2 ( the maximal planar subgraph problem).

For the special case in which a biconnected spanning planar subgraph is given, their algorithm

runs in O (n 2) time and O (mn) space on a graph with n vertices and m edges. For more general

situations, their algorithm runs in O (mn) time. Their algorithm is also based on P-Q trees. Note

that not every biconnected graph has a biconnected spanning planar subgraph (See Fig. 1.)

biconnected spanning planar subgraph
A biconnected graph that does not have a

Fig. 1
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In this paper we give an O (mlogn)-time and O (m)-space solution to P2. For sparse graphs

(i.e., graphs with m = O (n 1+ε), where ε < 1 ), it beats the algorithm of Jayakumar et al. even in

the special case when a biconnected spanning planar subgraph is given. Independent of our work,

Di Battista and Tamassia [3] have claimed an O (logn)-time-per-operation solution to the prob-

lem of maintaining a planar graph under edge additions. Their algorithm also solves the minimal

planar subgraph problem in O (mlogn) time. Their method is much more complicated than ours,

however, as it is designed to solve a more general problem. Recently, Kobayashi et al. [10] have

shown that if a Hamiltonian tour of the graph is given, then P2 can be solved in liner lime. We

show that this result can be easily derived from our algorithm as a special case.

The maximal planar subgraph problem is closely related to the planarity-testing problem. In

fact, a graph is planar iff it is the maximal planar subgraph of itself. Our solution to the maximal

planar subgraph problem is based on the H-T algorithm. But for our purpose, we need to modify

the algorithm. The main difference is that our version of the algorithm admits a more general

ordering than the original H-T algorithm does in processing the successors of each tree edge.

Also, the H-T algorithm processes one path at a time, while our algorithm processes one edge at a

time. In this sense, our algorithm is a more recursive version of the H-T algorithm.

For the above reason, many of our lemmas and theorems are similar, but not identical, to

those in [7]. Instead of referring the readers to [7] for the proofs, we find it more convenient and

accurate to supply all main proofs in this paper.

The rest of this paper is organized as follows. Section 2 gives preliminary definitions. Sec-

tion 3 is a new version of the H-T planarity testing algorithm, which leads to our maximal planar

subgraph algorithm in Section 4. Section 5 is a summary.

2. Preliminaries

Consider an undirected graph G0 = (V 0 , E 0) with edge set E 0 and vertex set V 0 . Let n =

| V 0 | and m = | E 0 | . We can draw a picture G0 ′ of G0 in the plane as follows: for each vertex

v ∈ V 0 , we draw a distinct point v′; for each edge (u, v) ∈ E 0 , we draw an simple arc connecting

the two points u′ and v′. We call this arc an embedding of the edge (u, v). For brevity, we will

sometimes identify graphs with their pictures thus drawn on the plane. If no arcs of G0 ′ cross

each other, then we call G0 ′ a planar embedding, or simply an embedding, of G0 . If G0 has an

embedding, then we say that G0 is planar.

The following facts are important to our discussion:

Observation 1. Let C be a simple closed curve in the plane as in Fig. 2; let a be a point

inside C and b be a point outside C. Then any curve that joins a and b crosses C.
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Observation 2. Let G1 be the undirected graph represented by Fig. 3, in which P is a path

joining the two vertices a and b on cycle C. Then in any embedding of G1 , all the edges of path

P are on the same side of the cycle C (either inside or outside).

P 2

P 1
C

b

c 1

c 2

a

Fig. 5
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P 2

b 2

Fig. 4

Observation 3. Let G2 be the undirected graph represented by Fig. 4, in which a 1 , a 2 , b 1

and b 2 are four distinct vertices that appear in order on C. Then in any embedding of G2 , the two

paths P 1 and P 2 are on opposite sides of the cycle C.

Observation 4. Let G3 be the undirected graph represented by Fig. 5, in which a, c 1 , c 2

and b are vertices that appear in order on C, and c 1 and c 2 may be the same. Then in any

embedding of G3 , the two subgraphs P 1 and P 2 are on opposite sides of the cycle C.

All four observations above are intuitively obvious and follow from the Jordan Curve

Theorem [6, 14].

A depth-first-search (abbr. DFS) [7] will convert the undirected graph G0 = (V 0 , E 0) into a

directed graph G = (V, T, B), where V is the set of DFS numbers of vertices in V 0 , T is the set of

tree edges, and B is the set of back edges. Each edge of G0 is converted into either a tree edge or

a back edge. All the tree edges form a DFS forest. If [a, b ] is a tree edge, then a < b. If [a, b ] is

a back edge, then b < a, and there is a tree path in T from b to a. In either case, a is called the tail

of [a, b ], and b is called the head of [a, b ]. The union of T and B will be denoted by E.

For notational convenience, we will frequently identify undirected graphs with their DFS

representations. Since we are interested only in graphs with no isolated vertices, we will represent
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graphs with their edge sets.

We define successors for both vertices and edges. If [a, b ] is a tree edge, then b is a succes-

sor of a. If [a, b ] is a tree edge and [b, c ] is any edge, then [b, c ] is a successor of [a, b ]. Back

edges have no successors. We also define descendants and ancestors for both vertices and edges.

A descendant of vertex (resp. edge) x is defined recursively as either x itself or a successor of a

descendant of x. If y is a descendant of x, then x is an ancestor of y.

Let e = [a , b ] ∈ E. Let Y be the set of vertices y such that for some x, [x, y ] is a back edge

and also a descendant of e. If Y is not empty, we define low 1(e) to be the smallest integer in Y,

and low 2(e) to be the second smallest integer in Y ∪ {n +1}. Otherwise, we define low 1(e) =

low 2(e) = n +1. The two mappings low 1 and low 2 can be computed in O (m) time during the

depth-first-search on G0 [7]. If a is not the root of a DFS tree, and low 1(e) ≥ a, then a is an arti-

culation point of G [12].

If e = [a, b ] is any edge in E, then we define the function φ on E as follows.

φ(e) =

����
2 low 1(e) + 1

2 low 1(e)

otherwise

if low 2(e) ≥ a

We arrange the successors of each tree edge in increasing order on their φ values. This ord-

ering can be computed in O (m) time using a bucket sort [7]. If e 1 , ..., ek are the successors of e

ordered this way, we will call ei the ith successor of e for i = 1 .. k.

As in [7], for e = [a, b ], we define S (e), the segment of e, to be the subgraph of G that con-

sists of all the descendants of e. We use ATT (e) to denote the set of back edges [c, d ] in S (e)

such that d is an ancestor of a, including a itself. Each back edge in ATT (e) is called an attach-

ment of e.

For any edge e = [a, b ], we define cycle (e) as follows: if e is a back edge, then cycle (e) =

{e} ∪ {e′: e′ belongs to the tree path from b to a}; if e is a tree edge and low 1(e) > a, then

cycle (e) = {}; otherwise, cycle (e) = cycle (e 1), where e 1 is the first successor of e. We use

sub (e) to denote the subgraph S (e) ∪ cycle (e). It is easy to see that if cycle (e) is not empty, then

the vertex low 1(e) is always on cycle (e). Also, if low 1(e) ≥ a, then sub (e) = S (e); if low 1(e) <

a, then sub (e) − S (e) = {e′: e′ belongs to the tree path from low 1(e) to a}.

Fig. 6 illustrates some of these definitions, where low 1(e) = 1; low 2(e) = 2; cycle (e) = {

[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 1] }; S (e) contains all the edges in the graph

except [1, 2], [2, 3], [3, 4]; sub (e) is the whole graph; ATT (e) = {[8, 1], [9, 3], [12, 1], [14, 2],

[13, 4].
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3. Planarity testing

As explained in [7], a graph is planar if and only if each of its biconnected components is

planar. Also, a graph of one edge is always planar. Thus, we need only consider how to test the

planarity of biconnected graphs with more than one edge. Let G = (V, T, B) be a DFS represen-

tation of such a graph. Then T forms a single tree with only one tree edge leaving the root. Call

this tree edge e 0 . Since sub (e 0) is the whole graph, we can determine the planarity of G with a

procedure that can determine the planarity of sub (e) for all e in G.

We say that an edge e is planar if sub (e) is planar. To determine the planarity of an edge e,

we consider two cases. If e is a back edge, then sub (e) = cycle (e), which is always planar. Oth-

erwise, e is a tree edge having at least one successor. In this case we first determine the planarity

of each of its successors. If all these successors are planar, then we determine the planarity of e

based on the structure of its attachments. The details follow.

3.1. Structure of attachments

The planarity of an edge e = [a, b ] directly depends on the structure of its attachments.

Since we assume that G is a biconnected graph with more than one edge, then low 1(e) ≤ a, and

both ATT (e) and cycle (e) are not empty. If e is planar, then we can partition the edges of

ATT (e) into blocks as follows. We put two back edges of ATT (e) in the same block if they are on

the same side of cycle (e) in every embedding of sub (e). Two blocks B 1 and B 2 of ATT (e)

interlace if they are on opposite sides of cycle (e) in every embedding of sub (e). Each block Bi

of ATT (e) can interlace at most one other block, since two attachments of e that cannot be



-- --

- 7 -

embedded on the same side of cycle (e) as Bi must be in the same block.

The back edge on cycle (e) is the only attachment of e that will not be embedded on either

side of cycle (e). By convention, this back edge forms a block by itself, called the singular block

of e, which does not interlace other blocks of ATT (e).

In Fig. 6, ATT (e) consists of four blocks: B 1 = {[8, 1]}, B 2 = {[12, 1], [14, 2]}, B 3 =

{[9, 3]}, and B 4 = {[13, 4]}. B 1 is singular. B 2 and B 3 are interlacing.

If e′ = [u, v ] is an attachment of e, then low 1(e) ≤ v ≤ a. If low 1(e) < v < a, then we say

that e′ is normal. Otherwise we say that e′ is special. A block of attachments of e is normal if it

contains some normal attachment of e. Otherwise we say that it is special. In Fig. 6, B 1 and B 4

are special, and other blocks are all normal. We say that sub (e) is strongly planar w.r.t. e if e is

planar and if all the normal blocks of ATT (e) can be embedded on the same side of cycle (e). If

sub (e) is strongly planar (w.r.t. e), then we say that e is strongly planar. We have

LEMMA 1. Let ei be the ith successor of e, where i > 1. Then ei is strongly planar iff the

subgraph S (ei) ∪ cycle (e) is planar.

Proof

⇒ If ei is strongly planar, then there is an embedding of sub (ei) such that all its normal

blocks are on the same side of cycle (ei). Thus we can add cycle (e) to the other side of cycle (ei)

to get an embedding of S (ei) ∪ cycle (e).

⇐ If S (ei) ∪ cycle (e) is planar, then in any embedding of S (ei) ∪ cycle (e), all the normal

blocks of ATT (ei) must be on the same side of cycle (ei). �
Note that in an embedding of S (ei) ∪ cycle (e), the special blocks of ei do not have to be on

the same side of cycle (ei). (See Fig. 7.)

ei

sides of cycle (ei), although they are on the same side of cycle (e).

d′

Fig. 7

cycle (ei) e

d′′
low 1(ei)

cycle (e)

The two special attachments d′ and d′′ of ei can be on different
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We will represent a block of back edges H = {[b 1 , a 1], [b 2 , a 2], ..., [bt , at]} by a list K =

[a 1 , a 2 , ..., at], where a 1 ≤ a 2 ≤ ... ≤ at . Frequently, we will identify blocks with their list

representations. Define first (H) = first (K) = a 1 , and last (H) = last (K) = at . If K is empty, we

define first (H) = first (K) = n +1, and last (H) = last (K) = 0. We can further organize the blocks

of ATT (e) as follows: if two blocks X and Y interlace, we put them into a pair [X, Y], assuming

last (X) ≥ last (Y); if a nonempty block X does not interlace any other block, we form a pair

[X, [ ]]. Let [X 1 , Y 1] and [X 2 , Y 2] be two pairs of interlacing blocks. We say

[X 1 , Y 1] ≤ [X 2 , Y 2] iff last (X 1) ≤ min (first (X 2), first (Y 2)).

We say a list of interlacing pairs [q 1 , ...,qs] is well-ordered if q 1 ≤ . . . ≤ qs . Empty lists or

lists of one pair are well-ordered by convention. We will see that all the interlacing pairs of

ATT (e) can be organized into a well-ordered list [p 1 , ..., pt]. We call this list att (e).

In Fig. 6, att (e) = [p 1 , p 2 , p 3], where p 1 = [[1], [ ] ], p 2 = [[3], [1, 2]], and p 3 = [[4], [ ]].

3.2. Computing att (e)att (e)

Now we are ready to compute att (e). The planarity of e will be decided at the same time.

Consider any edge e = [a, b ]. If e is a back edge, then its only attachment is e itself. There-

fore att (e) = [[[b ], [ ]]]. Otherwise, let e 1 , ..., ek be the successors of e in increasing order by

their φ values. We first recursively compute att (ei) for each successor ei of e. Then we compute

att (e) in four steps:

Algorithm 1

Step 1 For i = 1 .. k, delete all occurrences of b appearing in blocks within att (ei). Because

these occurrences appear together at the end of the blocks that are contained in the last pairs of

att (ei) only, a simple list traversal suffices to delete all these occurrences in time O(k +

number of deletions). After this, initialize att (e) to be att (e 1).

Step 2. For i = 2 .. k, merge all the blocks of att (ei) into one intermediate block Bi . See

Fig. 8.

According to Lemma 1, this step can only be done for a given value of i if the normal

blocks of att (ei) do not interlace. ( If a pair of normal blocks of att (ei) interlace, the graph is not

planar, and the computation fails.) To merge the blocks for a given value of i, we traverse the list

of pairs att (ei), concatenating blocks to form Bi . Initially, Bi is empty. To process pair [X, Y ], if

X and Y are both normal, the computation fails, since the graph is not planar. Otherwise, we con-

catenate X and Y onto the end of Bi in order and continue. In case that Y is a special block, we

know that Y has only attachments ending in low 1(ei), since b was deleted from all blocks of

att (ei) in Step 1. Thus the correct ordering of attachments is maintained by this process. This
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cycle (e)

e 1

ei

step takes O (1 + number of blocks in att (ei)), resulting in one block for each i.

Step 3. Merge blocks in att (e). See Fig. 9.

By Observation 3, all blocks D in att (e) with last (D) > low 1(e 2) must be merged into one

block B 1 . ( If any two of these blocks interlace, the graph is not planar, and the computation

fails.) This is achieved by merging from the high end of att (e). The time is

O (1 + reduction in number of blocks). This step turns att (e) into a list of pairs p 1 ≤ . . . ≤ ph

with only ph possibly having a block D with last (D) > low 1(e 2). Note that low 1(e 2) is the

lowest among the vertices low 1(e 2), ..., low 1(ek).

b

a

b

a

e 2
e 1e 1

Fig. 9

cycle (e)

e

low 1(e 2)

e

cycle (e)low 1(e 2)
B 1

e 2

Step 4. For i = 2, ..., k, add blocks Bi into att (e).

To process Bi , consider the highest pair P : [ X, Y ] of att (e). Consider three subcases:

i. If Bi cannot be embedded on either side of cycle (e), then the computation of att (e) fails.

ii. If Bi interlaces X only, then merge Bi into Y by concatenating their ordered list represen-

tations. Next, switch X and Y if last (X) < last (Y).
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Bi cannot be embedded in

Fig. 10

cycle (e) cycle (e) cycle (e)

either side of cycle (e)
Bi interlaces

iii. If Bi interlaces neither X nor Y, then add [Bi ,[ ]] to the high end of att (e); P := [Bi ,[ ]].

By the following lemma, testing whether Bi interlaces X or Y takes O (1) time. Also by that

lemma, it is not possible that Bi interlaces Y only, since last (X) ≥ last (Y) ( see Fig. 10 ). �
LEMMA 2. In Step 4, Bi and D can be embedded on the same side of cycle (e) iff low 1(ei) ≥

last (D), where D = X or D = Y.

Proof

⇒ Assume low 1(ei) < last (D). Then there must be a path P 1 in S (ei) from b to low 1(ei)

containing some back edge in Bi , and another path P 2 in S (e 1) ∪ ... ∪ S (ei −1) from a vertex w on

cycle (e) to last (D) containing some back edge in D but no edge on cycle (e). We consider two

cases ( see Fig. 11). If w > b, then by Observation 3, P 1 and P 2 cannot be embedded on the same

side of cycle (e). If w = b, then the first edge on P 2 is ej for some 1 < j < i, which implies i > 2

and φ(ej) ≤ φ(ei). Consequently, low 1(ej) ≤ low 1(ei) < last (D) < b, which implies that

low 2(ej) < b. If low 1(ej) < low 1(ei), then there must be an undirected simple path P 3 between

last (D) and low 1(ej) containing back edges in D but no edges on cycle (e). By observation 3

again, P 1 and P 3 cannot be embedded on the same side of cycle (e). If low 1(ej) = low 1(ei), then

low 2(ei) < b (recall low 1(ej) ≤ low 1(ei)). By observation 4, S (ei) and S (ej) cannot be embedded

on the same side of cycle (e). All of the above cases imply that Bi and D cannot be embedded on

the same side of cycle (e).

⇐ See the proof of Lemma 4 in the next section. �

THEOREM 1.
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last (D)
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Fig. 11

w = b and w = b and

bb

aa
ej

eiei

cycle (e) cycle (e)

low 1(ei) > low 1(ej)

cycle (e)

ei

P 1

P 2

last (D)

a

b

w

w > b

1. Algorithm 1 computes att (e) successfully iff e is planar.

2. If e is planar, then Algorithm 1 computes att (e) correctly.

Proof See the next section. 	

3.3. Correctness

In the following proofs, unless stated otherwise, we will use att (e) to mean the list att (e)

computed by Algorithm 1. But we will prove that this att (e) correctly implements the att (e)

defined in Section 3.1.

During the presentation of Algorithm 1, we explained that two nonempty blocks form a pair

within att (e) only if they cannot be embedded on the same side of cycle (e), and the computation

of att (e) fails only when e is not planar. Also we can see that the singular block of e is not

merged with any other block. To prove Theorem 1, we still have to show that the following

assertions are true:

(1) if computation of att (e) succeeds, then e is planar;

(2) if any two nonempty nonsingular blocks of att (e) do not form a pair, then these blocks

can be embedded on the same side as well as on different sides of cycle (e);

(3) att (e) is well-ordered.

We first prove (3), i.e.,

LEMMA 3. The list of pairs att(e) computed by Algorithm 1 is well-ordered.

Proof We prove this lemma by induction on the number of descendants of e. If e has no

successor, then e is a back edge, and the lemma is trivially true. Now assume that e is a tree edge

with successors e 1 , ..., ek in increasing order by φ value, and that att (e 1), ..., att (ek) are all well-

ordered. After Steps 1 and 2 are executed, att (e 1), ..., att (ek) are still well-ordered. Thus, att (e)



-- --

- 12 -

is well-ordered when it is initialized to att (e 1). In Step 3, only blocks in the highest pairs of

att (e) are merged, and therefore att (e) is still well-ordered after the merge. Then consider the

moment in Step 4 just before Bi is added to att (e). Assume att (e) is well-ordered at this moment.

Let P : [X, Y ] be the last pair of att (e). We need only consider the two cases in which the com-

putation does not fail.

1. last (Y) ≤ low 1(Bi) < last (X). Then Bi is merged with Y. If P is the only pair in att (e),

then att (e) is well-ordered by definition. Otherwise, let Q : [X 1 , Y 1] be the pair next to P. Then

we have Q ≤ P before merge. We need only to show that this is still true after the merge. If i = 2,

then Step 3 guarantees that first (B 2) = low 1(e 2) ≥ max(last (X 1), last (Y 1)). If i > 2, then Bi −1 is

contained in either X or Y. Since first (Bi) = low 1(ei) ≥ low 1(ei −1) = first (Bi −1) ≥

min(first (X), first (Y)), then merging Bi into Y does not change the value of

min(first (X), first (Y)). Thus, after merging Y and Bi , we still have Q ≤ P.

2. low 1(Bi) ≥ last (X). Then [Bi , [ ]] becomes the last pair of att (e). Since last (X) ≤

low 1(ei) = first (Bi) in this case, we have P ≤ [Bi , [ ]].

Thus, att (e) is still well-ordered after each Bi is added, i = 2 .. k. Therefore att (e) is well-

ordered after Step 4. 

Next we prove the if part of Lemma 2: In Step 4 of Algorithm 1, if low 1(ei) ≥ last (D), then

Bi and D can be embedded on the same side of cycle (e), where D = X or D = Y.

Proof Consider an embedding of sub (e) before Bi is added. Assume without loss of gen-

erality that X is embedded on the left hand side of cycle (e) in this embedding. Let h = last (X).

Then h = max{last (Z): Z is a block in atti}, and there is a face F on the left of cycle (e) in the

current embedding of sub (e) such that the tree path from h to b is on the boundary of F. See Fig.

12.

F′F

h

h′

e

Fig. 12

cycle (e)

Thus, if low 1(Bi) ≥ last (X), then Bi can be embedded in F. Similarly, let h′ = max{last (U): U is

block in atti embedded on the right hand side of cycle (e)}. Then there is a face F′ on the right of

cycle (e) in the current embedding of sub (e) such that the tree path from h′ to b is on the
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boundary of F′. According to the proof of Lemma 3, if low 1(Bi) ≥ last (Y), then low 1(Bi) ≥ h′

also. Therefore Bi can be embedded in F′ in this case. �
Then we prove the following lemma that implies the assertions (1) and (2). We say that a

set W of blocks of att (e) is consistent w.r.t. e if for all X, Y ∈ W, neither [X, Y ] nor [Y, X ] is in

att (e).

LEMMA 4.. If Algorithm 1 does not fail, and D1 and D2 are two disjoint consistent sets of

nonsingular blocks from att (e), then there is an embedding of sub (e) such that blocks of D1 are

on one side of cycle (e) and blocks of D2 are on the other side of cycle (e).

Proof The lemma is trivially true if e has no successors. If e has successors, let e 1 , ..., ek

be the list of successors of e in increasing order by their φ values. Assume that the lemma holds

for each of these successors. We want to construct an embedding of sub (e) such that D1 and D2

are embedded on different sides of cycle (e).

If W is a set of blocks, then a W-attachment is an attachment contained in some block of W.

For j = 1, 2, let Dj ′ = { X : [X, Y ] or [Y, X ] is a pair in att (e) and Y ∈ Dj}. Let H1 = { X: ([X, Y]

is a pair in att (e)) and ( X and Y are not in D1 ∪ D2) }, and let H2 = { Y: ([X, Y] is a pair in

att (e)) and (X and Y are not in D1 ∪ D2) }. Let C 1 = D1 ∪ D2 ′ ∪ H1 , and C 2 = D2 ∪ D1 ′ ∪

H2 . For j = 1, 2, let Kj = {X : X is a block in sub (e 1) containing some Cj-attachment}. Then K 1

and K 2 are two disjoint consistent subsets of blocks of sub (e 1).

Initially, we construct an embedding of sub (e 1) such that K 1 and K 2 are on different sides

of cycle (e 1). As a result, those C 1-attachments and C 2-attachments contained in sub (e 1) are on

different sides of cycle (e) (which is cycle (e 1)). This embedding exists by the induction

hypothesis. Take this embedding to be the initial embedding of att (e). Then for i = 2, ... , k, we

add sub (ei) to this embedding one by one as follows.

Since the normal blocks of att (ei) do not interlace, we can, by induction, find an embed-

ding of sub (ei) such that all of its normal blocks are embedded on the same side of cycle (ei). We

call this embedding Ei , and its mirror image Ei ′. Let Bi , P and [X, Y ] be the same as in Step 4 of

algorithm 1. Assume without loss of generality that X is embedded on the left hand side of

cycle (e). Consider two cases:

Case 1: last (Y) ≤ low 1(ei) < last (X). Then Bi is merged with Y. According to Lemma 2,

one of Ei or Ei ′ can be embedded on the right of cycle (e). If Bi contains any C 1-attachment, then

X contains some C 2-attachment; if Bi contains any C 2-attachment, then X contains some C 1-

attachment. In any case, C 1-attachments and C 2-attachments are still on different sides of

cycle (e) after Bi is embedded.

Case 2: low 1(ei) ≥ last (X). Again by to Lemma 2, one of Ei or Ei ′, say Ei , can be embed-

ded on the left of cycle (e), and the other, Ei ′, can be embedded on the right of cycle (e). One of
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these two choices will result in an embedding such that C 1-attachments are on one side of

cycle (e), and C 2-attachments are on the other side.

When all the Bi’s are added, we get an embedding of sub (e) such that D1 is on one side of

cycle (e), and D2 is on the other side of cycle (e). This is true because every D1-attachment is a

C 1-attachment, and every D2-attachment is a C 2-attachment. �
This completes the proof of Theorem 1, and establishes that the list att (e) computed by

Algorithm 1 has the properties discussed at the end of Section 3.1.

Let e, ei , Bi , atti , X, Y, and h′ be the same as in the above proofs. Let L = {Z: [Z, U] is a

pair in atti}, R = {U: [Z, U] is a pair in atti}, and h 2 = {last (U): U is a block in R}. Then it is

easy to see that h′ ≥ h 2 . According to Lemma 4, there exists a embedding of sub (e) (before

adding Bi) such that L is embedded in one side of cycle (e) and R is embedded on the other side.

According to the proof of Lemma 2, low 1(ei) ≥ last (Y) iff low 1(ei) ≥ h 2 . Therefore we also have

COROLLARY 1.1. Bi cannot be embedded in either side of cycle (e) iff low 1(ei) < h 2 . 
Corollary 1.1 gives a test whether Bi can be added to atti without referring to the top pair of

atti . This is useful in our maximal planar subgraph algorithm, where we need to test whether B 2

can be added to att (e) before Step 3 is performed.

3.4. Data structure and running time

As suggested in [7], we can implement blocks as linked lists. An interlacing pair of blocks

can be represented as a record containing two pointers to the two linked lists representing these

two blocks. Then att (e) can be represented as a linked list of such records. In this way, the time

cost for Step 1 is O (k + number of deletions). The cost for Step 2, 3 and 4 is

O (k + reduction in number of blocks). The cumulate expense of executing these steps over the

whole graph is O (m). The initial DFS in which low 1 values are computed takes time O (m).

Arranging the successors in increasing order by φ value for all tree edges takes O (m) time using a

bucket sort. Thus the whole algorithm runs in O (m) time. It is well known that any O (m)-time

algorithm for planarity testing can be implemented in O (n) time since m = O (n) for a planar

graph [7].

3.5. A modification to Algorithm 1

Consider Step 4 of Algorithm 1. Lemma 2 requires that the successors of each tree edge be

ordered by φ values. Maintaining this ordering causes difficulties in solving the maximal planar

subgraph problem. Fortunately, we can modify Algorithm 1 so that it requires only the low 1 ord-

ering of the successors of each tree edge.



-- --

- 15 -

Let e = [a, b ] be a tree edge, and e 1 , ..., ek be the list of its successors in increasing order

by low 1 values. Still define cycle (e) = cycle (e 1). Then Step 1, 2, and 3 can be performed w.r.t.

this ordering without any modification.

Next we want to merge B 2 , ..., Bk into att (e) in that order. In general, successors ordered

by low 1 values may not be ordered by φ values. Consequently, there may be some 1 < i ≤ k such

that φ(ei −1) > φ(ei). But if this happens, we know that low 1(ei −1) = low 1(ei) and low 2(ei) ≥ b. If

i = 2, Lemma 2 still applies, and we can merge B 2 into att (e) as before. Otherwise, the following

lemma says that we do not have to merge Bi into att (e) at all:

LEMMA 5. If for some 2 < i ≤ k, low 1(ei −1) = low 1(ei), low 2(ei) ≥ b, and ei is planar, then

G is planar iff G − S (ei) is planar.

Proof The only if part is trivial, so we just prove the if part. Consider an embedding Ei of

Gi = G − S (ei). Under the condition of the lemma, ei has no normal attachments. Since ei is

planar, then ei is strongly planar. Also, b and low 1(ei) are the only two vertices shared by S (ei)

and Gi . Therefore S (ei) can be embedded in any face of Ei whose boundary contains the two ver-

tices b and low 1(ei).

Let P be the tree path cycle (ei −1) ∩ cycle (e) and let C be the closed curve cycle (ei −1) ∪

cycle (e) − P. Then C contains edges from both S (ei −1) and Gi − S (ei −1). By Observation 2, P is

on one side of C. Call this side of C S 1 , and the other side S 2 . Let U be the set of faces in S 2

whose boundaries contain edges from S (ei −1) only, and let W be the set of faces in S 2 whose

boundaries contain edges from Gi − S (ei −1) only. Then faces in U and faces in W do not share

common boundaries. Thus, within S 2 there must be some face F whose boundary contains edges

from both S (ei −1) and Gi − S (ei −1), and therefore contains at least two vertices common to

S (ei −1) and Gi − S (ei −1). But all the vertices common to S (ei −1) and Gi − S (ei −1) are on P, and

among them only b and low 1(ei −1) are on the boundary of S 2 . Therefore these two vertices must

be on the boundary of F. Thus we can embed S (ei) in F to get an embedding of G. �
Therefore, under the conditions of Lemma 5, in deciding the planarity of G, we can ignore

its subgraph S (ei). Since the condition low 1(ei −1) = low 1(ei) and low 2(ei) ≥ b is implied by

low 1(ei −1) ≤ low 1(ei) and φ(ei −1) > φ(ei), we can modify Step 4 as follows:

Step 4’. Add blocks B 2 , ..., Bk into att (e) in that order, assuming low 1(e 1) ≤ low 1(e 2)

≤ . . . ≤ low 1(ek). Initially, let j = 1 and i = 2. To process Bi , we consider two cases. If j = 1 or

φ(ej) ≤ φ(ei), we do the same thing as in Step 4, and then let j = i; otherwise, we do nothing.

The list att (e) computed by the modified algorithm may not contain all the attachments of

e. Some attachments may be omitted by Step 4’, because their existence does not affect the

planarity of the whole graph G.
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4. The maximal planar subgraph problem

Now we consider the maximal planar subgraph problem: find a minimal set of edges whose

deletion results in a planar graph. The resulting graph is called a maximal planar subgraph of G.

We can always find a maximal planar subgraph of G by deleting back edges only, since all the

tree edges form a forest, which is planar.

We will not assume that the input graph is biconnected, since deletion of back edges may

turn a biconnected graph into a graph with articulation points. But without loss of generality we

can assume that the input graph is connected. Thus the tree edges of G form a single tree with

root r. Let t 1 , ..., ts be the tree edges leaving the root. If s = 1, then sub (t 1) is the whole graph G.

If s > 1, then r is the only vertex common to sub (t 1), ..., sub (ts). Thus, to find a maximal planar

subgraph of G, we can just find a maximal planar subgraph for each of the subgraphs sub (t 1), ...,

sub (ts), and then simply put these subgraphs together. Therefore, what we need is a procedure

that can find a maximal planar subgraph of sub (e) for any given edge e of G.

4.1. Maximal l −planarl −planar subgraphs

We cannot build a maximal planar subgraph of sub (e) by simply putting together the maxi-

mal planar subgraphs of sub (e 1), ..., sub (ek), and deleting those back edges causing failure in

Algorithm 1. The reason is that after these edges are deleted, it may turn out that some other

edges, which we deleted for making sub (e 1), ..., sub (ek) planar, would not have had to be deleted

at all. We avoid this difficult situation by constructing such maximal subgraphs S 1 , ..., Sk of

sub (e 1), ..., sub (ek) that they can be used to construct a planar subgraph S of sub (e) without

further deletion of edges. Two measures are taken for this purpose. Firstly, those back edges in

sub (ei) that can cause failure in Step 3 or Step 4 of Algorithm 1 are deleted before a maximal

subgraph of Si is recursively computed. Secondly, the information where blocks of sub (ei) are

allowed to interlace is passed to the recursive call that computes Si , so that when the returned Si

is merged to sub (e), Step 2 of Algorithm 1 can also be performed successfully without deletion.

Since the planar subgraph S of sub (e) computed by our algorithm may be used to build a larger

planar subgraph of G in the same way as we use S 1 , S 2 , ..., Sk to build S, we also need to know

where in S blocks are allowed to interlace. This approach leads naturally to the concept of

l −planar subgraphs, which is a generalization of the concept of strongly planar subgraphs.

Consider an edge e = [a, b ] and a vertex l on the tree path from low 1(e) to a. An attach-

ment [u, v ] of e is l −normal if low 1(e) < v < l. A block of attachments is l −normal if it con-

tains some l-normal attachment. Let D be the list representation of a nonempty block of attach-

ments. Define second (D) to be the second smallest element in the set {x: x ∈ D} ∪ {n +1}, and

define second ([]) = n +1. Then D is l-normal iff low 1(e) < first (D) < l or second (D) < l. The

two mappings first and second can be maintained during the computation of att (e) in O (1) time
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for each modification to att (e).

We say that the subgraph sub (e) is l −planar if e is planar and the l-normal blocks of att (e)

do not interlace. (c.f. Fig. 13, where (a) is l-planar, but (b) is not.) Edge e is l −planar if sub (e)

is l-planar.

If H is a subgraph obtained from sub (e) by deleting back edges only, then we can define the

l-planarity for H (w.r.t. e) in the same way as we did for sub (e). We will talk about l-planar sub-

graphs of sub (e) in this sense. An l-planar subgraph of sub (e) is maximal if it can be obtained

from sub (e) by deleting a minimal set of back edges.

Consider edge e = [a, b ]. According to our definition, e is planar iff e is low 1(e)-planar,

and e is strongly planar iff e is a-planar. Therefore, if we can find a maximal l-planar subgraph of

sub (e) for any l with low 1(e) ≤ l ≤ a, then we can compute a maximal planar subgraph of sub (e).

(b)(a)

Fig. 13

cycle (e)

l

e e

l

cycle (e)

The following is an outline of our maximal l-planar subgraph algorithm, where l is a given

integer with low 1(e) ≤ l ≤ a and remains fixed during the processing of an edge. Let e = [a, b ],

and consider three cases:

Case 1: e is a back edge. Assign [[[b ], [ ] ]] to att (e), and return.

Case 2: e is a tree edge with no successors. Assign [ ] to att (e), and return.

Case 3: e is a tree edge with successors e 1 , ..., ek, among which e 1 has the smallest low 1

value. We construct a sequence G1 , ..., Gk of l-planar subgraphs of sub (e) such that G1 is a

maximal l-planar subgraph of sub (e 1) and low 1(e 1) remains unchanged; Gk is a maximal l-

planar subgraph of sub (e); and each Gi , 1 < i ≤ k, is obtained from Gi −1 by adding to it a

strongly planar subgraph Si of sub (ei), where ei is some successor of e not contained in Gi −1 .

During the construction, we compute att (e) using the modified version of Algorithm 1. We

describe below in rough terms how we compute Si:

1 select an edge ei with the smallest low 1 value from successors of e not contained in Gi −1;
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2 while there exists a maximal strongly planar subgraph of sub (ei) whose addition to Gi −1

destroys its l-planarity do

3 delete some attachments from sub (ei);

4 if the deletion changes the low 1 value of ei then

5 select a possibly new edge ei with the smallest low 1 value from

successors of e not contained in Gi −1;

6 end if;

7 od;

8 recursively construct a maximal strongly planar subgraph of sub (ei) without changing

low 1(ei) further. We take this subgraph as Si .

In the procedure sketched above, lines 1, 4, 5, 6, and 8 guarantee that subgraphs Si are gen-

erated in increasing order by new low 1 values of the corresponding successors. For each

1 < i ≤ k, once Si is computed, no edges will be deleted further from it. There are still two ques-

tions remaining to be answered: how the testing in line 2 can be done without constructing a max-

imal strongly planar subgraph of sub (ei), and how the attachments are chosen so that the deletion

in line 3 makes the set of deleted edges minimal. These two questions are closely related and will

be explained together in the next section.

Remark In Algorithm 1, we do not need the concept of l-planarity, since our purpose is to

check the planarity of G. If some interlacing blocks of sub (e) are found not being able to fit in the

whole graph after returning from several levels of recursive calls, we simply declare that the

graph is not planar. But if we want to construct a maximal planar subgraph of G, then it is too

late to delete edges efficiently by that time. Therefore we use the parameter l to pass the informa-

tion where blocks of sub (e) are allowed to interlace, to the recursive calls, so that the correct

edges are already deleted during the processing of sub (e).

The need to generalize to l-planarity arises in the following way in the algorithm sketched

above. To compute a maximal planar subgraph of the input graph, the recursive calls that con-

struct Si for i = 2, ..., k must construct maximal strongly planar graphs. Within one of these recur-

sive calls, the initial second-level recursive call (to construct a maximal b-planar subgraph of

sub (ei 1), where ei 1 is the first successor of edge ei) and more deeply nested recursive calls of the

same kind construct maximal l-planar subgraphs for general values of l. �

4.2. Algorithm for deleting back edges

Let e = [a, b ], and consider the while-loop in the procedure sketched above. If low 1(ei) ≥

b, then b is the only vertex common to sub (ei) and G − sub (ei). In this case, we can apply the

maximal planar subgraph to sub (ei) separately, and do not have to consider the effect on the
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whole graph. Next, we consider the case when low 1(ei) < b. Assume that sub (ei) is made

strongly planar by deleting some back edges. Suppose that the low 1 value and the low 2 value of

ei are not changed by these deletions. We want to see whether the union of sub (ei) and Gi −1 is

l-planar.

As in planarity testing, let Bi be the block of attachments obtained by merging att (ei); let

atti be the current value of att (e); let Bj be the last block merged into atti by Step 4’; let h 1 =

max{last (Z): [Z, U ] is a pair in atti} and h 2 = max{last (U): [Z, U ] is a pair in atti}. (Initially,

we set j =1 and att (e) = att (e 1) after removing all the occurrences of b from att (e 1).) Finally,

let h 3 = max{last (Z): Z is an l-normal block of atti}.

The two variables h 1 , h 2 can be maintained in O (1) time per modification to att (e) by

maintaining two lists L and R ( as suggested in [7] ), where L is the ordered list of nonempty

blocks X such that [X, Y ] is a pair in att (e), and R is the ordered list of nonempty blocks Y such

that [X, Y ] is a pair in att (e). If BL and BR are the highest blocks of L and R respectively, then

h 1 = last (BL) and h 2 = last (BR). Lists L and R also let h 3 be maintained easily. If e is a back

edge, h 3 = 0 from its definition. If e is a tree edge, we get the initial value of h 3 from the compu-

tation of att (e 1), and modify it in O (1) time for each modification of att (e). The details will not

be discussed here.

By Lemma 5, in case that ei is strongly planar, sub (ei) can affect the planarity of G only if

any of the following conditions holds:

a. j = 1, i.e., no block Bj has been merged into att (e) yet,

b. low 1(ej) < low 1(ei), or

c. low 2(ei) < b.

If any of these conditions is true, we consider two additional cases:

1. The union of sub (ei) and Gi −1 is not planar. By Corollary 1.1, this happens iff

low 1(ei) < h 2 .

2. The union of sub (ei) and Gi −1 is planar, but not l-planar. Then Bi is l-normal, and it

interlaces an l-normal block of atti . We know that Bi is l-normal iff low 1(e 1) < low 1(ei) < l or

low 2(ei) < l. Also, it is easy to see that Bi interlaces an l-normal block of atti iff low 1(ei) < h 3 .

This means, under the conditions a, b, or c, that the union of sub (ei) and Gi −1 is not l-planar

iff any of the following conditions holds

i. low 1(ei) < h 2

ii. low 1(e 1) < low 1(ei) < min {h 3 , l}

iii. low 2(ei) < l and low 1(ei) < h 3

Therefore, if any of the condition i, ii, and iii holds, some back edge has to be deleted to change
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either the low 1 value or the low 2 value of ei . Such testing and deletion can be done even before

making sub (ei) strongly planar. For this purpose, we combine the above conditions (a or b or c)

and (i or ii or iii) into two groups according to whether they involve low 2(ei) or not:

Condition AA.

(j = 1 and low 1(ei) < h 2) or

(low 1(ej) < low 1(ei) < h 2) or

(low 1(ej) < low 1(ei) < min{h 3 ,l})

Condition BB.

(low 2(ei) < b and low 1(ei) < h 2) or

(low 2(ei) < b and low 1(e 1) < low 1(ei) < min{h 3 , l}) or

(low 2(ei) < l and low 1(ei) < h 3)

It can be checked that the condition ((a or b or c) and (i or ii or iii)) is equivalent to the con-

dition (AA or BB).

If Condition AA is true, we can make it false only by changing the value low 1(ei). In this

case, we delete all the back edges of sub (ei) entering the vertex low 1(ei). After the deletion, we

choose a possibly new ei with the smallest low 1 value.

ei

Fig. 14

The edge ei satisfies condition BB. If we choose to delete d′, then d′′ will also
be deleted later because of Condition AA, and the resulting graph will not be maximal.

ej

d′′

d′

cycle (e)

l

e

low 1(ej)

If Condition AA is false, then we test Condition BB. If the result is true, we know that

low 1(ei) = low 1(ej). This is because low 1(ei) < low 2(ei), which means that BB implies that

low 1(ei) < h 2 or low 1(ei) < min{h 3 , l}, from which it follows that low 1(ej) = low 1(ei); otherwise

AA would be true. (We have low 1(ej) ≤ low 1(ei) by the ordering of the successors of e.) To

make Condition BB false, we can change the value of either low 1(ei) or low 2(ei). If we choose to

change low 2(ei) consistently, then at least one of the back edges [u, v ] of sub (ei) with

v = low 1(ei) will survive. But if we choose to change low 1(ei), it may happen that all the attach-

ments in ATT (ei) ∩ ATT (e) are deleted eventually and that the resulting graph is not maximal.
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Therefore, in this case we choose to delete all the back edges [u, v ] of sub (ei) with v = low 2(ei)

( see Fig. 14 ).

We test and delete repeatedly as described above until we find an edge ei that does not

satisfy AA or BB. Then we can construct Si recursively from sub (ei) and merge it into Gi −1 .

Since no edge is added to sub (ei) during the construction of Si , conditions AA and BB remain

false after the construction. Thus, the resulting graph Gi will be planar, and no l-normal blocks

will interlace.

To see that the deleted set of back edges is minimal, let [u, v ] be an edge deleted by the

above algorithm, and add it back to Gi . If [u, v ] was deleted because of Condition AA, then

low 1(ei) = v now, and Condition AA is true again. If [u, v ] was deleted because of Condition

BB, then low 2(ei) = v now, and Condition BB is true again. Notice that, in the latter case, the

low 1 value of ei has remained unchanged since the deletion of [u, v ]. In either case, Gi will not

be l-planar.

4.3. Data structures and running time

In the algorithm described above, we need to repeatedly select an unprocessed successor of

e with the smallest low 1 value, and the low 1 values of tree edges are constantly changing. There-

fore we maintain a heap [13] based on low 1 values of the unprocessed successors of the tree edge

e currently being processed. Since the algorithm is recursive, we actually maintain simultane-

ously a heap of unprocessed successors for each tree edge along the path to the currently active

tree edge. The total size of all such heaps is O (m). The initialization of all these heaps takes a

total of O (m) time. When the low 1 value of some element in a heap increases, we modify the

heap accordingly. It is important to note that any two edges in active heaps are unrelated; thus

deletion of a single attachment can modify the low 1 value of only a single such edge. It follows

that the total number of modifications to and deletions from heaps is O (m). The time for the heap

operations is O (logn) time per operation, for a total of O (mlogn) time. (Since m < n 2 , logm =

O (logn).)

We also need a data structure for the back edges of sub (e) so that the following operations

can be done efficiently:

1. delete an attachment [u, v ] of e with v = low 1(e) or v = low 2(e);

2. maintain the low 1 and low 2 values of e;

3. split the data structure into several pieces, one for each successor of e.

One easy solution that meets these requirements is the selection tree [8]. To represent a set

of edges E 0 as a selection tree T 0 , we store edges of E 0 inside the leaves of T 0 from left to right

in increasing order (by DFS number) of their tails. Edges with the same tail are ordered
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arbitrarily. Each internal node w of T 0 has two children w.lchild and w.rchild. Let Sw be the set

of edges stored in the leaves of the subtree rooted at w; let lb = min {x : [x, y ] ∈ Sw} and rb =

max {x : [x, y ] ∈ Sw}; let low 1 = min {y : [x, y ] ∈ Sw}, and low 2 = min ({y : [x, y ] ∈ Sw |

y≠ low 1} ∪ {n +1}). Then the four values lb, rb, low 1 and low 2 are stored in the four fields

w.lb, w.rb, w.low 1 , and w.low 2 of w respectively. If w is a leaf storing the edge [x, y ], then w.lb

= x, w.rb = x, w.low 1 = y, and w.low 2 = n +1. The values in each internal node can be computed

from the values in the children ( in constant time ).

In the following discussion, we will refer to a tree by its root. Let r 1 and r 2 be two selec-

tion trees representing the two disjoint sets of edges E 1 and E 2 . If u 1 ≤ u 2 for all [u 1 , v 1] ∈ E 1

and [u 2 , v 2] ∈ E 2 , then we can merge r 1 and r 2 to get the selection tree for E 1 ∪ E 2 in O (1)

time:

procedure merge(r 1 , r 2);

begin if r 1 = null then

return r 2;

end if;

if r 2 = null then

return r 1;

end if;

r := newnode ();

r.lchild := r 1;

r.rchild := r 2;

r.lb := r 1 .lb;

r.rb := r 2 .rb;

r.low 1 := min{r 1 .low 1 , r 2 .low 1};

r.low 2 := min({r 1 .low 1 , r 2 .low 1 , r 1 .low 2 , r 2 .low 2} - {r.low 1});

return r;

end;

Let r be a selection tree representing a set of edges E 0 . To split E 0 into two sets E 1 =

{[u, v ] ∈ E 0 | u ≤ ux} and E 2 = {[u, v ] ∈ E 0 | u > ux}, we split r with respect to ux as follows:

procedure split(r , ux);

begin if ux < r.lb then

return [null, r];

elseif ux ≥ r.rb then

return [r, null];

else [rl , rr] := [r.lchild, r.rchild];

if ux < rl .rb then

[rl 1 , rl 2] := split(rl , ux);

return [rl 1 , merge(rl 2 , rr)];

else [rr 1 , rr 2] := split(rr , ux);

return [merge(rl , rr 1), rr 2];

end if;

end if;

end;
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The height of any tree that results from splitting a tree r can be no greater than the height of

r. To select and delete an edge [x, v ] from a tree r, where v ∈ {r.low 1 , r.low 2}, we do the fol-

lowing:

procedure delete(r, v);

begin if r is a leaf then

mark the back edge stored in r as ’deleted’;

return null;

else [rl , rr] := [r.lchild, r.rchild];

if v = rl .low 1 or v = rl .low 2 then

return merge(delete(rl , v), rr);

else return merge(rl , delete(rr , v));

end if;

end if;

end;

Assuming the input graph G is connected, we know that all the tree edges form a tree. Let

the root be 1. For technical reasons, we add a dummy edge e 0 = [0, 1] to the tree edges. To get a

maximal planar subgraph of G, we just construct a 0-planar subgraph of sub (e 0), and then delete

e 0 from it. Initially, we construct a balanced selection tree tree (e 0) to store all the back edges of

G. The height of this tree is O (logn). The time and space needed to initialize tree (e 0) are both

O (m).

When we begin to construct a maximal l-planar subgraph for a tree edge e, we first split

tree (e) into several pieces tree (e 1), ..., tree (ek), where e 1 , ..., ek are the successors of e not

marked as ’deleted’. For each such successor ei , tree (ei) is a selection tree representing the set of

back edges in sub(ei), and can be obtained as follows. If ei is a back edge, then tree (ei) consists

of a single edge, and can be constructed in O (1) time. If ei is a tree edge, let ei = [b, ci], and let

ni be the number of descendants of ci . It is well known that a back edge [u, v ] is a descendant of

ei iff ci ≤ u < ci + ni . Then we can use the procedure split to get tree (ei) from tree (e) in O (logn)

time. Since there are at most n tree edges in G, then the splitting takes takes O (nlogn) time for

the whole algorithm. After each split, the total size of the trees is still O (m).

To select and delete an attachment [x, v ] of ei , where v ∈ {low 1(ei), low 2(ei)}, we execute

delete (tree (ei), v), which takes O (log (n)) time. There can be at most O (m) such invocations of

delete, so the total cost for executing delete is O (mlogn). Given the selection tree tree (ei), the

values φ(ei), low 1(ei), and low 2(ei) can be computed from tree (ei) in O (1) time: if tree (ei) is

null, we just set these values to n +1; otherwise, they can be computed from tree (ei).low 1 and

tree (ei).low 2 . Thus, the total cost of selection tree operations is O (mlogn).

We have mentioned that the total cost of heap operations is also O (mlogn). The other costs

of the algorithm are the same as in planarity-testing. Thus the total cost of our maximal planar

subgraph algorithm is O (mlogn).
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4.4. The complete algorithm

Now we summarize our maximal planar subgraph algorithm. We take a connected

undirected graph as input, and convert it into a DFS representation G = (V, T, B). At the same

time, we compute the two mappings succ and N, where, for each e ∈ T, succ (e) gives the succes-

sor edges of e in increasing order of their tails, and for each v ∈ V, N (v) gives the number of des-

cendants of v. We assume that there is a dummy edge e 0 = [0, 1] such that succ (e 0) gives the list

of tree edges leaving the root. The whole preprocessing takes O (m) time.

We summarize the maximal l-planar subgraph algorithm below.

procedure lplanar(e, l);

begin let e = [a, b];

if e ∈ B then

return [[[b], []]];

end if;

if e has no successors then

return [];

end if;

let e 1 , ..., ek be the successors of e not marked as ’deleted’;

split tree (e) into tree (e 1), ..., tree (ek);

organize e 1 , ..., ek into a heap based on their low 1 values, with the smallest one on the top;

let e 1 be the edge on the top of the heap;

delete e 1 from the heap;

1 att (e) := lplanar(e 1 , l);

delete all the occurrences of b from the top blocks of att (e);

j := 1;

i := 2;

while heap is not empty do

let ei be the edge on the top of the heap;

if low 1(ei) ≥ b then

delete ei from the heap;

2 dummy := lplanar (ei ,b);

elseif Condition AA is true then

v := tree (ei). low 1;

while v = tree (ei). low 1 do

3 tree (ei) := delete (tree (ei), v);

end while;

if ei is a back edge then

delete ei from heap;

else modify heap;

end if;

elseif Condition BB is true then

v := tree(ei). low 2;

while v = tree(ei). low 2 do

4 tree(ei) := delete(tree(ei), v);

end while;

else delete ei from the heap;

5 att (ei) := lplanar(ei , b);
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6 merge blocks of att (ei) into one block Bi;

delete all the occurrences of b from the top blocks of att (ei);

if i = 2 then

7 perform Step 3 of Alg.1;

end if;

8 merge Bi into att (e) as described in Step 4’;

i := i + 1;

end if

end while;

return att (e);

end;

The procedure lplanar (e, l) implicitly constructs a maximal l-planar subgraph of sub (e) by

deleting a minimal set of back edges. The parameter l specifies where the blocks of att (e) are not

allowed to interlace in the resulting subgraph, so that this subgraph can be used to build a larger

planar subgraph without further deletion when we process the predecessor of e. For the initial

call where e = e 0 , we have l = 0, meaning that we need to construct a maximal planar subgraph of

sub (e 0). In the recursive calls for the successors of e, the l values are determined as follows.

Since no l-normal blocks are allowed to interlace in sub (e), then no l-normal blocks are allowed

to interlace in sub (e 1) either. Thus the recursive call of lplanar for e 1 (line 1) has the same

parameter l as for the edge e. The remaining calls for e 2 , ..., ek (line 5) just construct maximal

strongly planar subgraphs, therefore have b as their l values. Thus when we merge blocks at line

6, no normal blocks of att (ei) interlace. At line 7, we merge all normal blocks of att (e) above

low 1(e 2) in to one block; at line 8, we merge Bi into sub (e). Because of the deletions at lines 3

and 4, these steps can be performed successfully (without any further deletion). At line 2, sub (ei)

is detected to be a biconnected component and is processed separately.

To compute a maximal planar subgraph, we simply do the following:

1. Organize B into a selection tree tree(e 0);

2. Execute lplanar(e 0 , 0);

Then T ∪ B - B′ gives a maximal planar subgraph of G, where B′ is the set of back edges

deleted by the procedure delete in the preceding algorithm.

Remark The procedure lplanar can be greatly simplified if we know that all the tree

edges of G are on a same cycle. In this case, the low 1 values need not be dynamically main-

tained: if e = [a, b] is a back edge, then low 1(e) = b; otherwise low 1(e) = 1. The low 2 values,

which are used only for testing condition BB when i > 1, need not be maintained either, since for

i > 1, ei is a back edge. As a result, the selection trees are no longer useful, and the heaps storing

the successors of tree edges can be replaced by lists precomputed as in Algorithm 1. With these

simplifications, our algorithm gives the following result which is first reported in [10] by

Kobayashi et at.: A maximal planar subgraph can be constructed in linear time provided that a
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Hamiltonian tour of the graph is given. �

5. Summary

The problem of drawing graphs in the plane arises naturally in circuit layout. Since finding

a maximum planar subgraph is NP-complete [5], a maximal planar subgraph seems to be a rea-

sonable approximation. Because planarity-testing can be done in linear time, it is easy to solve

the maximal planar subgraph problem in O (mn) time: start with a graph H with no edge; for each

edge of the input graph G, add it to H if the resulting graph is planar, and reject it otherwise. The

resulting graph H will be a maximal planar subgraph of G. However, a better solution seemed to

be hard to find for a long time. Jayakumar et al. [9] even made the conjecture that "no maximal

planarization algorithm of complexity better than O (mn) will be possible." Our O (mlogn) solu-

tion disproves this conjecture, as does the method of Di Battista and Tamassia [3].

We have assumed that the input graph to our algorithm is connected. For a more general

graph, we can find a maximal planar subgraph by applying our algorithm to each of its connected

components.

Acknowledgment We thank the referees for their careful and invaluable comments on the ear-
lier versions of this paper.
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