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Bayesian estimators are commonly constructed using an explicit prior
model. In many applications, one does not have such a model, and it is
difficult to learn since one does not have access to uncorrupted measure-
ments of the variable being estimated. In many cases however, including
the case of contamination with additive Gaussian noise, theBayesian
least squares estimator can be formulated directly in termsof the distri-
bution of noisy measurements. We demonstrate the use of this formu-
lation in removing noise from photographic images. We use a local ap-
proximation of the noisy measurement distribution by exponentials over
adaptively chosen intervals, and derive an estimator from this approxi-
mate distribution. We demonstrate through simulations that this adaptive
Bayesian estimator performs as well or better than previously published
estimators based on simple prior models.

1 Introduction

Denoising is a classic signal processing problem, and Bayesian methods can provide well
formulated and highly successful solutions. Bayesian estimators are derived from three
fundamental components: 1) the likelihood function, whichcharacterizes the distortion
process, 2) the prior, which characterizes the distribution of the variable to be estimated
in the absence of any measurement data, and 3) the loss function, which expresses the
cost of making errors. Of these, the choice of a prior is oftenthe most difficult aspect of
formulating the problem. If the prior is not known in advance, it must be learned from
uncorrupted samples(if available), or from noise-corrupted data.

If one uses a least squares loss function, however, it turns out that in many cases the Bayes
estimator can be written as a simple expression in terms of the density ofnoisy observations
[1, 2, 3, 4]. In this paper we introduce the concept of a “prior-free” Bayesian estimator
for the additive Gaussian noise case, develop it into a nonparametric implementation for
denoising photographic images, and demonstrate that the denoising results are competitive
with those of methods that make use of explicit assumptions or knowledge of the prior.



1.1 Bayes denoising: Conventional formulation

Suppose we make an observation,Y , of a noise-corrupted version of variableX, where
either or both variables can be finite-dimensional vectors.Given this observation, we wish
to obtain the estimate ofX that minimizes the expected squared error. This is a classic
problem, and the solution, known as the Bayesian Least Squares (BLS), or Minimum Mean
Square Estimate (MMSE), is simply the expected value ofX conditioned onY , E{X|Y }.
If the prior distribution onX is PX(x) then this can be written using Bayes’ rule as

E{X|Y = y} =

∫

xPX|Y (x|y) dx

=

∫

xPY |X(y|x)PX(x) dx
/

PY (y) , (1)

where the denominator contains the distribution of the noisy observations:

PY (y) =

∫

PX(x)PY |X(y|x) dx . (2)

Although this approach is generally appealing, it is often criticized for the reliance on
knowledge of the prior distribution,PX(x). In some applications, the prior is known or can
be estimated through a set of offline measurements. But in many cases, it must be learned
from the same noisy measurements,Y , that are available in the estimation problem. The
resulting dilemma presents a problem for machine as well as biological systems: How can
a denoiser learn to denoise without having ever seen clean data?

1.2 Bayesian denoising: Prior-free formulation

Surprisingly, under restricted conditions, the BLS estimate may be written without explicit
reference to the prior distribution. Specifically, in the case of corruption by additive Gaus-
sian noise, the BLS estimator can be expressed entirely in terms of the distribution of the
“noisy” measurements,PY (y):

E{X|Y = y} = y +
Λ∇yPY (y)

PY (y))
(3)

= y + Λ∇yln(PY (y)), (4)

whereΛ is the covariance matrix of the noise.[2] The proof of this fact is straightforward.
First, we write the observation equation for additive Gaussian noise contamination:

PY |X(y|x) =
1

(2π)n/2|Λ|1/2
e−

1
2 (y−x)T Λ−1(y−x) (5)

Next, note that
∇yPY |X(y|x) = Λ−1PY |X(y|x)(x − y) . (6)

Taking the gradient of

PY (y) =

∫

PY |X(y|x)PX(x)dx (7)

with respect toy, dividing byPY (y), and substituting Eq. (6) yields:

∇yPY (y)

PY (y)
=

∫

PX(x)∇yPY |X(y|x) dx

PY (y)

=
Λ−1

∫

PX(x)PY |X(y|x) (x − y) dx

PY (y)

= Λ−1

∫

PX|Y (x|y) (x − y) dx

= Λ−1 [E{X|Y = y} − y] . (8)



Finally, rearranging the terms gives Eq. (3). In what follows, we will restrict ourselves to
discussing the case of scalar data.

2 Learning the estimator function from data

The formulation of Eq. (3) offers a means of computing the BLSestimator from noisy
samples if one can construct an approximation of the noisy distribution. But simple his-
tograms will not suffice for this approximation, because Eq.(3) require us to compute the
logarithmic derivative of the distribution.

2.1 Approximating local logarithmic derivative

A natural solution for this problem is to approximate the logarithmic derivative of the den-
sity at the observationYk = y as being constant over some interval(x0, x1) containingy.
This is equivalent to assuming that the density is approximately exponential in the interval:

PY (y) = ce−ay, x0 < y < x1 (9)

wherea is the estimate of the logarithmic derivative in the interval (x0, x1). Note that it is
thea’s which are to be used for the estimator, while thec’s are irrelevant. For this reason,
we look at the conditional density ofy given thaty is in the interval(x0, x1)

PY |Y ∈(x0,x1)(y) =
e−ay

∫ x1

x0
e−aydy

I(x0,x1)

=
a
2e−a(y−x̄)

sinh(a
2∆x)

I(x0,x1) (10)

whereI(x0,x1) denotes the indicator function of(x0, x1), x̄ = x0+x1

2 and∆x = x1 − x0.
Comparing this with Eq. (9), we see that the conditional density is also an exponential
function of y over the interval(x0, x1), with the same exponenta, but is normalized so
thatc no longer appears, and so that it integrates to one over the interval. If we then have
observationsYn drawn fromPY (y), and keep only data which fall in(x0, x1), these data
will have distributionPY |Y ∈(x0,x1)(y), so we can use this to estimate the parametera.

One very popular estimator used for such a problem is the Maximum Likelihood (ML)
estimator. Assuming that Eq.(10) is a good approximation ofthe conditional density on
(x0, x1), this estimator can be written

â = arg max
a

∑

{n:Yn∈(x0,x1)}

ln(PY |Y ∈(x0,x1)(Yn))

= arg max
a

{ln(a) − a(Ȳ − x̄) − ln(sinh(
a

2
∆x))} (11)

where

Ȳ
def
=

1

#{Yn ∈ (x0, x1)}

∑

Yn∈(x0,x1)

Yn (12)

is the average of the data that fall into(x0, x1). Setting the derivative of Eq. (11) with
respect toa equal to zero yields

1

â
− (Ȳ − x̄) − coth(

â

2
∆x)

∆x

2
= 0 (13)

or
1

â∆x
2

− coth(
â∆x

2
) =

Ȳ − x̄
∆x
2

(14)



Solving this forâ gives

â =
2

∆x
f−1(

Ȳ − x̄
∆x
2

) (15)

where

f(y) =
1

y
− coth(y) (16)

This local exponential approximation is similar to that used in [5] for local density esti-
mation except that, since we are approximating the localconditional density,c disappears
from the equation for̂a. This has the benefit that we only need to invert a scalar function of
one variable,f , to calculate the estimate at all points, instead of inverting a two dimensional
vector function of two variables, as is done in [5].

Obviously, it is Ȳ , the local mean, which requires the most calculation, but, since most
of this calculation comes from adding up the value of data which fall in the interval, this
may be done in an iterative way, subtracting or adding from a running sum. This method
is efficient enough that it may be calculated at each data point, rather than on a grid with
interpolation.

2.2 Choice of binwidth

In order to calculate Eq. (15) for a particulary, it is necessary to choose the interval
(x0, x1), or, equivalently, to choose the binwidthh = x1 −x0. To define what we mean by
an optimal binwidth, we must choose a measure of how ”good” anestimate is. We will use
the MSE of the estimate, which may be separated into a variance term and a bias term

E{(â − a)2} = E{((â − E{â}) + (E{â} − a))
2
}

= E{(â − E{â})2} + (E{â} − a)2

= V ar{â} + (E{â} − a))2 (17)

whereâ is the data-dependent estimate of the true valuea. The first term is the variance of
the estimator,̂a and will decrease as the binwidth of the interval is increased, since more
data will fall into the interval, giving a more reliable estimate. The second term is the
squared bias, which will conversely increase as the interval is increased, since the expo-
nential fit of the density over the interval will in general become worse, which means that
the estimatêa will not give a good estimate of the true value of the logarithmic derivative,
a. Thus we have a bias-variance tradeoff.

In order to choose an optimal binwidth, we must analyze how Eq. (17) behaves as a function
of the binwidth,h. For large amounts of data, we expecth to be small, and so we may use
smallh approximations for the bias and variance. In general, the variance in estimating the
parameter,a, for the interval(x0, x1) will depend inversely on the amount of data which
falls in the interval. If there areN total data points, we can approximate the number falling
in the interval(x0, x1) as

n ≈ PY (y)Nh (18)

Hence, we will assume that

V ar{â} ≈
C

PY (y)Nh
(19)

for an appropriate constant,C.

On the other hand, the squared bias will generally depend only on how well the exponential
fits the true density over the interval. Ash → 0 the bias for the interval will decrease to
zero. For smallh we assume that

(E{â} − a)2 ≈ Dhm (20)



whereD = D(PY , y) depends only on the shape ofPY in the interval, but not on the actual
valuePY (y) (see [5]). In what follows, we will assume that the density issmooth enough
that we may ignore the dependence ofD on shape, and treatD as constant for all values of
y. Since, in our case,PY comes from convolvingPX with a Gaussian,PY will be at least
as smooth asPX , and will become smoother as the noise variance increases. Therefore,
this approximation will become better as the amount of noiseincreases.

Putting everything together than yields the approximation

E{(â − a)2} ≈
C

PY (y)Nh
+ Dhm (21)

Setting the derivative of this equation with respect toh equal to zero yields

Dmhm+1 −
C

PY (y)N
= 0 (22)

or

h = (
C

DmPY (y)N
)

1
m+1 (23)

which verifies our assumption thath → 0 as the amount of data increases. Substituting this
into Eq. (21) gives

E{(â − a)2} =

(

(DmCm)
1

m+1

(PY (y)
m

m+1 )
+ D

1
m+1 (

C

mPY (y)
)

m
m+1

)

1

N
m

m+1
(24)

which shows that both the squared bias and variance, and hence the MSE, go to zero as
N → ∞. Using Eq. (18) to approximatePY in Eq. (23) gives

h ≈ (
Ch

Dmn
)

1
m+1 (25)

Rearranging this equation gives

nhm =
C

Dm
(26)

and thus the optimal binwidth is chosen such that the productof the number of points
which fall in the interval times some power of the binwidth ofthe interval is constant. (For
a review of bandwidth selection methods for density estimation see [6]. It does not seem
that our method of bandwidth selection has been suggested.)

2.3 Choice of power

To determine the binwidth, it is necessary to determine the constantm. If m = 0, then
n, the number of data points in the neighborhood, will be constant for all data points, a
method known as k nearest neighbors (KNN). In the limit asm → ∞, the binwidth will
be fixed at a constant value for all data points. Assuming thatthe approximation of the
true logarithmic derivative of the density by a constant is of first order inh leads to the
result that the squared bias will be of orderh2, which givesm = 2 in Eq. (20). This may
be justified by the use of Taylor series whenh is very small. In this case there will be an
interplay between the binwidth and number of points in the interval.

In this section we compare the empirical behavior of binwidths chosen withm =
{0, 2,∞}, to see how they behave for two different distributions. To put all three methods
on the same footing, the constant product for each is chosen so that the average binwidth
across data points is the same. Thus, we are looking at how well the three methods allocate
this average binwidth.



(a) (b)

(c)

Fig. 1: Estimate of logarithmic derivative of Cauchy (dashed line is actual value) (a) using
KNN (m = 0); (b) using fixed binwidth (m = ∞); (c) usingm = 2 to select binwidth

The first density we examine is the Cauchy distribution.

PY (y) ∝
1

1 + 0.5y2
(27)

so that
d

dy
ln(PY (y)) =

y

1 + 0.5y2
(28)

Figure 1 shows the behavior of the estimate of the logarithmic derivative for the three dif-
ferent methods of binwidth selection for a sample of9, 000 points drawn from the Cauchy
distribution. As can be seen, the KNN method (m = 0) has a systematic bias in the tails,
the fixed binwidth (m → ∞) method has larger variance in the tails, while them = 2
method has reduced the bias seen in the KNN method without introducing the variance
present in the fixed binwidth method.

Now consider the Laplacian distribution

PY (y) ∝ e−|x| (29)

which gives
d

dy
ln(PY (y)) = sgn(x) (30)

Figure 2 shows the behavior of the estimate of the logarithmic derivative for the three differ-
ent methods of binwidth selection on9, 000 points drawn from the Laplacian distribution.
Notice that in this case, since the logarithmic derivativeis constant away from the origin,
there is no bias problem. As can be seen in this case, the KNN method has more of a
variance problem near the origin, the fixed binwidth method has larger variance in the tails,
while them = 2 method has reduced the variance near the origin without introducing vari-
ance in the tails. Based on these two examples, in what follows we will restrict ourselves
to using them = 2 method.



(a) (b)

(c)

Fig. 2: Estimate of logarithmic derivative of Laplacian (dashed line is actual value) (a)
using KNN (m = 0); (b)using fixed binwidth (m = ∞; (c) usingm = 2 to select binwidth

The next question is how to choose the average binwidth. Equivalently, we are trying to
determine the constant value of the product in Eq. (26). In the examples that follow, we
will choose the constant so that the average binwidth acrossthe data is proportional to
σY N− 1

m+1 , whereσY is the standard deviation of the observed dataY . The dependence
onσY stems from the intuition that if the data are multiplied by some constant the density
will simply be stretched out by that factor, and the binwidthshould grow proportionally.
The behavior as a function ofN comes directly from Eq. (23).

Now that we have a method of binwidth selection,Ȳ ,x̄ and∆x, can all be calculated, then
Eq. (15) applied to obtain the estimate of the logarithmic derivative, which is then used in
Eq. (3) to obtain the BLS estimator.

3 Convergence to ideal BLS estimator with increase in data

Since each bin shrinks and the amount of data in each bin increases with increasing amounts
of data, our BLS estimator will approach the ideal BLS estimator as the amount of data
increases. In Fig. 3, we illustrate this behavior. For this figure, the density of the prior
signal is a generalized Gaussian distribution (GGD)

PX(x) ∝ e−|x/s|p . (31)

with s = 1, and exponentp = 0.5. We characterize the behavior of this estimator as
a function of the number of data points,N , by running many Monte Carlo simulations
for eachN , drawingN samples from the prior distribution, corrupting them with additive
univariate Gaussian noise, applying the prior free estimator to the data and measuring the
resulting SNR. Figure 3 shows the mean improvement in empirical SNR (relative to the ML
estimator, which is the identity function), the mean improvement using the conventional
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Fig. 3: Empirical convergence of prior-free estimator to optimal BLS solution, as a function
number of observed samples ofY . For each number of observations, each estimator is sim-
ulated many times. Black dashed lines show the improvement of the prior-free estimator,
averaged over simulations, relative to the ML estimator. White line shows the mean im-
provement using the conventional BLS solution,E{X|Y = y}, assuming the prior density
is known. Gray regions denote± one standard deviation.

BLS estimation function,

E{X|Y = y} =

∫

xPX(x)PY |X(y|x)dx
∫

PX(x)PY |X(y|x)dx

=

∫

xPX(x)e
−(y−x)2

2σ2 dx
∫

PX(x)e
−(y−x)2

2σ2 dx

, (32)

and the standard deviations of these improvements taken over our Monte Carlo simulations.

As can be seen, our estimator improves in performance as it isgiven more data, and ap-
proaches the performance of the ideal BLS estimator as the amount of data increases. It
does this without making any assumption about the prior density of the data, instead adapt-
ing to the data it does observe. As can also be seen, the variance of this estimator is quite
low, for even moderate amounts of data.

4 Comparison with Empirical Bayes

As we have discussed, our prior free estimator will adapt to the observed data, and, given
enough data, will give behavior that is near ideal, regardless of the form of the prior distri-
bution. If, instead, we were to assume a particular parametric form for the prior distribution,
as in the commonly used Empirical Bayes methods[7], and the true prior did not fall into
this parametric family, then the behavior of this estimatorwould likely be compromised.
Thus, our estimator gives a potential advantage over methods which use parametric forms
for estimators, since it makes no assumptions about the prior distribution. In exchange,
it may require more data than a parametric method. In this section, we will compare the
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Fig. 4: Other Priors: (a) Laplacian (b) shifted Laplacian (c) bimodal Laplacian (d) asym-
metric GGD

empirical behavior of our estimator with that of a parametric estimator under conditions
where the assumptions of the parametric estimator are validand under conditions where
these assumptions are false.

For our simulations, the Empirical Bayes estimator, based on [8], assumes a GGD form
for the prior, as in Eq. (31). The parameters,p ands, are fit to the noisy observation by
maximizing the likelihood of the noisy data, and the estimator is computed by numerical
integration of

X̂GGD(y) =

∫

xe−|x/s|pe
−(y−x)2

2σ2 dx
∫

e−|x/s|pe
−(y−x)2

2σ2 dx

(33)

and this estimator is then applied to the noisy observations.

4.1 Prior Distributions

The priors we will deal with are shown in Fig. 4. The first is theLaplacian prior (a special
case of the GGD), the second is a Laplacian prior with shiftedmean, the third is a bimodal
Laplacian

PX(x) ∝
1

2
e−|x−m| +

1

2
e−|x+m| (34)

and the fourth is an asymmetric GGD:

PX(x) ∝

{

e
−| x

s1
|p1

, x ≤ 0

e
−| x

s2
|p2

, x > 0
(35)

where the constants are chosen such that the distribution still has zero mean. Thus, the first
distribution fits the model assumed by the Empirical Bayes method, whereas the last three
break it in some simple ways.
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Fig. 5: Coring Functions for: (a) Laplacian (b) shifted Laplacian (c) bimodal Laplacian
(d) asymmetric GGD prior distributions. In all figures, the dotted line denotes the identity
function for reference.

4.2 Results

In these cases, since the prior is known the optimal solutionmay be calculated directly
numerically integrating Eq. (32). Figure 5 shows the estimators, also known as coring
functions, obtained for the prior-free and GGD methods fromthe observed data, as com-
pared with the optimal solution calculated by numerical integration of Eq. (32). Table 4.2
shows the empirical SNR obtained from applying these methods to the observed data, for
the priors discussed, as simulated for various values of noise power. Since the eventual
application we have in mind is in image processing, we picked9, 000 data points in our
simulation, a reasonable number for such applications.

As is to be expected, in the case where the prior actually fits the assumptions of the GGD
model, then the GGD method will outperform the prior-free method, though, it should be
noted, not by very much. In the cases where the assumption on the prior is broken in some
simple ways, however, the performance of the GGD method degrades considerably while
that of the the prior-free method remains surprisingly close to ideal.

5 Image denoising example

In this section we describe a specific example of this prior-free approach as applied to
image denoising. The development of multi-scale (wavelet)representations has led to sub-
stantial improvements in many signal processing applications, especially denoising. Typi-
cally, the signal (or image) is decomposed into frequency bands at multiple scales, each of
which is independently denoised by applying a pointwise nonlinear shrinkage function that
suppresses low-amplitude values. The concept was developed originally in the television
engineering literature (where it is known as “coring”[e.g.9, 10]), and specific shrinkage



Prior Noise Denoised SNR

Distn. SNR Opt. GGD Prior-free

Lapl. 1.800 4.226 4.225 4.218
4.800 6.298 6.297 6.291
7.800 8.667 8.667 8.666
10.800 11.301 11.301 11.299

Shifted 1.800 4.219 2.049 4.209
4.800 6.273 4.920 6.268
7.800 8.655 7.762 8.651
10.800 11.285 10.735 11.284

Bimodal 1.800 4.572 4.375 4.547
4.800 7.491 6.767 7.468
7.800 10.927 9.262 10.885
10.800 13.651 11.776 13.603

Asym. 1.800 7.102 6.398 7.055
4.800 8.944 8.170 8.915
7.800 10.787 10.044 10.767
10.800 12.811 12.143 12.791

Table 1: Simulated denoising results.

functions have been derived under a variety of formulations, including minimax optimal-
ity under a smoothness condition [11, 12, 13], and Bayesian estimation with non-Gaussian
priors [e.g. 8, 14, 15, 16, 17, 18, 19, 20]. Note that, although such methods denoise each co-
efficient separately, a process which will not generally be optimal unless the coefficients are
independent (which is impossible for redundant transformations), such marginal denoising
methods have proven effective.

As in [8, 17, 21], we begin by decomposing the noisy image using a steerable pyramid.
This is a redundant, invertible linear transform that separates the image content into ori-
ented octave-bandwidth frequency subbands. We apply our prior free estimator to each
subband separately, using the noisy data in a subband to construct an estimator for that
subband. We then apply the subband estimator to the noisy coefficients in the subband in
order to estimate the values of the original, noise-free subband. After the coefficients of
each subband have been processed, the inverse pyramid transform is applied in order to
reconstruct the denoised image.

5.1 Results

We have applied our prior-free Bayesian estimator to several images contaminated with
simulated Gaussian noise. For all examples, the noise variance was assumed to be known.
The results were compared with two other methods of denoising. The first method [8],
described in the last section, uses ML to fit the parameters ofa GGD prior, Eq. (31), to the
noisy data in the subband. This is justified by the fact that the GGD is a parametric form
which is known to provide good fits for the marginal densitiesof coefficients in image
subbands [22, 8, 17, 18]. We then use use this parametric prior to find the associated
estimator by numerical integration of Eq. (33).
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Fig. 6: Example estimators (coring functions) for two subbands: Prior-free Bayesian esti-
mator (solid), BLS estimator for a GGD (dashed), and optimalsoft threshold (dash-dotted).
Dotted line indicates the identity function. Noise standard deviationσ is also indicated.

The second estimator is a “soft threshold” function, as usedin[11]:

x̂(Y ) =







Y − t, t ≤ Y

0, −t < Y < t

Y + t, Y ≤ −t .

(36)

We make use of the clean, original data to find a soft thresholdfor each subband that
minimizes the empirical mean squared error in that subband.Thus, the performance of
this method should not be interpreted as resulting from a feasible denoising algorithm, but
rather as an upper bound on thresholding approaches to denoising. Two example estimators
are shown in Fig. 6.

Figure 7 shows a sample of an image denoised using these threemethods. Table 5.1 shows
denoising results for some sample images under several noise conditions. As can be seen,
the prior-free approach compares favorably to the other two, despite the fact that it makes
weaker assumptions about the prior than does the generalized Gaussian, and doesn’t have
access to the clean data, as does the optimum thresholding. Figure 8 shows a histogram of
PSNR improvement of the prior-free algorithm over optimal thresholding and generalized
Gaussian approaches for nine images at four different noiselevels. As we can see, our prior
free method compares favorably with the parametric method,which was based on detailed
empirical knowledge of the statistics of image coefficients.



(a) (b)

(c) (d) (e)

Fig. 7: Denoising results for the “Feynman” image. (a) original; (b) noisy image (PSNR
= 12.71 dB); (c) using optimal thresholding (PSNR = 25.02 dB) (d) using generalized
Gaussian (PSNR =24.77 dB) (e) using prior-free denoising (PSNR = 24.86 dB)



Image Noise Denoised PSNR

PSNR Opt. Thr. GGD Prior-free

crowd 15.8783 26.4656 26.2465 26.333
18.8783 28.0198 27.8368 27.8779
21.8783 29.7355 29.5498 29.6008
24.8783 31.5095 31.37 31.3928

feynman 12.7117 25.0311 24.7549 24.8574
15.7117 26.1558 26.051 26.0729
18.7117 27.4194 27.3848 27.3534
21.7117 28.7006 28.7162 28.6775

boats 16.4778 27.1993 27.0371 27.1585
19.4778 28.6465 28.5733 28.6439
22.4778 30.2497 30.2161 30.2799
25.4778 31.9319 31.9379 32.0262

einstein 17.5359 26.6842 26.5818 26.5132
20.5359 28.0678 28.0155 27.955
23.5359 29.4865 29.4828 29.4252
26.5359 31.0617 31.1044 31.0636

lena 16.3128 28.0438 27.7634 27.8942
19.3128 29.513 29.3355 29.3937
22.3128 30.9951 30.8883 30.9357
25.3128 32.6389 32.5864 32.6361

bench 13.9423 20.1491 20.2218 20.1812
16.9423 21.4907 21.5634 21.5328
19.9423 23.1416 23.1816 23.1636
22.9423 25.0898 25.1185 25.1158

brick 16.5785 22.5231 22.4509 22.421
19.5785 24.0482 24.0604 24.0453
22.5785 25.6705 25.7991 25.7848
25.5785 27.5393 27.7055 27.6933

bridge 15.4273 23.1067 23.0942 23.0978
18.4273 24.3743 24.3872 24.3676
21.4273 25.7939 25.8256 25.8115
24.4273 27.4841 27.5448 27.5285

Table 2: Simulated denoising results.
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Fig. 8: Improvement in PSNR for prior-free approach compared with the GGD estimator
(left) and optimal thresholding (right). Histograms summarize data for 9 images at 4 noise
levels.

6 Discussion

We’ve discussed a modified formulation of the Bayes least squares estimator in the case of
additive Gaussian noise. Unlike the traditional form, thisestimator is written in terms of
the distribution of the noisy measurement data, and is thus more natural for situations in
which the prior must be learned from the data. We’ve developed a local approximation to
this prior free formulation, which uses adaptive binwidthsto give improved performance
with an increase in the number of samples drawn from the noisydistribution. We’ve shown
that as the amount of data is increased, the prior free estimator will tend to give perfor-
mance that is near ideal. We’ve also shown that breaking the assumptions of parametric
models of the prior leads to a drastic reduction in the performance of methods based on
such assumptions, while the prior-free method is able to deal with such changes. Finally,
we’ve demonstrated the feasibility of this methodology by applying it to the problem of
image denoising, demonstrating that it performs as well or better than estimators based on
marginal prior models found in the literature, which are based on empirical studies of the
marginal statistics of clean image subbands. Therefore, insituations where the prior distri-
bution of the clean data is unknown, our method can be used, with some confidence that
not too much is lost by not examining and modeling the empirical statistics of clean data,
which may not even be possible in some situations.

It must be pointed out that the prior-free method requires a lot of data to be feasible. Also,
in cases where an accurate model of the prior is available, methods that make use of this
explicit model may give some improvement. However, if nothing is known about the prior,
and there is a lot of data, then the prior-free method should give improvement over an
ad-hoc assumption about the prior.

In order to obtain image denoising results which are competitive with the state of the art,
it is necessary to jointly denoise vectors of coefficients, instead of one coefficient at a
time [23, 21]. While Eq. (3) holds for vectors as well as scalars, finding neighborhoods
of vectors to use in estimating the logarithmic gradient at apoint becomes much more
difficult. For higher dimensions the data vectors will tend to be further and further apart
(the ”curse” of dimensionality), so great care must be takenin choosing the shape of the
large neighborhoods required to include sufficient number of data points.
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