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Abstract

Building an intelligent agent that can learn and adapt to its environment has always been

a challenging task. This is because intelligence consists of many different elements such

as recognition, memory, and planning. In recent years, deep learning has shown impres-

sive results in recognition tasks. The aim this thesis is to advance the deep learning

techniques to other elements of intelligence.

We start our investigation with memory, an integral part of intelligence that bridges

past experience with current decision making. In particular, we focus on the episodic

memory, which is responsible for storing our past experiences and recalling them. An

agent without such memory will struggle at many tasks such as having a coherent con-

versation. We show that a neural network with an external memory is better suited to

such tasks than traditional recurrent networks with an internal memory.

Another crucial ingredient of intelligence is the capability to communicate with oth-

ers. In particular, communication is essential for agents participating in a cooperative

task, improving their collaboration and division of labor. We investigate whether agents

can learn to communicate from scratch without any external supervision. Our finding is

that communication through a continuous vector facilitates faster learning by allowing

gradients to flow between agents.

Lastly, an intelligent agent must have an intrinsic motivation to learn about its envi-

ronment on its own without any external supervision or rewards. Our investigation led

to one such learning strategy where an agent plays a two-role game with itself. The first

role proposes a task, and the second role tries to execute it. Since their goal is to make

the other fail, their adversarial interplay pushes them to explore increasingly complex

tasks, which leads to a better understanding of the environment.
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Chapter 1

Introduction

Building an intelligent system that can learn and adapt has always been a challenging

task. In particular, achieving human-level intelligence is an unsolved problem despite

decades of research. Our intelligence comes from our brain, which has almost 100 bil-

lion neurons [Azevedo et al., 2009] making trillions of connections. Although we lack

full understanding of brain, we know that a brain processes information in a distributed

way where each neuron performs a computation. A connection strength between two

neurons can change depending on activation patterns of those neurons. We also dis-

covered a hierarchical structure in the visual cortex [Hubel and Wiesel, 1968, Felle-

man and Essen, 1991] where areas higher in the hierarchy are associated with more ab-

stract representations. Inspired by those findings, artificial neural networks [Fukushima,

1980, Rumelhart et al., 1986] emerged as a machine learning model with successful

applications such as recognizing hand-written digits [LeCun et al., 1998].

Deep learning, a recent revival of neural networks fueled by big data and fast com-

puting devices, has shown promising results in many specialized tasks where traditional

machine learning approaches have struggled. In particular, deep learning has brought

1



impressive improvements in image classification tasks [Krizhevsky et al., 2012, Ser-

manet et al., 2014], even approaching the human performance in some cases [He et al.,

2016]. Other successful applications include speech recognition [Hinton et al., 2012],

image generation [Radford et al., 2015], machine translation [Wu et al., 2016], and

game playing [Mnih et al., 2015b, Silver et al., 2016b]. Despite the vast diversity of

those applications, their underlying models are all based on the same multilayer neural

network architecture. This universality of deep learning makes it a promising candidate

for achieving true artificial intelligence (AI) that can match human intelligence. How-

ever, there are many elements in human intelligence where deep learning yet to provide

a satisfactory solution. The objective of this thesis to advance deep learning techniques

on three such elements: memory, communication, and intrinsic motivation. Next, we

will discuss each of them in more details.

Memory

Memory is an essential element of intelligence that allows us to utilize our past

experiences in decision making. There are several different types of memory that differ

in their decay rate, capacity, and functions. The two main categories are short-term and

long-term memories. Short-term memory decays fast and limited in capacity [Miller,

1956]. When we read a sentence, our short-term memory remembers its words, but it

forgets them as soon as we understand the meaning of the sentence. In contrast, long-

term memory has long-lasting effects and a large capacity. It further divides into implicit

and explicit memories. Implicit memory is memories that form when we acquire a

skill by repetition such as learning to ride a bicycle. On the contrary, explicit memory

contains memories that can be consciously recalled such as our knowledge, or events in

past. It helps us remember what we did yesterday, or the plot of a book we read.
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There is a loose correspondence between memory types in brain and memories of

deep learning models. A hidden layer activation of a recurrent neural network can be

thought as a short-term memory since it has a limited capacity and decays fast with time.

Model parameters can be considered as an implicit memory because they are long-term

and form by repetitive training, but cannot be recalled by the model. However, when

it comes to explicit memory, there is no corresponding memory mechanism in deep

learning that adapts fast, long-term and can be selectively read. This is a real problem

because the importance of such memory in an intelligent agent is apparent. For example,

having a meaningful conversation requires an agent to remember its past exchanges.

Although simply recording past events is straightforward with computers, recalling

a relevant piece of information from those records is the key challenge. The recently

proposed Memory Network model [Weston et al., 2015] provided a partial solution with

an external memory module where each memory element can be accessed individually

with hard attention. However, training of this hard attention requires extra supervision

about which memory should be accessed in what order, which is information not read-

ily available in most cases. Our investigation shows that replacing this hard attention

with soft attention makes the model end-to-end differentiable, so it can be trained with

the back-propagation algorithm without extra supervision. This allows us to apply the

model to a wide range of tasks from question answering to game playing where the

memory access pattern is unknown.

Communication

Another fundamental aspect of intelligence is its ability to communicate with others.

Communication is particularly useful in cooperative environments, where individuals

need to behave as a group and coordinate for better performance. As applications of AI
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spread, the number of intelligent agents acting in a common environment is expected

to increase, making their coordination more important. One such application is a self-

driving car. As more cars on the road become autonomous, it would become more

beneficial that they communicate with each other. Informing their location and speed to

nearby cars can help avoid accidents, especially in poor visibility. Furthermore, it might

be even possible to remove traffic lights and let cars figure out a more efficient way

to pass through junctions by coordinating through communication. Other applications

that can benefit from communication include elevator control, factory robots and sensor

networks.

The traditional approach to multi-agent communication is to supervise its content,

or even prespecify the communication protocol. In the case of self-driving cars, for ex-

ample, we can hard-code cars to communicate their location. However, this approach

requires an expert knowledge and unlikely to scale to complex scenarios. In contrast,

an emergent communication setting requires agents to invent their own communication

protocol beneficial to their end goal. Although humans use highly structured languages

for communication, here we focus on communication between AI agents without putting

any restriction on the communication medium. This simplification allows us to concen-

trate on the learning part of communication. In particular, we are interested in whether

a group of agents can learn to communicate from scratch to increase their performance

under a cooperative task without any supervision on the communication protocol.

Our key finding is that using continuous vectors as a communication medium makes

it differentiable, so we can use backpropagation to learn the communication protocol.

When agents are controlled by individual neural networks, connecting them through

continuous vectors essentially merges them into a single big neural network. However,

this big neural network is invariant to the permutations of agents and can adapt to a
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varying number of agents, which are crucial for processing set inputs. We test our

model on diverse tasks from question answering to multi-agent cooperative games.

Intrinsic Motivation

The last component of intelligence that we investigate is its ability to learn about its

environment without any external supervision. For example, babies learn to grasp and

manipulate objects even if they are not explicitly rewarded for doing so. Such intrinsic

motivation for learning would make it easier to train an intelligent agent because it

reduces the required amount of external supervision, which is often expensive to obtain.

While there can be many forms of intrinsic motivation, we focus on one where an

agent plays a game with itself. In the first half of this game, an agent plays a role of

a “task generator” whose goal is to change something in its environment that is hard

to replicate, but preferably does not require a lot of efforts. In the second half, the

same agent plays a role of a “task executor” whose goal is to make the same change

in the environment as the generator. There is another version of the game where the

executor is asked to reverse the change made by the generator, which is more suitable

for environments where all changes are reversible.

Since both the roles are constantly seeking to maximize their objectives, the task

executor eventually learns the currently proposed task. In turn, this forces the task gen-

erator to find and propose a new task that the executor has not mastered yet. However,

the new task is likely to be just outside the current capability of the executor, since the

generator is incentivized to make the tasks simpler. This mechanism creates a curricu-

lum training where the executor is trained on tasks that are not too hard or too easy.

The adversarial interplay between the two roles helps the agent to learn manipulate

its environment in increasingly complex ways without any external supervision. We will
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experimentally show that such knowledge about the environment facilitates the learning

of a new supervised task.

Outline of the thesis

This thesis is organized as follows. In Chapter 2, we briefly review reinforcement

learning and REINFORCE algorithm that used for training our models. We also cover

several existing environments that are used as a test-bed in our experiments. In Chap-

ter 3, we introduce a new environment that served as a sandbox for developing and

testing many of our ideas in this thesis. Chapter 4 is about our memory architecture

and its experimental results. Next, Chapter 5 introduces our communication model for

multi-agent tasks. In Chapter 6, we discuss our intrinsic motivation method and demon-

strate its effectiveness in a diverse set of environments. Note that each chapter has its

own related work section. Finally, we conclude this thesis in Chapter 7.
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Chapter 2

Background

In this chapter, we briefly review reinforcement learning and simple REINFORCE

algorithm for training agents. Then we introduce two environments that we used in

our experiments as a test-bed: a multi-agent environment StarCraft that used in the

experiments of Chapter 4 and Chapter 6, and a continuous state environment RLLab

that used in Chapter 6.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a framework for training an agent acting in an envi-

ronment so it would receive a high reward. A core part of the agent is a policy π that

maps an observation O(st) of a state st to an action at

at = π(O(st)),
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where t denotes time. We omit the observation function and write the policy as π(st) for

brevity. Next, the environment uses this action to update its state and returns a reward rt

st+1, rt = Env(st, at).

This interaction ends after some time t = T when the environment reaches a terminal

state, ending the current episode. The training objective in RL is to find a policy that

maximizes the total expected reward of an episode

argmax
π

Eπ

[
T∑

t=1

rt

]
. (2.1)

Although there are a number of ways to solve Equation 2.1, we use a policy gradient

approach in our experiments for its simplicity.

REINFORCE [Williams, 1992] is a policy gradient algorithm for training a policy

π parameterized θ that outputs a probability distribution over all possible actions, from

which the the next action at is sampled

at ∼ πθ(a|st).

Although (2.1) is not differentiable with respect to θ, there is a workaround to obtain an

unbiased estimate of its gradient. For simplicity, let us consider a single step episode

8



with action a and reward function r(a). Then the gradient can be computed by

∇θEπθ [r(a)] = ∇θ

∑

a

πθ(a|s)r(a)

=
∑

a

∇θπθ(a|s)r(a)

=
∑

a

πθ(a|s)
1

πθ(a|s)
∇θπθ(a|s)r(a)

=
∑

a

πθ(a|s)∇θ log πθ(a|s)r(a)

= Eπθ [∇θ log πθ(a|s)r(a)] . (2.2)

This derivation allows us to sample an unbiased estimate of the gradient by simply

following the policy. Then we can perform a stochastic gradient ascent on those samples

to maximize the expected reward. If we extend Equation 2.2 to multiple steps, the update

rule of parameters θ becomes

∆θ =
T∑

t=1

[
∇θ log πθ(at|st)

T∑

i=t

ri

]
(2.3)

θ ← θ + µ∆θ, (2.4)

where µ is a learning rate.

Although (2.3) is an unbiased gradient estimate, its high variance can slow down the

training progress. A simple way to reduce this variance is to add a baseline function

b(st) that predicts the future expected reward of the policy πθ starting at a state st. If the

policy πθ is a neural network, the same network can be used for b(st) by adding another

9



linear layer with a scalar output on top of the last hidden layer. The final update rule is

∆θ =
T∑

t=1

[
∇θ log πθ(at|st)

(
T∑

i=t

ri − bθ(st)
)
−α∇θ

(
T∑

i=t

ri − bθ(st)
)2

 . (2.5)

Here the hyperparameter α is for controlling the relative importance of the second term,

which is forces b(st) to make an accurate prediction. It is important to note that bθ in the

first term acts like a fixed value, and we do note pass a gradient through it.

2.2 StarCraft environment

StarCraft: Brood WarTM1 is a popular real-time strategy game where a player con-

trols multiple units to build various types of structures and units, and eventually use

them in combat against an enemy. As an RL platform, it offers rich complexity in both

fast-paced precise control and long-term planning. While efficient resource mining and

fighting enemy units depend on rapid precise actions, a long-term plan on which tech-

nology to develop is essential for winning. For a survey on AI for Real Time Strategy

(RTS) games, and especially for StarCraft, see [Ontanón et al., 2013].

Since playing an entire game of StarCraft is out-of-reach for current learning algo-

rithms, we consider here two subtasks that focus on different aspects of the game: 1)

an initial development stage where a player collects resources and builds units, and 2) a

later stage where units fight against enemy units.

We use TorchCraft [Synnaeve et al., 2016] to connect the game to our Torch frame-

work [Collobert et al., 2011]. This allows us to receive a game state and send orders,

enabling us to do a RL loop. A game state is a set of descriptions, each corresponding

1StarCraft and Brood War are registered trademarks of Blizzard Entertainment, Inc.
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to a single unit present in the game, including buildings and enemy units. A descrip-

tion includes the unit’s position and other relevant attributes such as its type, health and

cooldown counter. In addition, global game attributes such as the amount of resources

are also included in a game state. In return, we can send individual orders to each unit

that containing an action name and its relevant arguments. Note that the set of possible

actions is not the same for different unit types.

Since there are usually multiple units to control, a policy must output an action for

each of them at every time step. A simple solution is to independently control all units

with a single policy

ait = π(sit, ŝt) (2.6)

Here sit is an observation specific to the i-th unit that containing the descriptions of all

nearby units. The global observation ŝ is the description of global game attributes.

Next, we describe two tasks created in the StarCraft environment.

2.2.1 Development task

The setup of this task is similar to the beginning of a standard StarCraft game of the

Terran race, where an agent controls multiple worker units to mine, construct buildings,

and train new units, but without enemies to fight. The environment starts with four

worker units (SCVs), who can move around, mine nearby minerals and construct new

buildings. In addition, the agent controls the command center which can train new

workers. Unit types are limited to SCV, command center, supply depot, barracks, and

marines. See Figure 2.1 for relations between different units and their actions.

The task objective is to build as many marine units as possible in a given time. To

do this, an agent must follow a specific sequence of operations: (i) mine minerals using
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Figure 2.1: Different types of unit in the development task. The arrows represent possible ac-
tions (excluding movement actions) by an unit, and corresponding numbers shows (blue) amount
of minerals and (red) time steps needed to complete. The units under agent’s control are outlined
by a green border.

the workers; (ii) having accumulated sufficient mineral supply, build a barracks and (iii)

once the barracks is complete, train marine units out of it. Optionally, an agent can train

a new worker for faster mining, or build a supply depot to accommodate more units.

When an episode ends after 200 steps (1 step = 23 frames, so little over 3 minutes), the

agent gets rewarded +1 for each marine it has built.

The task is challenging for several reasons. First, the agent has to find an optimal

mining pattern (concentrating on a single mineral or mining a far away mineral is in-

efficient). Then, it has to produce the optimal number of workers and barrack at the

right timing for better efficiency. Additionally, a supply depot needs to be built when

the number of units reaches the current limit.

The local observation sit covers a 64 × 64 area surrounding the i-th unit with a

resolution of 4, so its spatial dimension is actually 8× 8. It contains the type and status

(e.g. idle, mining, training, etc.) of every unit in this area, including the i-th unit itself.

The global observation ŝt contains the number of units and accumulated minerals in the
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Action ID SCV Command center Barraks
1 move to right train a SCV train a marine
2 move to left no-op no-op
3 move to top no-op no-op
4 move to bottom no-op no-op
5 mine minerals no-op no-op
6 build a barracks no-op no-op
7 build a supply depot no-op no-op

Table 2.1: Action space of different unit types in the development task. No-op=no operation
means no action is sent to the game.

game

ŝt = {bNore/25c, NSCV, NBarrack, NSupplyDepot, NMarines}. (2.7)

We divide the ore amount by 25 and round it because it can take very value compared to

other numbers.

We refer to units that perform an action as a “active” unit (shown with a green outline

in Figure 2.1). This includes worker units (SCVs), the command center, and barrack.

Their possible actions are shown in Table 2.1. Although some units have fewer actions,

we pad them with “no-op” to have the same number so a single neural network can

control each of them. When the no-op action is chosen, nothing is sent to StarCraft for

that unit and its previous action is not interrupted.

The move actions simply order the unit to move 32 pixels in the chosen direction.

However, this does not guarantee the unit will move 32 pixels by the next step, because

the movement can be interrupted by the next action. The more complex actions “mine

minerals”, “build a barracks”, “build a supply depot” have the following semantics,

respectively: mine the closest mineral (automatically transports to the command center),

build a barracks at the current position, build a supply depot on the current position.

Some actions are ignored under certain conditions: “mining” action is ignored if
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Figure 2.2: A simple combat scenario in StarCraft requiring a kiting tactic. To win the battle,
the agent (the larger unit) has to alternate between (left) fleeing the stronger enemies while its
weapon recharges, and (right) returning to attack them once it is ready to fire.

the distance to the closest mineral is greater than 12 pixels; “building” and “training”

actions are ignored if there are not enough resources; the actions that create a new SCV

or a marine will be ignored if the current capacity has reached the limit. Separately, the

actions to create an active unit are ignored if the number of active units has reached the

limit of 10. Also “build” actions will be ignored if there is not enough room to build at

the unit’s location.

2.2.2 Combat task

In this subtask, we focus on “micro-management” scenarios where we only have a

limited number of combat units to fight against a similar enemy army. To win in this

task, it is important to control the units in a rapid and precise way to increase their

effectiveness. Each unit starts with a certain health point, which is reduced every time it

is hit by an enemy. If the health point reaches zero, that unit dies. The same is true for

enemy units, and a team left with no alive units loses. Note that shooting ranges and hit

points are different for different unit types. Also, there is a cooldown period after each

shot during which the unit cannot shoot again.

We consider the following three tasks:
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• Kiting (Terran Vulture vs Protoss Zealot): a match-up where an agent controls a

weakly armored fast ranged unit, against a more powerful but melee ranged unit.

To win, our unit needs to alternate fleeing the opponents and shooting at them

when its weapon has cooled down.

• Kiting hard (Terran Vulture vs 2 Protoss Zealots): same as above but with 2

enemies, as shown in Figure 2.2.

• 2 vs 2 (Terran Marines): a symmetric match-up where both teams have 2 ranged

units. An useful tactic here is concentrating fire on a single enemy unit.

In all the tasks, the local observation sit covers an area of 256× 256, but with multi-

resolution encoding (coarser going further from the unit we control) to reduce its di-

mension. For each unit in this area, the observation contains its type, ID, health, and

cooldown counter. If the i-th unit is currently attacking an enemy unit, that enemy unit’s

ID is also included in sit. There is no global observation ŝt in this task. All units have

the following actions: movements in 4 cardinal directions (see Section 2.2.1 for details),

and K attack actions each corresponding to a single enemy unit (i.e. there are K enemy

units). We take an action every 8 frames (the atomic time unit @ 24 frames/sec).

2.3 RLLab environments

RLLab [Duan et al., 2016] is a Python package that offers an unified interface to

many tasks across several different environments. Box 2D and Mujoco [Todorov et al.,

2012] are two such environments where the tasks are in a continuous state space. While

Box 2D is a small 2D environment with a simple physics simulator, Mujoco is a 3D

environment with a powerful physics engine that can simulate complex dynamics.
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Both the environments have a continuous action space, but we discretize them in our

experiments. This is done by dividing the action range into K uniformly sized bins,

thus turning it into a discrete action with K choices. When an action k ≤ K is chosen

by a policy, we replace it with the mean value of the corresponding bin before sending

it to the environment. When the action space is multi-dimensional, we discretize each

dimension independently, resulting in multiple discrete actions. On the policy side,

we simply add multiple action heads where each head is a linear layer followed by a

softmax.
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Chapter 3

MazeBase: A Sandbox for Learning

from Games

This chapter introduces MazeBase: an environment for simple 2D games on a grid,

designed as a sandbox for reinforcement learning approaches for reasoning and plan-

ning. Within it, we create 10 simple games embodying a range of algorithmic tasks (e.g.

if-then statements or set negation). Additionally, we also create combat games involv-

ing multiple units. A procedural random generation makes those tasks non-trivial, but a

flexible curriculum can be enabled to support the learning.
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3.1 Introduction

Games have had an important role in artificial intelligence research since the incep-

tion of the field. Core problems such as search and planning can be explored naturally

in the context of chess or Go [Bouzy and Cazenave, 2001, Silver et al., 2016b]. More

recently, they have served as a test-bed for machine learning approaches [Perez et al.,

2014]. For example, Atari games [Bellemare et al., 2013] have been played using neural

models with reinforcement learning [Mnih et al., 2013, Guo et al., 2014a, Mnih et al.,

2015a]. The GVG-AI competition [Perez et al., 2014] uses a suite of 2D arcade games

to compare planning and search methods.

In this chapter we introduce the MazeBase game environment, which complements

existing frameworks in several important ways.

• The emphasis is on learning to understand the environment, rather than on testing

algorithms for search and planning. The framework deliberately lacks any simu-

lation facility, and hence agents cannot use a search method to determine the next

action unless they can predict future game states themselves. On the other hand,

game components are meant to be reused in different games, giving models the

opportunity to comprehend the function of, say, a water tile. Nor are rules of the

games provided to the agent, instead they must be learned through exploration of

the environment.

• The environment has been designed to allow programmatic control over the game

difficulty. This allows the automatic construction of curricula [Bengio et al.,

2009a], which we show to be important for training complex models.

• Our games are based around simple algorithmic reasoning, providing a natu-

ral path for exploring complex abstract reasoning problems in a language-based
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grounded setting. This contrasts with most games that were originally designed

for human enjoyment, rather than any specific task. It also differs from the re-

cent surge of work on learning simple algorithms [Zaremba and Sutskever, 2015,

Graves et al., 2014, Zaremba et al., 2015], which lack grounding.

• Despite the 2D nature of the environment, we prefer to use a text-based, rather

than pixel-based, representation. This provides an efficient but expressive rep-

resentation without the overhead of solving the perception problem inherent in

pixel-based representations. It easily allows for different task specifications and

easy generalization of the models to other game settings. We demonstrate this in

Chapter 4 by training models in MazeBase and then successfully evaluating them

on StarCraft. See [Mikolov et al., 2015] for further discussion.

Using the environment, we introduce a set of 10 simple reasoning games and several

combat games. MazeBase is an open-source platform, implemented using Torch and

can be downloaded from http://github.com/facebook/MazeBase.

3.2 Environment

Each game is played in a 2D rectangular grid. In the specific examples below, the

dimensions range from 3 to 10 on each side, but of course these can be set however the

user likes. Each location in the grid can be empty, or may contain one or more items.

An agent can move in each of the four cardinal directions, assuming no item blocks the

agents path. The items in the game are:

• Block: an impassible obstacle that does not allow the agent to move to that grid

location.
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• Water: the agent may move to a grid location with water, but incurs an additional

cost of (fixed at −0.2 in the games below) for doing so.

• Switch: a switch can be in one of m states, which we refer to as colors. The agent

can toggle through the states cyclically by a toggle action when it is at the location

of the switch.

• Door: a door has a color, matched to a particular switch. The agent may only

move to the door’s grid location if the state of the switch matches the state of the

door.

• PushableBlock: This block is impassable, but can be moved with a separate

“push” actions. The block moves in the direction of the push, and the agent must

be located adjacent to the block opposite the direction of the push.

• Corner: This item simply marks a corner of the board.

• Goal: depending on the task, one or more goals may exist, each named individu-

ally.

• Info: these items do not have a grid location, but can specify a task or give infor-

mation necessary for its completion.

The environment is presented to the agent as a list of sentences, each describing

an item in the game. For example, an agent might see “Block at [-1,4]. Switch at

[+3,0] with blue color. Info: change switch to red.” Such representation is compatible

with the format of the bAbI tasks, introduced in [Weston et al., 2016]. However, note

that we use egocentric spatial coordinates (e.g. the goal G1 in Figure 3.1(left) is at

coordinates [+2,0]), meaning that the environment updates the locations of each object

20



after an action. Furthermore, for tasks involving multiple goals, the environment assist

the agent by automatically sets a flag on visited goals.

The environments are generated randomly with some distribution on the various

items. For example, we usually specify a uniform distribution over height and width

(between 5 and 10 for the experiments reported here), and a percentage of wall blocks

and water blocks (each range randomly from 0 to 20%).

Figure 3.1: Examples of Multigoal (left) and Light Key (right) tasks. Note that the layout and
dimensions of the environment varies between different instances of each task (i.e. the location
and quantity of walls, water and goals all change). The agent is shown as a red blob and the
goals are shown in yellow. For LightKey, the switch is show in cyan and the door in magenta/red
(toggling the switch will change the door’s color, allowing it to pass through).

3.3 Tasks

Although our game world is simple, it allows for a rich variety of tasks. In this work,

we consider two types of tasks: reasoning tasks and combat tasks.

3.3.1 Reasoning Tasks

Here we explore tasks that require different algorithmic components first in isolation

and then in combination. These components include:
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• Set operations: iterating through a list of goals, or negation of a list, i.e. all items

except those specified in a list.

• Conditional reasoning: if-then statements, while statements.

• Basic Arithmetic: comparison of two small numbers.

• Manipulation: altering the environment by toggling a Switch, or moving a Push-

ableBlock.

These were selected as key elements needed for complex reasoning tasks, although

we limit ourselves here to only combining a few of them in any given task. We note

that most of these have direct parallels to the bAbI tasks [Weston et al., 2016] (except

for Manipulation which is only possible in our non-static environment). We avoid

tasks that require unbounded loops or recursion, as in [Joulin and Mikolov, 2015], and

instead view “algorithms” more in the vein of following a recipe from a cookbook. In

particular, we want our agent to be able to follow directions; the same game world may

host multiple tasks, and the agent must decide what to do based on the “Info” items. As

we demonstrate in Section 4.6, standard neural models find this to be challenging.

In all of the tasks, the agent incurs a penalty of 0.1 for each action it makes, this

encourages the agent to finish the task promptly. In addition, stepping on a Water block

incurs an additional penalty of 0.2. For most games, a maximum of 50 actions are

allowed in each episode. The tasks define extra penalties and conditions for the game to

end.

• Multigoals: In this task, the agent is given an ordered list of goals as “Info”, and

needs to visit the goals in that order. The number of goals ranges from 2 to 6,

and the number of “active” that the agent is required to visit ranges from 1 to 3
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goals. The agent is not given any extra penalty for visiting a goal out of order, but

visiting a goal before its turn does not count towards visiting all goals. The game

ends when all goals are visited. This task involves the algorithmic component of

iterating over a list.

• Exclusion: The “Info” in this game specifies a list of goals to avoid. The agent

should visit all other unmentioned goals. The number of all goals ranges from 2

to 6, but the number of active goals ranges from 1 to 3. As in the Conditional

goals game, the agent incurs a 0.5 penalty when it steps on a forbidden goal. This

task combines Multigoals (iterate over set) with set negation.

• Conditional Goals: In this task, the destination goal is conditional on the state

of a switch. The “Info” is of the form “go to goal gi if the switch is colored cj ,

else go to goal gl”. The number of colors ranges from 2 to 6 and the number of

goals from 2 to 6. Note that there can be more colors than goals or more goals

than colors. The task concludes when the agent reaches the specified goal; in

addition, the agent incurs a 0.2 penalty for stepping on an incorrect goal, in order

to encourage it to read the info (and not just visit all goals). The task requires

conditional reasoning in the form of an if-then statement.

• Switches: In this task, the game has a random number of switches on the board.

The agent is told via the “Info” to toggle all the switches to the same color, but the

agent has the choice of color. To get the best reward, the agent needs to solve a

(very small) traveling salesman problem. The number of switches ranges from 1

to 5 and the number of colors from 1 to 6. The task finishes when the switches are

correctly toggled. There are no special penalties in this task. The task instantiates

a form of while statement.
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• Light Key: In this game, there is a switch and a door in a wall of blocks. The

agent should navigate to a goal which may be on the other side of a wall of blocks.

If the goal is on the same side of the wall as the agent, it should go directly there;

otherwise, it needs to move to and toggle the switch to open the door before going

to the goal. There are no special penalties in this game, and the game ends when

the agent reaches the goal. This task combines if-then reasoning with environment

manipulation.

• Goto: In this task, the agent is given an absolute location on the grid as a target.

The game ends when the agent visits this location. Solving this task requires

the agent to convert from its own egocentric coordinate representation to absolute

coordinates. This involves comparison of small numbers.

• Goto Hidden: In this task, the agent is given a list of goals with absolute coor-

dinates, and then is told to go to one of the goals by the goal’s name. The agent

can not see the goal’s location as an item on the map, instead it must read this

from the info items (and convert from absolute to relative coordinates). The num-

ber of goals ranges from 1 to 6. The task also involves very simple comparison

operation.

• Push block: In this game, the agent needs to push a Pushable block so that it lays

on top of a switch. Considering the large number of actions needed to solve this

task, the map size is limited between 3 and 7, and the maximum block and water

percentage is reduced to 10%. The task requires manipulation of the environment.

• Push block cardinal: In this game, the agent needs to push a Pushable block so

that it is on a specified edge of the maze, e.g. the left edge. Any location along

the edge is acceptable. The same limitation as the Push Block game is applied.
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• Blocked door: In this task, the agent should navigate to a goal which may lie

on the opposite side of a wall of blocks, as in the Light Key game. However, a

Pushable block blocks the gap in the wall instead of a door. This requires if-then

reasoning, as well as environment manipulation.

For each task, we compute offline the optimal solution. For some of the tasks, e.g.

Multigoals, this involves solving a traveling salesman problem (which for simplicity is

done approximately). This provides an upper bound for the reward achievable. This is

for comparison purposes only (i.e. it is not to be used for training an agent).

All these are Markovian. Nevertheless, the tasks are not at all simple; although the

environment can easily be used to build non-Markovian tasks, we find that the solving

these tasks without the agent having to reason about its past actions is already challeng-

ing. Note that building a new task is easy in the MazeBase environment, indeed many

of those above are implemented in a few hundred lines of code.

3.3.2 Combat tasks

Next, we use MazeBase to implement several simple games similar to the combat

tasks of StarCraft introduced in Section 2.2.2. This allows us to train an agent on these

games and then test them on Starcraft. Our goal here is not to assess the ability of the

agent to generalize, but rather whether we can make the game in our environment close

to its counterpart in StarCraft, to show that the environment can be used for prototyping

scenarios where training on an actual game may be technically challenging.

In MazeBase, the kiting scenario consists of a standard maze where an agent aims to

kill up to two enemy bots. After each shot, the agent or enemy is prevented from firing

again for a small time interval (cooldown). We introduce an imbalance by (i) allowing
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the agent to shoot farther than the enemy bot(s) and (ii) giving the agent significantly less

health than the bot(s); and (iii) by allowing the enemy bot(s) to shoot more frequently

than the agent (shorter cooldown). The agent has a shot range of 7 squares, and the bots

have a shot range of 4 squares. The enemy bot(s) moves (on average) at .6 the speed of

the agent. This is accomplished by rolling a “fumble” each time the bot tries to move

with probability .4. The agent has health chosen uniformly between 2 and 4, and the

enemy(s) have health uniformly distributed between 4 and 11. The enemy can shoot

every 2 turns, and the agent can shoot every 6 turns. The enemy follows a heuristic

of attacking the agent when in range and its cooldown is 0, and attempting to move

towards the agent when it is closer than 10 squares away, and ignoring when farther

than 10 squares.

The 2 vs. 2 scenario is modeled in MazeBase with two agents, each of which have 3

health points, and two bots, which have hitpoints randomly chosen from 3 or 4. Agents

and bots have a range of 6 and a cooldown of 3. The bots use a heuristic of attacking

the closest agent if they have not attacked an agent before, and continuing to attack

and follow that agent until it is killed. In both the kiting and 2 vs. 2 scenarios, we

randomly add noise to the agents’ inputs to account for the fact that it will encounter a

new vocabulary when playing StarCraft. That is, 10% of the time, the numerical value

of the enemies’ or agents’ health, cooldown, etc is taken to be a random value. The

reward signal is based on the difference between the armies hit points, and win or loss

of the overall battle.

26



3.4 Curriculum

A key feature of our environment is the ability to programmatically vary all the prop-

erties of a given game. We use this ability to construct instances of each game whose

difficulty is precisely specified. These instances can then be shaped into a curriculum

for training [Bengio et al., 2009a]. As we later demonstrate in Section 4.6.2, this is very

important for avoiding local minima and helps to learn superior models.

Each game has many variables that impact the difficulty. Generic ones include:

maze dimensions (height/width) and the fraction of blocks & water. For switch-based

games (Switches, Light Key) the number of switches and colors can be varied. For goal

based games (Multigoals,Conditional Goals, Exclusion), the variables are the number

of goals (and active goals). For the combat game Kiting, we vary the number of agents

& enemies, as well as their speed and their initial health. The curriculum is specified

by upper and lower success thresholds Tu and Tl respectively. If the success rate of

the agent falls outside the [Tl, Tu] interval, then the difficulty of the generated games

is adjusted accordingly. Each game is generated by uniformly sampling each variable

that affects the difficulty over some range. The upper limit of this range is adjusted,

depending on which of Tl or Tu is violated. Note that the lower limit remains unaltered,

thus the easiest game remains at the same difficulty. For the last third of training, we

expose the agent to the full range of difficulties by setting the upper limit to its maximum

preset value.

3.5 Conclusion

The MazeBase environment allows easy creation of games and precise control over

their behavior. It is designed to be a testbed for developing methods for training agents
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that can learn and reason about their world, and so it encourages sharing components

across multiple games. We used it to devise a set of 10 simple games embodying algo-

rithmic components. The flexibility of the environment enabled curricula to be created

for each game which can aid the learning.

To further show the flexibility of the environment, we showed that with a few hun-

dred lines of code inside MazeBase, we can build simulations of StarCraft micro-combat

scenarios. We can use these to help develop model architectures that generalize to Star-

Craft. We believe that MazeBase will be useful for pushing the boundaries of what our

current methods can do. The proposed environment enables a rapid iteration of new

models and learning modalities, and building of new games to evaluate these.
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Chapter 4

End-to-end Memory Network

In this chapter, we introduce a neural network with a recurrent attention model over a

possibly large external memory. The architecture is a form of Memory Network [We-

ston et al., 2015] but unlike the model in that work, it is trained end-to-end, and hence

requires significantly less supervision during training, making it more generally appli-

cable in realistic settings. It can also be seen as an extension of RNNsearch [Bahdanau

et al., 2015] to the case where multiple computational steps (hops) are performed per

output symbol. The flexibility of the model allows us to apply it to tasks as diverse

as (synthetic) question answering [Weston et al., 2016] and to language modeling. For

the former our approach is competitive with Memory Networks, but with less supervi-

sion. For the latter, on the Penn TreeBank and Text8 datasets our approach demonstrates

comparable performance to RNNs and LSTMs. In both cases we show that the key con-

cept of multiple computational hops yields improved results. Additional experiments on

reinforcement learning tasks further demonstrate it flexibility.
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4.1 Introduction

Two grand challenges in artificial intelligence research have been to build models

that can make multiple computational steps in the service of answering a question or

completing a task, and models that can describe long term dependencies in sequential

data.

Recently there has been a resurgence in models of computation using explicit storage

and a notion of attention [Weston et al., 2015, Graves et al., 2014, Bahdanau et al.,

2015]; manipulating such a storage offers an approach to both of these challenges. In

[Weston et al., 2015, Graves et al., 2014, Bahdanau et al., 2015], the storage is endowed

with a continuous representation; reads from and writes to the storage, as well as other

processing steps, are modeled by the actions of neural networks.

In this chapter, we present a novel recurrent neural network (RNN) architecture

where the recurrence reads from a possibly large external memory multiple times before

outputting a symbol. Our model can be considered a continuous form of the Memory

Network implemented in [Weston et al., 2015]. The model in that work was not easy to

train via backpropagation, and required supervision at each layer of the network. The

continuity of the model we present here means that it can be trained end-to-end from

input-output pairs, and so is applicable to more tasks, i.e. tasks where such supervi-

sion is not available, such as in language modeling or realistically supervised question

answering tasks. Our model can also be seen as a version of RNNsearch [Bahdanau

et al., 2015] with multiple computational steps (which we term “hops”) per output sym-

bol. We will show experimentally that the multiple hops over the long-term memory are

crucial to good performance of our model on these tasks, and that training the memory

representation can be integrated in a scalable manner into our end-to-end neural network
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Figure 4.1: A single layer version of our model.

model. Additionally, we will also show that the same model can applied to reinforce-

ment learning tasks in MazeBase and StarCraft environments. Finally, we propose an

extension of the model that can write to the memory, which allows us to apply it to

set-to-set tasks such as sorting.

4.2 Approach

Our model takes a discrete set of inputs x1, ..., xn that are to be stored in the memory,

a query q, and outputs an answer a. Each of the xi, q, and a contains symbols coming

from a dictionary with V words. The model writes all x to the memory up to a fixed

buffer size, and then finds a continuous representation for the x and q. The continuous

representation is then processed via multiple hops to output a. This allows backprop-

agation of the error signal through multiple memory accesses back to the input during

31



training.

4.2.1 Single Layer

We start by describing our model in the single layer case, which implements a single

memory hop operation. We then show it can be stacked to give multiple hops in memory.

4.2.1.1 Input memory representation

Suppose we are given an input set x1, .., xi to be stored in memory. The entire set

{xi} is converted into memory vectors {mi} of dimension d computed by embedding

each xi in a continuous space, in the simplest case, using an embedding matrix A (of

size d × V ). The query q is also embedded (again, in the simplest case via another

embedding matrix B with the same dimensions as A) to obtain an internal state u. In

the embedding space, we compute the match between u and each memory mi by taking

the inner product followed by a softmax:

pi = Softmax(uTmi), (4.1)

where Softmax(zi) = ezi/
∑

j e
zj . Defined in this way p is a probability vector over the

inputs.

4.2.1.2 Output memory representation

Each xi has a corresponding output vector ci (given in the simplest case by another

embedding matrix C). The response vector from the memory o is then a sum over the
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transformed inputs ci, weighted by the probability vector from the input:

o =
∑

i

pici. (4.2)

Because the function from input to output is smooth, we can easily compute gradients

and back-propagate through it. Other recently proposed forms of memory or atten-

tion take this approach, notably [Bahdanau et al., 2015] and [Graves et al., 2014], see

also [Gregor et al., 2015].

4.2.1.3 Generating the final prediction

In the single layer case, the sum of the response vector o and the input embedding u

is then passed through a final weight matrix W (of size V ×d) and a softmax to produce

the predicted label:

â = Softmax(W (o+ u)) (4.3)

The overall model is shown in Figure 4.1. During training, all three embedding

matrices A, B and C, as well as W are jointly learned by minimizing a standard cross-

entropy loss between â and the true label a. Training is performed using stochastic

gradient descent (see Section 4.4.2 for more details).

4.2.2 Multiple Layers

We now extend our model to handle K-hop operations. The memory layers are

stacked in the following way:

• The input to layers above the first is the sum of the output ok and the input uk from
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layer k (different ways to combine ok and uk are proposed later):

uk+1 = uk + ok. (4.4)

• Each layer has its own embedding matricesAk, Ck, used to embed the inputs {xi}.

However, as discussed below, they are constrained to ease training and reduce the

number of parameters.

• At the top of the network, the input to W also combines the input and the output

of the top memory layer: â = Softmax(WuK+1) = Softmax(W (oK + uK)).

We explore two types of weight tying within the model:

1. Adjacent: the output embedding for one layer is the input embedding for the one
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above, i.e. Ak+1 = Ck. We also constrain (a) the answer prediction matrix to

be the same as the final output embedding, i.e W T = CK , and (b) the question

embedding to match the input embedding of the first layer, i.e. B = A1.

2. Layer-wise (RNN-like): the input and output embeddings are the same across

different layers, i.e. A1 = A2 = ... = AK and C1 = C2 = ... = CK . We have

found it useful to add a linear mapping H to the update of u between hops; that

is, uk+1 = Huk + ok. This mapping is learnt along with the rest of the parameters

and used throughout our experiments for layer-wise weight tying.

A three-layer version of our memory model is shown in Figure 4.2. Overall, it is sim-

ilar to the Memory Network model in [Weston et al., 2015], except that the hard max

operations within each layer have been replaced with a continuous weighting from the

softmax.

Note that if we use the layer-wise weight tying scheme, our model can be cast as

a traditional RNN where we divide the outputs of the RNN into internal (blue boxes)
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and external (gray boxes) outputs as shown in Figure 4.3. Emitting an internal output

corresponds to considering a memory, and emitting an external output corresponds to

predicting a label. From the RNN point of view, u in Figure 4.2 and Equation 4.4

is a hidden state, and the model generates an internal output p (attention weights in

Figure 4.1 using A. The model then ingests p using C, updates the hidden state, and

so on.1 Here, unlike a standard RNN, we explicitly condition on the outputs stored in

memory during the K hops, and we keep these outputs soft, rather than sampling them.

Thus our model makes several computational steps before producing an output meant to

be seen by the “outside world”.

4.3 Related Work

A number of recent efforts have explored ways to capture long-term structure within

sequences using RNNs or LSTM-based models [Chung et al., 2014, Graves, 2013,

Koutnı́k et al., 2014, Mikolov et al., 2014, Hochreiter and Schmidhuber, 1997, Atke-

son and Schaal, 1995]. The memory in these models is the state of the network, which

is latent and inherently unstable over long timescales. The LSTM-based models address

this through local memory cells which lock in the network state from the past. In prac-

tice, the performance gains over carefully trained RNNs are modest (see [Mikolov et al.,

2014]). Our model differs from these in that it uses a global memory, with shared read

and write functions. However, with layer-wise weight tying our model can be viewed

as a form of RNN which only produces an output after a fixed number of time steps

(corresponding to the number of hops), with the intermediary steps involving memory

1Note that in this view, the terminology of input and output from Figure 4.1 is flipped - when viewed
as a traditional RNN with this special conditioning of outputs, A becomes part of the output embedding
of the RNN and C becomes the input embedding.
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input/output operations that update the internal state.

Some of the very early work on neural networks [Steinbuch and Piske, 1963,Taylor,

1959] considered a memory that performed nearest-neighbor operations on stored input

vectors and then fit parametric models to the retrieved sets. This has similarities to a

single layer version of our model.

Subsequent work in the 1990’s explored other types of memory [Pollack, 1991, Das

et al., 1992, Mozer and Das, 1993]. For example, [Das et al., 1992] and [Mozer and

Das, 1993] introduced an explicit stack with push and pop operations which has been

revisited recently by [Joulin and Mikolov, 2015, Grefenstette et al., 2015] in the context

of an RNN model.

Closely related to our model is the Neural Turing Machine [Graves et al., 2014],

which also uses a continuous memory representation. The NTM memory uses both

content and address-based access, unlike ours which only explicitly allows the former,

although the temporal features that we will introduce in Section 4.4.1 allow a kind of

address-based access. However, in part because we always write each memory sequen-

tially, our model is somewhat simpler, not requiring operations like sharpening. Further-

more, we apply our memory model to textual reasoning tasks, which qualitatively differ

from the more abstract operations of sorting and recall tackled by the NTM.

Our model is also related to [Bahdanau et al., 2015]. In that work, a bidirectional

RNN based encoder and gated RNN based decoder were used for machine translation.

The decoder uses an attention model that finds which hidden states from the encoding

are most useful for outputting the next translated word; the attention model uses a small

neural network that takes as input a concatenation of the current hidden state of the

decoder and each of the encoders hidden states. A similar attention model is also used

in [Xu et al., 2015] for generating image captions. Our “memory” is analogous to their
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attention mechanism, although [Bahdanau et al., 2015] is only over a single sentence

rather than many, as in our case. Furthermore, our model makes several hops on the

memory before making an output; we will see below that this is important for good

performance. There are also differences in the architecture of the small network used

to score the memories compared to our scoring approach; we use a simple linear layer,

whereas they use a more sophisticated gated architecture.

We will apply our model to language modeling, an extensively studied task. [Good-

man, 2001] showed simple but effective approaches which combine n-grams with a

cache. [Bengio et al., 2003] ignited interest in using neural network based models for the

task, with RNNs [Mikolov, 2012] and LSTMs [Hochreiter and Schmidhuber, 1997,Sun-

dermeyer et al., 2012] showing clear performance gains over traditional methods. In-

deed, the current state-of-the-art is held by variants of these models, for example very

large LSTMs with Dropout [Zaremba et al., 2014] or RNNs with diagonal constraints

on the weight matrix [Mikolov et al., 2014]. With appropriate weight tying, our model

can be regarded as a modified form of RNN, where the recurrence is indexed by memory

lookups to the word sequence rather than indexed by the sequence itself.

After publication of our work, there has been a surge of works on using an ex-

ternal memory with soft-attention for variety of tasks. Extensions of our model have

been applied to question answering on children books [Hill et al., 2016], and large-

scale knowledge bases [Miller et al., 2016]. A similar memory architecture also used in

sentiment analysis, part-of-speech tagging [Kumar et al., 2016], and visual question an-

swering [Xiong et al., 2016a]. In [Vaswani et al., 2017], an attention mechanism is used

in machine translation, outperforming traditional sequence-to-sequence approaches. In

reinforcement learning, an external memory is proven to be useful as an episodic mem-

ory [Oh et al., 2016], and as a spatial memory [Parisotto and Salakhutdinov, 2018]. A
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combination of memory and graph neural networks [Pham et al., 2018] has been applied

to a molecular structure prediction. An extension of NTM [Graves et al., 2016] has also

been proposed for solving graph tasks as well as the toy QA task that we used in our

experiments.

4.4 Synthetic Question and Answering Experiments

We perform experiments on the synthetic QA tasks defined in [Weston et al., 2016]

(using version 1.1 of the dataset). This QA task consists of a set of statements, followed

by a question whose answer is typically a single word (in a few tasks, answers are a set

of words). The answer is available to the model at training time, but must be predicted

at test time. There are a total of 20 different types of tasks that probe different forms of

reasoning and deduction. Here are samples of three of the tasks:

Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.
Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.
Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.
Sam drops the apple. Bernhard is

green.
Mary discarded the milk.

Q: Where is the apple? Q: What color is
Brian?

Q: Where was the milk before the
den?

A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information

needed for the answer, and the others are essentially irrelevant distractors (e.g. the first

sentence in the first example). In the Memory Networks of [Weston et al., 2016], this

supporting subset was explicitly indicated to the model during training and the key dif-

ference between that work and this one is that this information is no longer provided.

Hence, the model must deduce for itself at training and test time which sentences are

relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having

39



Question

Where is Sam?

Input story

Memory Module

C
o
n
tro

lle
r

kitchenAnswer

Dot product + softmax

Weighted Sum

2: Sam went 

to kitchen

1: Sam moved

to garden

3: Sam drops

apple there
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a set of I sentences {xi} where I ≤ 320; a question sentence q and answer a. Let the

jth word of sentence i be xij , represented by a one-hot vector of length V (where the

vocabulary is of size V = 177, reflecting the simplistic nature of the QA language). The

same representation is used for the question q and answer a. Two versions of the data

are used, one that has 1000 training problems per task and an another larger one with

10,000 per task.

4.4.1 Model Details

We put each sentence of the story into a single memory slot, and feed the question

sentence into the controller module as shown in Figure 4.4. Unless otherwise stated, all

experiments used a K = 3 hops model with the adjacent weight sharing scheme. For

all tasks that output lists (i.e. the answers are multiple words), we take each possible

combination of possible outputs and record them as a separate answer vocabulary word.
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4.4.1.1 Sentence Representation

In our experiments we explore two different representations for the sentences. The

first is the bag-of-words (BoW) representation that takes the sentence

xi = {xi1, xi2, ..., xin},

embeds each word and sums the resulting vectors: e.gmi =
∑

j Axij and ci =
∑

j Cxij .

The input vector u representing the question is also embedded as a bag of words: u =
∑

j Bqj . This has the drawback that it cannot capture the order of the words in the

sentence, which is important for some tasks.

We therefore propose a second representation that encodes the position of words

within the sentence. This takes the form: mi =
∑

j lj ·Axij , where · is an element-wise

multiplication. lj is a column vector with the structure

lkj = 1− j

J
− k

d

(
1− 2j

J

)

(assuming 1-based indexing), with J being the number of words in the sentence, and
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d is the dimension of the embedding. Figure 4.5 is a plot of lkj when J = 20 and

d = 20. This sentence representation, which we call position encoding (PE), means that

the order of the words now affects mi. The same representation is used for questions,

memory inputs and memory outputs.

4.4.1.2 Temporal Encoding

Many of the QA tasks require some notion of temporal context, i.e. in the first

example of Section 4.2, the model needs to understand that Sam is in the bedroom after

he is in the kitchen. To enable our model to address them, we modify the memory

vector so that mi =
∑

j Axij + TA[i], where TA[i] is the i-th row of a special matrix

TA that encodes temporal information. The output embedding is augmented in the same

way with a matrix Tc (e.g. ci =
∑

j Cxij + TC [i]). Both TA and TC are learned during

training. They are also subject to the same sharing constraints as A and C. Note that

sentences are indexed in reverse order, reflecting their relative distance from the question

so that x1 is the last sentence of the story.

4.4.1.3 Learning time invariance by injecting random noise

We have found it helpful to add “dummy” memories to regularize TA. That is, at

training time we can randomly add 10% of empty memories to the stories. We refer to

this approach as random noise (RN).

4.4.2 Training Details

10% of the bAbI training set was held-out to form a validation set, which was used

to select the optimal model architecture and hyperparameters. Our models were trained

using a learning rate of η = 0.01, with anneals every 25 epochs by 1/2 until 100 epochs
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were reached. No momentum or weight decay was used. The weights were initialized

randomly fromN (0, 0.1). When trained on all the tasks simultaneously with 1k training

samples (10k training samples), 60 epochs (20 epochs) were used with a learning rate

that anneals by 1/2 every 15 epochs (5 epochs). All training runs use a batch size of

32 (but cost is not averaged over a batch), and gradients with an `2 norm larger than 40

are divided by a scalar to have norm 40. In some of our experiments, we explored com-

mencing training with the softmax in each memory layer removed, making the model

entirely linear except for the final softmax for answer prediction. When the validation

loss stopped decreasing, the softmax layers were re-inserted and training recommenced.

We refer to this as linear start (LS) training. In LS training, the initial learning rate is

set to η = 0.005. The capacity of memory is restricted to the most recent 50 sentences.

Since the number of sentences and the number of words per sentence varied between

problems, a null symbol was used to pad them all to a fixed size. The embedding of the

null symbol was constrained to be zero.

On some tasks, we observed a large variance in the performance of our model

(i.e. sometimes failing badly, other times not, depending on the initialization). To

remedy this, we repeated each training 10 times with different random initializations,

and picked the one with the lowest training error. We released our source code at

https://github.com/facebook/MemNN.

4.4.3 Baselines

We compare our approach (abbreviated to MemN2N) to a range of alternate models:

• MemNN: The strongly supervised AM+NG+NL Memory Networks approach,

proposed in [Weston et al., 2016]. This is the best reported approach in that pa-

per. It uses a max operation (rather than softmax) at each layer which is trained
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directly with supporting facts (strong supervision). It employs n-gram modeling,

nonlinear layers and an adaptive number of hops per query.

• MemNN-WSH: A weakly supervised heuristic version of MemNN where the

supporting sentence labels are not used in training. Since we are unable to back-

propagate through the max operations in each layer, we enforce that the first mem-

ory hop should share at least one word with the question, and that the second

memory hop should share at least one word with the first hop and at least one

word with the answer. All those memories that conform are called valid mem-

ories, and the goal during training is to rank them higher than invalid memories

using the same ranking criteria as during strongly supervised training.

• LSTM: A standard LSTM model, trained using question / answer pairs only

(i.e. also weakly supervised). For more detail, see [Weston et al., 2016].

4.4.4 Results

We report on a variety of design choices: (i) BoW vs Position Encoding (PE) sen-

tence representation; (ii) training on all 20 tasks independently vs jointly training (joint

44



training used an embedding dimension of d = 50, while independent training used

d = 20); (iii) two phase training: linear start (LS) where softmaxes are removed initially

vs training with softmaxes from the start; (iv) varying memory hops from 1 to 3.

The results across all 20 tasks are given in Figure 4.6. See Table 4.1 and Table 4.2 for

more detailed results on the 1k and 10k training set respectively. They show a number

of interesting points:

• The best MemN2N models are reasonably close to the supervised models (e.g. 1k:

6.7% for MemNN vs 12.6% for MemN2N with position encoding + linear start +

random noise, jointly trained and 10k: 3.2% for MemNN vs 4.2% for MemN2N

with position encoding + linear start + random noise + non-linearity2, although

the supervised models are still superior.

• All variants of our proposed model comfortably beat the weakly supervised base-

line methods.

• The position encoding (PE) representation improves over bag-of-words (BoW),

as demonstrated by clear improvements on tasks 4, 5, 15 and 18, where word

ordering is particularly important.

• The linear start (LS) to training seems to help avoid local minima. See task 16 in

Table 4.1, where PE alone gets 53.6% error, while using LS reduces it to 1.6%.

• Jittering the time index with random empty memories (RN) as described in Sec-

tion 4.4.1 gives a small but consistent boost in performance, especially for the

smaller 1k training set.

• Joint training on all tasks helps.
2Following [Peng et al., 2015] we found adding more non-linearity solves tasks 17 and 19, see Ta-

ble 4.2.
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Figure 4.7: Experimental results from an ablation study of MemN2N on bAbI tasks. Left:
incremental effects of different techniques. Right: reducing the number of hops.

• Importantly, more computational hops give improved performance as show in Fig-

ure 4.7. We give examples of the hops performed (via the values of Equation 4.1)

over some illustrative examples in Figure 4.8.

4.5 Language Modeling Experiments

The goal in language modeling is to predict the next word in a text sequence given

the previous words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous

N words in the sequence (including the current) are embedded into memory separately.

Each memory cell holds only a single word, so there is no need for the BoW or linear

mapping representations used in the QA tasks. We employ the temporal embedding

approach of Section 4.4.1.

Since there is no longer any question, q in Figure 4.1 is fixed to a constant vector

0.1 (without embedding). The output softmax predicts which word in the vocabulary (of

size V ) is next in the sequence. A cross-entropy loss is used to train model by backprop-

agating the error through multiple memory layers, in the same manner as the QA tasks.
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Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 Daniel travelled to the bedroom. 0.00 0.00 0.00
John went to the bedroom. 0.37 0.02 0.00 John took the milk there. yes 0.88 1.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 Sandra went back to the bathroom. 0.00 0.00 0.00
Mary went to the office. 0.01 0.00 0.00 John moved to the hallway. yes 0.00 0.00 1.00
Sandra journeyed to the kitchen. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (3: 3 supporting facts) Support Hop 1 Hop 2 Hop 3 Story (4: 2 argument relations) Support Hop 1 Hop 2 Hop 3
John moved to the hallway. 0.00 0.00 0.00 The garden is north of the kitchen. yes 0.84 1.00 0.92
John grabbed the football. yes 0.00 1.00 0.00 The kitchen is north of the bedroom. 0.16 0.00 0.08
John journeyed to the garden. 0.35 0.00 0.00
Sandra moved to the hallway. 0.00 0.00 0.00
John went back to the hallway. yes 0.00 0.00 1.00
John journeyed to the garden. yes 0.62 0.00 0.00

Story (5: 3 argument relations) Support Hop 1 Hop 2 Hop 3 Story (6: yes/no questions) Support Hop 1 Hop 2 Hop 3
Jeff travelled to the bedroom. 0.00 0.00 0.00 Sandra travelled to the bedroom. 0.06 0.00 0.01
Jeff journeyed to the garden. 0.00 0.00 0.00 John took the football there. 0.00 0.00 0.00
Fred handed the apple to Jeff. yes 1.00 1.00 0.98 Sandra travelled to the office. 0.00 0.45 0.16
Mary went to the garden. 0.00 0.00 0.00 Sandra went to the bedroom. yes 0.89 0.39 0.04
Fred went back to the bathroom. 0.00 0.00 0.00 Daniel went back to the kitchen. 0.00 0.16 0.00
Fred got the milk there. 0.00 0.00 0.00 John took the apple there. 0.00 0.00 0.00
Mary journeyed to the kitchen. 0.00 0.00 0.00 Mary got the milk there. 0.00 0.00 0.00

Story (7: counting) Support Hop 1 Hop 2 Hop 3 Story (8: lists/sets) Support Hop 1 Hop 2 Hop 3
Daniel moved to the office. 0.00 0.00 0.00 John moved to the hallway. 0.00 0.00 0.00
Mary moved to the office. 0.00 0.00 0.00 John journeyed to the garden. 0.00 0.00 0.00
Sandra picked up the apple there. yes 0.14 0.00 0.92 Daniel moved to the garden. 0.00 0.01 0.00
Sandra dropped the apple. yes 0.12 0.00 0.00 Daniel grabbed the apple there. yes 0.03 0.00 0.98
Sandra took the apple there. yes 0.73 1.00 0.08 Daniel got the milk there. yes 0.97 0.02 0.00
John went to the bedroom. 0.00 0.00 0.00 John went back to the hallway. 0.00 0.00 0.00

Story (9: simple negation) Support Hop 1 Hop 2 Hop 3 Story (10: indefinite knowledge) Support Hop 1 Hop 2 Hop 3
Sandra is in the garden. 0.60 0.99 0.00 Julie is either in the school or the bedroom. 0.00 0.00 0.00
Sandra is not in the garden. yes 0.37 0.01 1.00 Julie is either in the cinema or the park. 0.00 0.00 0.00
John went to the office. 0.00 0.00 0.00 Bill is in the park. 0.00 0.00 0.00
John is in the bedroom. 0.00 0.00 0.00 Bill is either in the office or the office. yes 1.00 1.00 1.00
Daniel moved to the garden. 0.00 0.00 0.00

Story (11: basic coherence) Support Hop 1 Hop 2 Hop 3 Story (12: conjunction) Support Hop 1 Hop 2 Hop 3
Mary journeyed to the hallway. 0.00 0.01 0.00 John and Sandra went back to the kitchen. 0.08 0.00 0.00
After that she journeyed to the bathroom. 0.00 0.00 0.00 Sandra and Mary travelled to the garden. 0.05 0.00 0.00
Mary journeyed to the garden. 0.00 0.00 0.00 Mary and Daniel travelled to the office. 0.00 0.00 0.00
Then she went to the office. 0.01 0.06 0.00 Mary and John went to the bathroom. 0.01 0.00 0.00
Sandra journeyed to the garden. yes 0.97 0.42 0.00 Daniel and Sandra went to the kitchen. yes 0.74 1.00 1.00
Then she went to the hallway. yes 0.00 0.50 1.00 Daniel and Mary journeyed to the office. 0.06 0.00 0.00

Story (13: compound coherence) Support Hop 1 Hop 2 Hop 3 Story (14: time reasoning) Support Hop 1 Hop 2 Hop 3
Sandra and Daniel travelled to the bathroom. 0.13 0.00 0.00 This morning Julie went to the cinema. 0.00 0.03 0.00
Afterwards they went back to the office. 0.01 0.00 0.00 Julie journeyed to the kitchen yesterday. 0.00 0.04 0.01
Daniel and Mary travelled to the hallway. 0.01 0.00 0.00 Fred travelled to the cinema yesterday. 0.00 0.05 0.01
Following that they went back to the office. 0.06 0.04 0.00 Bill travelled to the office yesterday. 0.00 0.07 0.01
Mary and Sandra moved to the hallway. yes 0.59 0.02 0.00 This morning Mary travelled to the bedroom. yes 0.97 0.27 0.01
Then they went to the kitchen. yes 0.02 0.94 1.00 Yesterday Mary journeyed to the cinema. yes 0.01 0.33 0.96

Story (15: basic deduction) Support Hop 1 Hop 2 Hop 3 Story (16: basic induction) Support Hop 1 Hop 2 Hop 3
Cats are afraid of wolves. yes 0.00 0.99 0.62 Lily is a swan. 0.00 0.00 0.00
Sheep are afraid of wolves. 0.00 0.00 0.31 Brian is a frog. yes 0.00 0.98 0.00
Winona is a sheep. 0.00 0.00 0.00 Lily is gray. 0.07 0.00 0.00
Emily is a sheep. 0.00 0.00 0.00 Brian is yellow. yes 0.07 0.00 1.00
Gertrude is a cat. yes 0.99 0.00 0.00 Julius is a swan. 0.00 0.00 0.00
Wolves are afraid of mice. 0.00 0.00 0.00 Bernhard is yellow. 0.04 0.00 0.00
Mice are afraid of wolves. 0.00 0.00 0.07 Julius is green. 0.06 0.00 0.00
Jessica is a mouse. 0.00 0.00 0.00 Greg is a frog. yes 0.76 0.02 0.00

Story (17: positional reasoning) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
The red square is below the red sphere. yes 0.37 0.95 0.58 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
The red sphere is below the triangle. yes 0.63 0.05 0.43 The box is bigger than the chocolate. 0.04 0.05 0.10

The chest is bigger than the chocolate. yes 0.17 0.07 0.90
The chest fits inside the container. 0.00 0.00 0.00
The chest fits inside the box. 0.00 0.00 0.00

Story (19: path finding) Support Hop 1 Hop 2 Hop 3 Story (20: agent's motivation) Support Hop 1 Hop 2 Hop 3
The hallway is north of the kitchen. 1.00 1.00 1.00 Yann journeyed to the kitchen. 0.00 0.00 0.00
The garden is south of the kitchen. yes 0.00 0.00 0.00 Yann grabbed the apple there. 0.00 0.00 0.00
The garden is east of the bedroom. yes 0.00 0.00 0.00 Antoine is thirsty. yes 0.17 0.00 0.98
The bathroom is south of the bedroom. 0.00 0.00 0.00 Jason picked up the milk there. 0.01 0.00 0.00
The office is east of the garden. 0.00 0.00 0.00 Antoine travelled to the kitchen. 0.77 1.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

Where was the football before the garden? A: hallway  P: hallway What is north of the kitchen?   Answer: garden   Prediction: garden

Who gave the apple to Jeff?  Answer: Fred   Prediction: Fred Is Sandra in the bedroom?    Answer: yes       Prediction: Yes

How many objects is Sandra carrying? Answer: one Prediction: one What is Daniel carrying? Answer: apple,milk  Prediction: apple,milk

Is Sandra in the garden?  Answer: no   Prediction: no Is Bill in the office?   Answer: maybe   Prediction: maybe

Where is Sandra?  Answer: hallway    Prediction: hallway Where is Sandra?  Answer: kitchen    Prediction: kitchen

Where is Sandra?  Answer: kitchen   Prediction: kitchen Where was Mary before the bedroom?   Answer: cinema    Prediction: cinema

What is gertrude afraid of?   Answer: wolf    Prediction: wolf What color is Greg?  Answer: yellow    Prediction: yellow

Is the triangle above the red square?   Answer: yes   Prediction: no Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

How do you go from the kitchen to the bedroom? Answer: s,w Prediction: n,n Why did antoine go to the kitchen?   Answer: thirsty    Prediction: thirsty

Figure 4.8: Example predictions on the QA tasks of [Weston et al., 2016]. We show the labeled
supporting facts (support) from the dataset which MemN2N does not use during training, and
the probabilities p of each hop used by the model during inference (indicated by values and blue
color). MemN2N successfully learns to focus on the correct supporting sentences most of the
time. The mistakes made by the model are highlighted by red color.
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To aid training, we apply ReLU operations to half of the units in each layer. We use

layer-wise (RNN-like) weight sharing, i.e. the query weights of each layer are the same;

the output weights of each layer are the same. As noted in Section 4.2.2, this makes our

architecture closely related to an RNN which is traditionally used for language model-

ing tasks; however here the “sequence” over which the network is recurrent is not in

the text, but in the memory hops. Furthermore, the weight tying restricts the number of

parameters in the model, helping generalization for the deeper models which we find to

be effective for this task. We use two different datasets:

• Penn Tree Bank [Marcus et al., 1993]: This consists of 929k training, 73k vali-

dation and 82k test words, distributed over a vocabulary of 10k words. The same

preprocessing as [Zaremba et al., 2014] was used.

• Text8 [Mikolov et al., 2014]: This is a pre-processed version of the first 100M

million characters, dumped from Wikipedia. This is split into three sets of 93.3M

training, 5.7M validation and 1M test characters. All word occurring less than

5 times are replaced with the <UNK> token, resulting in a vocabulary size of

∼44k.

4.5.1 Training Details

The training procedure we use is the same as the QA tasks, except for the following.

For each mini-batch update, the `2 norm of the whole gradient of all parameters is mea-

sured3 and if larger than L = 50, then it is scaled down to have norm L. This was crucial

for good performance. We use the learning rate annealing schedule from [Mikolov et al.,

2014], namely, if the validation cost has not decreased after one epoch, then the learning

3In the QA tasks, the gradient of each weight matrix is measured separately.
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Figure 4.9: MemN2N performance on two language modeling tasks compared to an LSTM
baseline. We vary the number of memory hops (top row) and the memory size (bottom row).

rate is scaled down by a factor 1.5. Training terminates when the learning rate drops be-

low 10−5, i.e. after 50 epochs or so. Weights are initialized using a normal distribution

N (0, 0.05) and batch size is set to 128. On the Penn tree dataset, we repeat each training

10 times with different random initializations and pick the one with smallest validation

cost. However, we have done only a single training run on Text8 dataset due to limited

time constraints.

51



4.5.2 Results

Figure 4.9 compares variations of our model to LSTM baseline on the two bench-

mark datasets. More detailed Table 4.3 also include RNN and Structurally Constrained

Recurrent Nets (SCRN) [Mikolov et al., 2014] baselines. Note that the baseline archi-

tectures were tuned in [Mikolov et al., 2014] to give optimal perplexity.4 Our MemN2N

approach achieves lower perplexity on both datasets (111 vs 115 for RNN/SCRN on

Penn and 147 vs 154 for LSTM on Text8). Note that MemN2N has ∼1.5x more pa-

rameters than RNNs with the same number of hidden units, while LSTM has ∼4x more

parameters. We also vary the number of hops and memory size of our MemN2N, show-

ing the contribution of both to performance; note in particular that increasing the num-

ber of hops helps. In Figure 4.10, we show how MemN2N operates on memory with

multiple hops. It shows the average weight of the activation of each memory position

over the test set. We can see that some hops concentrate only on recent words, while

other hops have more broad attention over all memory locations, which is consistent

with the idea that succesful language models consist of a smoothed n-gram model and

a cache [Mikolov et al., 2014]. Interestingly, it seems that those two types of hops tend

to alternate. Also note that unlike a traditional RNN, the cache does not decay exponen-

tially: it has roughly the same average activation across the entire memory. This may be

the source of the observed improvement in language modeling.

4.6 Mazebase Experiments

In this section, we apply our model to the reasoning games implemented in Maze-

Base from Chapter 3. Unlike the previous experiments, this time we will use reinforce-
4They tuned the hyper-parameters on Penn Treebank and used them on Text8 without additional tun-

ing, except for the number of hidden units. See [Mikolov et al., 2014] for more detail.
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Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN 300 - - 133 129 500 - - - 184
LSTM 100 - - 120 115 500 - - 122 154
SCRN 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 4.3: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that in-
creasing the number of memory hops improves performance.

Figure 4.10: Average activation weight of memory positions during 6 memory hops. White
color indicates where the model is attending during the kth hop. For clarity, each row is normal-
ized to have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8
dataset.

ment learning. This means an output from a MemN2N will be interpreted as an action

and will be sent to the environment. However, the only change to the MemN2N archi-

tecture is the addition of a linear layer to the final hidden layer for predicting a baseline

value.

We do not use our model as memory in those games since they are Markovian. In-

stead, the memory holds the descriptions of all items currently exist in a game. That
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means every memory vector corresponds to a single item. Each item in the game (both

physical items as well as “info”) is represented as bag-of-words vectors. The spatial lo-

cation of each item is also represented as a word within the bag. E.g. a red door at [+3,-2]

becomes the vector {red door} + {x=+3,y=-2}, where {red door} and {x=+3,y=-2} are

word vectors of dimension 50. These embedding vectors will be learned at training

time. After 3 hops on the memory, the final softmax layer outputs a probability dis-

tribution over the set of discrete actions {N,S,E,W,toggle-switch,push-N,push-S,push-

E,push-W}.

We use the REINFORCE algorithm from Section 2.1 for training, where α in Equa-

tion 2.5 is set to 0.03 in all experiments. The actual parameter update is done by

RMSProp [Tieleman and Hinton, 2012] with learning rates optimized for each model

type. For better parallelism, the model plays and learns from 512 games simultaneously,

which are spread across multiple CPU threads. Training is continued for 20 thousand

such parallel episodes, which amounts to approximately 10M game plays. Depending

on the model type, the whole training process took from a few hours to a few days using

a single machine with 18 cores.

4.6.1 Baselines

We investigate several different types of model as a baseline: (i) simple linear, (ii)

multi-layer neural nets, and (iii) convolutional nets. While the input format is quite

different for each approach (detailed below), the outputs are same for all the models.

We do not consider models that are recurrent in the state-action sequence such as RNNs

or LSTMs, because as discussed above, these tasks are Markovian.

• Linear: For a simple baseline we take the existence of each possible word-

location pair on the largest grid we consider (10 × 10) and each “Info” item as
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a separate feature, and train a linear classifier to the action space from these fea-

tures. To construct the input, we take a bag-of-words (excluding location words)

representation of all items at the same location. Then, we concatenate all those

features from the every possible locations and info items. For example, if we had

n different words and w × h possible locations with k additional info items, then

the input dimension would be (w × h+ k)× n.

• Multi-layer Net: Neural network with multiple fully connected layers separated

by tanh non-linearity. The input representation is the same as the linear model.

• Convolutional Net: First, we represent each location by a bag-of-words in the

same way as the linear model. Hence the environment is presented as a 3D cube

of size w × h × n, which is then fed to four layers of convolution (the first layer

has a 1 × 1 kernel, which essentially makes it an embedding of words). Items

without spatial location (e.g. “Info” items) are each represented as a bag of words,

and then combined via a fully connected layer to the outputs of the convolutional

layers; these are then passed through two fully connected layers to output the

actions (and a baseline for reinforcement).

4.6.2 Experimental Results

Before running experiments on all the games, we investigated the effect of various

parameters of MultiGoals game on learning performances. The result in Figure 4.11

shows that we can make it harder for learning by adjusting those parameters. In curricu-

lum training, we actually gradually increases them.

Figure 4.12 shows the performance of different models on the games. Each model

is trained jointly on all 10 games. Given the stochastic nature of reinforcement learning,

55



5 6 7 8 9 10−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

Maximum Map Size
Re

wa
rd

 

 

2 layer MLP
MemNN
Optimal

0 0.05 0.1 0.15 0.2−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

Maximum fraction of blocks/water

Re
wa

rd

 

 

2 layer MLP
MemNN
Optimal

2 3 4 5 6−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Number of goals

Re
wa

rd

 

 

2 layer MLP
MemNN
Optimal

Figure 4.11: In the MazeBase environment, the difficulty of tasks can be varied programmati-
cally. For example, in the Multigoals game the maximum map size, fraction of blocks/water and
number of goals can all be varied. This affects the difficulty of tasks, as shown by the optimal
reward (blue line). It also reveals how robust a given model is to task difficulty. For a 2-layer
MLP (red line), the reward achieved degrades much faster than the MemN2N model (green line)
and the inherent task difficulty.
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we trained each model 10 times and picked the single instance that had the highest mean

reward across all tasks (i.e. the same model is evaluated on all 10 tasks). Table 4.4 gives

the max,mean and standard deviation of rewards for each task and method. Figure 4.13

shows a trained MemN2N model playing the Switches and LightKey games. A video

showing all games can be found at https://youtu.be/PVS5kIgAxZc.

The results revealed a number of interesting points. On many of the games at least

some of the models were able to learn a reasonable strategy. The models were all able to

learn to convert between egocentric and absolute coordinates by using the corner blocks.

They could respond appropriately to the different arrangements of the Light Key game,

and make decent decisions on whether to try to go directly to the goal, or to first open the

door. The 2-layer networks were able to completely solve the the tasks with pushable

blocks. That said, despite the simplicity of the games, and the number of trials allowed,

the models were not able to completely solve (i.e. discover optimal policy for) most

of the games: On Conditional Goals and Exclusion, all the models did poorly. On

inspection, they adopted the strategy of blindly visiting all goals, rather than visiting the

correct one.

With some of the models, we were able to train jointly, but made a few of the game

types artificially small; then at test time successfully run those games on a larger map.

The models were able to learn the notion of the locations independently from the task.

(for locations they had seen in training). On the other hand, we tried to test the models

above on unseen tasks that were never shown at train time, but used the same vocabulary

(for example: “go to the left”, instead of ”push the block to the left”). None of our

models were able to succeed, highlighting how far we are from operating at a “human

level”, even in this extremely restricted setting.

The MemN2N did best out of all the models on average. However, on the games with
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Switches

LighKey

Figure 4.13: A trained MemN2N model playing the Switches (top) and LightKey (bottom)
games. In the former, the goal is to make all the switches the same color. In the latter, the door
blocking access to the goal must be opened by toggling the colored switch. The 2nd and 4th
rows show the corresponding attention maps. The three different colors each correspond to one
of the models 3 attention “hops”.
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pushable blocks e.g. Exclusion and Push Block, the 2 layer neural nets were superior.

Although we also trained 3 layer neural net, the results are not included here because it

was very similar to the rewards of 2 layer neural net. The linear model did better than

might be expected, and surprisingly, the convolutional nets were the worst of the four

models. However, the fully connected models had significantly more parameters than

either the convolutional network or the MemN2N. For example, the 2 layer neural net

had a hidden layer of size 50, and a separate input for the outer product of each location

and word combination. Because of the size of the games, this is 2 orders of magnitude

more parameters than the convolutional network or MemN2N. Nevertheless, even with

a very large number of trials, this architecture could not learn many of the tasks.

The MemN2N seems superior on games involving decisions using information in

the info items (e.g. Multigoals) whereas the 2-layer neural net was better on the games

with a pushable block ( Push Block, Push Block Cardinal, and Blocked Door). Note

that because we use egocentric coordinates, for Push Block Cardinal, and to a lesser

extent Push Block, the models can memorize all the local configurations of the block

and agent.

All methods had significant variance in performance over 10 instances, except for the

linear model. However, the curriculum decreased the variance for all the methods, es-

pecially for the MemN2N. With respect to different training modalities: the curriculum

generally helped all the approaches, but gave the biggest assistance to the MemN2N,

particularly for Push Block and related games. We also tried supervised training (es-

sentially imitation learning), but the results were more or less the same as reinforcement

learning.
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2 vs 2 Kiting Kiting hard
Attack weakest 85% 0% 0%
MemN2N 80% 100% 100 %
MemN2N (transfer) 65% 96% 72%

Table 4.5: Win rates against StarCraft built-in AI. The 2nd row shows the hand-coded baseline
strategy of always attacking the weakest enemy (and not fleeing during cooldown). The 3rd row
shows MemN2N trained and tested on StarCraft. The last row shows a MemN2N trained entirely
inside MazeBase and tested on StarCraft with no modifications or fine tuning except scaling of
the inputs.

4.7 StarCraft Experiments

Finally, we train our model on the combat tasks in the StarCraft environment from

Section 2.2.2. In those tasks, the model have to control multiple units to fight against

enemy bots. However depending on the unit types, it has to employ different tactics

to succeed. The model architecture and training settings are the same as Section 4.6,

except that a multi-resolution feature map is used here to make the observations cover

large areas.

We find that the MemN2N is able to learn basic tactics such as focusing their fire on

weaker opponents to kill them first (thus reducing the total amount of incoming damage

over the game). This results in a win rate of 80% over the built-in StarCraft AI on 2 vs

2, and nearly perfect results on Kiting (see Table 4.5). The attacking weakest is a hard-

coded strategy where all units simply attack the enemy unit with least health points. It

is a very effective strategy in 2 vs 2 scenario, but completely fails in Kiting. The video

https://youtu.be/mv-uVU5Rx1g shows example gameplay of our MemN2N

model for the StarCraft Kiting hard scenario.

Additionally, we perform a transfer learning experiment where we train a MemN2N

on MazeBase and then test it on StarCraft. The MazeBase tasks are designed to closely
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Figure 4.14: An extension of MemN2N that can write into the memory.

match the combat tasks from StarCraft, but many simplifications are made due to the

limitations of MazeBase. See Section 3.3.2 for more details. We make no modifications

to the model after it is trained on MazeBase, and minimal changes to the interface (we

scale the health by a factor of 10, and x,y and cooldown values by a factor of 4). The

success rate of the model (the last row of Table 4.5) on StarCraft is comparable to train-

ing directly in StarCraft, showing the robustness of MemN2N and that MazeBase can

be effectively used as a sandbox for exploring model architectures and hyper-parameter

optimization.

4.8 Writing to the Memory

In this section, we introduce an extension of MemN2N that can write into the mem-

ory. This allows the memory to be used as an output interface as well as an input inter-

face. This makes it possible to output an set. As with the memory reading, the writing

operation to the memory is done in a permutation invariant way, so the output elements

have the same property, which is vital for handling sets.

The only modification to a MemN2N model is an addition of a write module as
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shown in Figure 4.14. The write module has a similar architecture as the read module,

except it uses an outer product instead of an inner product for computing its output.

First, it computes an attention over the memory vectors just like the read module

pi = Softmax(uTmi),

where u is the internal state vector of the controller, and mi is the i-th memory vector.

Unlike the read module, however, the output from the write module is computed by the

outer product of the attention vector p = [p1, p2, . . . , pN ]T and u

O = u⊗ p = upT .

Finally, we add matrix O to the current memory, which ends the write operation. The

update rule for i-th memory is then

mk+1
i = mk

i + piu
k+1,

where k denotes the current hop. Note that the write module is conditioned on the

internal state that already updated by the k-th read operation. Overall, the k-th hop

consists of

uk+1 = Read(mk
i , u

k)

mk+1
i = Write(mk

i , u
k+1).

After K hops, an output set â = {â1, â2, . . . , âN} is given by applying a classification
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Figure 4.15: Evolution of the memory content while the model sorts the given input numbers.

to the each memory vector

âi = Softmax(WmK+1
i + b),

where W and b are the weight and bias of the classification layer.

We test the model a toy task of sorting numbers. The task is to sort 10 given integers

that are randomly chosen between 0 and 99. We use the memory of size 20, so we can

use the first 10 for placing inputs and the remaining 10 for writing outputs. The numbers

as are given as a word to the model, so it has to learn their ordering from scratch. In

addition, we have words li for encoding memory locations so the model can put its

output at the right memory locations. Therefore, the input to the model is

{l1 + x1, . . . , l10 + x10, l11, . . . , l20},
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Figure 4.16: The attention map during memory hops while the model sorts given numbers.

and its target output is

{x1, . . . , x10, x′1, . . . , x′10}.

Here {xi} are the input numbers, and {x′i} are their sorted version.

The final loss function is the sum of all the classification losses at every memory

locations, and it is minimized by the backpropagation algorithm. Figure 4.15 shows

the memory content of a trained model while it is performing its hops. The model has

discovered a simple greedy algorithm to find and write the smallest input element that

yet to be sorted. Interestingly, the corresponding attention map shown in Figure 4.16

reveals that when a number is sorted, the model also writes to its input location. Such

marking make sense as it can help the model distinguish already sorted numbers from

the remaining numbers.

4.9 Conclusions and Future Work

In this work we showed that a neural network with an explicit memory and a re-

current attention mechanism for reading the memory can be successfully trained via

backpropagation on diverse tasks from question answering, language modeling to re-
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inforcement learning. Compared to the Memory Network implementation of [Weston

et al., 2015] there is no supervision of supporting facts and so our model can be used in a

wider range of settings. Our model approaches the same performance of that model, and

is significantly better than other baselines with the same level of supervision on question

answering tasks. On language modeling tasks, it slightly outperforms tuned RNNs and

LSTMs of comparable complexity. On both tasks we can see that increasing the number

of memory hops improves performance.

On reinforcement learning tasks, we can see some differences in the aptitudes be-

tween our model and the baselines, even though their average performance was similar.

Our model was superior on tasks where it was necessary to combine information from

info items with perceptual data, and the fully-connected networks were superior on tasks

that were mostly spatial, and especially those where it was possible to memorize all the

relevant configurations. Furthermore, our model trained on the simulations inside Maze-

Base performs well when tested directly on StarCraft, with no fine tuning.

However, there is still much to do. Our model is still unable to exactly match the

performance of the memory networks trained with strong supervision, and both fail

on several of the 1k QA tasks. Furthermore, smooth lookups may not scale well to

the case where a larger memory is required. For these settings, we plan to explore

multiscale notions of attention or hashing, as proposed in [Weston et al., 2015]. On

MazeBase tasks, we are still far from the optimal performance, which suggests a further

exploration of model architectures and training paradigms. Although we introduced

a version of the model that can write to the memory, more empirical investigation is

required to understand its cababilities and limitations.
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Chapter 5

Learning Multiagent Communication

with Backpropagation

Many tasks in AI require the collaboration of multiple agents. Typically, the communi-

cation protocol between agents is manually specified and not altered during training. In

this chapter we explore a simple neural model, called CommNet, that uses continuous

communication for fully cooperative tasks. The model consists of multiple agents and

the communication between them is learned alongside their policy. We apply this model

to a diverse set of tasks, demonstrating the ability of the agents to learn to communicate

amongst themselves, yielding improved performance over non-communicative agents

and baselines. In some cases, it is possible to interpret the language devised by the

agents, revealing simple but effective strategies for solving the task at hand.
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5.1 Introduction

Communication is a fundamental aspect of intelligence, enabling agents to behave as

a group, rather than a collection of individuals. It is vital for performing complex tasks

in real-world environments where each actor has limited capabilities and/or visibility

of the world. Practical examples include elevator control [Crites and Barto, 1998] and

sensor networks [Fox et al., 2000]; communication is also important for success in robot

soccer [Stone and Veloso, 1998]. In any partially observed environment, the communi-

cation between agents is vital to coordinate the behavior of each individual. While the

model controlling each agent is typically learned via reinforcement learning [Busoniu

et al., 2008, Sutton and Barto, 1998], the specification and format of the communica-

tion is usually pre-determined. For example, in robot soccer, the bots are designed to

communicate at each time step their position and proximity to the ball.

In this chapter, we propose a model where cooperating agents learn to communicate

amongst themselves before taking actions. Each agent is controlled by a deep feed-

forward network, which additionally has access to a communication channel carrying

a continuous vector. Through this channel, they receive the summed transmissions of

other agents. However, what each agent transmits on the channel is not specified a-

priori, being learned instead. Because the communication is continuous, the model can

be trained via back-propagation, and thus can be combined with standard single agent

RL algorithms or supervised learning. The model is simple and versatile. This allows it

to be applied to a wide range of problems involving partial visibility of the environment,

where the agents learn a task-specific communication protocol that aids performance.

In addition, the model allows dynamic variation at run time in both the number and type

of agents, which is important in applications such as communication between moving
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cars.

We consider the setting where we have J agents, all cooperating to maximize re-

ward R in some environment. We make the simplifying assumption of full cooperation

between agents, thus each agent receives R independent of their contribution. In this

setting, there is no difference between each agent having its own controller, or viewing

them as pieces of a larger model controlling all agents. Taking the latter perspective, our

controller is a large feed-forward neural network that maps inputs for all agents to their

actions, each agent occupying a subset of units. A specific connectivity structure be-

tween layers (a) instantiates the broadcast communication channel between agents and

(b) propagates the agent state.

We explore this model on a range of tasks. In some, supervision is provided for each

action while for others it is given sporadically. In the former case, the controller for each

agent is trained by backpropagating the error signal through the connectivity structure

of the model, enabling the agents to learn how to communicate amongst themselves to

maximize the objective. In the latter case, reinforcement learning must be used as an

additional outer loop to provide a training signal at each time step.

5.2 Communication Model

We now describe the controller model Φ used as a policy for multi-agent environ-

ments. Let st,j be the j-th agent’s observation of the environment at time t. The input

to the controller is the concatenation of all state-views st = {st,1, ..., st,J}, and the con-

troller is a mapping at = Φ(st), where the output at is a concatenation of discrete actions

at = {at,1, ..., at,J} for each agent. Note that this single controller Φ encompasses the

individual controllers for each agents, as well as the communication between agents.
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5.2.1 Controller Structure

We now detail our architecture for Φ that is built from modules f i, which take the

form of multilayer neural networks. Here i ∈ {0, .., K}, where K is the number of

communication steps in the network. We omit the time index t for brevity.

Each f i takes two input vectors for each agent j: the hidden state hij and the commu-

nication cij , and outputs a vector hi+1
j . The main body of the model then takes as input

the concatenated vectors h0 = [h01, h
0
2, ..., h

0
J ], and computes:

hi+1
j = f i(hij, c

i
j) (5.1)

ci+1
j =

1

J − 1

∑

j′ 6=j

hi+1
j′ . (5.2)

In the case that f i is a single linear layer followed by a non-linearity σ, we have: hi+1
j =

σ(H ihij + Cicij) and the model can be viewed as a feedforward network with layers

hi+1 = σ(T ihi) where hi is the concatenation of all hij and T i takes the block form

(where C̄i = Ci/(J − 1)):

T i =




H i C̄i C̄i ... C̄i

C̄i H i C̄i ... C̄i

C̄i C̄i H i ... C̄i

...
...

...
. . .

...

C̄i C̄i C̄i ... H i




.

A key point is that T is dynamically sized since the number of agents may vary.

This motivates the the normalizing factor J − 1 in Equation 5.2, which rescales the

communication vector by the number of communicating agents. Note also that T i is

permutation invariant, thus the order of the agents does not matter.
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48
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as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51
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Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f i that take as input vectors7
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We set c0
j = 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
j and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
j = �(Aihi
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then the model can be viewed as a feedforward network with layers16
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54
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Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h0
j = p(sj) is used. This takes as input state-view90

sjand outputs feature vector h0
j (in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c0
j = 0 for all j.93
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j ) is used to output a distribution over the space of94
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ci+1
j =

1

|N(j)|
X

j02N(j)

hi+1
j0 . (3)

3

h0 = [h0
1, h

0
2, ..., h

0
J ], and computes:78

hi+1
j = f i(hi

j , c
i
j) (1)

79

ci+1
j =

1

J � 1

X

j0 6=j

hi+1
j0 . (2)

In the case that f i is a single linear layer followed by a nonlinearity �, we have: hi+1
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =

TX

t=1

2
4@ log p(a(t)|s(t), ✓)
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TX

i=t

r(i) � b(s(t), ✓)

!
� ↵
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r(i) � b(s(t), ✓)

!2
3
5 .

Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h0
j = p(sj) is used. This takes as input state-view90

sjand outputs feature vector h0
j (in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c0
j = 0 for all j.93

At the output of the model, a decoder function q(hK
j ) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0 = p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103

ci+1
j =

1

|N(j)|
X

j02N(j)

hi+1
j0 . (3)
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their actions, each agent occupying a subset of units. A specific connectivity structure between layers
(a) instantiates the broadcast communication channel between agents and (b) propagates the agent
state.

3 Communication Model
We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (omitting the time
index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the
controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping
a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.
Note that this single controller � encompasses the individual controllers for each agents, as well as
the communication between agents.

3.1 Controller Structure
We now detail our architecture for � that allows communication without losing modularity. � is built
from modules f i, which take the form of multilayer neural networks. Here i 2 {0, .., K}, where K
is the number of communication steps in the network.

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,
and outputs a vector hi+1

j . The main body of the model then takes as input the concatenated vectors
h0 = [h0

1, h
0
2, ..., h

0
J ], and computes:

hi+1
j = f i(hi

j , c
i
j) (1)

ci+1
j =

1

J � 1

X

j0 6=j

hi+1
j0 . (2)

In the case that f i is a single linear layer followed by a nonlinearity �, we have: hi+1
j = �(Hihi

j +

Cici
j) and the model can be viewed as a feedforward network with layers hi+1 = �(T ihi) where hi

is the concatenation of all hi
j and T i takes the block form (where C̄i = Ci/(J � 1)):

T i =

0
BBBBB@

Hi C̄i C̄i ... C̄i

C̄i Hi C̄i ... C̄i

C̄i C̄i Hi ... C̄i

...
...

...
. . .

...
C̄i C̄i C̄i ... Hi

1
CCCCCA

,
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viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38
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Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54
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Here r(t) is reward given at time t, and the hyperparameter � is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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In the case that f i is a single linear layer followed by a nonlinearity �, we have: hi+1
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We set c0
j = 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
j and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54
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Here r(t) is reward given at time t, and the hyperparameter � is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89
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j = p(sj) is used. This takes as input state-view90

sjand outputs feature vector h0
j (in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c0
j = 0 for all j.93

At the output of the model, a decoder function q(hK
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3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103

ci+1
j =

1

|N(j)|
X

j02N(j)

hi+1
j0 . (3)

3

h0 = [h0
1, h

0
2, ..., h

0
J ], and computes:78

hi+1
j = f i(hi

j , c
i
j) (1)

79

ci+1
j =

1

J � 1

X

j0 6=j

hi+1
j0 . (2)

In the case that f i is a single linear layer followed by a nonlinearity �, we have: hi+1
j = �(Hihi

j +80

Cici
j) and the model can be viewed as a feedforward network with layers hi+1 = �(T ihi) where hi81

is the concatenation of all hi
j and T takes the block form:82

T i =

�
�����

Hi Ci Ci ... Ci

Ci Hi Ci ... Ci

Ci Ci Hi ... Ci

...
...

...
. . .

...
Ci Ci Ci ... Hi

�
�����

,

Connecting Neural Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

abstract1

1 Introduction2

In this work we make two contributions. First, we simplify and extend the graph neural network3

architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f i that take as input vectors7

hi and ci and output a vector hi+1. The model takes as input a set of vectors {h0
1, h

0
2, ..., h

0
m}, and8

computes9

hi+1
j = f i(hi

j , c
i
j)

10

ci+1
j =

X

j0 6=j

hi+1
j0 ;

We set c0
j = 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
j and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
j = �(Aihi

j + Bici
j),

then the model can be viewed as a feedforward network with layers16

Hi+1 = �(T iHi),

where T is written in block form17

T i =

�
�����

Ai Bi Bi ... Bi

Bi Ai Bi ... Bi

Bi Bi Ai ... Bi

...
...

...
. . .

...
Bi Bi Bi ... Ai

�
�����

.

The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =

TX

t=1

�
�� log p(a(t)|s(t), ✓)

�✓

�
TX

i=t

r(i) � b(s(t), ✓)

�
� �

�

�✓

�
TX

i=t

r(i) � b(s(t), ✓)

�2
�
� .

Here r(t) is reward given at time t, and the hyperparameter � is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h0
j = p(sj) is used. This takes as input state-view90

sjand outputs feature vector h0
j (in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c0
j = 0 for all j.93

At the output of the model, a decoder function q(hK
j ) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0 = p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103

ci+1
j =

1

|N(j)|
X

j02N(j)

hi+1
j0 . (3)
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j = 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
j and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
j = �(Aihi

j + Bici
j),

then the model can be viewed as a feedforward network with layers16

Hi+1 = �(T iHi),

where T is written in block form17
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Ai Bi Bi ... Bi
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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Figure 1: An overview of our CommNet model. Left: view of module f i for a single agent j. Note
that the parameters are shared across all agents. Middle: a single communication step, where each
agents modules propagate their internal state h, as well as broadcasting a communication vector c
on a common channel (shown in red). Right: full model, showing input states s for each agent, two
communication steps and the output actions for each agent.

A key point is that T is dynamically sized since the number of agents may vary. This motivates the
the normalizing factor J � 1 in equation (2), which rescales the communication vector by the number
of communicating agents. Note also that T i is permutation invariant, thus the order of the agents
does not matter.

2

Figure 5.1: An overview of our CommNet model. Left: view of module f i for a single agent
j. Note that the parameters are shared across all agents. Middle: a single communication step,
where each agents modules propagate their internal state h, as well as broadcasting a communi-
cation vector c on a common channel (shown in red). Right: full model Φ, showing input states
s for each agent, two communication steps and the output actions for each agent.

At the first layer of the model an encoder function h0j = r(sj) is used. This takes

as input a state-view sj and outputs a feature vector h0j (in Rd0 for some d0). The form

of the encoder is problem dependent, but for most of our tasks it is a single layer neural

network. Unless otherwise noted, c0j = 0 for all j. At the output of the model, a decoder

function q(hKj ) is used to output a distribution over the space of actions. q(.) takes the

form of a single layer network, followed by a softmax. To produce a discrete action, we

sample from this distribution: aj ∼ q(hKj ).

Thus the entire model (shown in Figure 5.1), which we call a Communication Neural

Net (CommNet), (i) takes the state-view of all agents s, passes it through the encoder

h0 = r(s), (ii) iterates h and c in Equations 5.1 and 5.2 to obtain hK , (iii) samples

actions a for all agents, according to q(hK).

5.2.2 Model Extensions

Local Connectivity: An alternative to the broadcast framework described above is to

allow agents to communicate to others within a certain range. Let N(j) be the set of

72



agents present within communication range of agent j. Then Equation 5.2 becomes:

ci+1
j =

1

|N(j)|
∑

j′∈N(j)

hi+1
j′ . (5.3)

As the agents move, enter and exit the environment, N(j) will change over time. In

this setting, our model has a natural interpretation as a dynamic graph, with N(j) being

the set of vertices connected to vertex j at the current time. The edges within the graph

represent the communication channel between agents, with Equation 5.3 being equiva-

lent to belief propagation [Pearl, 1982]. Furthermore, the use of multi-layer nets at each

vertex makes our model similar to an instantiation of the GGSNN work of [Li et al.,

2015].

Skip Connections: For some tasks, it is useful to have the input encoding h0j present as

an input for communication steps beyond the first layer. Thus for agent j at step i, we

have:

hi+1
j = f i(hij, c

i
j, h

0
j). (5.4)

Temporal Recurrence: We also explore having the network be a recurrent neural net-

work (RNN). This is achieved by simply replacing the communication step i in Equa-

tions 5.1 and 5.2 by a time step t, and using the same module f t for all t. At every time

step, actions will be sampled from q(htj). Note that agents can leave or join the swarm at

any time step. If f t is a single layer network, we obtain plain RNNs that communicate

with each other. In later experiments, we also use an LSTM as an f t module.
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5.3 Related Work

Our model combines a deep network with reinforcement learning [Guo et al., 2014b,

Mnih et al., 2015b, Levine et al., 2016]. Several recent works have applied these meth-

ods to multi-agent domains, such as Go [Maddison et al., 2015,Silver et al., 2016b] and

Atari games [Tampuu et al., 2015], but they assume full visibility of the environment and

lack communication. There is a rich literature on multi-agent reinforcement learning

(MARL) [Busoniu et al., 2008], particularly in the robotics domain [Matari, 1997,Stone

and Veloso, 1998, Fox et al., 2000, Olfati-Saber et al., 2007, Cao et al., 2013]. Amongst

fully cooperative algorithms, many approaches [Lauer and Riedmiller, 2000, Littman,

2001, Wang and Sandholm, 2002] avoid the need for communication by making strong

assumptions about visibility of other agents and the environment. Others use commu-

nication, but with a pre-determined protocol [Tan, 1993, Melo et al., 2011, Zhang and

Lesser, 2013, Maravall et al., 2013].

A few notable approaches involve learning to communicate between agents under

partial visibility: [Kasai et al., 2008] and [Varshavskaya et al., 2009], both use dis-

tributed tabular-RL approaches for simulated tasks. [Giles and Jim, 2002] use an evolu-

tionary algorithm, rather than reinforcement learning. [Guestrin et al., 2001] use a single

large MDP to control a collection of agents, via a factored message passing framework

where the messages are learned. In contrast to these approaches, our model uses a deep

network for both agent control and communication.

From a MARL perspective, the closest approach to ours is the concurrent work

of [Foerster et al., 2016]. This also uses a deep reinforcement learning in multi-agent

partially observable tasks, specifically two riddle problems (similar in spirit to our levers

task) which necessitate multi-agent communication. Like our approach, the communi-
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cation is learned rather than being pre-determined. However, the agents communicate in

a discrete manner through their actions. This contrasts with our model where multiple

continuous communication cycles are used at each time step to decide the actions of all

agents. Furthermore, our approach is amenable to dynamic variation in the number of

agents.

The Neural GPU [Kaiser and Sutskever, 2016] has similarities to our model but

differs in that a 1-D ordering on the input is assumed and it employs convolution, as

opposed to the global pooling in our approach (thus permitting unstructured inputs).

Graph Neural Networks: Our model can be regarded as an instantiation of the

Graph Neural Network construction of [Scarselli et al., 2009], as expanded in [Li et al.,

2015]. In particular, in [Scarselli et al., 2009], the output of the model is the fixed point

of iterating Equations 5.3 and 5.1 to convergence, using recurrent models. In [Li et al.,

2015], these recurrence equations are unrolled a fixed number of steps and the model

trained via backprop through time. In this work, we do not require the model to be

recurrent, neither do we aim to reach steady state. Additionally, we regard Equation 5.3

as a pooling operation, conceptually making our model a single feed-forward network

with local connections.

Set processing: Although we presented our model as a communication protocol for

multi-agents, it is actually a generic model for set inputs. It is permutation invariant

and allow variable size inputs, two properties essential for set handling. Another model

with such properties is MemN2N from Chapter 4, where set elements are put into a

memory and processed through a central controller. In contrast, CommNet handles sets

in a more distributed way by processing each element by its own module. We compare

them experimentally in Section 5.4.4. After our publication, [Zaheer et al., 2017] tested

a model similar ours on variety of set tasks.
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5.4 Experiments

5.4.1 Baselines

We describe three baselines models for Φ to compare against our model.

• Independent controller: A simple baseline is where agents are controlled inde-

pendently without any communication between them. We can write Φ as a =

{φ(s1), ..., φ(sJ)}, where φ is a per-agent controller applied independently. The

advantages of this communication-free model is modularity and flexibility.1 Thus

it can deal well with agents joining and leaving the group, but it is not able to

coordinate agents’ actions.

• Fully-connected: Another obvious choice is to make Φ a fully-connected multi-

layer neural network, that takes concatenation of h0j as an input and outputs actions

{a1, ..., aJ} using multiple output softmax heads. It is equivalent to allowing T

to be an arbitrary matrix with fixed size. This model would allow agents to com-

municate with each other and share views of the environment. Unlike our model,

however, it is not modular, inflexible with respect to the composition and number

of agents it controls, and even the order of the agents must be fixed.

• Discrete communication: An alternate way for agents to communicate is via dis-

crete symbols, with the meaning of these symbols being learned during training.

Since Φ now contains discrete operations and is not differentiable, reinforcement

learning is used to train in this setting. However, unlike actions in the environ-

ment, an agent has to output a discrete symbol at every communication step. But

if these are viewed as internal time steps of the agent, then the communication

1Assuming sj includes the identity of agent j.
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Training method
Model Φ Supervised Reinforcement
Independent 0.59 0.59
CommNet 0.99 0.94

Table 5.1: Results of lever game (#distinct levers pulled)/(#levers) for our CommNet and in-
dependent controller models, using two different training approaches. Allowing the agents to
communicate enables them to succeed at the task.

output can be treated as an action of the agent at a given (internal) time step and

we can directly employ REINFORCE from Section 2.1.

At communication step i, agent j will output the index wij corresponding to a

particular symbol, sampled according to:

wij ∼ Softmax(Dhij) (5.5)

where matrix D is the model parameter. Let ŵ be a 1-hot binary vector represen-

tation of w. In our broadcast framework, at the next step the agent receives a bag

of vectors from all the other agents (where ∧ is the element-wise OR operation):

ci+1
j =

∧

j′ 6=j

ŵij′ (5.6)

5.4.2 Simple Demonstration with a Lever Pulling Task

We start with a very simple game that requires the agents to communicate in order

to win. This consists of m levers and a pool of N agents. At each round, m agents are

drawn at random from the total pool of N agents and they must each choose a lever to

pull, simultaneously with the other m− 1 agents, after which the round ends. The goal

is for each of them to pull a different lever. Correspondingly, all agents receive reward
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proportional to the number of distinct levers pulled. Each agent can see its own identity,

and nothing else, thus sj = j.

We implement the game with m = 5 and N = 500. We use a CommNet with two

communication steps (K = 2) and skip connections from Equation 5.4. The encoder

r is a lookup-table with N entries in R128. Each f i is a two layer neural net with

ReLU non-linearities that takes in the concatenation of (hi, ci, h0), and outputs a vector

in R128. The decoder is a linear layer plus softmax, producing a distribution over the

m levers, from which we sample to determine the lever to be pulled. We compare it

against the independent controller, which has the same architecture as our model except

that communication c is zeroed. The results are shown in Table 5.1. The metric is

the number of distinct levers pulled divided by m = 5, averaged over 500 trials, after

seeing 50000 batches of size 64 during training. We explore both reinforcement (see

Section 2.1) and direct supervision (using the solution given by sorting the agent IDs,

and having each agent pull the lever according to its relative order in the current m

agents). In both cases, the CommNet performs significantly better than the independent

controller.

We analyze a CommNet model trained with supervision on the lever pulling task.

The supervision uses the sorted ordering of agent IDs to assign target actions. For

each agent, we concatenate its hidden layer activations during game playing. Figure 5.2

shows 3D PCA plot of those vectors, where color intensity represents agent’s ID. The

smooth ordering suggests that agents are communicating their IDs, enabling them to

solve the task.
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Figure 5.2: 3D PCA plot of hidden states of agents

5.4.3 Multi-turn Games

In this section, we consider two multi-agent tasks using the MazeBase environment

from Chapter 3 that use reward as their training signal. The first task is to control cars

passing through a traffic junction to maximize the flow while minimizing collisions. The

second task is to control multiple agents in combat against enemy bots.

We experimented with several module types. With a feedforward MLP, the module

f i is a single layer network and K = 2 communication steps are used. For an RNN

module, we also used a single layer network for f t, but shared parameters across time

steps. Finally, we used an LSTM for f t. In all modules, the hidden layer size is set to

50. MLP modules use skip-connections.

We use REINFORCE from Section 2.1 for training, where α in Equation 2.5 is set

to 0.03. Both tasks are trained for 300 epochs, each epoch being 100 weight updates

with RMSProp [Tieleman and Hinton, 2012] on mini-batch of 288 game episodes (dis-

tributed over multiple CPU cores). In total, the models experience ∼8.6M episodes
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Figure 5.3: Left: Traffic junction task where agent-controlled cars (colored circles) have to pass
the through the junction without colliding. Right: The combat task, where model controlled
agents (red circles) fight against enemy bots (blue circles). In both tasks each agent has limited
visibility (orange region), thus is not able to see the location of all other agents.

during training. We repeat all experiments 5 times with different random initializations,

and report mean value along with standard deviation. The training time varies from a

few hours to a few days depending on task and module types.

5.4.3.1 Traffic Junction

This consists of a 4-way junction on a 14 × 14 grid as shown in Figure 5.3(left).

At each time step, new cars enter the grid with probability parrive from each of the four

directions. However, the total number of cars at any given time is limited to Nmax = 10.

Each car occupies a single cell at any given time and is randomly assigned to one of

three possible routes (keeping to the right-hand side of the road). At every time step, a

car has two possible actions: gas which advances it by one cell on its route or brake to

stay at its current location. A car will be removed once it reaches its destination at the

edge of the grid.

The number of cars dynamically change during an episode as new cars arrive and
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Figure 5.4: An example CommNet architecture for a varying number agents. Each car is con-
trolled by its own LSTM (solid edges), but communication channels (dashed edges) allow them
to exchange information.

others leave the grid. Therefore it is an ideal task for our model which can adjust to

an arbitrary number of agents. Figure 5.4 shows this when a LSTM is used as f t mod-

ule. The computation graph of a CommNet dynamically changes at each time step to

accommodate a varying number of agents. Note this differs from previous Graph NN

formulations where a graph was fixed during computation iterations.

Two cars collide if their locations overlap. A collision incurs a reward rcoll = −10,

but does not affect the simulation in any other way. To discourage a traffic jam, each car

gets reward of τrtime = −0.01τ at every time step, where τ is the number time steps

passed since the car arrived. Therefore, the total reward at time t is:

rt = Ctrcoll +
Nt∑

i=1

τirtime,

where Ct is the number of collisions occurring at time t, and N t is number of cars

present. The simulation is terminated after 40 steps and is classified as a failure if one

or more collisions have occurred.

Each car is represented by one-hot binary vector set {n, l, r}, that encodes its unique
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Module f() type
Model Φ MLP RNN LSTM
Independent 20.6± 14.1 19.5± 4.5 9.4± 5.6

Fully-connected 12.5± 4.4 34.8± 19.7 4.8± 2.4

Discrete comm. 15.8± 9.3 15.2± 2.1 8.4± 3.4

CommNet 2.2± 0.6 7.6± 1.4 1.6± 1.0

Table 5.2: Traffic junction task failure rates (%) for different types of model and module function
f(.). CommNet consistently improves performance, over the baseline models.

ID, current location and assigned route number respectively. Each agent controlling a

car can only observe other cars in its vision range (a surrounding 3× 3 neighborhood),

but it can communicate to all other cars. The state vector sj for each agent is thus a

concatenation of all these vectors, having dimension 32 × |n| × |l| × |r|.

We use curriculum learning [Bengio et al., 2009a] to make the training easier. In

first 100 epochs of training, we set parrive = 0.05, but linearly increased it to 0.2 during

next 100 epochs. Finally, training continues for another 100 epochs. The learning rate

is fixed at 0.003 throughout.

In Table 5.2, we show the probability of failure of a variety of different model Φ and

module f pairs. Compared to the baseline models, CommNet significantly reduces the

failure rate for all module types, achieving the best performance with LSTM module (a

video showing this model before and after training can be found at http://cims.

nyu.edu/˜sainbar/commnet).

We also explored how partial visibility within the environment effects the advantage

given by communication. As the vision range of each agent decreases, the advantage of

communication increases as shown in Figure 5.5. Impressively, with zero visibility (the

cars are driving blind) the CommNet model is still able to succeed 90% of the time.

Table 5.3 shows the results on easy and hard versions of the game. The easy version

is a junction of two one-way roads on a 7 × 7 grid. There are two arrival points, each
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Figure 5.5: As visibility in the environment decreases, the importance of communication grows
in the traffic junction task.

Other game versions
Model Φ Easy (MLP) Hard (RNN)
Independent 15.8± 12.5 26.9± 6.0

Discrete comm. 1.1± 2.4 28.2± 5.7

CommNet 0.3± 0.1 22.5± 6.1

CommNet local - 21.1± 3.4

Table 5.3: Traffic junction task variants. In the easy case, discrete communication does help,
but still less than CommNet. On the hard version, local communication (see Section 5.2.2) does
at least as well as broadcasting to all agents.

with two possible routes. During curriculum, we increase Ntotal from 3 to 5, and parrive

from 0.1 to 0.3. The harder version consists from four connected junctions of two-way

roads in 18× 18 as shown in Figure 5.6. There are 8 arrival points and 7 different routes

for each arrival point. We set Ntotal = 20, and increased parrive from 0.02 to 0.05 during

curriculum. Discrete communication works well on the easy version, but the CommNet

with local connectivity gives the best performance on the hard case.
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4 junctions 

Figure 5.6: A harder version of traffic task with four connected junctions.

5.4.3.2 Analysis of Communication

We now attempt to understand what the agents communicate when performing the

junction task. We start by recording the hidden state hij of each agent and the corre-

sponding communication vectors c̃i+1
j = Ci+1hij (the contribution agent j at step i + 1

makes to the hidden state of other agents). Figure 5.7(left) and Figure 5.7(right) show

the 2D PCA projections of the communication and hidden state vectors respectively.

These plots show a diverse range of hidden states but far more clustered communica-

tion vectors, many of which are close to zero. This suggests that while the hidden state

carries information, the agent often prefers not to communicate it to the others unless

necessary. This is a possible consequence of the broadcast channel: if everyone talks at

the same time, no-one can understand.

To better understand the meaning behind the communication vectors, we ran the

simulation with only two cars and recorded their communication vectors and locations

whenever one of them braked. Vectors belonging to the clusters A, B & C in Fig-
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Figure 5.7: Left: First two principal components of communication vectors c̃ from multiple
runs on the traffic junction task Figure 5.3(left). While the majority are “silent” (i.e. have a
small norm), distinct clusters are also present. Right: First two principal components of hidden
state vectors h from the same runs as on the left, with corresponding color coding. Note how
many of the “silent” communication vectors accompany non-zero hidden state vectors. This
shows that the two pathways carry different information.

ure 5.7(left) were consistently emitted when one of the cars was in a specific location,

shown by the colored circles in Figure 5.8 (or pair of locations for cluster C). They also

strongly correlated with the other car braking at the locations indicated in red, which

happen to be relevant to avoiding collision.

In addition, we also visualize the average norm of the communication vectors in

Figure 5.9(left) and brake locations over the 14× 14 spatial grid in Figure 5.9(right). In

each of the four incoming directions, there is one location where communication signal

is stronger. The brake pattern shows that cars coming from left never yield to other

directions.

5.4.3.3 Combat Task

We simulate a simple battle involving two opposing teams in a 15×15 grid as shown

in Figure 5.3(right). Each team consists of m = 5 agents and their initial positions are

sampled uniformly in a 5× 5 square around the team center, which is picked uniformly

85



STOP 

A B 

C1 C2 
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Figure 5.9: (left) Average norm of communication vectors (right) Brake locations

in the grid. At each time step, an agent can perform one of the following actions: move

one cell in one of four directions; attack another agent by specifying its ID j (there are

m attack actions, each corresponding to one enemy agent); or do nothing. If agent A

attacks agent B, then B’s health point will be reduced by 1, but only if B is inside the

firing range of A (its surrounding 3 × 3 area). Agents need one time step of cooling

down after an attack, during which they cannot attack. All agents start with 3 health

points, and die when their health reaches 0. A team will win if all agents in the other
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Module f() type
Model Φ MLP RNN LSTM
Independent 34.2± 1.3 37.3± 4.6 44.3± 0.4

Fully-connected 17.7± 7.1 2.9± 1.8 19.6± 4.2

Discrete comm. 29.1± 6.7 33.4± 9.4 46.4± 0.7

CommNet 44.5± 13.4 44.4± 11.9 49.5± 12.6

Table 5.4: Win rates (%) on the combat task for different communication approaches and mod-
ule choices. Continuous consistently outperforms the other approaches. The fully-connected
baseline does worse than the independent model without communication.

team die. The simulation ends when one team wins, or neither of teams win within 40

time steps (a draw).

The model controls one team during training, and the other team consist of bots that

follow a hard-coded policy. The bot policy is to attack the nearest enemy agent if it is

within its firing range. If not, it approaches the nearest visible enemy agent within visual

range. An agent is visible to all bots if it is inside the visual range of any individual bot.

This shared vision gives an advantage to the bot team. When input to a model, each

agent is represented by a set of one-hot binary vectors {i, t, l, h, c} encoding its unique

ID, team ID, location, health points and cooldown. A model controlling an agent also

sees other agents in its visual range (3 × 3 surrounding area). The model gets reward

of −1 if the team loses or draws at the end of the game. In addition, it also get reward

of −0.1 times the total health points of the enemy team, which encourages it to attack

enemy bots.

Table 5.4 and Figure 5.10 shows the win rate of different module choices with var-

ious types of model. Among different modules, the LSTM achieved the best perfor-

mance. Continuous communication with CommNet improved all module types. Rela-

tive to the independent controller, the fully-connected model degraded performance, but

the discrete communication improved LSTM module type. We also explored several
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Other game variations (MLP)
Model Φ m = 3 m = 10 5× 5 vision
Independent 29.2± 5.9 30.5± 8.7 60.5± 2.1

CommNet 51.0± 14.1 45.4± 12.4 73.0± 0.7

Table 5.5: Win rates (%) on the combat task for different communication approaches. We
explore the effect of varying the number of agents m and agent visibility. Even with 10 agents
on each team, communication clearly helps.

variations of the task: varying the number of agents in each team by setting m = 3, 10,

and increasing visual range of agents to 5× 5 area. The result on those tasks are shown

on Table 5.5. Using CommNet model consistently improves the win rate, even with the

greater environment observability of the 5×5 vision case.
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Figure 5.10: Failure rates of different communication approaches on the combat task.

5.4.4 bAbI Tasks

We apply our model to the bAbI [Weston et al., 2016] toy Q & A dataset from Sec-

tion 4.4, and compare against MemN2N from Chapter 4 and other baselines. The goal

of the task is to answer a question after reading a short story. We can formulate this

as a multi-agent task by giving each sentence of the story its own agent. Communica-

tion among agents allows them to exchange useful information necessary to answer the
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Figure 5.11: CommNet applied to bAbI tasks. Each sentence of the story is processed by its
own agent/stream, while a question is fed through the initial communication vector. A single
output is obtained by simply summing the final hidden states.

question.

Let the task be {s1, s2, ..., sJ , q, y∗}, where sj is j-th sentence of story, q is the ques-

tion sentence and y∗ is the correct answer word (when answer is multiple words, we

simply concatenate them into single word). Then the input to the model is

h0j = r(sj, θ0), c0j = r(q, θq).

Here, we use simple position encoding from Section 4.4.1.1 as r to convert sentences

into fixed size vectors. Also, the initial communication is used to broadcast the question

to all agents. Since the temporal ordering of sentences is relevant in some tasks, we add

special temporal word “t = J − j” to sj for all j as done in Section 4.4.1.2.

The f(.) module consists of a two-layer MLP with a skip connection

hi+1
j = σ(Wiσ(H ihij + Cicij + h0j)),
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where σ is ReLU non-linearity (bias terms are omitted for clarity). After K = 2 com-

munication steps, we add the final hidden states together and pass it through a softmax

decoder layer to sample an output word y as shown in Figure 5.11

y = Softmax(D
J∑

j=1

hKj ).

The model is trained in a supervised fashion using a cross-entropy loss between y

and the correct answer y∗. The hidden layer size is set to 100 and weights are initialized

from N (0, 0.2). We train the model for 100 epochs with learning rate 0.003 and mini-

batch size 32 with Adam optimizer [Kingma and Ba, 2015] (β1 = 0.9, β2 = 0.99, ε =

10−6). We used 10% of training data as validation set to find optimal hyper-parameters

for the model.

Results on the 10K version of the bAbI task are shown in Table 5.6, along with

other baselines: LSTM , MemN2N, DMN+ [Xiong et al., 2016b] and Neural Rea-

soner+ [Peng et al., 2015]. Our model outperforms the LSTM baseline, but is worse

than the MemN2N model, which is specifically designed to solve reasoning over long

stories. However, it successfully solves most of the tasks, including ones that require

information sharing between two or more agents through communication.

Error on tasks (%) Mean error Failed tasks
2 3 15 16 17 18 19 (%) (err. > 5%)

LSTM 81.9 83.1 78.7 51.9 50.1 6.8 90.3 36.4 16
MemN2N 0.3 2.1 0.0 51.8 18.6 5.3 2.3 4.2 3
DMN+ 0.3 1.1 0.0 45.3 4.2 2.1 0.0 2.8 1
Neural Reasoner+ - - - - 0.9 - 1.6 - -
Independent (MLP) 69.0 69.5 29.4 47.4 4.0 0.6 45.8 15.2 9
CommNet (MLP) 3.2 68.3 0.0 51.3 15.1 1.4 0.0 7.1 3

Table 5.6: Experimental results on bAbI tasks. Only showing some of the task with high errors.
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5.5 Discussion and Future Work

We have introduced CommNet, a simple controller for MARL that is able to learn

continuous communication between a dynamically changing set of agents. Evalua-

tions on four diverse tasks clearly show the model outperforms models without com-

munication, fully-connected models, and models using discrete communication. De-

spite the simplicity of the broadcast channel, examination of the traffic task reveals

the model to have learned a sparse communication protocol that conveys meaning-

ful information between agents. Code for our model (and baselines) can be found at

http://cims.nyu.edu/˜sainbar/commnet/.

One aspect of our model that we did not fully exploit is its ability to handle het-

erogenous agent types and we hope to explore this in future work. Furthermore, we

believe the model will scale gracefully to large numbers of agents, perhaps requiring

more sophisticated connectivity structures; we also leave this to future work.
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Chapter 6

Intrinsic Motivation and Automatic

Curricula via Asymmetric Self-Play

We describe a simple scheme that allows an agent to learn about its environment in an

unsupervised manner. Our scheme pits two versions of the same agent, Alice and Bob,

against one another. Alice proposes a task for Bob to complete; and then Bob attempts to

complete the task. In this chapter, we will focus on two kinds of environments: (nearly)

reversible environments and environments that can be reset. Alice will “propose” the

task by doing a sequence of actions and then Bob must undo or repeat them, respectively.

Via an appropriate reward structure, Alice and Bob automatically generate a curriculum

of exploration, enabling unsupervised training of the agent. When Bob is deployed on

an RL task within the environment, this unsupervised training reduces the number of

supervised episodes needed to learn, and in some cases converges to a higher reward.
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6.1 Introduction

Model-free approaches to reinforcement learning are sample inefficient, typically

requiring a huge number of episodes to learn a satisfactory policy. The lack of an ex-

plicit environment model means the agent must learn the rules of the environment from

scratch at the same time as it tries to understand which trajectories lead to rewards. In

environments where reward is sparse, only a small fraction of the agents’ experience is

directly used to update the policy, contributing to the inefficiency.

In this chapter we introduce a novel form of unsupervised training for an agent that

enables exploration and learning about the environment without any external reward

that incentivizes the agents to learn how to transition between states as efficiently as

possible. We demonstrate that this unsupervised training allows the agent to learn new

tasks within the environment quickly.

Alice

Bob

Bob

STOP

Self	Play	Episode	(no	supervision	-- internal	reward	only) Target	Task	Episode	
(supervision	from	external	reward)

Alice’s	turn Bob’s	turn Bob	applied	to	target	task

Figure 6.1: Illustration of the self-play concept in a gridworld setting. Training consists of two
types of episode: self-play and target task. In the former, Alice and Bob take turns moving
the agent within the environment. Alice sets tasks by altering the state via interaction with its
objects (key, door, light) and then hands control over to Bob. He must return the environment to
its original state to receive an internal reward. This task is just one of many devised by Alice,
who automatically builds a curriculum of increasingly challenging tasks. In the target task, Bob’s
policy is used to control the agent, with him receiving an external reward if he visits the flag. He
is able to learn to do this quickly as he is already familiar with the environment from self-play.
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Figure 6.2: An illustration of two versions of the self-play: (left) Bob starts from Alice’s final
state in a reversible environment and tries to return her initial state; (right) if an environment can
be reset to Alice’s initial state, Bob starts there and tries to reach the same state as Alice.

6.2 Approach

We consider environments with a single physical agent (or multiple physical units

controlled by a single agent), but we allow it to have two separate “minds”: Alice and

Bob, each with its own objective and parameters. During self-play episodes, Alice’s

job is to propose a task for Bob to complete, and Bob’s job is to complete the task.

When presented with a target task episode, Bob is then used to perform it (Alice plays

no role). The key idea is that the Bob’s play with Alice should help him understand how

the environment works and enable him to learn the target task more quickly.

Our approach is restricted to two classes of environment: (i) those that are (nearly)

reversible, or (ii) ones that can be reset to their initial state (at least once). These re-

strictions allow us to sidestep complications around how to communicate the task and

determine its difficulty (see Section 6.5.2 for further discussion). In these two scenar-

ios, Alice starts at some initial state s0 and proposes a task by doing it, i.e. executing

a sequence of actions that takes the agent to a state st. She then outputs a STOP action,

which hands control over to Bob as shown in Figure 6.2. In reversible environments,

Bob’s goal is to return the agent back to state s0 (or within some margin of it, if the state

is continuous), to receive reward. In partially observable environments, the objective is
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Algorithm 6.1 Pseudo code for training an agent on a self-play episode
function SELFPLAYEPISODE(REVERSE/REPEAT,tMAX, θA, θB )

tA ← 0
s0 ← env.observe()
s∗ ← s0
while True do

# Alice’s turn
tA ← tA + 1
s← env.observe()
a← πA(s, s0) = f(s, s0, θA)
if a = STOP or tA ≥ tMax then

s∗ ← s
env.reset()
break

env.act(a)
tB ← 0
while True do

# Bob’s turn
s← env.observe()
if s = s∗ or tA + tB ≥ tMax then

break
tB ← tB + 1
a← πB(s, s∗) = f(s, s∗, θB)
env.act(a)

RA ← γmax(0, tB − tA)
RB ← −γtB
policy.update(RA, θA)
policy.update(RB, θB)
return

relaxed to Bob finding a state that returns the same observation as Alice’s initial state.

In environments where resets are permissible, Alice’s STOP action also reinitializes the

environment, thus Bob starts at s0 and now must reach st to be rewarded, thus repeating

Alice’s task instead of reversing it. See Figure 6.1 for an example, and Algorithm 6.1

for the pseudo code.

In both cases, this self-play between Alice and Bob only involves internal reward

(detailed below), thus the agent can be trained without needing any supervisory signal
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Algorithm 6.2 Pseudo code for training an agent on a target task episode
function TARGETTASKEPISODE(tMAX, θB )

t← 0
R← 0
while True do

t← t+ 1
s← env.observe()
a← πB(s, ∅) = f(s, ∅, θB)
if env.done() or t ≥ tMax then

break
env.act(a)
R = R+ env.reward()

policy.update(R, θB)
return

from the environment. As such, it comprises a form of unsupervised training where

Alice and Bob explore the environment and learn how it operates. This exploration can

be leveraged for some target task by training Bob on target task episodes in parallel. The

idea is that Bob’s experience from self-play will help him learn the target task in fewer

episodes. The reason behind choosing Bob for the target task is because he learns to

transfer from one state to another efficiently from self-play. See Algorithm 6.2 for the

pseudo code of target task training.

For self-play, we choose the reward structure for Alice and Bob to encourage Alice

to push Bob past his comfort zone, but not give him impossible tasks. Denoting Bob’s

total reward by RB (given at the end of episodes) and Alice’s total reward by RA, we

use

RB = −γtB (6.1)

where tB is the time taken by Bob to complete his task and

RA = γmax(0, tB − tA) (6.2)
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where tA is the time until Alice performs the STOP action, and γ is a scaling coefficient

that balances this internal reward to be of the same scale as external rewards from the

target task. The total length of an episode is limited to tMax, so if Bob fails to complete

the task in time we set tB = tMax − tA.

Thus Alice is rewarded if Bob takes more time, but the negative term on her own time

will encourage Alice not to take too many steps when Bob is failing. For both reversible

and resettable environments, Alice must limit her steps to make Bob’s task easier, thus

Alice’s optimal behavior is to the find simplest tasks that Bob cannot complete. This

eases learning for Bob since the new task will be only just beyond his current capabili-

ties. The self-regulating feedback between Alice and Bob allows them to automatically

construct a curriculum for exploration, a key contribution of our approach.
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6.2.1 Parameterizing Alice and Bob’s actions

Alice and Bob each have policy functions which take as input two observations of

state variables, and output a distribution over actions as showns in Figure 6.3. In Alice’s

case, the function will be of the form

at = πA(st, s0),

where s0 is the observation of the initial state of the environment and st is the observation

of the current state. In Bob’s case, the function will be

at = πB(st, s
∗),

where s∗ is the target state that Bob has to reach, and set to s0 when we have a reversible

environment. In a resettable environment s∗ is the state where Alice executed the STOP

action.

When a target task is presented, the agent’s policy function is at = πB(st, ∅), where

the second argument of Bob’s policy is simply set to zero.1 If s∗ is always non-zero,

then this is enough to let Bob know whether the current episode is self-play or target

task. In some experiments where s∗ can be zero, we give third argument z ∈ {0, 1} that

explicitly indicates the episode kind.

In the experiments below, we demonstrate our approach in settings where πA and πB

are tabular; where it is a neural network taking discrete inputs, and where it is a neural

network taking in continuous inputs. When using a neural network, we use the same

1Note that Bob can be used in multi-task learning by feeding the task description into πB
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network architecture for both Alice and Bob, except they have different parameters

πA(st, s0) = f(st, s0, θA), πB(st, s
∗) = f(st, s

∗, θB),

where f is an multi-layered neural network with parameters θA or θB.

6.2.2 Universal Bob in the tabular setting

We now present a theoretical argument that shows for environments with finite states,

tabular policies, and deterministic, Markovian transitions, we can interpret the self-play

as training Bob to find a policy that can get from any state to any other in the least

expected number of steps.

Preliminaries: Note that, as discussed above, the policy table for Bob is indexed

by (st, s
∗), not just by st. In particular, with the assumptions above, this means that

there is a fast policy πfast such that πfast(st, s
∗) has the smallest expected number of

steps to transition from st to s∗. It is clear that πfast is a universal policy for Bob, such

that πB = πfast is optimal with respect to any Alice’s policy πA. In a reset game, πfast

nets Alice a return of 0, and in the reverse game, the return of πfast against an optimal

Alice can be considered a measure of the reversibility of the environment. However, in

what follows let us assume that either the reset game or the reverse game in a perfectly

reversible environment is used. Also, let assume the initial states are randomized and its

distribution covers the entire state space.

Claim: If πA and πB are policies of Alice and Bob that are in equilibrium (i.e., Alice

cannot be made better without changing Bob, and vice-versa), then πB is a fast policy.

Argument: Let us first show that Alice will always get zero reward in equilibrium.

If Alice is getting positive reward on some challenge, that means Bob is taking longer
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than Alice on that challenge. Then Bob can be improved to use πfast at that challenge,

which contradicts the equilibrium assumption.

Now let us prove πB is a fast policy by contradiction. If πB is not fast, then there

must exist a challenge (st, s
∗) where πB will take longer than πfast. Therefore Bob

can get more reward by using πfast if Alice does propose that challenge with non-zero

probability. Since we assumed equilibrium and πB cannot be improved while πA fixed,

the only possibility is that Alice is never proposing that challenge. If that is true, Alice

can get positive reward by proposing that task using the same actions as πfast, so taking

fewer steps than πB. However this contradicts with the proof that Alice always gets zero

reward, making our initial assumption “πB is not fast” wrong.

6.3 Related Work

Self-play arises naturally in reinforcement learning, and has been well studied. For

example, for playing checkers [Samuel, 1959], backgammon [Tesauro, 1995], and Go,

[Silver et al., 2016a], and in multi-agent games such as RoboSoccer [Riedmiller et al.,

2009]. Here, the agents or teams of agents compete for external reward. This differs

from our scheme where the reward is purely internal and the self-play is a way of moti-

vating an agent to learn about its environment to augment sparse rewards from separate

target tasks.

Our approach has some relationships with generative adversarial networks (GANs)

[Goodfellow et al., 2014], which train a generative neural net by having it try to fool

a discriminator network which tries to differentiate samples from the training exam-

ples. [Li et al., 2017] introduce an adversarial approach to dialogue generation, where

a generator model is subjected to a form of “Turing test” by a discriminator network.
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[Mescheder et al., 2017] demonstrate how adversarial loss terms can be combined with

variational auto-encoders to permit more accurate density modeling. While GAN’s are

often thought of as methods for training a generator, the generator can be thought of as

a method for generating hard negatives for the discriminator. From this viewpoint, in

our approach, Alice acts as a “generator”, finding “negatives” for Bob. However, Bob’s

jobs is to complete the generated challenge, not to discriminate it.

There is a large body of work on intrinsic motivation [Barto, 2013, Singh et al.,

2004, Klyubin et al., 2005, Schmidhuber, 1991] for self-supervised learning agents.

These works propose methods for training an agent to explore and become proficient

at manipulating its environment without necessarily having a specific target task, and

without a source of extrinsic supervision. One line in this direction is curiosity-driven

exploration [Schmidhuber, 1991]. These techniques can be applied in encouraging

exploration in the context of reinforcement learning, for example [Bellemare et al.,

2016,Strehl and Littman, 2008,Lopes et al., 2012,Tang et al., 2017,Pathak et al., 2017];

Roughly, these use some notion of the novelty of a state to give a reward. In the simplest

setting, novelty can be just the number of times a state has been visited; in more com-

plex scenarios, the agent can build a model of the world, and the novelty is the difficulty

in placing the current state into the model. In our work, there is no explicit notion of

novelty. Even if Bob has seen a state many times, if he has trouble getting to it, Alice

should force him towards that state. Another line of work on intrinsic motivation is a

formalization of the notion of empowerment [Klyubin et al., 2005], or how much con-

trol the agent has over its environment. Our work is related in the sense that it is in both

Alice’s and Bob’s interests to have more control over the environment; but we do not

explicitly measure that control except in relation to the tasks that Alice sets.

Curriculum learning [Bengio et al., 2009b] is widely used in many machine learning
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approaches. Typically however, the curriculum requires at least some manual specifi-

cation. A key point about our work is that Alice and Bob devise their own curriculum

entirely automatically. Previous automatic approaches, such as [Kumar et al., 2010],

rely on monitoring training error. But since ours is unsupervised, no training labels are

required either.

Our basic paradigm of “Alice proposing a task, and Bob doing it” is related to the

Horde architecture [Sutton et al., 2011, Schaul et al., 2015]. In those works, instead of

using a value function V = V (s) that depends on the current state, a value function

that explicitly depends on state and goal V = V (s, g) is used. In our experiments, our

models will be parameterized in a similar fashion. The novelty in this work is in how

Alice defines the goal for Bob.

The closest work to ours is that of [Baranes and Oudeyer, 2013], who also have

one part of the model that proposes tasks, while another part learns to complete them.

As in this work, the policies and cost are parameterized as functions of both state and

goal. However, our approach differs in the way tasks are proposed and communicated.

In particular, in [Baranes and Oudeyer, 2013], the goal space has to be presented in a

way that allows explicit partitioning and sampling, whereas in our work, the goals are

sampled through Alice’s actions. On the other hand, we pay for not having to have such

a representation by requiring the environment to be either reversible or resettable.

Several concurrent works are related: [Andrychowicz et al., 2017] form an implicit

curriculum by using internal states as a target. [Florensa et al., 2017] automatically

generate a series of increasingly distant start states from a goal.2 [Pinto et al., 2017] use

an adversarial framework to perturb the environment, inducing improved robustness of

the agent. [Held et al., 2017] propose a scheme related to our “random Alice” strategy.

2In their paper they analyzed our approach, suggesting it was inherently unstable. However, the analy-
sis relied on a sudden jump of Bob policy with respect to Alice’s, which is unlikely to happen in practice.
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6.4 Experiments

The following experiments explore our self-play approach on a variety of tasks,

both continuous and discrete, from Mazebase, RLLab [Duan et al., 2016], and Star-

Craft [Synnaeve et al., 2016] environments. The same protocol is used in all settings:

self-play and target task episodes are mixed together and used to train the agent via

discrete policy gradient. We evaluate both the reverse and repeat versions of self-play.

We demonstrate that the self-play episodes help training, in terms of number of target

task episodes needed to learn the task. Note that we assume the self-play episodes to

be “free”, since they make no use of environmental reward. This is consistent with

traditional semi-supervised learning, where evaluations typically are based only on the

number of labeled points (not unlabeled ones too). The code we used in our experiments

can be found at http://cims.nyu.edu/˜sainbar/selfplay.

In all the experiments, we use REINFORCE from Section 2.1 for optimizing the

policies. In the tabular task below, we use a constant baseline; in all the other tasks we

use a neural network for both policy and baseline as in Equation 2.5 (the hyperparameter

α is set to 0.1 in all experiments).

For the policy neural networks, we use two-layer fully-connected networks with

50 hidden units in each layer unless otherwise stated. All the network parameters are

randomly initialized from N (0, 0.2), and tanh non-linearity is used. The training uses

RMSProp [Tieleman and Hinton, 2012] with hyperparameters 0.97 and 1e − 6. We al-

ways do 10 runs with different random initializations and report their mean and standard

deviation.

The other hyperparameter values used in the experiments are shown in Table 6.1.

In some cases, we used different parameters for self-play and target task episodes. En-
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Hyperparameter Long Mazebase Mountain Swimmer StarCraft
name Hallway Car Gather
Learning rate 0.1 0.003 0.003 0.003 0.003
Batch size 16 256 128 256 32
Max steps of 30 80 500 TT: 166 200
episode (tmax) SP: 200
Entropy 0 0.003 0.003 TT: 0 TT: 0
regularization SP: 0.003 SP: 0.003
Self-play reward
scale (γ)

0.033 0.1 0.01 0.01 0.01

Self-play percentage - 20% 1% 10% 10%
Self-play mode Reverse Both Repeat Reverse Repeat
Frame skip 0 0 0 150 3 23

Table 6.1: Hyperparameter values used in experiments. TT=target task, SP=self-play

tropy regularization is implemented as an additional cost maximizing the entropy of the

softmax layer. In the StarCraft, skipping 23 frames roughly matches to one action per

second.

6.4.1 Long hallway

We first describe a simple toy environment designed to illustrate the function of the

asymmetric self-play. The environment consists of M states {s1, ..., sM} arranged in a

chain. Both Alice and Bob have three possible actions, “left”, “right”, or “stop”. If the

agent is at si with i 6= 1, “left” takes it to si−1; “right” analogously increases the state

index, and “stop” transfers control to Bob when Alice runs it and terminates the episode

when Bob runs it. We use “return to initial state” as the self-play task (i.e. Reverse in

Algorithm 6.1). For the target task, we randomly pick a starting state and target state,

and the episode is considered successful if Bob moves to the target state and executes

3Experiments in VIME and SimHash papers skip 50 frames, but we matched the total number of
frames in an episode by reducing the number of steps.
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the stop action before a fixed number of maximum steps.

In this case, the target task is essentially the same as the self-play task, and so running

it is not unsupervised learning (and in particular, on this toy example unlike the other

examples below, we do not mix self-play training with target task training). However,

we see that the curriculum afforded by the self-play is efficient at training the agent to

do the target task at the beginning of the training, and is effective at forcing exploration

of the state space as Bob gets more competent.

In Figure 6.4 (left) we plot the number of episodes vs rate of success at the target

task with four different methods. We set M = 25 and the maximum allowed steps for

Alice and Bob to be 30. We use fully tabular controllers; the table is of size M2 × 3,

with a distribution over the three actions for each possible (start, end pair).

The red curve corresponds to REINFORCE, with a penalty of−1 given upon failure

to complete the task, and a penalty of −t/tMax for successfully completing the task

in t steps. The magenta curve corresponds to taking Alice to have a random policy

(1/2 probability of moving left or right, and not stopping till the maximum allowed

steps). The green curve corresponds to policy gradient with an exploration bonus similar

to [Strehl and Littman, 2008]. That is, we keep count of the number of times Ns the

agent has been in each state s, and the reward for s is adjusted by exploration bonus

α/
√
Ns, where α is a constant balancing the reward from completing the task with the

exploration bonus. We choose the weight α to maximize success at 0.2M episodes

from the set {0, 0.1, 0.2, ..., 1}. The blue curve corresponds to the asymmetric self-play

training.

We can see that at the very beginning, a random policy for Alice gives some form of

curriculum but eventually is harmful, because Bob never gets to see any long treks. On

the other hand, policy gradient sees very few successes in the beginning, and so trains
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Figure 6.4: Left: The hallway task from Section 6.4.1. The y axis is fraction of successes on
the target task, and the x axis is the total number of training examples seen. Plain REINFORCE
(red) learns slowly. Adding an explicit exploration bonus [Strehl and Littman, 2008] (green)
helps significantly. Our self-play approach (blue) gives similar performance however. Using a
random policy for Alice (magenta) drastically impairs performance, showing the importance of
self-play between Alice and Bob. Right: Mazebase task, illustrated in Figure 6.1, for p(Light
off) = 0.5. Augmenting with the repeat form of self-play enables significantly faster learning
than training on the target task alone and random Alice baselines.

slowly. Using the self-play method, Alice gives Bob easy problems at first (she starts

from random), and then builds harder and harder problems as the training progresses,

finally matching the performance boost of the count based exploration. Although not

shown, similar patterns are observed for a wide range of learning rates.

6.4.2 Mazebase: Light key

We now describe experiments using the MazeBase environment from Chapter 3.

We use an environment where the maze contains a light switch (whose initial state is

sampled according to a predefined probability, p(Light off)), a key and a wall with a

door (see Figure 6.1). An agent can open or close the door by toggling the key switch,

and turn on or off light with the light switch. When the light is off, the agent can only

see the (glowing) light switch. In the target task, there is also a goal flag item, and the
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objective of the game is reach to that goal flag.

In self-play, the environment is the same except there is no specific objective. An

episode starts with Alice in control, who can navigate through the maze and change the

switch states until she outputs the STOP action. Then, Bob takes control and tries to

return everything to its original state in the reverse self-play. In the repeat version, the

maze resets back to its initial state when Bob takes the control, who tries to reach the

final state of Alice. However, Bob does not need to worry about things that are invisible

to him. For example, if Alice started with light “off” in reverse self-play, Bob does not

need to match the state of the door, because it would be invisible to him when the light

is off.

In the target task, the agent and the goal are always placed on opposite sides of the

wall. Also, the light and key switches are placed on the same side as the agent, but the

light is always off and the door is closed initially. Therefore, in order to succeed, the

agent has to turn on the light, toggle the key switch to open the door, pass through it,

and reach the goal flag.

Both Alice and Bob’s policies are modeled by a fully-connected neural network with

two hidden layers each with 100 and 50 units respectively. The encoder into each of the

networks takes a bag of words over (objects, locations); that is, there is a separate word

in the lookup table for each (object, location) pair.

In Figure 6.4 (right), we set p(Light off)=0.5 during self-play4 and evaluate the repeat

form of self-play, alongside two baselines: (i) target task only training (i.e. no self-play)

and (ii) self-play with a random policy for Alice. With self-play, the agent succeeds

quickly while target task-only training takes much longer.5 Figure 6.5 shows details of a

4Changing p(Light off) adjusts the seperation between the self-play and target tasks. For a systematic
evaluation of this, please see Appendix 6.4.2.1.

5Training was stopped for all methods except target-only at 5× 106 episodes.
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single training run, demonstrating how Alice and Bob automatically build a curriculum

between themselves though self-play.

6.4.2.1 Biasing for or against self-play

The effectiveness of our approach depends in part on the similarity between the

self-play and target tasks. One way to explore this in our environment is to vary the

probability of the light being off initially during self-play episodes6. Note that the light

is always off in the target task; if the light is usually on at the start of Alice’s turn

in reverse, for example, she will learn to turn it off, and then Bob will be biased to

turn it back on. On the other hand, if the light is usually off at the start of Alice’s

turn in reverse, Bob is strongly biased against turning the light on, and so the test task

becomes especially hard. Thus changing this probability gives us some way to adjust

the similarity between the two tasks.

Figure 6.6 (left) shows what happens when p(Light off)=0.3. Here reverse self-play

works well, but repeat self-play does poorly. As discussed above, this flipping, relative

to the previous experiment, can be explained as follows: low p(Light off) means that

Bob’s task in reverse self-play will typically involve returning the light to the on position

(irrespective of how Alice left it), the same function that must be performed in the target

task. The opposite situation applies for repeat self-play, where Bob needs to encounter

the light typically in the off position to help him with the test task.

In Figure 6.6 (right) we systematically vary p(Light off) between 0.1 and 0.9. The y-

axis shows the speed-up (reduction in target task episodes) relative to training purely on

the target-task for runs where the reward goes above -2. Unsuccessful runs are given a

unity speed-up factor. The curves show that when the self-play task is not biased against

6The initial state of the light should dramatically change the behavior of the agent: if it is on then
agent can directly proceed to the key.
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Figure 6.5: Inspection of a Mazebase learning run, using the environment shown in Figure 6.1.
(a): rate at which Alice interacts with 1, 2 or 3 objects during an episode, illustrating the auto-
matically generated curriculum. Initially Alice touches no objects, but then starts to interact with
one. But this rate drops as Alice devises tasks that involve two and subsequently three objects.
(b) by contrast, in the random Alice baseline, she never utilizes more than a single object and
even then at a much lower rate. (c) plot of Alice and Bob’s reward, which strongly correlates
with (a). (d) plot of tA as self-play progresses. Alice takes an increasing amount of time before
handing over to Bob, consistent with tasks of increasing difficulty being set.
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the target task it can help significantly.
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Figure 6.6: Left: The performance of self-play when p(Light off) set to 0.3. Here the reverse
form of self-play works well (more details in the text). Right: Reduction in target task episodes
relative to training purely on the target-task as the distance between self-play and the target task
varies (for runs where the reward goes above -2 on the Mazebase task – unsuccessful runs are
given a unity speed-up factor). The y axis is the speedup, and x axis is p(Light off). For reverse
self-play, the low p(Light off) corresponds to having self-play and target tasks be similar to one
another, while the opposite applies to repeat self-play. For both forms, significant speedups are
achieved when self-play is similar to the target tasks, but the effect diminishes when self-play is
biased against the target task.

6.4.3 RLLab: Mountain Car

We applied our approach to the Mountain Car task in RLLab from Section 2.3. Here

the agent controls a car trapped in a 1-D valley. It must learn to build momentum by

alternately moving to the left and right, climbing higher up the valley walls until it is

able to escape. Although the problem is presented as continuous, we discretize the 1-D

action space into 5 bins (uniformly sized) enabling us to use discrete REINFORCE, as

above. We also added a secondary action head with binary actions to be used as STOP

action. An observation of state st consists of the location and speed of the car.

As in [Houthooft et al., 2016, Tang et al., 2017], a reward of +1 is given only when
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the car succeeds in climbing the hill. In self-play, Bob succeeds if ‖sB − sA‖ < 0.2,

where sA and sB are the final states (location and velocity of the car) of Alice and Bob

respectively.

The nature of the environment makes it highly asymmetric from Alice and Bob’s

point of view, since it is far easier to coast down the hill to the starting point that it is to

climb up it. Hence we exclusively use the reset form of self-play. In Figure 6.7 (left), we

compare this to current state-of-the-art methods, namely VIME [Houthooft et al., 2016]

and SimHash [Tang et al., 2017]. Our approach (blue) performs comparably to both of

these. We also tried using policy gradient directly on the target task samples, but it was

unable to solve the problem.

6.4.4 RLLab: SwimmerGather

We also applied our approach to the SwimmerGather task in RLLab, where the agent

controls a worm with two flexible joints, swimming in a 2D viscous fluid. In the target

task, the agent gets reward +1 for eating green apples and -1 for touching red bombs,

which are not present during self-play. Thus the self-play task and target tasks are

different: in the former, the worm just swims around but in the latter it must learn to

swim towards green apples and away from the red bombs.

The observation state consists of a 13-dimensional vector describing location and

joint angles of the worm, and a 20 dimensional vector for sensing nearby objects. The

worm takes two real values as an action, each controlling one joint. We add a secondary

action head to our models to handle the 2nd joint, and a third binary action head for

STOP action. As in the mountain car, we discretize the output space (each joint is given

9 uniformly sized bins) to allow the use of discrete policy gradients.

In addition to the REINFORCE algorithm, we also used TRPO [Schulman et al.,
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Figure 6.7: Evaluation on MountainCar (left) and SwimmerGather (right) target tasks, com-
paring to VIME [Houthooft et al., 2016] and SimHash [Tang et al., 2017] (figures adapted
from [Tang et al., 2017]). With reversible self-play we are able to learn faster than the other
approaches, although it converges to a comparable reward. Training directly on the target task
using REINFORCE without self-play resulted in total failure. Here 1 iteration = 5k (50k) target
task steps in Mountain car (SwimmerGather), excluding self-play steps.

2015] for training, where we used step size 0.01 and damping coefficient 0.1. The

batch consists of 50,000 steps, of which 25% comes from target task episodes, while the

remaining 75% is from self-play. The self-play reward scale γ set to 0.005. We used

two separate network for the policy and baseline in TRPO, and the baseline network has

L2 weight regularization with coefficient of 1e− 5.

Bob succeeds in a self-play episode when ‖lB − lA‖ < 0.3 where lA and lB are

the final locations of Alice and Bob respectively. Figure 6.7 (right) shows the target

task reward as a function of training iteration for our approach alongside state-of-the-art

exploration methods VIME [Houthooft et al., 2016] and SimHash [Tang et al., 2017].

The self-play models trained with REINFORCE and TRPO performed similarly. In both

cases, it enables them to gain reward significantly earlier than other methods, although

both converge to a similar final value to SimHash. A video of our worm performing the

test task can be found at https://goo.gl/Vsd8Js.

In Figure 6.8 shows details of a single training run. The changes in Alice’s behavior,

observed in Figure 6.8(c) and (d), correlate with Alice and Bob’s reward (Figure 6.8(b))
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Figure 6.8: A single SwimmerGather training run. (a): Rewards on target task. (b): Rewards
from reversible self-play. (c): The number of actions taken by Alice. (d): Distance that Alice
travels before switching to Bob.

and, initially at least, to the reward on the test target (Figure 6.8(a)). In Figure 6.9

we visualize for a single training run the locations where Alice hands over to Bob at

different stages of training, showing how the distribution varies.

6.4.5 StarCraft: Training marines

Finally, we applied the repeat variant of our self-play approach to the economic

development task in StarCraft from Section 2.2.1. The target task is to build as many

Marine units as possible in a fixed time. Since the reward is sparse and only given after

a marine is built, exploration is important factor for this task.

During self-play episodes, Alice and Bob control the workers and can try any com-
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Figure 6.9: Plot of Alice’s location at time of STOP action for the SwimmerGather training run
shown in Figure 6.8, for different stages of training. Note how Alice’s distribution changes as
Bob learns to solve her tasks.

bination of actions during the episode. Since exactly matching the game state is almost

impossible, Bob’s success is only based on the global state ŝ of the game, which in-

cludes the number of units of each type (including buildings), and accumulated mineral

resource (see Equation 2.7 for the exact definition). Thus, Bob’s policy for controlling

i-th unit takes the form of

ait = πB(sit, ŝt, ŝ
∗),

where sit is the local observation of i-th unit, and ŝt, ŝ∗ are the global observation of

Bob’s current state and his target state (i.e. the final state of Alice). Bob will succeed

only if

∀j : ŝt[j] ≥ ŝ∗[j],

where s[j] denote j-th element of vector s. So Bob’s objective in self-play is to make as

many units and mineral as Alice in shortest possible time.

We compare self-play to a count-based exploration baseline similar to the hallway

experiment. An extra reward of α/
√
N(ŝt) is given at every step, where N is the visit

count function and ŝt is a global observation. Note that this baseline utilizes the same

abstraction of global observations as the self-play. We found α = 0.1 to be works the
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Figure 6.10: Plot of reward on the StarCraft sub-task of training marine units vs #target-task
episodes (self-play episodes are not included), with and without self-play. A count-based base-
line is also shown. Self-play greatly speeds up learning, and also surpasses the count-based
approach at convergence.

best.

Figure 6.10 compares the self-play to REINFORCE baselines, with and without

count-based exploration, on the target task. The self-play clearly outperforms the base-

lines. In Figure 6.11 we show the result of an additional experiment where we extended

the length of the episode from 200 to 300, giving more time to the agent for develop-

ment. The self-play still outperforms baselines methods. Note that to make more than 6

marines, an agent has to build a supply depot as well as a barracks.

6.5 Discussion

6.5.1 Meta-exploration for Alice

We want Alice and Bob to explore the state (or state-action) space, and we would

like Bob to be exposed to many different tasks. Because of the form of the standard

reinforcement learning objective (expectation over rewards), Alice only wants to find
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Figure 6.11: Plot of reward on the StarCraft sub-task of training where episode length tMax is
increased to 300.

the single hardest thing for Bob, and is not interested in the space of things that are hard

for Bob. In the fully tabular setting, with fully reversible dynamics or with resetting, and

without the constraints of realistic optimization strategies, we saw in Section 6.2.2 that

this ends up forcing Bob and Alice to learn to make any state transition as efficiently as

possible. However, with more realistic optimization methods or environments, and with

function approximation, Bob and Alice can get stuck in sub-optimal minima.

For example, let us follow the argument in the third paragraph of Section 6.2.2, and

assume that Bob and Alice are at an equilibrium (and that we are in the tabular, finite,

Markovian setting), but now we can only update Bob’s and Alice’s policy locally. By

this we mean that in our search for a better policy for Bob or Alice, we can only make

small perturbations, as in policy gradient algorithms. In this case, we can only guarantee

that Bob runs a fast policy on challenges that Alice has non-zero probability of giving;

but there is no guarantee that Alice will cover all possible challenges. With function

approximation instead of tabular policies, we cannot make any guarantees at all.
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Another example with a similar outcome but different mechanism can occur using

the reverse game in an environment without fully reversible dynamics. In that case, it

could be that the shortest expected number of steps to complete a challenge (s0, sT ) is

longer than the reverse, and indeed, so much longer that Alice should concentrate all her

energy on this challenge to maximize her rewards. Thus there could be equilibria with

Bob matching the fast policy only for a subset of challenges even if we allow non-local

optimization.

The result is that Alice can end up in a policy that is not ideal for our purposes. In

Figure 6.9 we show the distributions of where Alice cedes control to Bob in the swimmer

task. We can see that Alice has a preferred direction. Ideally, in this environment, Alice

would be teaching Bob how to get from any state to any other efficiently; but instead,

she is mostly teaching him how to move in one direction.

One possible approach to correcting this is to have multiple Alices, regularized so

that they do not implement the same policy. More generally, we can investigate objec-

tives for Alice that encourage her to cover a wider distribution of behaviors.

6.5.2 Communicating via actions

In this work we have limited Alice to propose tasks for Bob by doing them. This

limitation is practical and effective in restricted environments that allow resetting or are

(nearly) reversible. It allows a solution to three of the key difficulties of implementing

the basic idea of “Alice proposes tasks, Bob does them”: parameterizing the sampling

of tasks, representing and communicating the tasks, and ensuring the appropriate level

of difficulty of the tasks. Each of these is interesting in more general contexts. In this

work, the tasks have incentivized efficient transitions. One can imagine other reward

functions and task representations that incentivize discovering statistics of the states
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and state-transitions, for example models of their causality or temporal ordering, cluster

structure.

6.6 Conclusion

In this chapter, we described a novel method for intrinsically motivated learning

which we call asymmetric self-play. Despite the method’s conceptual simplicity, we

have seen that it can be effective in both discrete and continuous input settings with

function approximation, for encouraging exploration and automatically generating cur-

riculums. On the challenging benchmarks we consider, our approach is at least as good

as state-of-the-art RL methods that incorporate an incentive for exploration, despite be-

ing based on very different principles. Furthermore, it is possible show theoretically

that in simple environments, using asymmetric self-play with reward functions from

Equations 6.1 and 6.2, optimal agents can transit between any pair of reachable states as

efficiently as possible.
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Chapter 7

Conclusion

The objective of this thesis was to explore different ways to advance current deep

learning techniques towards achieving an intelligent agent. For this purpose, we have

chosen three elements that are essential for intelligence: memory, communication, and

intrinsic motivation. In each of them, we made a novel contribution either in model

architecture or in learning framework. Then we experimentally verified their capabilities

on a multitude of tasks, ranging from language modeling to playing StarCraft.

In case of memory and communication, we proposed new deep learning architec-

tures MemN2N and CommNet. Although their intended applications were considerably

different, both the models shared several common properties. First, both of them were

a generic model for processing sets in a permutation invariant way, which is not true for

existing deep learning models such as ConvNets and RNNs.1 However, the two models

take different approaches when handling a set. While MemN2N processes information

in a centralized way through its controller module, CommNet takes a more distributed

approach where each element has its own processing power. It is difficult to tell which

1Since the publication of our works, several other models have been proposed for sets [Zaheer et al.,
2017, Vaswani et al., 2017].

119



approach is superior because they have different advantages. The centralized process-

ing makes sense in a task where the coordination between elements is more important

than processing of individual elements. The controller module can examine each ele-

ment individually and make a coordinated decision. However, this centralized process-

ing also becomes a computational bottleneck. In contrast, the distributed processing of

CommNet has far more computational power since each element has its own controller,

but their coordination is weak since all the elements share a single broadcast channel

for their communication. This communication bottleneck is particularly harmful if the

task requires multiple parallel pairwise communications. The recently proposed mod-

els [Hoshen, 2017, Vaswani et al., 2017, Velikovi et al., 2018] alleviate this problem by

marrying an attention mechanism like MemN2N to a distributed processing like Comm-

Net. The attention mechanism removes the communication bottleneck by allowing each

element to choose an opponent to communicate, making multiple parallel communica-

tions possible.

Another common key idea in memory and communication was the relaxation of a

discrete operation to a continuous space. In MemN2N, we replaced the previous hard

attention with a soft attention mechanism. In CommNet, we allowed agents to commu-

nicate via a continuous vector instead of discrete words. Those relaxations made it pos-

sible to train the models end-to-end using the back-propagation algorithm. In addition,

we also observed that those continuous vectors often behaved like a discrete variable

after training, even though there was no explicit mechanism enforcing that. The soft

attention of MemN2N usually focuses on one or few memory locations. In CommNet,

an analysis of communication vectors showed they often stay near zero or belong to one

of the few clusters.

Nevertheless, we are still far from achieving human-level memory and communica-
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tion capabilities. The current capacity of MemN2N cannot scale to hold thousands of

vectors. Learning where to attend on such a large memory is challenging, although some

kind of curriculum training might help. Still, the computational complexity of MemN2N

grows linearly with its memory size, which is not desirable for a large-scale memory.

Also, there are other memory types that we have not addressed. For example, it is not

clear if MemN2N can be used as a semantic memory that can hold a knowledge graph.

In case of CommNet, an obvious issue is that its communication medium is a contin-

uous vector. While this might not be a problem if the communication is only between

AI agents, it certainly restricts the model from being used as a communication protocol

with humans. Another limitation of CommNet is that it assumes full cooperation, so

cannot be applied to more general scenarios where agents have different objectives.

The third element we investigated was intrinsic motivation, where our contribution

was a novel learning scheme rather than a model architecture. The scheme is based on

an agent with two minds that play a game by challenging each other. This interplay

between the two minds forces the agent to explore and learn about its environment with-

out any external supervision. Such unsupervised learning in a RL setting is a promising

research direction as it offers richer signals compared to more traditional unsupervised

learning on static samples. For example, learning to transfer efficiently between two

given states is a useful skill that does not require a lot of supervision. In our self-play

games, one of the minds generates such two states, eliminating the need for any super-

vision. However, determining whether an agent has reached a given state is a difficult

problem requiring a proper abstraction of a state space, which lies outside the scope of

this thesis. Furthermore, an interesting research direction is to let the model imagine an

abstract target without actually acting on the environment, which relates to the feature

control of [Jaderberg et al., 2018].
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While multi-agent RL is a well-established area, controlling a single agent with

multiple minds that are optimizing different objectives is an interesting novel direction.

Although we only focused on learning to control, the same approach can be employed

for learning different aspects of an environment by changing the game rule. One such

possibility is to learn causal relations in an environment by letting one mind propose a

causal hypothesis while another mind tries to disprove it.

Even though we investigated multiple elements of intelligence in this thesis, there

are many other elements that need to be solved before an intelligent agent is conceivable.

For example, an intelligent agent needs a life-long learning capability that allows it to

learn constantly without forgetting its past knowledge. Even detecting a novel situation

is a non-trivial problem that needs a solution. Furthermore, learning a set of abstract

actions, and performing exploration and planning via those abstract actions is essential

for training an agent on long-term tasks. For tackling those challenges, it is important

to advance current deep learning techniques, but also building an environment complex

enough to test all those elements of intelligence is crucial.
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