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3. contrary: if their virtual coefficient is strictly

negative, 1.e. s’ ®s” < 0.

An ensemble of screws is known as a screw system,
and is defined by a set of n < 6 independent basis
screws. The order of a screw system is equal to the
number of basis screws required to define it; such a
system 1is also called an n-system. The order of a screw
system reciprocal to an n-system is (6 — n).

With an infinitesimal rigid motion of an object in
three-dimensional Euclidean space there is an associated
screw called twist such that the body rotates about and
translates along its screw axis. The screw coordinates of
a twist are given by t = (71, Tz, T5, T4, T5, T5), where
the first three components T}, T5 and 75 correspond
to the angular displacement (or angular velocity), @,
of the body and the last three components Ty, 75
and Tg correspond to the translational displacement (or
translational velocity), 7, of a point fixed in the body
and lying at the origin of the coordinate system. The
pitch of the twist is given by

The pitch of the twist is the ratio of the magnitude of
the velocity of a point on the twist axis to the magnitude
of the angular velocity about the twist axis. If the pitch
of a twist is zero then the twist corresponds to a pure
rotation, and if the pitch of a twist is infinite then the
twist corresponds to a pure translation. The magnitude
of the twist is given by
@2, if p < oo
[t] =
[v]]2, ifp=ococ.

Similarly, with any system of forces and torques
acting on a rigid object in three-dimensional Euclidean
space there is an associated screw called wrench such
that the system of forces and torques can be replaced
by an equivalent system of single force along the wrench
axis and a torque about the same wrench axis. The
screw coordinates of a wrench are given by w = (W7,
Wa, W3, Wy, Ws, Ws), where the first three components
W1, We and Wi correspond to the resultant force, f,
acting on the body along the wrench axis and the
last three components Wy, W5 and Ws correspond to
the resultant torque, 7, acting on the body about the
wrench axis. The pitch of the wrench is given by

~|
Sl

p===.
f-f

The pitch of the wrench is the ratio of magnitude of the
torque acting about a point on the axis to the magnitude
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of the force acting along the axis. If the pitch of a
wrench is zero then the wrench corresponds to a pure
force, and if the pitch of a wrench is infinite then the
wrench corresponds to a pure moment. The magnitude
of the wrench is given by

1£ll2, if p < oo
w| =
[|7]|2, if p = oc.
Note that the virtual coefficient of a twist t = (@,
v) and a wrench w = (f, 7) is

wot=f-74+7 @,

the rate of change of work done by the wrench w on a
body moving with the twist t.

If a twist t is reciprocal to a wrench w, then
the wrench does no work when the body is displaced
infinitesimally by the twist. Thus for two reciprocal
screws, a twist about one of the screws is possible while
the body is being constrained about the other screw.
Similarly, if t is repelling to w, then positive work
is done by the constraining wrench when the body is
displaced infinitesimally by the twist. This implies that
the twist can be accomplished, but then the contact
of the wrench will be definitely broken. Lastly, if t
is contrary to w, then negative (virtual) work must
be done by the constraining wrench when the body is
displaced infinitesimally by the twist. This implies that
such a displacement is impossible, if we assume that the
objects being considered are all rigid.

For a given wrench system acting on a body, we say
that the body has total freedom, if the body can undergo
all possible twists, without breaking the contacts asso-
ciated with the wrenches; we also say that the body has
total constraint, if the body cannot undergo any twist,
without breaking the contacts; otherwise, we say that
the body has partial constraint.
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A set x1, ..., x, of n vectors from IR? is said to be
linearly independent if a linear combination

X+ o+ Xy

can only have the value 0, when Ay = --- = A, = 0;
otherwise, the set is said to be linearly dependent.
A set x1, ..., x,, of n vectors from IR? is said to be

affinely independent if a linear combination

/\1x1+~-—+/\nxn Wlth/\1++/\n:0

can only have the value 0, when Ay = --- = A, = 0;
otherwise, the set is said to be affinely dependent.

A linear basis of a linear subspace L of IR? is a
set M of linearly independent vectors from L such that
L = lin M. The dimension dim L of a linear subspace L
is the cardinality of any of its linear basis.

An affine basis of an affine subspace A of IR? is a
set M of affinely independent vectors from L such that
A = aff M. The dimension dim A of an affine subspace
A is one less than the cardinality of any of its affine
basis.

Let C be any convex set. Then by d-interior of C,
denoted inty C', we mean the set of points p such that,
for some d-dimensional affine subspace, A, p is interior
to C'N A relative to A. If ¢ is the dim aff C, then by an
abuse of notation, we write int C' to mean int, C.

For subsets A and B of IR? and A real define the
(Minkowski) sum of A and B by

A+B={a+b:ac A be B},
and let AA be
AA ={Xa:a € A}

We shall write A & B instead of A+ B if A and B
are contained in subspaces of IR? for which the usual
direct sum exists: A @ B is then called the direct
sum of A and B. Call C directly irreducible if there
is no representation of C of the form A & B where
both A and B are different from the origin.
decomposition theorem of Gruber, we have the result

By a

that each convex body C can be represented in the form
Ci1®---®C,, where (1, ..

Such a representation is unique modulo the order of the

., Cyy, are directly irreducible.

summands.

A.2 Screw Theory

A screw is defined by a straight line in three-dimensional
Euclidean space, called, its screw-axis and an associated
pitch, p. A screw is represented by a six-dimensional
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vector, s = (S1, Sa2, Sz, S, S5, Se), known as the screw
coordinates. The screw coordinates are interpreted in
terms of the Plicker line coordinates, (L, M, N, P, @,

R), of the screw axis, as follows:

L = 5,
M = 5
N = 53,
P = Sy—pSi,
Q = S5—pSs,
R = Ss—pSs,

where L, M and N are proportional to the direction
cosines of the screw axis, and P, () and R are propor-
tional to the moment of the screw axis about the origin
of the reference frame (i.e. the cross product of a vector
from the origin to a point on the axis and a unit vector,
directed along the screw axis). The pitch of the screw
is then given by

5154+ 5355 + 5356
SR+ Ssz4s:

and the magnitude of the screw is given by

VSE+ 52+ 82 if p< oo
VSi 4+ 82+ 52, ifp=oo.

A unit screw is a screw with unit magnitude. Scalar

|s| =

multiplication and vector addition are valid for infinites-
imal screws, and the screws are closed under these oper-
ations. Thus the six-dimensional space of infinitesimal
screws forms a vector space.

Sometimes, we simply consider the 2-norms of a
screw (as a six-dimensional vector), disregarding its
pitch:

6
sl = | D S2.
i=1

Given two screws s’ = (57, S, S5, S4, S§, sg) and
s = (SY, SY, SY, S, SY, S), we define their virtual
coefficient as

S 8" = S1S + Sy + Sy + SySY + 555y + S5.S4.

Note that the operation ‘©®’ is a commutative operation
from IR® x IR® into IR.

Two screws s’ and s’ are said to be

1. reciprocal:
s'Os" = 0’

if their virtual coefficient is zero, 1.e.

2. repelling: if their virtual coefficient is strictly

positive, 1.e. s’ ®s” > 0, and
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Appendix: Geometric Terminology

A.1 Linear Spaces and Convexity

A d-dimensional space, IR?, equipped with the standard
linear operations, is said to be a linear space.

1. A linear combination of vectors x3, ..., X, from
IR? is a vector of the form
A1xy 4+ -4 ApXy,
where A1, ..., A, are in IR.
2. An affine combination of vectors x1, ..., X, from

IR? is a vector of the form
X1+ -+ Xy,
o Ap arein IR, with Ay +-- -+ A, = 1.

where Aq, ..

3. A positive (linear) combination of vectors xy, .. .,
x, from IR? is a vector of the form

Aixy + -+ AnXy,

where A1, ..., A, are in IR>q.

29

4. A convex combination of vectors x1, ..., x, from

IR? is a vector of the form
Xy 4+ Xy,

where Ay, .

1.

- Agarein IRy with Ay +- -4+ A, =

By convention, we allow the empty linear combina-
tion (with n = 0) to take the value 0. We also assume
that the empty linear combination is neither an affine
combination nor a convex combination.

Note that affine, positive and convex combinations
are all linear combinations, and a convex combination
is both affine and positive combinations.

A nonempty subset L C IR? is said to be a

1. linear subspace: if it is closed under linear com-

binations;

2. affine subspace (or, flat): if it is closed under

affine combinations;

3. positive set (or, come): if it is closed under

positive combinations; and

4. convez set: 1fit is closed under convex combina-

tions.

The intersection of any family of linear subspaces of
IR? is again a linear subspace of IR?. For any subset M
of IRY, the intersection of all linear subspaces containing
M (i.e. the smallest linear subspace containing M) is
called the linear hull of M (or, the linear subspace
spanned by M), and is denoted by lin M.

Similarly, the intersection of any family of affine
subspaces, or positive sets or convex sets of IR? is again,
respectively, an affine subspace or positive set or convex
set. Thus for any subset M of IR?, we can define

1. the affine hull (denoted by aff M) to be the

smallest affine subspace containing M,

2. the positive hull (denoted by pos M) to be the
smallest positive set containing M, and

3. the convez hull (denoted by conv M) to be the
smallest convex set containing M.

They are also called, respectively, the affine subspace,
positive set and convex set spanned by M.

Equivalently, the linear hull lin M can be defined
to be the set of all linear combinations of vectors from
M. Similarly, the affine hull aff M (respectively, the
positive hull pos M, the convex hull conv M) can be
defined to be the set of all affine (respectively, positive,
convex) combinations of vectors from M.
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X, ={p; : 7 € 1;} can serve as a desired solution.
Clearly, X, C X, has at most d points and

0q NA(ConvexHull(X)) € ConvexHull(X,)).

Note that even if the original set had been per-
turbed (by a sufficiently small amount) the set X,
chosen from the unperturbed set X still provides
the desired solution.

To summarize:

Theorem 7.9 For n > m > 13dd(d+3)/2, we can
find an m-fingered grasp G of an object B such that

enl0) 5 (1 ¢, 1—3d(%> ,

in time O(3"mn). Here n is the number of
candidate points and €, ts a small number that
depends on n and 0B. U]

8. Bibliographic Notes

The general framework describing the connection
between grasping and convexity theory is due to the
present author [21]. The results relating form and
force/torque closure appear in the paper by Mishra
and Silver [22] and the results relating immobility and
force/torque closure appear in the paper by Mishra and
Teichmann [23]. Some of the other related results are
taken from our earlier work [18,23].

The grasp metric of section 2 is based on the one
first proposed by the author [14]. For the sake of
concreteness, only the finger force constraint .., was
discussed. Ferrari and Canny [9] subsequently suggested
that in some situations x4 condition may be of more
practical interest. Independently, Li and Sastry [15]
proposed a metric that corresponds to the conditions
referred to here as Y2 and xz. Trinkle [33] studied the
problem of computing with the grasp metric, 7,41, for
small number of fingers. The relations between 7,4y
and ry . described here has not appeared elsewhere.
The grasp metric based on the nasty finger model and
the result proving the weakness of a seven finger grasp is
due to Walter Meyer and was motivated by our original
(KMY) grasp metric.

The results involving Q.S.T. are due to Barany,
Katchalski and Pach [2] and the generalizations moti-
vated by the study of grasp metrics are due to Kirk-
patrick, Mishra and Yap [14]. The approximate algo-
rithm in the general case and appearing in the last sec-
tion is based on the results of Kirkpatrick, Mishra and
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Yap [14]. The results related to optimal three finger pla-
nar grasp are jointly with Marek Teichmann of N.Y.U.

An algorithmic study of the modular fixturing prob-
lem in manufacturing was initiated by the present au-
thor [19,20]. Recently, some important further progress
in this area, specially with an emphasis on the quality of
the fixturing, has been made by Brost, Goldberg, Wong
and Zhuang [3,35]. The study of reactive robotics algo-
rithm in general as well as in the context of grasping,
has been initiated by Mishra and Teichmann [31,32].
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face of C', we place a k x k X --- X k ((d—1) times)
grid, with £ taking the value

()™

Y' = {0_]3 NS 1:pis a grid point} )

Let

Thus |Y'| < 2dk?! < m/d. For each ¢ € Y', we
determine an appropriate set X, C X of at most d
points such that

0q NA (ConvexHull( X)) € ConvexHull(X,);
thus for some A,
Agq € ConvexHull(X,).

Let Y be
Y= J X,
geyYy’
with Apin taking the value mingey A,;. Evidently,
Amin > 7(X).
Note that |Y| < m, and

AminY’ € ConvexHull(Y).

This demonstrates the correctness of the algorithm,
since we know that the residual radius of Y’ is
bounded from below by 74(m). (See the proof for
the KMY bounds).

In order to complete the algorithm, we show
how to efficiently compute the set X, (for any point
¢q) using the following linear programming formu-
lation. Let X = {p1, p2, ..., pn}. Without loss of
generality, we assume that the points of X are in
general position, i.e., at most d points of X may lie
on any (d — 1) dimensional hyperplane. If not, the
original points of X may be perturbed using generic
perturbation methods (see, for example, [34]); the
following discussions still apply mutalis mutandsis.
Define the dxn matrix A whose j* column consists
of the coordinates of the point p;. Corresponding
to the point ¢, define a column d-vector b. The lin-
ear programming problem (LP) is given as follows:

o GIVEN: A d x n matrix A and a column d-

vector b.

Mishra

e SOLVE:
minimize -A
subject to Ax = Ab
elx = 1
x > 0
A >0,
where x = (21, ..., z,)T, e = (1,..., )T and
0=(0,...,0)" are column n-vectors.

Let x*, A* be an optimal solution of (LP). Then
A* > 0 is the maximum value of A such that

n
=1

with "% 2f =1, and 2 > 0.

Now consider the following dual of the (LP),
which will be referred to as (DLP):
maximize Yd+1
subject to a1 y1 4+ -+ ag1Yq +ya1 < 0
a2y + -t agays +yarr <0
a1+t ednyd +Yarr <0
—biyr — - —baya < -1

This problem can be solved in O(3%n) time by
using Clarkson-Dyer’s improvement on Megiddo’s
multidimensional search technique [7,8,17]. Let us
now see how to recover the solution to the original
problem.

Clearly both (LP) and (DLP) have optimal
solutions. Let an optimal solution for (DLP) be

y* = (yfv et 3/;, ?Jc*z+1)-

Let I, C {1..n} be the set of all the indices j such
that

a; -y =a1 ;47 + -+ aq;y; + yip = 0.

where a; = (ay;,++, a4, 1)*. By the Complemen-
tary Slackness Theorem (see [6]), this implies that
forall:=1,...,n,if 27 > 0 then ¢ € I,. By virtue
of our non-degeneracy hypothesis about the points
of X, we see that |I,] < d. We now claim that
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7.2 Optimization Problem

Given: An object B and a robot hand with exactly
m fingers. The contact type of each finger is given
so that given a point p € 0B, the corresponding
system of wrenches

I'(p) = {wy,..

({ < 6) can be computed easily.
is a grasp metric, described by the finger force

'7W€}

Also given

constraint y, where y is assumed to be convex,
closed, compact and faithful.

Compute: A set of m contact points pq, ...,
P € 0B such that the resulting grasp G involving
the wrench system

m

U I'(p:)

=1
has the optimal grasp strength r* = ri(B) =
r(G). Thus we wish to

e maximize r*

e subject to the following condition

(E|P17 . -ypm) (V”' < 7‘*) (VW € IRG)
[(pl,...,pmeaB Alwl=1) =

w e GX(O r(p))-

=1

Thus, if we assume that x(f1, ..., f,) is given
by a set of algebraic equations and inequalities of
some bounded degree and 9B is given by piecewise
algebraic surfaces, each of bounded degree and of
cardinality n then the above problem can be solved
by using efficient algorithms in Tarski’s elementary
geometry in time O(n?0™)),

Note that if we simply try to place the fingers
on each of (}) (1 < k < m) portions of the surface
0B and exhaustively try each possibility then the
complexity of the algorithm can be improved to

0 (wra0triosm)

However, it is unclear whether any further improve-
ment for this problem can be obtained in a very
general setting.
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(1) When m is substantially large, however
one can obtain a good approximate algorithm for
the case of Y.o,. In this case, we first choose a
large number of candidate points on the surface
of the object dB such that the points are placed
fairly closely and choose as our set X the image
of these points under the wrench map I'. Thus
conv X = GXcon is a good approximation of the
feasible wrench set G in the sense that the
residual radius of G

of that of G :

Xcon *

T(GXcon) > 1(Gyeon (1

where ¢, depends on the number of candidate
points n and dB. The rest follows from the
discussion below. We start with the following
algorithmic problem:

Xcon

is a close approximation

Xcon

_€n)7

Given a set X of n points in d-dimensional
Euclidean space, whose residual radius
r(X) is positive, find a subset Y C X of
at most m points such that the following
inequality holds:
o\ 225
r(Y) _ . 2d%\ !
>7g(m)=1-3d| — .
r(x) 2 Talm) ( )

m

Here m and n are assumed tod be sufli-
. . +3
ciently large, i.e. n > m > 13%d 2.

We see that this problem can be solved by
essentially following the ideas outlined in the proof
of KMY bounds: We first choose a set Y’ of at most
m/d points on the surface of the unit ball such that
the residual radius of Y/ is no smaller than 74(m).
We can then determine a set Y C X of at most m
points such that for some Apin > 7(X), the convex
hull of Y contains the set of points

AminY/ = {Amin q:qc Y/} .
Thus

T(Y) > T(/\minyl) > /\minfd('m) > T(X)fd(‘m).

The points of Y’ are chosen as follows: Let C
be the d-dimensional cube comprising the points
(Y1, -+ ya) with |y;| < 1fori=1, ..., d. On each
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some bounded degree, then the above problem can
be solved by using efficient algorithms in Tarski’s
elementary geometry in exponential time:

0 (20(nlogn)) 7

in the cardinality of the wrench system n. (See
Renegar [27].)

(1) Note that some simple improvements can
be obtained in the special cases as follows: For in-
stance, consider the finger force constraint defined
by Xcon, in this case G, can be expressed as the
intersection of upto (§) = O(n®) half spaces which
define the convex hull of
{wi,—w;i=1,... . k}U{w;:i=k+1,...,n}.
Now considering the set of all normals from the
origin to the boundary hyperplanes of these half
spaces, one can compute 7, by simple brute
force. Note that computing these half spaces is
quite trivial. For every six vectors, consider the
hyperplane corresponding to their affine hull. If all
the remaining points lie on one side (say positive) of
the hyperplane, then we include the associated half
space in our collection. The resulting algorithm
takes O(n”) time and is thus polynomial. The
exponent can be slightly improved by introducing
additional data structure or randomization, but
since we suspect that the improvement is not
substantial, we shall not discuss this any further.

A similar consideration for X.m.., however,
gives a O(2°(")-time algorithm, but we do not
know if for the special cases where x is given by
set of linear equations and inequalities, the problem
has a better complexity than the one with trivial
0(200*1°8")) hound. Note that since n is usually
small (i.e., between 4 and 12), this complexity may
be deemed acceptable.

(2) Another approach to this problem would be
to probe G in m distinct directions, each direction
being given by a ray R going through the origin.
Also assume that there is an oracle, which given
R, returns R N 0G,. Thus after m probes, we
can choose as an approximation for r,, a function
of the probe values returned by the oracle (for
instance, the minimum of the magnitudes). Here,
we have tacitly assumed that we have no knowledge
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of Gy other than what is provided by the oracle.
Standard argument (similar to the one in [1]) shows
that the number of probes will be exponentially
large in d in order to obtain a good approximation,
in general. Here, of course, d = 6, the dimension
of G.

The argument is as follows: We operate in
dimension d. When the oracle is given a d-
dimensional ray R, the oracle returns a unit vector
VR, |[Vvr| = 1, in the direction of R. We perform m

d
such probes, m > 1344“5". Choose an ¢

If we compute an approximate residual radius
of some value less than 1 — 2¢ then the oracle
reveals GGy to be a unit d-ball. If we compute an
approximate residual radius of some value larger

than ,
1 (242"

1+2¢e— — | —

+ze 17\ m

then the oracle reveals GG, to be the convex hull of
the points it had produced, which has a residual

radius ,
1 (242 %"
17\ m ’

thus contradicting again. By the choice of our
€ value, our approximation must fall into either
category. Thus the e-approximation, for a given
€ requires m probes such that

<1-

oy 2d
m 2 (Cg)d—l/Q'

Thus improving the approximation by a single bit
will require increasing the number of probes by a
factor of 2¢-1/2,

(3) Before we leave this discussion, we note that
as Ty, and 7, are given by simple linear algebraic
formulations, they can be computed rather easily
by matrix computation and linear programming
techniques, respectively. However, rg, and 7.,
are not of much help in computation (or, even
in providing an approximation) involving some
general x.
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such an optimal grasp in time O(n™ polylog n).
The complication arises by virtue of the torque
components that one has to consider in the case
when m > 4.

Some progress has been made, by modifying
the problem to that of choosing an optimal set of
m-finger contact points out of a preselected O(n)
points on the boundary of the polygon, dP. For
instance, we have an O(n®logn) time algorithm
to find such an optimal four finger grasp in this
The technique employed for this case is a
generalization of the preceding algorithm involving
binary search. We suspect that the algorithm
generalizes to m fingers (m > 4) and has a time
complexity of O(n™ !logn).

(5) In case of parallel jaw grippers and three-
jaw grippers grasping an n-gon, one can compute
the optimal grasps in time O(n). The algorithms in
these cases involve simply going around the object
and trying all possible grasps [9]. It is not clear,
if these grippers are comparable to multi-fingered
hands in terms of how well they optimize various
grasp metrics.

(6) Another problem of interest is to study the
similar optimality problem in the case of “fixtur-
ing,” where a polygonal object has to be fixtured by
a set of toe-clamps that can be placed only at places
designated by a set of toe-slots (which are usu-
ally arranged on a regular square grid) [3,35,19,20].
The added difficulty arises because of the geomet-
ric constraints imposed by the toe-slots. It is easily
seen that for a rectilinear object the optimal fixel
(fixture element) placement can be determined in
O(n) time. However, the problem seems quite dif-
ficult even when we consider a convex polygonal
object.

(7) Recently, we have been able to design
“reactive hands” for grasping. These algorithms
operate by determining a sensor-dependent binary
vector and then actuating a small set of actuators

case.

by a simple table-lookup procedure[31,32]. It
remains an intriguing open question whether it is
possible to design general multi-fingered reactive
hands that always find an optimal grasp.

7. Computational Issues

The study of grasp metrics suggest two kinds of
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algorithmic (and the related complexity) problems:

1. Computing the quality of a given grasp under
the chosen grasp metric.

2. Computing the optimal grasp of an object by
an m-fingered hand under the chosen grasp
metric.

Henceforth, we shall refer to these two problems
as 1) Computation Problem and 2) Optimizalion
Problem, respectively. In general, the computation
problem seems to have received far more attention
than the optimization problem.

7.1 Computation Problem

Given: A grasp G by means of its associated
system of wrenches: {wy,..., Wk, Wgi1,..., Wy},
where wq, ..., Wi are bisense and the remaining
Wkt1, - .., Wy, are unisense. Also given is a grasp
metric, described by the finger force constraint y;,

where yx is assumed to be convex, closed, compact

and faithful.

Compute: The quality of the given grasp r,(G).
Recall that 7, is the radius of the largest sphere
centered at the origin and contained in the feasible
wrench set G.

Gy = {W:Zfiwi X(fiseo o) = 1}-

Thus the given grasp has a quality of r,(G) if
and only if

(VT < 'rx(g)) (VW = (w1, ..

[|W|:r = WEGX],

., Wg) € ]R6)

or equivalently,

(¥r < ru(@) (Yw € R®) (3fr---. fa)
[(|W| =r) = w=3) fiw
N(X(fryeos fn) = 1].

Thus we need to maximize r,(G) subject to the
conditions described above to get the quality of the
grasp.

Thus, if we assume that x(f1, ..., f.) is given
by a set of algebraic equations and inequalities of
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of making the points distinct (this may not succeed
and lead to further advancements of this kind).
In the second case, we advance the “backward
point u; (i.e, replace u; by succ(wu;)) with the hope
of releasing the “limiting edge” w;_ju; and thus
possibly (but not always) increasing the residual
radius.

The algorithm keeps advancing the forward or
the backward point (as the case may be) while
recording the maximal residual radius seen so far
until ug returns to its initial position, at which
point it halts and outputs the edge triple corre-
sponding to the maximal residual radius. Since the
polygon is a circular convex polygon, one can eas-
ily determine the contact points by taking the nor-
mals from the center of the polygon to each edge
of the edge triple. The correctness and the com-
plexity analysis of the algorithm can be shown in
a manner similar to the discussions in section 5 of
the paper by Kirkpatrick et. al. [14] and is omit-
ted here. Note, however, that the above technique
fails for arbitrary convex polygons if we relax the
condition of circularity.

Note that the above technique can be easily
adapted to the following problem: Given a simple
polygon P and a center ¢ € IR?, find a 3-finger
optimal grasp of P such that the inner normals
at the contact points go through ¢. This problem
is solved by simply running the above algorithm
starting with an active set, active(U') of a small
open neighborhood of ¢. The resulting algorithm
takes O(n) time.

(3) Sometimes, we wish to determine not just
one optimal three finger grasp but all of them.
Then we may use any one of this class of optimal
grasps, depending on the task at hand. Clearly,
the brute force O(n?) time algorithm will succeed
to do so. Note that the algorithm of the previous
section cannot be easily modified into a two pass
algorithm, since addition of a new point (in the
process of going from one cell to an adjacent cell)
may create an O(n) edge triplets of residual radius
p*. Here, we describe an O(n?logn) algorithm for
the special case when the object is convex.

Let P be a convex n-gon and let the possible
residual radii (as in the preceding subsection) be
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given as
0<p1<pa<---<p; << L

We shall find the optimal residual radius p* by
performing a binary search on the sequence of
possible residual radii. For a given value of p;,
we can enumerate all the edge triples that lead
to a residual radius of p; in O(n?) as follows:
Corresponding to the possible radius value p;, there
are at most O(n) edge pairs (e;, e;)’s such that the
corresponding points ¢; and ¢; € ¢ on the unit
circle satisfy the property that the line determined
by ¢;q; is tangent to a circle C'(p;) centered at the
origin and of radius p;. Now for each such edge
pair, we need to check in O(n) time if there is
another edge e such that ¢ € Q \ {¢, ¢;} is
mutually visible (with respect to C(p;)) to both
¢; and ¢; and that

slab(e;) Nslab(e;) N slab(ex) # 0.

We can thus enumerate all the e;’s that succeed
this test. The binary search only considers O(logn)
different values of p;’s and terminates with success
with the largest possible value p* and enumerating
all edge triples corresponding to p*. It is then
trivial to describe all possible three finger optimal
planar grasps. Thus the algorithm has a time
complexity of O(n?logn).

However, the algorithm applied to a nonconvex
polygon leads to an O(n?)-time algorithm, as in a
pathological case, there may be O(n?) edge pairs
to be considered for a given value of p;. It is
noteworthy that this algorithm is rather simple
to implement and may perform well in practice.
For instance, if one performs binary search on the
real interval [0,1] (instead of the possible radii
values), then for a random polygon this algorithm
can compute in O(nlognlog(1/e)) all three finger
grasps whose corresponding residual radii lie in
the range [p, p*] of size < ¢, for sufficiently small
positive e.

(4) We still do not know how to find optimal
m-finger planar grasp (m > 4) in time better
than what can be obtained by the brute force
algorithm taking time O(n®(™)). For instance, it is
not even clear if there is an algorithm to compute
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to the maximal residual radius p* and all the cells
that are contained in the intersection of three slabs
associated with each such edge triple. Among all
such cells consider the one that was visited the
earliest, say C’. Let the preceding visited cell
be denoted C'. Let the maximal residual value
seen up to the time C was visited be p’. Thus
pr < p(C) < p* = p(C'). Thus active(C’) must
have been obtained by addition of a point ¢; € Q.
Thus, active(C’) has two other points ¢; and gy
such that a residual circle of radius p* touches an
edge of the triangle formed by ¢;, ¢; and ¢. Thus
p* is a possible residual radius and the tests at
the cell C” involving possible residual radii values
larger than p’ will all succeed up to p*. Thus if the
computed value at the end is p then

p>p.
Hence they must be both equal and our algorithm
correctly determines the optimal three finger grasp

for P.

6.2 Some Related Open Questions

There are several open questions related to the
problem of finding optimal planar grasps. We
briefly discuss these problems.

(1) Consider a variation on the above problem:
Suppose we are given a simple polygon P with
certain subset of 0P designated as “forbidden”
and its complement, “feasible.” Assume that the
feasible parts of the polygon consists of at most K
segments (the edge segment ab being allowed to be
a point @ (a = b), in the degenerate case). We are
asked to find an optimal three-finger grasp of the
polygon with none of the fingers on a forbidden
region. Using a small variation of the above
algorithm, we can solve this problem in O(k?log k)
time—only modify the line arrangement to consist
of the following triple of lines per feasible edge
segment ab C e, where e is an edge of P: (1)
the line containing e, (2) the line normal to e and
containing a, and (3) the line normal to e and
containing b. If the edge segment is a point a € e
then the above situation degenerates to two lines,
one containing e and the other normal e at a.

(2) We do not know whether there is a better
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solution for the above problem with improved
complexity. For instance, it is not even clear
whether there are O(n) time algorithms for objects
with simpler geometry, e.g., convex objects. We
have an O(n) solution only for what we shall refer
to as circular convexr polygonal objects. A convex
polygon P will be called circular if there is a point
¢ in its interior (its center) so that the line segment
from ¢ to a line containing an edge e and normal
to e is entirely within P. For instance, the convex
hull of a set of points on a circle defines a circular
polygon (thus, the name). Note that in this case,

(] slab(e) # 0,

eel

where F is the set of edges of P. Clearly, we can
find a small neighborhood U of the center ¢ such
that active(U) is all of ). In this case, the problem
reduces to simply finding three points ¢;, ¢; and
qr € @) such that the residual radius of the resulting
triangle is as large as possible.

We need to extend the notion of residual radius
as follows: The residual radius of a triangle A is
the signed radius of the largest disk centered at
the origin that is either fully outside or fully inside
A, the sign being positive or negative depending on
whether the disk is inside or outside A respectively.

Assume that the points of ) are ordered in the
anti-clockwise order as

Q>4 > >y

for any point ¢ € @ its successor, succ(q), is the
point immediately following it in the clockwise
order.

We start with three arbitrarily chosen distinct
points, say ug = ¢1, u1 = g2 and uy = ¢z, for
instance. At any instance, assume that, we have
three points ug, uq and us, at least two of which
are distinct, and

Up 2> U1 > Uy > Ug

There are two cases to consider: (1) they are not all
distinct, i.e., u; = u;41 and (2) they are all distinct
and the residual disk touches the edge w;_qu;.

In the first case, we advance the “forward
point” w; (i.e, replace u; by succ(u;)) with the hope
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Figure 6: Test involving ¢; and a possible residual
radius value of pg.

will successively test if it has a residual radius no
smaller than p;y1, pit+2, etc. until we fail for some
value p; (7 > i). Each such test can be performed
in O(logn) time as explained below.

Let i < k < j, and we wish to test if active(C")
has three points involving ¢; and of residual radius
> pi. Consider a circle C(py) of radius p; and
centered at the origin. Two distinct points of
active(C’) are said to be mutually visible if the
line segment connecting these two points do not
intersect the interior of C'(pg).
succeeds if we can find a pair of mutually visible
distinct points among the active(C"’), each of which
is also mutually visible with ¢;. Let the leftmost
partner of ¢; be the last mutually visible point
of ¢; encountered, visiting the points of active(C")
in clockwise order starting from ¢;. We call this
point L P(¢;). Similarly, we define the the rightmost
partner of ¢; by visiting the points of active(C’) in
anti-clockwise order, and call it RP(q;). Since the
active points of C’ are kept in their sorted order
in a balanced search structure, both LP(g;) and
RP(q;) can be computed in O(logn) time. Then it
only remains to check that LP(¢;) and RP(g;) are
mutually visible, a step that can be accomplished
in O(1) time.

Thus, we can keep track of p by performing a

Thus our test
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sequence of tests per each new cell, each of which
takes O(logn) time. Note that while there is no a
priori bound on the number of tests we may need
to perform for a new cell, it should be obvious
that all but the last test succeeds and the last test
fails. Thus there are at most one test per cell that
fails, and the totality of all such failed tests incur
a cost of O(n?logn). On the other hand, if we
have a successful test involving a radius value py,
then we shall never perform another successful test
involving pi, subsequently. Thus, the total number
of successful tests are bounded by the number
possible radii values ((}) of those) and altogether
they incur a cost of O(n%logn). Clearly, when we
are domne visiting all the cells, we have the global
maximal residual radius p* together with the edge
triple, which readily give the three contact points,
and we have spent O(n%logn) time.

If the polygon P is degenerate then the result-
ing arrangement may force us to add and delete
many points of ¢ while going from a cell to its
adjacent cell. If we enforce the discipline that all
the deletions are performed before all the additions
and each update is performed sequentially then the
correctness of the algorithm still holds and the per-
formance analysis goes through mutatis utandis. In
summary, we have

Theorem 6.8 Given an arbitrary simple n-gon P,
we can compute a three finger optimal grasp of P
in O(n?logn) time.

PROOF.

The complexity analysis follows from the discussion
preceding the theorem: The possible radii values
can be computed and sorted in O(n?logn) time;
the cells can all be visited with the active sets
computation taking O(n?logn) time; the tests
involved in going from cell to cell are no more
than the sum of the possible radii values and the
number of cells in the arrangement with each test
taking O(logn) time and thus contributing only
O(n*logn) cost to the total cost.

To see the correctness of the algorithm, note
that if the computed value at the end is p then
clearly

p<pt
Conversely, consider the set of edge triples that lead
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Active Set for the Shaded Cell

Line Arrangement

Figure 5: The line arrangement associated with an
object.

polygon and some simple improvements for convex
polygon. We first describe the algorithm assuming
that the polygon P is nondegenerate (in the sense
that will be made precise later) and then remark
on how the nondegeneracy can be eliminated by a
simple modification to the algorithm.

The algorithm can be described as follows: First
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than one line of the arrangement and thus require
addition and deletion of more than one point of the
set ). Clearly, the active sets for all the cells can be
computed in O(n?) time by visiting the cells of the
arrangement, starting from a cell with an empty ac-
tive set (such a cell exists sufficiently far away from
the polygon P). However, computing the p(C') for
each cell may still take O(n) time, thus forcing the
entire procedure to take O(n?) time.

We circumvent this problem by the following
simple trick: First of all we maintain the active(C')’s
in a clockwise order in a dynamic balanced binary
search tree. Since each update operation on this
data structure takes O(logn) time, this increases
the complexity of computing the active sets of all
the cells to O(n?log n)-time.

At any instant, we only remember p—the max-
imal residual radius seen so far. That is, p is sim-
ply the maximum of those p(C')’s corresponding to
only those cells C' that have been visited so far. We
also remember the edge triple associated with the
radius value p. When we go from a visited cell C'

. .. /
we create the two-dimensional line arrangement formetp an adjacent unvisited cell €, we do one of two

by a collection of lines consisting of three lines per
edge, where the triplet of lines associated with an
edge ab are: (1) the line containing the edge ab,
(2) the line normal to ab, containing « and (3) the
line normal to ab, containing . Now consider a
nonempty cell C' of this arrangement: we say a
point ¢ = ¢(e) on the unit circle is active for this
cell, if slab(e) O C. The subset of points on the
unit circle (among the points ¢, ¢z, ..., ¢, of Q)
that are active for this cell C', is called its active
set and denoted by active(C') C @. Now, if we
find three points ¢;, ¢; and ¢ € active(C'), whose
residual radius p(C) is as large as possible (and pos-
itive), then it is seen that p* is simply the maximum
of all p(C')’s taken over all cells of the arrangement.

Note that there are at most O(n?) cells alto-
gether and as we go from one cell C' to its adja-
cent cell C’ then the active(C’) can be computed
from the active(C') by adding or deleting a point
on the unit circle, depending on the line contain-
ing the C N C’. Of course, here we have tacitly
assumed that the polygon is nondegenerate, in the
sense that the all the lines on the arrangement are
distinct, since otherwise CNC’ may belong to more

things: If going to the next cell entails deletion of
a point, ¢;, on the unit circle, then we only have to
update the active(C’); the maximal residual radius
of C' cannot be larger than that of C' and thus p
remains unchanged. If going to the next cell, on
the other hand, entails addition of a point, ¢; on
the unit circle, then we have to both update the
active(C") and check if p can be improved. If the
maximal residual radius of C’, p(C") > p, then the
associated triplet from active(C’) must involve the
new point ¢; and two of the old points. How can
we do this operation quickly?

First note that residual radii cannot take all
possible values but only one of (g) values, each
value being determined by a pair of distinct points
q; and ¢,, and is equal to the radius of the circle
that is centered at the origin and has the line
containing ¢; and ¢, as tangent. All these radii
can be sorted in O(n?logn) time and are denoted
by

0<p <pa << p; <<
Suppose before visiting the cell C” the maximal

residual radius seen so faris p = p;. When we go to
the cell C’ (which requires adding the point ¢;), we
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Residud circle Residual circle

with respectto Xcon with respect to Xmax

Figure 4: Grasp metrics associated with x.., and

Xmaz-

at origin and contained in the triangle formed by
(convex hull of) the points (on the unit circle)
corresponding to the vectors n(p1), n(pz) and
n(ps). Similarly, under the condition xqz, We
wish to maximize the radius of a disk, centered
at origin and contained in the Minkowski sum
of the points (on the unit circle) corresponding
to the vectors n(p;1), n(pz) and n(ps)—a convex
hexagon.
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We may note at this point that there is a trivial
O(n®) time algorithm to find an optimal grasp of
a simple n-gon, P, by exhaustively enumerating
all edge triples of P ad by examining each triple
successively. In order for an edge triple (e;, e;,
er) to produce three necessary optimal contact
points, it must be the case that (¢, ¢;, ¢r) form
a triangle with a positive residual radius of p*—
a condition that can be checked easily in O(1)
time. However, this is not sufficient—since we must
check that there are three points p; € e;, p; € ¢;
and pr € e, satisfying the torque equilibrium
condition; namely, that n(p1), n(pz) and n(ps)
are concurrent meeting at some point c.

This is not hard but requires some thought. We
proceed as follows: Consider an edge ab of P. Let
H P(a,ab) be the open half plane containing ab and
delimited by a line containing ¢ and normal to ab
and similarly, let H P(b, ab) be the open half plane
containing ab and delimited by a line containing b
and normal to ab. Let

slab(e) = H P(a,ab) N H P(b,ab),

Let the corresponding radii be denoted as p.on(P1where e = ab.

P2, P3) and ppaz(P1, P2, P3), respectively. Note
that, if the angle a;’s (1 < ¢ < 3) denote the angles

between the inner normals then a,,,, = max(a,
agy, az) > 27 /3 completely determines the radii

coS(naz/2), and

SiN Q-

Pcon =

Pmaz =

Thus both these metrics are monotonically decreas-
ing functions of 27 /3 < @4, < 7, and it suffices to
minimize «,,,,. However, for the sake of the ease
of exposition, we will frequently use p = p.opn, and
refer to it as the “residual radius” of n(p1), n(p2)
and n(psz). The optimal value of residual radius is
denoted by p*.

Note that given an edge e = ab of the polygon
P, for every point p € ab, n(p) defines a unique
point ¢(e) on the unit circle in IR*. Thus we may
simply refer to this point on the unit circle by g(e).
Henceforth, let the edges of the n-gon be given as
E ={ey, ey, ..., €,} and the corresponding points
on the unit circle be @ = {¢1, g2, ..., ¢}, where

¢ = q(e;) (1 <i<m).

Then it is easy to see that for a triple of
edges (e;, €;, ex) to satisfy the torque equilibrium
condition, it is necessary and sufficient that

slab(e;) Nslab(e;) Nslab(ex) = C # 0.

The point of concurrency ¢ € 5, and the contact
points p;, p; and py are determined by the normals
from ¢ onto the edges e;, e; and e.

Thus our previous arguments can be summa-
rized to be saying that an edge triple (e;, €;, )
defines an optimal grasp if slab(e;) N slab(e;) N
slab(ey) is nonempty and that the triangle formed
by the corresponding points on the unit circle has
a positive residual radius of p*, maximal among all
choices of edge triples. These considerations yield
an O(n?®)-time algorithm.

6.1 An Improved Algorithm

Next, we ask if it is possible to improve upon the
trivial O(n?)-time algorithm. Here, we present an
O(n%logn)-time algorithm for finding the optimal
three fingered planar grasp for an arbitrary simple
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T

Skinny Box

Figure 3: The “skinny box” example.

thus, making the total torque component in the
X-Y plane due to these five fingers no more than
5v/2¢ /2.

Now assume that the magnitude of the forces at
the points of contact p; and p9 are respectively f;
and f5. Let us now place the “nasty finger” close to
one of the corners of the faces F; and F3 at a point
Prasty, €xerting a force of magnitude A. Without
loss of generality, assume that p,asey € £1. Then,
by the force and torque equilibria conditions, we
have

|(f1p1_f2p2+Apnasty)XZ| < 5\/58/2
A= A= fl

Since

maX(lpl - pnasty|7 |P2 - pnasty|) Z 1/27

by design, we see that A < 5v/2e. [

Note however, that the argument above fails
for nine fingers. That is with nine fingers, one can
devise a grasp (for every pair of opposing faces,
place two fingers on a face and one on the opposing
face) that has a good value for this grasp metric,
independent of the skinny dimension of the box.
Also, note that this argument fails to generalize to
the other grasp metrics directly. These issues need
to be explored further.

6. Optimal Three-finger Planar Grasps

For the sake of concreteness, we now consider
some special cases, where we wish to obtain the
best three-finger grasp of a planar polygonal object
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assuming non-frictional contacts. Note that in
this case, since it is not possible to guarantee
that the resulting grasp will have the force/closure
properties, we are willing to sacrifice the condition
requiring torque-closure. In other words, we wish
only to achieve a three-finger grasp such that the
smallest external force such a grasp and resist is as
large as possible.

More formally given a simple n-gon P, we wish
to choose three distinct points py, p2 and p3 on
the interior of the edge segments of P such that
the following properties hold:

1. The unit inner normals n(p;), n(pz) and
n(ps) are concurrent.

2. The unit inner normals n(p1), n(pz) and
n(ps) positively spans the two-dimensional
force space, i.e.,

3
(VvweR?) (3f; 20,1 <i<3)w=>_ fin(pi).

=1

3. The unit normals are “well-balanced” in the
sense that

min{|w| :w € R?,
(Elfz >0,1< 1 < 3) X(f17f27f3) =1

w = z_: fin(Pi)}a

is as large as possible (among all choices of py,
p2 and ps). Here, x(f1, f2, f3) denotes a finger
force constraint condition on the magnitude of
the forces applied at the points of contact. For
instance,

Xcon fz > OvZfZ < 17

or
Xmaz - fz > Ovmaxfi < 1.

Thus the first property denotes the trivial torque
equilibrium condition; the second property denotes
the force closure condition and the third property
measures the goodness of the grasp. In English,
the third property says: under the condition Ycop,
we wish to maximize the radius of a disk, centered
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If we choose ® = 7/5 in the preceding proof,
we can show that: for all m > 0,

15 (d)d%
<l-— (= :
- 512 \'m

15 ( d ) =

512 \m '
On the other hand, if m > d, we get the result since
cos 75 < 1 — 2% and 1 —tan? Z > 15/32.

512
Summarizing the preceding lemmas, we have

r(Y)

If m < d, then

0=rY)<

Theorem 3.6 For all m > 13dde2r_3,

2 2
2\ d—1 2\ d—1
! (ﬂ) < 1= ry(m) < 3d (%) . O

ﬁ m m

The results in this section seem highly pes-
simistic for moderately small number of fingers.
However, if one allows large number of fingers, or
allows frictional and/or soft contact models, there
is a possibility for synthesizing moderately efficient
closure grasps. Kirkpatrick et. al. [14] have pro-
vided certain approximation algorithms for these
problems and some related computational geomet-
ric problems. However, still much research is needed
to provide practical algorithms.

5. Nasty Finger Model

Here, we present a result due to Walter Meyer
(“A Seven Finger Robot Hand is Weak,” unpub-
lished manuscript, Adelphi University), which shows
that there is a family of boxes (rectangular par-
allel pipeds)—“skinny boxes,” all of unit length,
where the optimal grasp (under r,,, model) has
a grasp metric value bounded by a linear function
of the skinny dimension. These results have been
motivated by the model proposed by Kirkpatrick,
Mishra and Yap [14] who left the problem for the
small number (> 7) of fingers unanswered. Note
that the problem of quantifying the trade-offs be-
tween the number of fingers and the best achievable
grasp metric values remain largely open in the most
general context.

Observe that as the dimension of the object
to be grasped become smaller, the ability of a
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finger to generate large torques become weaker.
However, it is also equally harder for the external
(“hostile” or “nasty”) environment to impose a
large counteracting torque to break a grasp on
a small body. That is, the robot hand and its
opponent (adversarial environment) are equally
balanced. This balance is made explicit, in our
discussion, by always assuming that the object,
B, to be grasped is scaled in such a manner
that R, (0B) contains a unit residual sphere in
its interior. That is, if we are allowed to use
arbitrarily large number of fingers (in the limit
going to infinity) then we can resist any external
wrench of unit magnitude. (Note, however, for this
argument to work out, one has to rule out such
finger force constraints as Y. and replace it by
an appropriate version of xp, with some bound on
the number of the partitions. With Y4z, as the
number of fingers increase so does the bound on
the volume of the resistable wrench set.)

Now consider a family of rectangular parallelo-
pipeds—“skinny boxes”—each of which has one
side of unit length and the remaining two sides
equal and of length ¢ < 1. We denote such a box
by Box.. Then the following result holds:

Theorem 5.7 (Meyer) For any seven fingered
positive grip of a skinny box, Box,

Tnasty < 5V/2¢.

PROOF.

Note that any closure grasp of the object must
place at least one finger on each of the six faces of
the box. Thus there can be exactly one face with
two fingers. Thus there are at least two opposing
parallel long faces F; and F; with one finger on
each. The contact points are p; € F; and py € F5.
Let us now assign a coordinated system with the
origin an the center of mass of the skinny box, the
Z axis normal to the faces F; and F3 and the X
and Y axes normal to the other four faces. That is,
X-Y plane is parallel to the faces F; and F,. Note
that the torques generated by the contacts p; and
p2 are in the X-Y plane.
of the dimensions of the skinny box, the torque
component due to the other five points of contact
in either the X or Y direction is no more than ¢/2;

Because of the choice
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Thus, the volume of the d-dimensional unit ball is
given by

/2
Va(l) = 2/0 Vi—1(sin @) sin @ dé

/2

- 2vd_1(1)/ sin® 0 4
0

—  K(d)Vi_y(1),

where K(d) is defined by the last equation.
volume of each K, is given by

The

Volume(K,) = /‘ _1(rtana)dr

1
= Vd_l(tana)/ ri=t dr
0

Vi—1(tana)
y .

Substituting the volumes into the preceding inequal-
ity, we get

tan?=t aV,_(1)

d

m

> dK(d)Vi_1(1).
Hence,

1 > t=tan® > tana

. (aﬂff(d))dlj

where ¢(d, m) is defined in the last equation. Using
the inequality ¢(d, m)? < {2, we get

= ¢(d, m),

cos’a < ;
~ 1+e¢(d,m)?
< 1—=c(d,m)? + c(d,m)*
< 1=(1=1)e(d,m)
Hence,
cosa = 2cos” ——1
1
< (1= =)e(d,m)?)?
2
< 1- 1-1 o(d,m)?
and
1t 5
cos” — < 1-— c(d,m)
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Finally, we get
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Hence,

r(Y)

2
11 (d?]{(d)) =
<1- .
- 8 m

(3) Note that (e.g., [11],page 369)

/2
K(d) = 2/ sin 0 df
0

%W’ if d = 2k = even;

d—1
1 2

2 <_) .
2

Here k!! stands for k(k—2)(k—4)---({+4)(L+2)¢
(terminating in £ = 1 or 2, depending on whether
k is odd or even). Thus

2
1—tan® 0@ [24%\ "
r(Y)<1— 1&:311 Q] ( )

m

v

(4) The stated bound follows with appropriate
choice of the parameter 0, as shown below: Let

m > 3%?; then
202\ ™7 1
m < 9

Choose the parameter @ = 47/53, and observe that
| _ L tan’( 47r/53 (2d2)

1 (2d2)
< 1-— =
- 17\ m

1 <1_ 1

27r<1
CcOS — -
17x9 — 17

53

Since 1 — tan? 3% > 16/17,

O
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and
Ty = {RnN Hy : R passes through a vertex of Sp}.

By definition, 75 C Y’. Note that each point in Tj
lies on the side of Hy not containing the origin.
This means that the convex hull of Y’ contains
the set T7. But the convex span of the set T}

contains the point gg = Rg N Hg. This proves
r(Y)>r(Y') > cosa.

cosa = (1 —sin® a)1/2
2 4 00 )
s 1 sm2 o 51118 o ;sin(‘” N
_ 1 sinfa  sin?a sin? a
o 2 8 1 —sin?a
97 sin? a
> 7 -
- 192
(since sin® @ < 1/25)
S 1 97d
- 48(k — 1)2'

This proves the lower bound lemma. [

3.2.2 Upper Bound

Next, we derive an upper bound for r4(m). For
this purpose, we let X be all the points on the unit
sphere and then bound the largest radius of a ball
contained in the convex hull of m points on the
unit sphere. The convex hull of any such m points
forms a polytope. The proof relies on the facts
that (1) any “long” edges of this polytope bound
the radius of the contained ball and (2) since the
polytope has only m vertices it must have some
“long” edges. The detailed calculations provide an
appropriate numerical bound.

Lemma 3.5 Let X C IR? be the set of all points on
the surface of the d-dimensional unit ball centered
at the origin 0. Thus, the convex hull of X contains
the unit ball B¢ centered at the origin 0. Then any
setY C X of at most m points has a residual radius

2
1 2d2 a-1
rY)<1- (—) ., for all m > 3%d%,

17\ m

Mishra

PROOF.

The proof proceeds in two steps: We first show
that for all m > 0 and for all 0 < O < 7/4,

2
1—tan?® 24>\ 7

16 m '
Then by an appropriate choice of the parameter ©
(O = 47 /53), we obtain the claimed bound.

(1) Let Y be a set of m points in IR? all lying on
the surface of a unit ball and P = ConvexHull(Y").
Let P’ be the polyhedron obtained from P by
triangulating the nonsimplicial facets of P. Let pg
be an edge of the polyhedron P’. Then
L(pog)

g — 7

r(Y) < max | cos 9, 1-
2

r(Y) < co

Thus, if
L(poq),

a = max

pq:edge Of P!

is the maximum of all such angles, then

«a
< cos —.

"(Y) < cos'

If @ > O then

r(Y) < cos %

Henceforth, we assume that a < 0. Let ¢ stand for
tan O; thus 0 < ¢ < 1.

(2) Let p € Y be any point, and define its
truncated cone K, as follows:

K, ={z:/(zop) <o and z-p < 1}.

Now, if ¢ is an arbitrary point on the surface of
the unit ball, then the line segment og belongs to
K, for each vertex p of some (simplicial) facet of
P’. As each such simplex facet has d vertices, the
collection of truncated cones cover each point in
the unit ball at least d times. Thus, we see that

m - Volume(K,) > d - Volume(unit ball).

Let V4(r) stand for the volume of a d-dimensional
ball of radius .

Va(r) = Va(1)r?,
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the facets of P; is maximal and equal to a. Again,
choose d points of X such that their convex hull
contains the point R} N dconv X. These points
and the vertices of P; is the desired Y. Clearly
Y| € 2d and has residual radius r, where

o sin <1+i+2c05a)1/2
T Ta Pz d
fsoms dA
tan —=2———.
a > arctan 7 de_l 71

Simple calculation then shows that r4(2d) > d=2%.
Additional efforts lead to the improvement men-
tioned earlier and uses Upper Bound Theorem for
a tighter estimation of the number of facets of P.

O

3.2 K.M.Y. Bounds
Kirkpatrick, Mishra and Yap [14] have provided

more general bounds. Here, we consider the d-
dimensional case for d > 2. The techniques
are slightly weaker than the 2-dimensional case
considered in greater entails in [14].

3.2.1 Lower Bound

We first give a lower bound for r4(m) for sufficiently
large m (in particular, for all m > 13dde2r_3). Thus,
m is chosen to be large enough to guarantee that

m 1/(d_1)
|G

takes integral values, greater than [11v/d).

Lemma 3.4 For any set X C RY whose convex
hull contains the unit ball B centered al the origin
0, we can find a set Y C X of at most m points
with residual radius

2
2d2 d—1
r(Y)>1-3d (—) , forallm > 13445

m

PROOF.

Let k be defined as a function of d and m, as
before. It suffices to show that

97 d
1 > - -
‘)2 l- By

(k+ 1)
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in the given range for k.

Henceforth, P will stand for the convex hull of
X. Let C be the d-dimensional cube whose faces
are normal to the appropriate coordinate axes, of
side-length 2 and containing the unit ball 8% On
each face of C' we place a k x k x ---x k (d -1
times) grid (so the grid points have coordinates

that are integer multiples of lel and two adjacent
2

-1
fewer than 2dk?=! < m/d ‘grid cubes’ on the union
of the 2d faces of C'. Through each grid point p,
we pass a ray R from the origin. Let R intersect
the unit sphere $9=! at y(R). For each such ray
R, we choose at most d vertices of P (the convex
hull of X') as follows. If the ray passes through an
i-face of P, we choose ¢ + 1 vertices of P whose
convex span intersects that ray and is contained in
that ¢-face. Thus the set Y of chosen vertices has
at most m points. The convex hull of Y contains
the set Y’ of all points of the form y(R) where R
is a ray passing through the grid point.

Let R be any ray originating from o = 0 and
suppose it intersects some face of C' at a point «a
where a lies inside a grid cube 5. Consider the
triangle oab where b is any other point on the
boundary of 5.

grid points are apart). Note that there are

in /(oab
sin Z(aob) = |ab|-%
o o 2Vd 11
- k-1 17"5
Choose a to be
. 2Vd
a = arcsin

k-1

Let ¢o be any point at distance cos a from the
origin. We show that ¢ lies in the convex hull of
Y'. Let Ry be the ray from o = 0 through ¢y and
suppose Ry intersects the grid cube Sy. Let Ko
be the cone bounded by the set of rays originating
from o that makes an angle of a with Ry. Hence
each ray that passes through a vertex of Sy is
contained in Kg. There is a unique hyperplane Hg
containing J(Ko) N S§?=1. Note that ¢y = Ry N Hp.
Let

To = {y(R) : R passes through a vertex of Sg}
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3. Q.S.T.

Following the discussion of the earlier sections,
we see that the selection of an optimal grasp, with
respect to any of the grasp metrics of choice, leads
to the study of a stronger quanlilalive version
of the Steinitz’s theorem. We start with few
notations, as follows.

For any convex set X C IR%, let the residual
ball of X refer to the maximal ball B(X) centered
at the origin 0 such that B(X) is fully contained
inside the convex set X. The residual radius of
X, denoted 7(X) is the radius of this residual ball
B(X). By an abuse of notation, we write r(X)
instead of r(conv X)), if X is not convex. Let

rg(m,X) = max{r(Y):

Y C X and |Y| < m},

min{rq(m, X):
X CR% and r(X) > 1}.

ra(m) =

In the notation, we shall omit the subscript d, if
the dimension is clear from the context. (In this
paper, the interesting case is d = 6.) Thus the
original Steinitz’s theorem can now be interpreted
to say that

’I‘d(Qd) > 0.

A quantitative version of Steinitz’s theorem pro-
vides more precise bounds for the number r4(m),
when m > 2d.

Now the optimal closure grasp with m fingers
can be expressed in terms of the residual radius
values given by a quantitative Steinitz’s theorem.
For the sake of simplicity consider the finger force
constraint given by Ycon. Then the grasp metric
for an optimal closure grasp with an m-fingered
positive grip for a body B can be seen to be the
value, rg(m, conv I'(0B)). To see this, note that if
we choose m points in G, ,, = conv I'(0B) with
residual radius r then any external wrench vector v
of magnitude at most r can be written as a convex
combination of the m chosen points. So if v is any
external wrench that is applied to the body B, and
v lies in the residual ball of radius r, we can resist
this external wrench by applying suitable forces
(of magnitude at most 1) at the grasp points such

Mishra

that these forces sum to —v; hence, we maintain
the body in equilibrium. Thus, we see that the
quantity rg(m) gives a universal measure for the
quality of a closure grasp with m > 12 fingers.

3.1 B.K.P. Bounds

The special case, where m = 2d had been studied
by Bérany, Katchalski and Pach [2]; they showed
that

C
Td(Qd) > 7(26d)[d/2jd2'

These results seem to indicate that a twelve-finger
positive grip, while sufficient to provide a closure
grasp, may not be adequate to achieve a desirable
grasp quality.

Theorem 3.3 ((Q.S.T.) Béarany, Katchalski
and Pach [2]) For any positive d there is a
constant v = r4(2d) > d=2? such that given any
set X C R? of points in d-space whose convex hull
contains the unit ball B centered at the origin 0,
there is a subset Y C X with at most 2d points
whose convex hull contains a ball centered at 0 with
radius r.

PROOF.

The proof is constructive. We first choose (d 4 1)
rays, placed regularly as follows: Let A be a
regular d-simplex inscribed in the unit ball B.
By assumption, A is contained in the conv X.
The desired rays R; (1 < 7 < d + 1) are the
ones joining the origin to the vertices of A. Let
p; = R; N dconv X. Each such p] lies on a face
of the conv X and thus can be expressed as a
convex combination of at most d points of X. The
totality of these d(d + 1) points Y/ C X contains
A and thus a ball of radius 1/d in its convex
hull. Let P = conv Y/ and P, P, ..., P, be
the facets of P, each of which may be assumed
to a simplex (otherwise triangulate nonsimplicial
facets). Clearly, [ < (d(djl)). Also note that
pos P;’s cover the sphere S%~1. Choose a facet,
say Py, such that the surface area of S N pos Py is
as large as possible and thus greater than

Jsan dA
14

Now choose two rays R} € pos P, and R, =
— R/ such that the minimal angle between R} and
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normal at the point of contact, directed inward. In
this situation, we have a wrench map, I', mapping
OB into the six-dimensional wrench space IR® as
follows:

I:9B — R® :p+~ [n(p),p X n(p)].
Essentially, I maps p to the point I'(p) (€ S®®R?,
a unit radius cylinder) in the wrench space that
represents the effects of applying a unit force at p
in the direction n(p).

Now, it can be shown that

Theorem 2.1 Given an arbitrary compact rigid
object B whose piece-wise smooth surface OB is
not a “surface of revolution,” B can be held with
a closure grasp by a positive grip of at most twelve

fingers. [

The assumption that @B is not a surface of rev-
olution is essential, since, in the absence of friction,
no matter how many fingers are employed the ob-
ject can always be rotated about its axis of sym-
metry. A general description of such exceptional
objects is given in [21]. Also, see [29].

By virtue of the discussion of the previous
section, we only need to show that

(EI Pi,---,Pm € 0B, m < 12)

[0 € int conv (F(pl), . .,F(pm))].

The proof is in two steps:
Step 1. = We claim that

0 € int conv I'(0B).

Using Gauss’ divergence theorem, we see that

[/813 n(p)ds, /aB(p xn(p))dS| =0,

ie.
0 € conv I'(0B).

Thus, it remains to be shown that the origin is
indeed an interior point of the convex hull; assume
to the contrary. Then it can be shown that there
is a nonzero vector g = [F,7] € IR® orthogonal to

11

the linear subspace spanned by I'(dB). Thus, for
each function ¢(p) we have

[ ep) [(F+7xp)-n(p)] dS = 0.
oB

In particular, substitute the function ¢(p) = (£ +
7 X p)-n(p) into the last equation, to deduce that
(F47xp)n(p) must be identically 0 over B. But,
this is possible only in the case when the surface of
B is a surface of revolution.

Step 2. = The rest follows by an application of
the following theorem from combinatorial geome-
try:

Theorem 2.2 (Steinitz’s Theorem|[30]) If
X CIR? and p € int conv X, then p € int conv Y
for someY C X with |Y|<2d. O

Our main result then follows from Steinitz’s
Theorem, once we identify X with I'(0B), and Y
with the set {I'(p1),...,I'(pm)}, with m < 2x6 =
12.

Note that here we see how to pick one grasp.
There is a simple linear time algorithm to find
such a grasp with 12 fingers. An interesting
related algorithmic question is to understand the
complexity of the problem of choosing an optimal
grasp (say, with a fixed number m > 12 of fingers)
such that

GX(F(pl), ey F(pm))

contains as a large a residual ball as possible, under
one’s favorite faithful, convex and compact finger
force constraint. This leads us to the study of the
Quantitative Steinitz’s Theorem (Q.S.T.).

An argument as above for one- or two-dimensional
objects yields a theory and results with appropri-
ate changes in the dimension of the wrench space
(one and three, respectively, instead of six) and
the number of fingers sufficient for positive clo-
sure grasps (two and six, respectively, instead of
twelve). Also note that the same line of reasoning
leads to a much more tight calculation of number
of fingers necessary and sufficient for equilibrium
grasps (two for 1-dimensional objects, four for 2-
dimensional objects and seven for 3-dimensional
objects). Other results for other contact types may
be obtained in a similar manner.
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This represents the smallest amount of virtual
work an adversary may have to perform to
“break the grasp.” A little thought will show
that this is exactly the grasp metric defined by
the residual radius r,,, of the set G

Xcon *

2. As earlier, let d be an arbitrary twist, |[d|; = 1.
Then, define the minimal virtual coefficient of
the grasp {wy,...,w,} with respect to d to
be

Nmaw(d) = Z |w; ©d|
el
where ¢ € I if and only if w; is non-reciprocal
tod (1 <4 < k) or contrary tod (k41 <
i < n), (e, w;©d # 0 or < 0, depending
respectively on whether 1 <7< kork+1<
i < n). Now define the grasp metric to be

Hmaz = min(,umaa:(d):

d € RS is a unit twist)

One sees that this is exactly the grasp metric
defined by the residual radius r,,,,, of the set
G

Xmaz *

One can also easily devise a grasp metric by
means of virtual coefficients that corresponds ex-
actly to one’s favorite finger force constraint.

2.6 Some Remarks

We note that most of the grasp metrics considered
are dependent on the coordinate system chosen—
namely, on the choice of the torque origin. This
can be addressed by either asking that the torque
origin is always chosen at the center of mass of the
object, or by considering different measure of the
feasible wrench set, e.g., volume. But such solu-
tions seem ad hoc and without an immediate phys-
ical interpretation. Another problem is that the
torque and force dimensions are not comparable.
The scalings chosen in either dimension is clearly
artificial, but do affect the grasp metric. A sim-
ple solution is to leave the two dimensions separate
and define the grasp metrics by a pair of numbers.
While we avoid these issues for the time being, we
hope to come back to these problems in the future.

Mishra

Wrench Map

Object

Its Image under the Wrench Map

Figure 2: A pictorial explanation of the techniques
of Mishra, Schwartz and Sharir.

2.7 Synthesis of a Grasp

Let us next consider the problem of grasp synthesis
with total disregard for the condition of optimality
and in the simplest possible situation, where there
is no friction at the contact points—the so-called
“positive grip.”

In order to obtain a particular grasp on an ob-
ject, it must be determined if that grasp is achiev-
able. It is for this reason, researchers have studied
the question of how many fingers (wrenches) are
required to obtain certain grasps on the object.

Reuleaux and Somofl determined that the clo-
sure grasp of a two dimensional object requires at
least four wrenches and of a three dimensional ob-
ject requires at least seven, where the wrenches are
normal to the surface of the object.

Mishra, Schwartz and Sharir [21] gave general
bounds on the number of fingers in the case of
a posilive grip; they also provided an algorithm
that finds at least one such grip on a polyhedral
object and their algorithm runs in time linear in
the number of faces of the object. Here, we briefly
describe the techniques of Mishra, Schwartz, and
Sharir.

Recall that a non-frictional grip is called a
positive grip. Note that, in this case, the fingers
are assumed to be point fingers, a finger can only
apply a force on the object along the surface-
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mal value. It is easily seen that the grasp metric
is given by the radius of the largest sphere cen-
tered at —w and contained in the feasible wrench
set GGy. An ubiquitous example of such a constant
external wrench is given by the wrench generated
by the weight of the object being grasped. Some-
times, we may further generalize this concept by
requiring that the constant external wrenches are
known only to the extent that they belong to a set
W. Then we wish to maximize the parameter r
such that W @ rB C G, where W ¢ rB is the
Minkowski sum of the set W and a 6-dimensional

ball B of radius 7.

(5) One important special case is as follows:
Recall that the map I' applied to a point p € 0B
produces a system of wrenches in IR® that would
result if a unit force is applied at the contact point
p. Also recall that the map I' is uniquely defined
by the contact type and the point on the boundary.
Let us now consider the set T(9B) C S® @ R? (the
unit cylinder). Let A € IR>g be a maximal positive
real number such that

AT(0B) C Gy.

Then it is clear that there is a point p € 0B such
that if one “pushes” the object B at the point p
with a “nasty finger” with a force of magnitude
only infinitesimally larger than A, such a finger will
be able to break the grasp. Thus ry,,.,, = A defines
a grasp metric.

2.5 Grasp Metrics Based on Virtual
Coefficients

Yet another formulation of a closure grasp is via
form closure. Recall that with each nominal point
of contact we can also associate a twist system;
they describe the degrees of freedom of the body
local to that contact point. Thus a system with
a set of contacts is free to move by a twist if and
only if the virtual coefficient of any wrench and
the twist is nonnegative, since otherwise the virtual
work done by some wrench would be negative. This
situation occurs when the twist d is reciprocal to
the bisense wrenches

w;0d=0, (Vi=1,....k)

and reciprocal or repelling to the unisense wrenches

w;0d>0, (Vi=k+1,...,n).

A set of twists (associated with the contacts) is
said to constitute a form closure if and only if any
arbitrary twist is resisted by the set of contacts.
That is, the object is totally constrained with no
degree of freedom left. Thus if d is an arbitrary
twist then it must be non-reciprocal to some bisense

wrench w; (¢ = 1,...,k) or must be contrary to
some unisense wrench w; (¢ =k+1,...,n):
w,;0d # 0, (F=1,...,k)
or
w;0d < 0, (Fi=Fk+1,...,n).

Put another way, this is equivalent to saying
that, for any arbitrary vector d’ € IR®, we have
w;-d = 0,
implies that
w;-d' =7w;-d < 0,

(Vi=1,....k)

(Fi=k+1,...,n),
which, in turn is equivalent to the condition that

0 € int conv (TWgy1,...,TW,)

Thus, force/torque closure and form closure are
equivalent.

Also note that, one can use the definition of a
form closure to define a grasp metric in terms of
the virtual coefficients determined by the system
of wrenches of the grasp and a unit twist. For
instance, one may propose the following:

1. Let d be an arbitrary twist, |d|] = 1. Then,
define the minimal virtual coefficient of the
grasp {wy,...,w,} with respect to d to be

#eon(d) = max|w; © d|

where ¢ € I if and only if w; is contrary to
d (1 <:<n), (ie, w;®d < 0). Note that
I # § if the grasp {wy,...,w,} is a closure
grasp. Now define the grasp metric to be

Heon = min (,ucon(d) :
d € IR® is a unit twist)



It suffices to show that w can be generated by the
wrenches in the system of wrenches associated with
the grasp, subject to the finger force constraint.
Let W = (1467r,,)w. Clearly, W can be expressed
as a linear combination of the vectors in W* as
follows: .
w = kZ: Jo.ik Wik
=1

such that by Cramer’s rule,

5 det[le,...,W]-k_l,vV',W]-Hl,...,Wj6]
i = dot 1T ’
and
o Il W TR W | W
| foinl < —
| det W+
min__~ . |w]|
Tnull TIEL'V*
Wi |
S Trull -

Thus, we can express W as

6 n
W= Z fp,jkwjk + Zf}t,iwi
k=1 =1
k13
= Z Jiwi,
=1
where fr41 >0, ..., f,, > 0, since |f} ;| > rpuu and

| fo.jx| < Tnun. However,

Z |f2| S 14 64rnulla

since Y |f}f72| < 1and 3 |fyi] < 67pun. Thus by
scaling, we have

w = fi

W= =) ————Wj,
1+ 6Tnull i=1 14+ 6Tnull

satisfying all the necessary conditions for Yeon-
Thus

Tnull

Txeon = W[ = d(W7) <m) :

However, in general, a large value for r,,;; does
not imply a good value for r, . , if we do not

have a good value for d(W*). For instance, for
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any dimension d (e.g., d = 6), there is a positive
€4 > 0, such that for any 0 < € < ¢4, we can always
find d+1 unit vectors, {wg, wy,...,wg}, such that
the corresponding r, . = €, but ru > 1/(2d).
Choose wq arbitrarily, and place the remaining d
vectors closely in a cluster such that their centroid
is on the ray A(—wpg) (where A > 0) and the d
simplex contains a residual d-ball of radius e—this
can always be accomplished. Then there is a small
0 <6< 1—1/dsuch that

1-6 1+6
(57)wot ()t war =0,

Conversely, for any dimension d, and any suffi-
ciently small ¢ > 0, we can find n = [1/€]| d-
dimensional unit vectors {wy,...,w,}, such that
Trput < € but ry, > 1/d. Assume that n =
m(d+ 1) is a multiple of d 4+ 1. Choose d + 1 clus-
ters of m unit vectors each and place each cluster
closely about the vertices of a regular d-simplex A
inscribed within the unit sphere. Since the con-
vex hull of these vectors contains A, it has a resid-
ual radius of value no smaller than 1/d, but since
Trull < 1/n, Ty is arbitrarily small.

(3) Yet another variation on this theme may be
obtained by considering some different “geometric
object” inscribed in the feasible wrench set, G\.
Fasy variations can be obtained by either consid-
ering full-dimensional spheres with respect to dif-
ferent norms (i.e. Ly or L. norms, instead of
L3), ellipsoids (the parameters being dependent on
the task that the hand is supposed to perform) or
by considering lower dimensional spheres or ellip-
soids (i.e., 3-spheres spanning only the force vec-
tors, and/or 3-spheres spanning only the torque
vectors.)

(4) Another special case arises as follows: Sup-
pose we know that the grasp is required to resist a
set of external wrenches, each of which can be ex-
pressed as a sum of a fixed external wrench w and
an additional arbitrarily varying external wrench
w, whose magnitude and orientation are unknown.
We wish to maximize the magnitude of this un-
known component to the extent possible; the as-
sociated grasp metric is then given by this maxi-
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Following Trinkle’s suggestion, we now consider
the grasp metric defined as follows:

max min f;
fenull(W) Le+1<i<n

k13
d fiwi=0
=1

k n—k
& feRF xR

Tnull =

The quality 7,4 can be computed efficiently by the
following linear programming formulation:

o GIVEN: A 6 X n grip matrix W and a linear,
compact, closed, convex and strongly faithful
finger force constraint condition y.

e SOLVE:
maximize A
subject to wf = 0
-A < 0
A— fz < 07
(k+1<i<n)
x(f) 1,
where f = (f1, ..., fo)' and ) is areal number.

For instance, if the finger force constraint x is Xcon,
then the last condition is simply

fk—l—l Zoavfn 207

and

Ll + 4 el + | fepr ]+ -+ o] <1

For a closure grasp there is a positive A satisfying
the feasibility conditions, and thus, since the fea-
sible set is bounded, there is an optimal solution:
Frull = A", 7 = (f}t,lv ce f}t,kv f}t,k{—lv SR f}t,n)

Note that 7, satisfies the positivity and
boundedness conditions but not the monotonicity
(thus, subadditivity) property. That is adding a
new finger can actually make an existing grasp
worse! For instance, in the Figure 1, only consider-
ing the force-closure, it is easily seen that r,,; for
both the grasps are same (i.e., the largest possible
value 1/4).

Here, we shall compute certain relations that
explicitly exhibit certain problems with the grasp

Versus

Both grasps are equally good under I'y

Figure 1: The grasp metric 7, does not distin-
guish between the above two grasps.

metric r,,;. Recall that, we have a subset W C

{w1, ..., Wy}, linearly spanning the wrench space
IRS. Among all such W’s, let W* be a basis of

IR® that is mazimally orthonormal in the sense
that it maximizes the following positive real-valued
function:

£(7) = (| det | (min g |w|)) |

[wl

Hwew

where det W is the determinant of a 6 X 6 square
matrix whose columns are the vectors of W. Note
that by Hadamard inequality, we have

0 < d(W*) < min |w|.
weW

We show that

Tnull

> d(W*) | —l
"Xeon = (W ) <1 + 6Tnull> ’

where 7, is computed with the linear condition
XCO’I'L'

We proceed as follows: Consider an external
wrench w oriented arbitrarily but of magnitude

Tnull

= d(W*) [ — )
|W| (W ) <1+6rnull>



Again, xpyup is convex, closed, compact and
strongly faithful.

Gy, is given by the Minkowski sum of the
convex hulls of the vectors corresponding to
each partition P;:

{
Gthb = @conv({wi, —w; 1€ P]’}
Jj=1

U{w; :7 € P]{’}),

where
P]/ = Pjﬂ{l,...,k},

and

P!'=P;n{k+1,...,n}.

Now consider the largest ball of radius r = r,(wy,
... Wy) in IR® centered at 0 and contained in the
corresponding feasible wrench set, Gy (w1, ..., wy,).
We shall refer to this r as the “residual radius”of
Gy. Then it is trivial to see that there exists an
external wrench of magnitude only infinitesimally
larger than r that cannot be generated or resisted
by the grasp under consideration, if it must respect
the finger force constraint y. This value r may thus
be used to define a grasp metric.
Note that since

SXcon g thyb g SXmaI g n SXCOTL?
we have
GXcon g thyb g GXmam g n GXcon
and
TXcon S Tthb S TXmaac S n TXcon'

Note that, since the underlying geometric prob-
lem remains largely unchanged irrespective of the
finger force constraint chosen, we shall often focus
only on the simplest situation represented by the
constraint Yeop -

2.4 Grasp Metrics: Variations

(1) One may consider a finger force constraint of
the following kind:
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Note that x5 is convex, closed, compact and faith-
ful, but not strongly faithful, as Sg, = B", the
n-dimensional ball, and

pos (5%,) = IR™.

Then Gy, is the image of the n-dimensional
ball, B™, under the linear map defined by the
grip matrix W, and thus a 6-dimensional ellipsoid.
Since the lengths of the principal axes of the
resulting ellipsoid are given by the singular values
of the grip matrix W (i.e., the nonnegative square
roots of the eigenvalues of the real positive definite
square matrix WTW), its residual radius is given
by the smallest singular value of the grip matrix
W, 15, = 0min(W) > 0. Note that, since X3 is
faithful but not strongly faithful, this grasp metric
may be highly misleading. However, note that

Txs < T%as

where y3 is a corresponding strongly faithful con-
straint of the following form:

Jer120,..., > 0and

and zn:(ﬁ)2 < 1.
=1

X2

Note, however that r,, can be arbitrarily small in
relation to rg,.

(2) Another grasp metric was suggested by Jeff
Trinkle [33]. This metric will be denoted here by
o and the motivations for it are described below.
Note that earlier we had observed that, given a
grasp with the corresponding system of n wrenches,
Wit

{le' sy Wk, Whg1, -

that satisfy the closure condition, we always have
a nontrivial null vector f; of the grip matrix W,
£, = {frts oo Frkes Frptts oo oo frn) € REXRZGF
(all unisense components are strictly positive) such
that

Jra 0

i Jh2 0

0=> friwi=W : =1.
i=1 : :
fh,n 0
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2.3 Grasp Metrics Based on Resistable
Wrench

Note that in the above descriptions of closure
grasps, we have made an implicit unrealistic as-
sumption that the magnitudes of finger forces are
no way constrained. In particular, it is quite likely
that a force/torque closure grasp may resist any ar-
bitrary external wrench; but it may only do so by
applying an unrealistically large force at a finger in
response to a fairly small external wrench in some
direction.

In order to alleviate this problem, we may as-
sume that certain additional constraint is imposed
on the magnitudes of the finger forces—the “finger
force constraint” being expressible as

x + R*—{0,1}

1, if the
“constraint”
(o fas s Jn) = holds;
0, otherwise.

The characteristic function naturally defines the set
S = {(ifor- o ) ER™:
X(f1s [, fn) = 1}
Cc R".
We say that x (or equivalently, S, ) is faithful if
R* x RL," C pos (5y),
and that y is strongly faithful if
R* x RL," = pos (),

Thus the set of external wrenches that can be
generated by the grasp, subject to the finger force
constraint, x, is given by G, called the “feasible

wrench set:”
Gy(Wi, ..., wy)
= {W =Y fiwiix(f1, fare o Jn) = 1}
=1
C IRS.
We also use the notation R, = —G, to denote

the “resistable wrench set,” the set of external
wrenches that can be resisted by the grasp.
Note that

o If S, is convex, closed and compact, then so is

Gy.

o If {wy, ..., w,} forms a force/torque closure
grasp and if x is faithful then

0 € int Gy (wy,...,Wy,).

o If 5, C S5y, then G, C Gy,.

Some natural finger force constraints that one
may impose are of the following kinds:

e Convex Constraint:
Jeg1 20,0, />0

and Z|f2| <1

=1

XCO?’L

Note that x.on is convex, closed, compact and
strongly faithful.

Gy.., is given by the convex hull of the vectors
Wi, =Wi, ooy Wiy =Wk, Wi, -0 Wit
Gyeon = conv({wi, —w;: 1 <<k}

u{wi:k+1§i§n}).
e Max Constraint:

Xmaz’

Jev1 20,000, fn 20

and max |f;] <1.

te{1,...,n}

Clearly, Xmaz is convex, closed, compact and
strongly faithful.

Gy mas 15 given by the Minkowski sum of the
vectors wy, —wy, ..., Wi, —Wg, Wi, ..

EB({WZ',—WZ' 1 <i <k}

u{wi:k+1§i§n}).

. Wyt

G

Xmaz

e Hybrid Constraint:
Let Py, P, ..., P, be a partition of the indices
{1, ..., n}. Then

Jev1 20,00, fn 20
and Z |fil <1,

i€P;

Xhyb
1<j<l.



complicated as we begin to compare two grasps
that are both force-torque closure—here, we must
rely on the underlying physics. Independent of the
physical considerations, however, it seems appro-
priate that the grasp metrics possess some simple
mathematical properties enumerated below.

In what follows, we shall refer to the value of
a grasp under a grasp metric by the terms qual-
ity, strength and/or efficiency, in view of the non-
standard and often confusing arrays of terminolo-
gies that have appeared in the literature, and de-
note such a metric by r with a distinguishing sub-
script. By abuse of notation, sometimes we will
call a “measure” a grasp metric, even if it does
not satisfy the following properties. In this pa-
per, a grasp metric will yield a positive scalar real
value and the grasps will be totally ordered, al-
though, we foresee situations where a grasp metric
may be given by a higher dimensional vector (e.g.,
a pair) with some partial ordering on the grasps.
The generalizations are straightforward. The grasp
metric can also be generalized to include certain
other parameters (e.g, friction, stiction, tasks un-
der considerations, scaling in various force/torque
dimensions, hand geometry, some universality cri-
teria, etc.). We simply avoid these added compli-
cations at this point.

Let the grasp, G, be given by the wrench system

{wy,...,w,},

and let the associated grasp strength be given by

r=r(G)=r(wy,..

W)
Then the following properties hold.

1. Positivity: For any grasp G with the wrench
system

{le"'7wn}7

r = r(G) > 0, the inequality being strict if and
only if G is a force/torque closure grasp.

2. Boundedness: If the cardinality of the
wrench system, n < oo is bounded (i.e., the
number of contact points for G is bounded),
then so is 7 = 7(G) < oco. This condition is
weaker than the corresponding condition that

requires r to be bounded, independent of n.
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3. Subadditivity: For any two grasps G; and
Go, with the wrench systems:

{wi,...,wn},
and
{Wm—}—h .. '7W7’L} ’
respectively, we have
(Wi, oy W, Wit 1, -« -, W)
> r(Awy, ..., Awy,)

+ 7'((1 _ /\)Wm-}—h .. .,(1 — )\)Wn),

where 0 < A < 1.

An immediate consequence of the above axioms
is that, for a given object and a given hand with
fixed number of fingers (with associated contact
types), if the object allows a force/torque closure
grasp then there is an optimal grasp of the object
with that hand with a grasp quality r*, when the
grasp metric satisfies the first two properties.

Additional consequence of the above axioms are
as follows:

1. Scaling: For any A > 1,
W)

T(AW1, ..., Aw,) > r(wq,..

However, many of our grasp metrics can be
shown to actually satisfy the equality condi-
tion under scaling.

2. Monotonicity:
S W)

(Wi, ooy, Wy, Weg1) > 7(W1,. .

Also, note that

'7Wmawm+17-"7wn)

W)y (W1, - -

r(wy,..

> max(r(wi,.. W)

Thus the last condition tells us that a hand
with large number of fingers is better than an-
other with smaller number of fingers, assuming
that they allow same contact types.



Grasp Metrics: Optimality and Complexity

w and the positive space spanned by the vectors

Wgil, ..., Wy is the entire IRS:

lin (wi,...,ws) +pos (Wiy1,...,w,) = IRE.

Let us denote, by L, the linear space lin (wq, ...,
wy), and, by L+, the orthogonal complement of L
in R. Let 7 be the linear projection function of
IR® onto L' whose kernel is L. Then it can be
shown that a necessary and sufficient condition for
a closure grasp is

lin (W17 .. .,Wk) + pos (ﬂ-wk—l—lv .- '77TWTL) = m6'

The above equation in turn is equivalent to the

following conditions:
0 € int conv (TWgy1,...,TW,,)

in LL. Here, if £ = 0 (i.e. positive grip) then the
above condition reduces to the following;:
0 € int conv (wq,...,W,).

Let us assume that dim(L) = d. Then there is a
linear basis W of L

W={wj,....,w;,} C{wy,...,wi}

which when adjoined with a set of vectors W,
W)

W' = {Wjd+l,...,Wj6} C{wgt1, ..

yields W =Wu W', a linear basis of IR®. Thus
under the condition that we have a closure grasp,
we can find g € RF x IRZ5¥ such that

— (Wi + -+ wo) = > gi Wi,
=1
and thus

n
> fui wi, =0,
=1

where f, € RF x IRZBk,
and fppe1 > 0,00, frn > 0.

In other words,

£, € null(W) N IR x RZGF;

i.e., fy is a null vector of the grip matrix and all its
unisense components are strictly positive.

Now any external wrench w can be expressed
as a linear combination of the vectors in the basis
W. Thus there is a vector f, € R", whose non-zero
entries are in the positions ji, ..., jg, and

6 n
W= fpie Wi = D i Wi

k=1 =1
Now consider a vector f = f, + A f, € RF x
IRggk, where A is chosen to be of a sufficiently
large positive value that ensures that the negative
components in f, are dominated by the positive
components of f,. Thus,

k13
w=Y fiw=
=1

n

S o+ A fni) Wi

=1

These arguments yield a simple algorithm to find
at least one set of force targets that can generate
a given external wrench. Also, as the external
wrench is varied in the course of a manipulation
task, a slight variation of this algorithm updates
the force targets in O(1) time.

Observe that the above formulation has turned
a problem in mechanics into a combinatorial geo-
metric problem, now amenable to many interesting
techniques in convexity theory and computational
and combinatorial geometry.

2.2 Grasp Metric: Desiderata

Given a grasp G described by a wrench system

{wi,...,wy},

we would frequently like to be able to say how good
this grasp is as compared to another grasp pro-
ducing a different wrench system. Clearly, such a
“measure of goodness” must possess some physical
intuitions that correspond to how we normally view
a grasp—e.g., a closure grasp should be preferable
to a non-closure grasp (i.e., immobile grasp) or a
force/torque closure grasp should be better than
one achieving only force closure but not torque clo-

sure, etc. However, the situation becomes more



here are based on some old results (jointly with
Kirkpatrick and Yap) and some work in progress
(jointly with Teichmann).

2. Terminology and Overview

Formally, we consider an idealized robot hand,
consisting of several independently movable force-
sensing fingers; this hand is used to grasp a rigid
object B. Furthermore, we make the following
simplifying assumptions:

e (Smooth Body) B is a full-bodied (i.e. no in-
ternal holes) compact subset of the Euclidean
3-space. Furthermore, B has a piece-wise
smooth boundary 9B.

e (Point Contact) For each finger-contact on the
body, we may associate a nominal point of
contact, p € dB. By convention, we pick n(p)
to be the unit normal pointing into the interior

of B.

For each such point p, we can define a wrench
system {T()(p), T (p), ... T(p)}, (0 <
¢ < 6), where the number and screw-axes
of the wrench system depend on the contact
type. Some of these wrenches can be bisense
(i.e. can act in either sense) and the remaining
wrenches, unisense. (For a discussion of screw
theory, and in particular, wrenches and twists,
see [13] and [26]. Also, see the appendix.)

o (Compliance) We will consider the case when
the fingers are stiff—the force/torques applied
at the fingers are generated by some actuators
whose mechanics need not concern us.

Many interesting special cases occur, depending on
how we model the static friction and the stiction
between the fingers and the body B. In the case,
where the contacts are frictionless, a finger can only
apply force f on the body in the direction n(p)
at the point p. Also if the fingers are non-sticky,
then the force f has a non-negative magnitude,
f=1f-n(p) > 0. Such grips are also known as
‘positive grips’. In this case, the wrench system
associated with each point is:

I'(p) = {[n(p), p x n(p)]}
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Thus, corresponding to a set of finger-contacts, we
have a system of n wrenches,

{Wh' ey WE, WEea g, .. '7Wn}7
the first k£ of which are bisense and the remaining
last n — k& of the wrenches are unisense. Let us
assume that the magnitudes of these wrenches are
given by the scalars f;’s

{flv"'vfkafk—}—lv---afn}a

where fi, ..., fr € R and fry1, ..., fn € Ryo,
and not all the magnitudes are zero. We call such
a system of wrenches and the wrench-magnitudes,
a grip, G, and say that this grip G generates an
external wrench w = [F, F},, F},, 7, 7, 7] € R®, if

n
w = Zfl w;.
=1

In matrix notation, the above equation is expressed
as

i

J2

w=W . >

In
where W is a 6 X n matrix whose columns
are the corresponding n wrenches of the system
{W1,. ..., Wk, Wky1,...,W,}, associated with the
contact points of the grip. The matrix W is called
a grip malriz of the grip defining the system of
wrenches
Wt

{Wh' sy Wk, Whg1, -

2.1 Closure Grasp

Next, we consider the concept of a closure grasp: A
system of wrenches wy, ..., w,, (as before) is said to
constitute a force/torque closure grasp if and only if
any arbitrary external wrench can be generated by
varying the magnitudes of the wrenches (subject
to the constraints imposed by the senses of the
wrenches). A necessary and sufficient condition
for a closure grasp is that the (module) sum of
the linear space spanned by the vectors wq, ...,
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Abstract

In this paper, we discuss and compare various
metrics for goodness of a grasp. We study the
relations and trade-offs among the goodness of
a grasp, geometry of the grasped object, num-
ber of fingers and the computational complex-
ity of the grasp-synthesis algorithms. The re-
sults here employ the techniques from convex-
ity theory first introduced by the author and
his colleagues [14,21].

1. Introduction

In robotics, the hand models usually consist of
a small number (four or five) of articulated fingers,
possibly with a palmar surface. A variety of finger
arrangements have been suggested: for example, an
anthropomorphic arrangement consisting of an op-
posable ‘thumb’ and several more fingers arranged
to work cooperatively.

Many problems in dextrous manipulation in-
volving such a hand model has been studied by
mapping an object to be manipulated into a low
dimensional hypersurface in a higher-dimensional
wrench space by the so-called “wrench map [21].”
By studying the convexity geometric properties of
the image of this wrench map, one can answer sev-
eral interesting questions in this field.

e Lower and upper bounds on the number of
fingers to grasp an object under a variety of
models [18,21]. The arguments employ various

*Research for this paper was performed while the author
was on sabbatical leave.

Helly-type theorems: namely, Carathéodory’s
theorem [5] and Steinitz’s theorem [30].

e Properties of force and form closures and a re-
lated geometric notion of immobility. Relation
between force and form closures [18,22,23].

e Characterization of ungraspable (“excep-

tional”) objects [21].

e Linear time (thus, optimal) grasp synthesis
algorithms [21].

e Grasp control: updating the finger forces in
O(1) time in response to a time-varying exter-
nal wrench [18].

e Study of the strength (also called, efficiency)
of a grasp [9,14]. The algorithms and the
bounds are based on a quantitative version of
the Steinitz’s theorem. Also, see [2]

e Analysis and planning algorithms for fixturing
and workholding [3,19,20,35].

Several other approaches to these problems
have emerged, contemporaneously or subsequently.
Notable among these approaches are purely geo-
metric techniques [4,10,16,25,31], topological tech-
niques [12] and algebraic techniques [28,29]. How-
ever, while in certain instances these other tech-
niques have proven to be more powerful, they seem
to lack the depth and elegance of the convexity the-
oretic approach.

In this paper, we take a fresh look at the
problem of formulating “grasp metrics” and their
relation with the quantitative versions of Helly-

type theorems. Parts of the results described



