POINCARE AND FRIEDRICHS INEQUALITIES
FOR MORTAR FINITE ELEMENT METHODS
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Abstract. Mortar finite elements are nonconforming finite elements that allow for a geometrically
nonconforming decomposition of the computational domain and, at the same time, for the optimal
coupling of different variational approximations in different subregions. Poincaré and Friedrichs in-
equalities for mortar finite elements are derived. Using these inequalities, it is shown that the condi-
tion number for self-adjoint elliptic problems discretized using mortars is comparable to that of the
conforming finite element case. Geometrically non-conforming mortars of the second generation are
considered, i.e. no continuity conditions are imposed at the vertices of the subregions.
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1. Introduction. Mortar finite elements are nonconforming finite elements that
allow for nonconforming decomposition of the computational domain into subregions
and for the optimal coupling of different variational approximations in different sub-
regions. Here, by optimality we mean that the global error is bounded by the sum
of the local approximation errors on each subregion. Because of these features, the
mortar elements can be used effectively in solving large classes of problems.

The mortar finite element methods were first introduced by Bernardi, Maday, and
Patera in [9], for low-order and spectral finite elements. A three dimensional version
was developed by Ben Belgacem and Maday in [7], and was further analyzed for three
dimensional spectral elements in [6].

Mortar finite elements have been shown to perform as well as the conforming
finite elements in many numerical algorithms. For domain decomposition methods,
see Achdou, Maday, and Widlund [3] and Dryja [12, 13] for iterative substructuring
methods, and Widlund [15] for additive Schwarz algorithms; for other studies of pre-
conditioners for the mortar method see Casarin and Widlund [11] for a hierarchical
preconditioner, Achdou, Kuznetsov, and Pironneau [2], and Achdou, and Kuznetsov [1]
for substructuring preconditioners. For the use of mortars for the Navier-Stokes equa-
tions, see Achdou and Pironneau [4, 5], and for multigrid methods for mortars, see
Braess, Dahmen, and Wieners [10].

We first briefly describe the mortar finite element space V", restricting our dis-
cussion to the two dimensional case. The computational domain €2 is decomposed into
a nonoverlapping polygonal partition {€2;},_17. The partition is geometrically con-
forming if the intersection between the closure of any two subregions is either empty,
a vertex, or an entire edge, and it is nonconforming otherwise. We may also use sub-
regions with curved boundaries, but here we discuss only the polygonal case, since the
extension is straightforward. The restriction of V" to any subregion Q is a conform-
ing finite element space. Across the interface I', i.e. the set of points that belong to
the boundaries of at least two subregions, pointwise continuity is not required. We
partition I' into a union of nonoverlapping edges of the subregions {2}, 77, called
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nonmortars. The edges not chosen to be nonmortars, are called mortars. On the
two sides of an edge which coincides with a nonmortar, there are two distinct traces
of the mortar functions. We only require that the difference of these two traces is
L?—orthogonal to spaces of test functions defined on the nonmortar.

In this paper, we prove Poincaré and Friedrichs inequalities for mortar finite el-
ements. The constants in these inequalities depend only on the diameter of €2, and
neither on the properties of the partition {{2;},_77, nor on those of the mortar finite
element. Using this result, we prove, in section 6, that the condition number of the
unpreconditioned mortar finite element method has the same upper bound as in the
continuous finite element case, and does not depend on the number of the subregions
in the partition of 2. This is a refinement of a result of Bernardi, Maday, and Patera
[9]. There, a Friedrichs inequality is proven using the Rellich compactness theorem,
which leads to an estimate of the condition number which depends on the number of
the subregions in the partition {Q;}, 77 and their diameters.

In the geometrically conforming case, a variant of the Friedrichs inequality for
mortars was proven by Bernardi and Maday [8].

The rest of the paper is structured as follows. In the next section, we introduce
the elliptic problem and describe the mortar finite element method in greater detail.
In Section 3, we present some technical tools. Our most important auxiliary result is
proved in Section 4. In Section 5, we prove Poincaré and Friedrichs inequalities for the
mortar functions, and in Section 6, we prove an estimate of the the condition number
of the mortar stiffness matrices. We conclude our paper by extending, in Section 7
our results for the case of general polygonal partition.

2. The Elliptic Problem and the Mortar Finite Element Method. To
keep the presentation simple, our model problem will be Poisson’s equation with
Dirichlet boundary conditions on €2, a bounded open polygon in R?. Our results can
also be obtained, using the same methods, for any second order self-adjoint elliptic
problems with mixed boundary conditions, and for the three dimensional case.

2.1. Partition of the region into subregions. We partition {2 into K open,
nonoverlapping, shape regular, polygonal subregions:

K
Q=% Q% =0 if 1<i#j<K
k=1

This partition may be geometrically nonconforming. If an edge of the polygons
{Qk},_7:¢ intersects the boundary 0Q at an interior point of the edge, we require
that the entire edge belongs to 9. Let Hj be the diameter of €, hy the smallest
diameter of any of the elements of Q, and h = minhy, k =1 : K. We do not require
that all the Hy, are of the same order of magnitude, but only require that the diame-
ters of any two adjacent subregions Q, and Qs (i.e. Q, N s # @) are comparable, i.e.
¢ < H,/H; < C, where c and C are positive constants independent of the subregions
considered. We assume that all the subregions are generated from a reference domain
Q by mappings Fj, such that Q; = Fj(Q), and

|0F|| < CHy, VE=1:K; |0F ' < CH;', Vk=1:K.

As a consequence, we note that the length of every side of {2 is bounded from below
by a uniform fraction of Hy.



2.2. The mortar finite elements. To introduce the space V" of mortar fi-
nite element functions over 2, we need some additional definitions and notations.
Let V"(S) be the restriction of V" to a set S. The interface between the subre-
gions {Q;},_1%, denoted by T, is defined as the closure of the union of the parts of
{04 },_17¢ that are interior to €2:

I = UK (0%% \ 09).

A set of mortars {(;,}M_, is obtained by selecting open edges of the subregions
{Q%},_77 such that

M
T'=|JCm mNé=0i 1<m#n<M.
m=1

This partition is not unique, but any choice can be treated the same from a theoretical
point of view. The edges of {€2;},_77 that are part of I' and not chosen to be mortars
are called nonmortars and are denoted by (v;),_7;z. We note that the nonmortars also
cover the interface:

L
=%, mNym=0if 1<l#n<L,
=1

and that each nonmortar 7 belongs to exactly one subregion, denoted by ;). Let
I'; be the union of the parts of the mortars that coincides geometrically with 7;:

a(m)

(1) r, = | @Ginm).

=1

For each +;, we construct a space of test functions ¥”(y;), which is a subspace of
codimension two of V"(v;), the restriction of Vh(Qi(l)) to 7;. Thus, when the space
Vvh (1)) is piecewise linear, i.e. P or Q1, Th(y,) is given by the restriction of Vh(Qi(l))
to 7;, subject to the constraints that these continuous, piecewise linear functions are
constant in the first and last mesh intervals of 7;.

The mortar projection on +y; is defined on L?(I';) and takes values in V"(v;). For
two arbitrary values ¢q; and gq, and for w; € L?(T;), the function 7, 4, (1) € V()
equals ¢; and g2 at the two end points of ;, and satisfies

(2) / (1) — Togy 0 (w))pds = 0, Vap € Th(y).

We are now able to define the mortar finite element space V" fully. The restriction
of V" to Q is a conforming finite element space. For any mortar function v € V',
we impose v|,, = 0, since we have assumed zero Dirichlet boundary conditions for
our Poisson problem. We also require v to satisfy the mortar conditions for each
nonmortar -y, i.e. Vs is equal to the mortar projection of Vg, - This allows the values
of v at the end points of 7; (denoted by A; and B;) to be genuine degrees of freedom:

Vg = o) () (Y, )-
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2.3. The discrete mortar problem. As in other nonconforming methods, we
work with a bilinear form al(-,-) defined as the sum of contributions from the indi-
vidual subregions:

K
a" (vp, wp) Zak Uh, Wh),
k=1

where ay(vp, wp) = ka Vy, - Vwy,. For wy, = vy, we obtain the square of what is often
called a broken norm: a' (vy,vp) = SIK_, ‘Uh‘%ll(ﬂk)'
The discrete problem is then:

(3) Find uy, € V" such that a® (up,vp) = f(vs), Yo, € VH,

where fT'(v,) is a sum of contributions from all the subregions {Q},_1%:
K
Z (vn),  fr(vn) / [ on dz.

The existence and uniqueness of the solution of problem (3) is a consequence of
the Lax-Milgram lemma, as soon as we have proven the coercivity of the broken norm
with respect to the L? norm:

cllonllz) < a" (vn,vn), Yop €V,

with a constant ¢ > 0. This bound is a consequence of the Friedrichs inequality; cf.
Theorem 5.1:

Hv||L2(Q < C(diam(Q Z |Uk|H1(Qk Yo € VI 0 HY(Q).

3. Technical tools. We begin with a version of the Friedrichs inequality on a
reference subregion Q.

LEMMA 1. Let Q C R? be a fized, open, bounded domain with Lipschitz boundary.
Let ¢y > 0 and let AcC o0 bea part of the boundary ofﬁ such that

cou(89) < u(d),

where p is the Lebesgue measure. Then,

llwll

< 0( |w|?

1 2 1/
e T a|/dea| ), ¥we H'(Q),

@)
where C is a constant that depends only on (AZ, and not on w, jAX, or cy.

We also need a generalized version of the Friedrichs inequality. We note that
Lemma, 1 follows from Lemma, 2.

LEMMA 2. Let Q C R? be a fized, open, boynded domain with a Lipschitz bound-
ary, let co € (0,1) be a constant, and let A C 9Q such that
(4) cop(02) < p(A).
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Let zﬁ be a bounded positive function defined on A with the following properties:

(5) 0<§<2 and  LuR) < p(frel : B> 1)),

Then, the following inequality holds,

L 1 2 N

/,\ szda
A

where C is a constant independent of ¢y, w, K, and 12;

~

Proof. We may assume that diam(€2) = 1. The general inequality is obtained
easily by a scaling argument.
Suppose that Lemma 2 is not true. Then there exists a sequence {wy,}, 1.5 of

functions in H 1(@), a sequence of boundary parts (Kn) satisfying (4), and a

n=1:00
sequence of functions (v,,), 1.5 defined on (A,), 7.5 and satisfying property (5),
such that
(7) ||wnHL2(§) =1 Vn=1 )
8 2 - hudo) < 1 Vn=Tioo

For n — oo, wy, converges to 0 in the H 1(Q)—seminorm. Therefore, the sequence
{wy} is bounded in H'(), and we obtain, from Rellich’s theorem, the existence of a
subsequence of {w,} that converges in the L2(€) norm. For simplicity, we also denote
this subsequence by {wy,}. Since |wn|?5{1 &~ 0, we also have convergence of {wy,} in
the H'(Q) norm. The limit function is a constant function, .

From (8), we know that \an wn{p\nda| — 0. Since w, — ¢ in H'(Q), and the

functions zzn are uniformly bounded by assumption, we obtain, using a trace theorem,
that

(9) ‘/Kn Jnda‘ & — 0.

From (4) and (5):

Co -~

(10) [ ado] > Su®) > Ducod)
An

Finally, from (9) and (10), we obtain that & = 0, which implies w,, — 0 in L2(2). This
contradicts assumption (7), and the proof is completed. O

The next lemma is purely geometrical, and is a straightforward generalization of
a result of Bernardi and Maday [8].

LEMMA 3. Let € be a bounded domain in the plane and let {Qk}k:ﬁ be a shape
reqular partition of Q, where Qy is a polygon of diameter Hy. Let £ be a line passing

through € and let (Qi,g)i:m be the subregions with interiors intersecting £. Then,

n(f)
Y H;y < Cdiam(%),
i=1
where C is a constant which depends only on the minimal angle of the polygonal

subregions {Qx},_15¢, and not on their diameters (Hy),_17-
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4. An estimate of the L? norm of jumps across nonmortars. The lack
of continuity of the mortar finite element functions prevents us from applying the
standard Poincaré and Friedrichs inequalities on the domain Q. As we will see in
the next section, the most important step in the proofs of these inequalities is an
estimate of the L? norm of the jump of the mortar finite element function v over the
nonmortars.

We restrict the technical discussion of this section to the case when all the subre-
gions {Q},_17 are rectangles. In the last section, we explain how our results can be
extend ed for a polygonal partition.

We need to introduce additional notations. Let v be a nonmortar side of the
subregion ;, and let v; be the restriction of the mortar function v to ;. Since the
partition of Q2 can be geometrically nonconforming, we can have a union of parts of
several mortars (;;, ¢ = 1: ¢(7y) opposite v across the interface T'; cf. (1). We order
these segments from left to right. Let €;; be the subregion which has (;; as a side,
and let

Oiit1 = 0 ; MO i1, Vi=1:(q(y)—1).

Since every subregion € ; has a diameter on the order of Hj, g(-y) is uniformly bounded
by a constant C' which depends only on the lower and upper bounds of the ratios of
the diameters of adjacent subregions.
Let ¥ be the function that is equal to v ; (the restriction of v to €;;) on ¢; ;. Note
that ¥ can have two values at the vertices on the interface I' that are interior to 7.
LEMMA 4. Let [v] = v; — ¥ be the jump of v across the nonmortar . Then,

q(v)
(1) [war < € n o) (Il + > Il ):

where C is a constant that does not depend on 7.
Proof. By definition:

(12) /7 v]2do = L vy — 5[2do.

The functions v; and © satisfy the mortar conditions (2).

Since any space of test functions ¥”(y) contains the constant functions, and since
the functions v; and ¥ satisfy the mortar conditions (2), the averages of v; and © over
v are equal:

/vldo = / vdo = Ty p(y).
v g

Opposite €, we construct a rectangle ., with one side equal to v and with
sides of length min{x(d;;41)}, ¢ = 1: (¢(y) — 1), perpendicular to .
Let vpey be an extension of © from 7y to 2, with the following properties:

(]‘3) Unew E Hl(Qnew)a

(14) /’Unede' = /17d(7 = Tyu(y).
v v
6



%2 B3

F1G. 1. Local nonconforming situation

Note that v,e, need not be a finite element function, and its trace on 7 need not be
equal to U. We just require that the average of vy, over 7y is equal to that of .

We now provide the details of the construction of v,e,. Without loss of generality,
we can consider the case of only three rectangles €1, Q;2, 3. Let v;1, v;2, and
v,3 be the restrictions of v to €1, {2, € 3, respectively. These functions may be
discontinuous across 012 and ds 3; cf. Figure 1, where ¢, = ABQP, 012 = CE and
023 = DF.

For every segment d;;,1, we construct in one of the rectangles €;; or €; ;1 (say
on €;;) a function x; € HI(QM) such that x; is equal to v; ;41 — v;; on ;41 and
vanishes on the side opposite d; ;41

The choice of whether to construct the function x; on Q;; or ;. is made
according to which of 0Q;; Ny and 0,41 Ny is the largest. If u(0,; N~y) >
©(0€541 N7y), we choose subregion €2; ;; otherwise € ;1. As a consequence, since the
subregions ) ; and €2; ;1 have diameters on the order of H;, we find that the length
of the intersection of v with the boundary of the chosen domain is on the order of H;.

This choice avoids one of the problems that occur in the study of the geometrically
nonconforming case, namely the existence of small intersections of the boundaries
of two subregions from the partition {€2;}, 17%. Such a configuration can appear
naturally, e.g. from a small perturbation of a geometrically conforming partition.

In our case, we construct the functions yo and s as follows:

X2 - Ql,2 — R; X2\Qnewml72 = (’Ul,1 - [Ul,2)|gnewn51,2;

X2‘Qnew Né2 3

/ x2do = 0;
cD
X312 = R X3lg,0mems = (vi,3 —vi2)

|Qneu) Néa 3 ’

X3‘Qnewﬁ51,2

/ X3 do = 0.
cD

For this purpose, we use extension and trace theorems on the unit square Q; see,
e.g. Necas [14].



Let 8, 81, 82, and §3 be the sides of ﬁ, in consecutive order. If qﬁ € H3 (8), we can,
using several reflections, extend it to a function E(¢)) € H 3 (0R2) such that

< Cllll 3

B3 00 <

Let ¢; and ¢2 be positive C'*® (89) functions with the following properties: ¢ is
1 on § and 0 on $ (the side opposite to § in the rectangle Q) and is bounded from
above by 1 on 99; ¢9 is supported in §;, and f ¢odx = 1. The function

Ey() = ¢LE®) — ¢o / HE()

is an extension of 1,5 satisfying

Bo(), =9 Eo(),, = 0;
BBl 3 5y < OBl

/g1 Fy(d)do = 0.

€ H %([‘)ﬁ), there exists a harmonic extension of Eg(¢)) to the unit
(€2), which does not have to be a finite element function, such that

< ClIBD) 3 gy < I,

Since Ey()
square ), 4 € H'
|U’| )2 (ﬁ) H? (3)
There exists a diffeomorphism F' : Q- 2 2 that induces a natural mapping from
the functions defined on €}; 5 into the functions defined on 2. We construct x» in the
following steps:
1. let vy := (vy,1 — Ul’2)|9ne'wn51,2 oF;
2. let 49 be the extension of Ey(1h2) from 02 to Q described above;
3. let xo :=1g 0 F L.
From the properties of F' and the extensions on {2, we obtain the following esti-
mates for yo:

el < Clizlmg) < OBl 135 < Cllall, 3,
= C||tia —1112||H2 (@nb12)’

Ix2ll2opy < Cu(CD)[d] 25, < C“('Y)H%Hﬂ(aﬁ) < GuOll 2||H2(‘9”
= CuNBol)ll 43 ) < CEOall 13,
= Cu)llé — ”l?HHz(ma )

Therefore the function x2 has the following properties:

X2|Qnewm;1,2 = (Ul,l_vl,Z)\Qnewngl,2;
X2lQnewnsys 0;
(15) | xedo = 0;
cp
(16) IXelmi) < Clliog — Ul2||HE(Qn512)
(17) Ix2llr2@epy < Cuty — drel] 1

H7 Qﬂ(51 2)
8



The function 3 is constructed similarly.
Finally, vy, is defined as follows:

Vi1 on gl,l N gnew;
(18) Unew = U2+ X2+ X3 on gl,Z N gnew;
1,3 on Ql,3 N Qpew-

Note that vy, is continuous by construction.

We now check that vy, satisfies (13) and (14). Since vy, is piecewise H' and
continuous, we obtain that v,y € H'(Qnew), Which means that v, satisfies (13).
For (14):

/vnewda = / VUnewdo :/ ﬁda-l—/ X2 -I—/ x3dx
7 AB AB cD cD
= [ #do = wyul),
AB

where we have used (15), and the fact that x3 has properties similar to those of ya.
Using the construction of v,e, and e, we begin the proof of (11):

/[v]2do — /|vl—6|2da < 2/ |vl—ﬁ7|2da+2/|ﬁ—ﬁ7|2do
vy Y Y vy

(19) < 2/ oy — T [2do + 4/|vnew—m|2da + 4/ 15 — vmew|?do.
v Y Y

We now estimate the three terms of (19). For the first two, we use Lemma 1 and
Lemma 2, both for the unit square Q, which is the reference subregion. We will apply
the Friedrichs inequality, trace theorems, and inverse inequalities only on the reference
unit square Q, since we look for results independent of the partition {2}, 17 of €2.

Estimate of [ v — vy |%do:

/y'vl_ﬁ’)’|2d0 = H(fy) /g |Iﬁl_ﬁ’7|2d0 < M(’Y)H@l _5’7‘@2(36) < CH(’Y)||"A)I_57H§11(§),
where we have used a trace theorem for the last inequality. Since,

[(fal —%,)do =0,
S

we obtain from Lemma 1:

2

||’0l - E’YHHI(Q) < C|"Ajl|H1(§)'

Combining the last two relations, we can bound the first term of (19) by the seminorm
of the restriction of the mortar function v to €:

(20) [l =wPdo < Culnty gy < Cu@nlin,

Estimate of [ [vnew — vy |%do:
From (14) we obtain that [\ (vnew —7,)do = 0. Applying the same method as for the
first term, we get

(21) /|’Unew_ﬁ'y|2d0 < CN(’Y)"UnewﬁIl(Qnew)-
v
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The last inequality holds since, by assumption, the diameters of adjacent subregions
are uniformly comparable. From the construction of vy,e,, we find:

3
(22)  [vnewlF(ane,) < 3( > il ) + 3Ixelt(a,) + 3l
i=1
The estimates of | X2|%I1(Ql,2) and | X?’ﬁfl(ﬂz,z) are similar, so we derive only one of
them. One of the sides of the subregions €};; and ;o that intersect (¢, N d19 is
a nonmortar side. For our proof it does not make any difference which it is, and we
can assume that it is a side of €; 1. To this nonmortar will correspond a space of test
functions ¥ 5. Denote by 112 € ¥ the test function that is equal to 1 at all the
nodes of the nonmortar side that are also in €2,,¢,, N 12 except for the last one, and is
equal to 0 at all the other nodes. We replace Q¢ N 61,2 with CE. From the mortar
condition (2), we obtain:

/ Ul,l’lpl,zda = / 'Ul,2'lp1’2d0'.
CE CE
Let « denote the following congruent terms:

o = Jepuirpdo - Jopuiiado

Jor 12do Jog Y1 2do

Then it is easy to see that:

(23) /CE(’Ul,l —a)ppdo = /(}E(Ul,g—a)il)l,gda = 0.

Since the rectangles (£ ;),_t;3 are neighbors of €, their diameters are of the same
order as Hj, the diameter of €2;. Moreover, C'E has a length on the order of H; since
it is a side of the rectangle €); 9, and the following estimate holds,

cop(08y1) < éH; < p(CE).

Here, ¢ is a constant that does not depend on the subregion €2; ;. It is easy to see,
from the definition of 41 o, that

%M(CE) < p{z €CE : 1(x) > 1}).

Therefore, conditions (4) and (5) of Lemma 2 are satisfied. Let F : Q — Q2
be the diffeomorphism between ;5 and the reference unit square 0. The induced
mapping takes a function u defined on 2; 5 into the function 4 = u o F' defined on Q.
It is easy to see that conditions (4) and (5) are also satisfied on Q. From Lemma 2,
we obtain:

/(’51,1 — &) pdo

S1

2
) = Clonal. @y

. 1
@1 Iy - 8l 6y < O (Il + 2

since, by (23), the integral over §; vanishes. Using a trace theorem, inequalities of
Sobolev norms on affine equivalent domains, and (24), we obtain:

" Gnd CHUU—aH Lot S < Olfor = dlln g

IN

111 —all? < Cloal;

HY(D)
< C"Ul,l|H1(Ql,1)'
10



Once again, C' is a constant that does not depend on the subregion €;;. A similar
estimate holds for v; 5 — a. Therefore,

25) |log — ool s ~ . < 2 —al - . 2|12 — &% L ~
@5) Mo =nallpy 6, < A =8y g, ) + 202 =dlly 605 )

2 2
< C(\vl,l \Hl(n,,l) + |Ul72|H1(Ql,2))'

From (16) and (25), we obtain,

\Xﬂ%ﬂ(n,,z) < C(|Ul,1 ﬁql(nm) + |Ul,2|%11(nl,2))-

Since the estimate of 3 is similar, we obtain, using (22), an estimate of vyey,

3
(26) |Ivnew|?{1(9new) S CZ |’Ul7i‘%11(ﬂl,i).
=1

From (21) and (26),
3
(27) LMWJW%SCMﬂ;m%mm
1=
Estimate of [ [0 — Vnew|2do:
From the definitions of ¥ and vy, we find
Lo —tmeuPdo = [ potxsPde < 2lxaliaon +2lzeny

From (17) and (25), we obtain,

2 ~ ~
Ix2llZ2cpy < Cu(7)||vl’1_,Ul’ZHiI%(QnewﬂJl,g) < C<|vl,1|%11(9,,1)+|w,2|%{1(9,,2)),

and therefore,

3
(28) /yw - 'Unew|2d0' < Culy) Z |'Ul,i|§{1(ﬂl,i)'

i=1

We now complete the proof of our lemma. Substituting the estimates (20), (27),
and (28) into (19), we get:

/['U]Zda < 3/|Ul—ﬁ7\2d0 + 3/|funew—m2da + 3/|’6—vnew|2da
Y v Y Y

3 3
< CuMluliay + Cn0 X ol + CrO) Y vl
i=1 i=1
3
< cum) (Ilfigy + X il )

i=1

where C is a constant not depending on the length of 4. D

11



5. Poincaré and Friedrichs inequalities. In this section, we prove two in-
equalities for mortar finite element functions.
THEOREM 5.1. (Friedrichs inequality) For every v € V",

K
Il[Z2@) < Cldiam(Q))* Y loklt(q,),
k=1
where C' is a constant independent of (Hy),_17, (Pk),_1%, and K.

Proof. We may assume that no edge of the subregions {2 },_17 is parallel to the
z- or y-axis. Otherwise, since the number of support lines for the edges of {Q4}, 17
is finite for any partition of (2, we can rotate {2 to obtain the desired property.

Let £y be a parallel to the z-axis passing through 2. The intersection of £y and
the interface I" consists of a finite number, n(yy) — 1, of points, denoted by P, P, ...,
Pyy(y)—1 in increasing order of their z-coordinates. Let {Fy, Py} = £N 082, such
that Py is the leftmost of the two points, and let («;(yo),y0) be the coordinates of P;,
for i = 0: n(yo). Then,

{(a0(%0):Y0)s (@n(yo)(¥0)syo)} = £N 0%,

Yo ),
(a,-(yo),yo) el’nty, V i=1:n(y)—1,
ai(yo) < air1(m), V i=0:n(yo) — 1.

Let 7y, for i =1 : n(yo) — 1, be the nonmortar to which P; belongs; if P; is vertex
of a subregion, and there are several nonmortars ending at F;, we can choose 7 ;
arbitrarily among them.

Let (z,y0) € £y be an arbitrary point on £y. Denote by n(z,yy) the well-defined
index with the property:

an(w,yo)(yo) <z < an(z,yo)+1(yo)-

By 1ntegrat1ng ~ along £y from (ag(y0),yo) to (x,y0), we obtain:

n(@go) i W0) o n(z,y0)
lv(z,90) — v(ao(yo), vo)| < Y ‘ / (t, 90 dt| + Z ‘ (Oéz Yo ,yo)‘
=0 (o)

Since v € V" and (o (10),v0) € 09, we find that v(ag(yo),yo) = 0. Using the Schwarz
inequality and the previous formula, we obtain:

n(z,yo) L, @i+1(%0) 1
L a 2
@) b < 3 (e -a) ([ |5 w)
=0 @i(yo)
n(@.30) n@yo) g 2\ 3
+ ( Z ,U'le) ( z:zl m [U]<ai(y0),’yo)‘ ) .

Squaring both sides of (29) and apply Schwarz inequality, the inequality becomes:

n(z,yo) ai+1(¥0) .

lv(z,y0)]” < 2 (n%O)(ai+1(yo)—ai(yo))> ( > / 55 yo)‘ dt)

@;(yo)
+ 2 <n§0)u(’yz,¢)) (n(?;)ﬁ [?J](ai(yO)ayO)‘2>.
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Since

’n(l‘,yg)

> (ai-l—l(yﬂ)_ai(yO)) = Qp(ao)+1(%0) — @o(yo) < diam(Q),
i=0

and, from Lemma 3,

n(z,yo) n(yo)
7 oplng) <) pln) < diam(9Q),
i=1 i=1
we obtain,
\ . n(z,yo) ai+1(yo) 5 )
(30) lv(z,y0)|* < 2 diam(Q) Z |8_(tay0)| dt
i=0 z
ai(yo)
n(w,yo) 1 9
+ C diam(2 ——|[v](i(yo),
@) X oy Bletn).0)

Integrate (30) over . The first term is then bounded from above by

K
2(diam(2))* Y vk[F1 -
k=1

Let v be a nonmortar with endpoints of coordinates (z1,y1) and (z2,¥2), and
slope A. Since no edge of the subregions {0}, 17 is parallel to the z- or y-axis, then
A # 0 and X # oo and we can write the equation for v as = ¥ +b. When the second
term of (30) is integrated, the jump of v across + is integrated over y; < y < y9 and
x > 4 +b. Its contribution is:

Y2

L v Yy 2 . L am Y2 . y )
1(7) y[wﬂ/% ‘[ ](A+b’y)‘ dedy < 'u(,y)d (Q)/y1 I ]()\+b’y)| dy

| A?
= ) diam(2) T2 A[U]Zda

< diam(Q) ﬁ (oo

As a consequence, after integrating (30) over Q2 we obtain:

K
01720 < 2 (diam(R2)) glvklfql(nk)
1
31 + C (diam())? —/vzdo.
(31) ( (2)) 'ynm%orta'ru(’” 7[]

If v is a side of the subregion €2;, then, from Lemma 4 and using the notations
therein, we have

1 q(l)

2 2 2
(32) mﬂmwsqwmm+;mmw)

13



Recall that €2, ; are the subregions with a side opposite v. When we add (32) over
all nonmortar sides v, every term |v;;|%, (,,) aPpears a finite number of times N,

where N is bounded from above independently of (Hy), 17, and (ht),_17- Then,

1 2 us 2
(33) > m[y[fu] do < c]gmmmk).

s monmortar

Substituting (33) into (31), we obtain

K

ollf2) < C (diam())* Y |vklFq,)-
k=1

The next theorem is a variant of the Poincaré inequality. The proof is similar to
that of Theorem 5.1 and it is based on Lemma 4.
THEOREM 5.2. (Poincaré inequality) For every v € V!,

K
. 1
||'u||%2(9) < C(dzam(Q))22|fuk|%{1(Qk) + C’m|/ﬂvd¢|2,
k=1

where o(2) is the area of the region Q and C is a constant independent of (Hy),_17,
(hi)p—17c> and K.

Proof. The proof follows the steps of the proof of the Friedrichs inequality. We
can again assume that no edge of the subregions {4}, 17 is parallel to the z- or
y-axis.

Let (z1,y1) and (z2,y2) be arbitrary points in 2. We evaluate v(z1,y1) —v(z2, y2)
by adding the integral of g—z from (z1,y1) to (z1,y2) and the integral of % from (z1,y2)
to (z2,y2), taking the jumps of v across the interface I' into account.

We square both sides of the resulting inequality and integrate them twice over {2,
once with respect to (z1,y1) and once with respect to (z2,y2).

The left hand side becomes:

2
(34)/9/Q|’U($1,y1)—U(x2’y2)|2dx1dy1 dzadys = 20(Q)lv] 200y — 2‘/de:v| ,

with o(€2) on the order of (diam((2))?2.

The right hand side is bounded from above by the sum of the H'-seminorms of
the restrictions of the finite element function v to the subregions {2}, 1.7 and the
result of the integration of the squares of all the jumps of v over nonmortar sides.
Reasoning as in the previous proof, we obtain a bound for the right hand side,

. 2 X 2 . 4 1 2
(35) 4(diam(€)) a(Q)gwmm + C (diam(Q)) 7 n%tm /7 v]2do.

We use Lemma 4 to estimate the second term of (35). As in the previous proof,
the number of appearances for any term |vg|%, () does not depend on (Hy), 132>
(hk)k:ﬁ’ and K,

(36) ) ﬁ / oo < S ey

vy nonmortar
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From (34), (35), and (36), we obtain,

K
2 .
20 (%) lo] 320y — 2 /Q vdz| < 4(diam(©))’0() 3 [okfps o
k=1

K

+ C(diam(@)* Y o2 g, -
k=1

Dividing both sides by o(Q) = (diam(f2))?2, we find,

K
1
2 : 2 2 2

6. Condition number estimate. A consequence of the Friedrichs inequality is
that the condition number of the Poisson problem solved using mortar finite elements
has the same form as in the conforming case.

THEOREM 6.1. For any u € V?,

K K
1
(37) c;I\UIlizmk) < d'(u,u) < Cﬁgl\UIlizmk)a

where ¢ and C are constants that do not depend on K, (Hy),_ 17, and (hi),_ 17
Thus, the condition number of the stiffness matriz Kportar corresponding to the dis-
crete problem (83) is bounded by:

C
K(Kmortar) < ﬁa

where C is independent of the partition of ).

Proof. From the definition of the broken norm, a' (u,u) = YK , ‘uk‘%ﬂ(nk)' The
right inequality of (37) follows from the inverse inequality. The left inequality follows
from Theorem 5.1, since Hu||%2(9) =K, Hu||%2(9k). The estimate of the condition
number is a direct consequence of (37). O

7. Extensions to more general geometries. In this section, we extend the
construction from Section 4 to a general partition. The assumption that all subregions
are rectangles was only used in our estimate of the L?-norm of the jumps of a mortar
function across nonmortars, in particular, in the construction of the function vy,eq,-

We use the same notations, and make a similar construction, as in Section 4. We
now require that the partition of 2 has all the properties required in Section 2.1. Thus,
the length of every side of €2, is bounded from below by a uniform fraction of Hy, each
subregion is obtained from a reference domain by a uniformly bounded mapping, and
the ratio of the diameters of any two adjacent subregions is uniformly bounded. For
each partition, a (finite) number of different reference domains might be required.

Opposite the nonmortar v, we construct a polygon by cutting off part of the
union of the subregions, the boundaries of which intersect 7, by a line parallel to 7.
Because of the properties just reviewed, we can choose that line such that the length
of the side parallel to 7y of €;; N €2y is bounded from below by a uniform fraction

15



Fi1G. 2. Triangular subregions case

of Hy;. As before, we extend the jump of v from ;11 N Qe to Qy; or Q41 (say
to €;;), according to which of 0€;; N~y and 0€;11 N~y is the largest. We can do
this uniformly, using the corresponding reference domain. We obtain a function y;
vanishing on the sides opposite d; ; 11, the average of which over yN € ; is 0, and which
satisfies properties similar to (16) and (17); cf. Section 4. After this step, the proof
can be completed as before.

The construction presented above must be changed slightly, if there are triangles
among the subregions {€;},_17- For a triangle with only one vertex on -y, we can not
uniformly extend a function defined on one side so that it vanishes on an opposite side;
cf. Figure 2, for €39 N $,¢,. Instead, we can construct an extension xo of v 2 — vy 1
from 61,9 N Qpew to Q72 N ey satisfying

x| ) < xzl|

1 1 .
H?2 (62,3ﬂnnew H?2 (51,2 mQnew)

Then, we extend v 3 — ;2 + x2 from 2 3N Qe to 13N Qpew, resulting in a function,
X3, which vanishes on 34, by using the usual construction. We can do this since
Q3 N Qpeyw is a quadrilateral, and the length of the side parallel to v N €3 is, by
construction, uniformly bounded from below by H; 3. A similar extension, x4, is made
for the jump of v across d45 on € 4 N Qyeqy. Thereafter, vi 4 — vy 3 + xa is extended
from 83 4 N Qe t0 3N Qyyeq, resulting in a function which vanishes on do 3. Finally,
the function vy, is obtained by adding all the auxiliary functions x; to v |q,,.,, -
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