Dag Representation and Optimization of
Rewriting *

Ke Li
Courant Institute
New York University
251 Mercer Street
New York, NY 10012
U.S.A.
E-mail: like@Qcs.nyu.edu

Abstract

In all applications of term rewriting systems, computing the normal forms of
terms is the fundamental step. In this paper, we propose a directed acyclic
graph (dag) representation for term and term rewriting. The rewriting on dags
is much more efficient than the rewriting on trees. We design several efficient
strategies for rewriting on dags. By dag representation, we can even obtain
efficient rewriting strategies for non-left-linear rewriting systems.

*This research was supported in part by the National Science Foundation under grant number

CCR-89-6949.

1 Introduction

In any application of term rewriting systems (TRSs for short), computing normal
form of terms is a basic procedure. In language application, the semantics of a term
is its normal form [Der85]. In solving word problem [KB70], to test equivalence of
two terms t and s, the normal forms of ¢ and s are computed. To unify terms in
an equation theory, the equations are transformed to a terminating and confluent
TRS and the normal forms of the terms are computed [Hu80]. To combine logic
and functional programming languages, TRSs are attached to Horn clauses and in
unification of clauses, normal form are computed [SY86][GMS86]. Therefore, efficiency

of normal form computation is important in all applications of TRSs.

The research for efficient normal form computation is done in many ways. Huet
and Levy [HL79] have given a theoretic analysis for derivations and proposed “strong
sequential” TRSs which can be transformed to an automata computing normal form
fast. In [CKS87], Choppy et al. have given techniques for estimating the expected
number of steps in the derivations with the goal of constructing efficient “regular”
TRSs. In [Li90], NP-completeness results are obtained for efficient normal form
computation and several optimal strategies are proposed for subclasses of TRSs.

Conventionally, also in all discussions above for efficient normal form computation,
terms are assumed to be represented by trees. But tree representation is inefficient
in space. If we allow common subterms to be shared, a term can be represented by a
directed acyclic graph (dag for short). It is well-known that there is some term that
can be represented by a dag with n nodes, but it has to be represented by a tree
with exponential number of nodes. Based on dag representation of terms, Paterson
and Wegman [PWT78] have designed an efficient unification algorithm. In reverse, the
cause of unefficiency of Robinson’s unification algorithm [Rob71] is due to the tree
representation. Besides the advantage of space-saving, dag representation of terms
can save computing time, which is rewriting steps in term rewriting. For example,

given a TRS:

filz) —
falz) —

F(fa(2), f2())
F(f3(x), fa(2))

For(2) = F(ful@), ful2))

and given a term fi(a), in tree representation, each rewriting will introduce two
subterms that are actually the same. Eventually, we need exponential of n rewritings
to rewrite fi(a) to its normal form. But if terms are represented by dags, only linear
number of rewritings are needed.

Another good example is computation of Fibonacci numbers, which is shown in

[HP88a].

Barendregt et al. [BEGS87] have proposed “term graph rewriting”, and Hoffman
and Plump [HP88a| have proposed “jungle evaluation”. In the both research, terms
are represented by mechanisms like dags, the goal being that common subterms are
shared and normal form computation will be more efficient. But in the both repre-
sentations for terms, some common subterms may not be shared. In the rewriting,
to maintain the structure of dag representation, extra work is needed. The both
papers have not analyzed the trade-off between the extra work and the efficiency of
rewriting.

In this paper, we propose a dag representation for terms, which shares the most
number of common subterms. One of the advantages of this representation is that
each term is mapped to a unique dag. This uniqueness will provides us a clear un-
derstanding for the relationship between the rewriting on trees and the rewriting on
dags. Properties of term rewriting, such as termination, confluence, non-ambiguity,
etc., will be compared for two representations. We will see that given a canonical
(terminating and confluent) TRS represented by trees, the corresponding TRS repre-
sented by dags is also canonical. Furthermore, we will show that the unique normal
form of a term for a canonical TRS can be efficiently computed by the corresponding
TRS in dag representation.

For rewriting on dag representation, we will give detailed analysis on how to find
a redex, how to rewrite it, and how to maintain the dag structure.

Another interesting point in this paper is to give optimal or “good” strategies for
rewriting on dags. This has not been done for the existing systems for rewriting on
dags [BEGS8T7][HP88a]. We will see that the strategies for efficient rewriting on trees,
which are proposed in [Li90], can be adapted for efficient rewriting on dags. With
dag representation, the applications of these strategies are expanded to much larger

subclasses of TRSs.

The most of previous researches on efficient rewriting have been done only for
left-linear TRSs. In this paper, with dag representation, we obtain several results on
non-left-linear TRSs.

In the following, we will introduce our dag representation for terms and TRSs
in section 2, discuss relationship between rewriting on trees and rewriting on dags
in section 3, and address efficient rewriting strategies for our dag representation of
TRSs in section 4. Section 5 concludes the paper and suggests future work.

2 Dag Representation of Terms and Dag Rewrit-
ing
Recursively, a term is defined to be a constant or a variable or f(t1,...,,) where f is a
function of arity n and tq, ..., t, are terms. In convention, a term is depicted as a tree:
constants and variables are the bottom nodes and each function corresponds to an dis-
tinct inner node. For example, term f(g(h(a,a),h(a,a)),g(h(a,a),h(a,a)),h(a,a))
is a tree shown in figure 1(a) If we allow subterms to be shared, a term can be
represented by a directed acyclic graph (short as dag). For example, the term in
figure 1(a) is represented by a dag in figure 1(b) in which an arc represents a directed

< Q\

(a) (b)

Figure 1

up-down edge.

The figures apparently show that the dag representation of a term save space
than the tree representation. Besides advantage of space-saving, dag representation
of terms can save a lot of computing time — rewriting steps in words of rewriting
systems. In the early stage, dag representation is used to efficiently compute recur-
sive programs [PMT74|[BL79]. Recently, dag representation is proposed to generate
efficient reductions for general rewriting systems [BEG8T][HKP88][HP88a]. Due to
the advantage of saving space and time, dag representation is preferred in many
applications of rewriting systems.

Our topic is how to take the greatest advantage of time-saving by dag representa-
tion in term rewriting. For a term, there may exist several corresponding dags. See
figure 2. The term in figure 2(a) can be represented by each of the 5 dags in figure

2 from (b) to (f). The dag in figure 2(f) shares the most number of subterms.

The reason why dag representation saves reduction time for rewriting systems is
that many rewritings are performed on the shared subterms so that many duplicated
rewritings are avoided. For example, given rewriting system {a — b} and term
t = f(g(a,a),g(a,a)), 4 rewritings have to be done to t. If ¢ is represented by the
dags in figure 2, 3 rewritings are needed for (b) and (c¢), 2 needed for (d) and (e), 1

needed for (f). It is easy to conclude that the more subterms are shared, the less

AR LT ¢

a a a a

a a
(a) (b) (c) e) (f)
Figure 2
number of rewritings are needed, that is, the more reduction time is saved.

The existing dag representation for rewriting systems (expressed by “ graph rep-
resentation” in [BEG87] and “jungle” in [HP88]) does not specificly use the dag which
shares the most number of subterms and it permits some common subterms not to
be shared. As an example, one of the 5 dags in figure 2 is allowed to represent the
term in figure 2(a). If dag representation is used for rewriting systems, the extra
work has to be done to maintain the dag structure. The maintaining work is called
“garbage collection” in [BEG8T7] and “folding” in [HP88]. We immediately think
of the trade-off between the extra maintaining work and the saved rewriting steps
for dag representation. From the conclusion mentioned above, we prefer the dag
representation that shares more subterms and does not need much maintaining time.

Here, we propose a dag representation for rewriting systems that shares the most
of subterms and the maintaining work is not much. Furthermore, we will propose
strategies for this dag representation to speed up the rewriting process.

First, rewriting on terms should be understood clearly. Let ¢ be a term and [— r
a rule. We say [— r can be applied to t if there is a substitution ¢ and a subterm
t" in t such that o = ¢'. This process is called a matching, i.e., [matches ¢'. Term ¢

with a subterm ¢’ is denoted by t[t']. A rewriting of [— r to ¢t is a replacement of ¢’

by ro in t, denoted by t[t'] — t[ro]. The reflexive and transitive closure of rewriting

— is denoted by — .

In our dag representation, every term is represented by a dag that shares all
common subterms. As an example, for the term in figure 2(a), our corresponding
dag is the dag in figure 2(f). Formally, a term ¢ is mapped to a dag t4,, in which
there is only one occurrence for each constant and variable, and if we have two terms
p = fi(t1,...,tx) and ¢ = fa(s1,...,55) where f1 = fo, and ¢; and s; (1 < ¢ < k) share
one node in the dag, then p and ¢ share one node in the dag. We have

Proposition 1 Any term is mapped to a unique dag.

Proof: Given a term ¢, the corresponding dag representation ¢4,, can be constructed
from bottom to up. The uniqueness can be easily shown by induction on the level of
the nodes from bottom to up. a

Let R be a term rewriting system consisting of m rules,i.e., R ={l; = r; |1 <1 <
m}. l; and r; are terms. In our system, terms in rules are also represented by dags.
Specifically, [; and r; in R are dags. Now, we consider how rewriting is performed for
our dag representation.

Each rewriting consists of 4 steps:

Step 1. Redex finding;

Step 2. Dag splitting;

Step 3. Rewriting;

Step 4. Dag merging.
We will describe each step in the detail. After that, for clear understanding, an
example will be given.

Suppose [— r is applied to t.

In step 1, redex finding is processed almost conventionally. But since terms are
represented by dags, the matching of a term by a rule can be done by Paterson and
Wegman’s efficient unification algorithm [PW78] (or any other efficient unification
algorithm based on dags), because matching is a special case of unification, that is,
the variables in the term being matched are considered as constants. Therefore, redex
finding is much efficient than the conventional one in which terms are represented by
trees.

In step 2 (dag splitting), make a copy of the redex obtained in step 1 and delete
the nodes in t which are in the redex but not shared by any nodes besides the redex.
We will let the root of the redex stay and call it dangling root. This can be done in
linear time, for example, by width first algorithm. Suppose after this step, ¢t becomes

tmed-

In step 3, rewriting is done to the copy obtained in step 2. This is the same as
the conventional one, but the result is a dag. Denote the result by %,..

In step 4, merge t,. with t,,.4. In the following we will give a linear merging
algorithm for two dags. After merging, make the dangling root obtained in step 2
point to the root of ¢,.. See the following example for clear understanding.

Example. Given rewriting system {g(z,y) — h(z)} and term f(g(a,b), g(b,c)). The

four steps to rewrite the term are shown in figure 3.

Here is the algorithm for dag merging.

Dag Merging Algorithm.
Input: dag t,,.4 and dag t,..
Output: one dag.
Process:

step 1 step 2 step 3 step 4
f

f rewriting
redex / \ copy \h
h

: / g
S MAT N

?dangling root merge t,,.q and t,.

tmed tre

Figure 3

a) Merge the bottom nodes of ¢,,.4 and t,., that means,
if there are two common bottom nodes in t,,.; and t,.,

merge the duplicated node in t,. to the one in t,,.4.
b) Int,., from bottom to up, for each inner node ¢ do:

if all children of ¢ have been merged into t¢,,.4 and the

children have a father ¢ in t,,.4, merge ¢ in t,. to ¢ in

tmed; otherwise, keep ¢ in t,..
Proposition 2 The dag merging algorithm generates a dag and the running time s
linear to |tea| + |tre|. Actually, in the most of cases, the time is almost linear to |t,.|.

Proof: At step a) in the algorithm, all the bottom nodes are merged so that there
is only a single node for a variable or a constant. By induction on the levels of the
nodes in t,. from bottom to up, it is easy to verify that there is no redundant copys
of any subterm. That is, a dag is produced.

Merging bottom nodes of t¢,,.4 and t,. can be done in time linear to the number
of the bottom nodes. For each inner node in t,., we check its children to see if it
can be merged into t,,.4. Notice that the arities of function symbols are fixed, so the
time for step b) is O(|t,¢|). The total time is O(|tmea| + |tre|). Actually, for t,,.q4, we
only consider the bottom nodes of ¢,,.4, which are constants and variables. Generally,
in a term, most of symbols are function symbols while there are only a few distinct
constants and variables. Therefore, in most of cases, the algorithm is almost linear
to [t O

If terms are represented by dags and rewritings on dags are performed by the
method described above, we call this rewriting a dag rewriting. The conventional
rewriting on trees is called a tree rewriting. In the same way, we call a TRS repre-
sented by trees a tree TRS and a TRS represented by dags a dag TRS. Henceforth,
we assume that dag TRSs are applied only to terms in dag representation and tree
TRSs are applied only to terms in tree representation.

Now, let’s analyze efficiency of dag rewriting.

To rewrite a term in dag rewriting, step 1 (described above) saves time while step
2 and step 4 are extra work. Both step 2 and step 4 run in time almost linear to

the size of the redex found in step 1. Step 1 saves time in two hands: (1) Because of
dag representation, linear matching algorithms (or any efficient algorithm on dags)
can be used. (2) To find a redex from term t, we have to try matching algorithm at
several positions in t. Dag representation reduces the search space, that means, less
matching would be tried. We already know that matching algorithm is at best linear
to the sizes of the two terms being matched. Therefore, we can conclude that the
extra work in step 2 and in step 4 is balanced by the time-saving in step 1.

3 Characteristics of Tree Rewriting and Dag Rewrit-
ing

Traditionally, many properties of term rewriting systems are discussed on tree rep-
resentation, such as termination, confluence, ambiguity, etc.. Here, we will consider
these properties on dag rewriting systems. These properties are discussed in [HP88b]
for “jungle evaluation”, but our system is simpler and our discussion is much simpler.
In this section, rewriting system R and term ¢ without any subscripts will be assumed
to be represented by trees and their corresponding dag representations are denoted
by R4.y and t4,, respectively.

Rewriting Derivations

Intuitively, given a tree TRS R and the corresponding dag TRS Rgy,,, a rewriting
derivation Dg,, using Rg,, 1s a shorter version of D using R. Formally, we have

Proposition 3 Given R and the corresponding Ry, let Dy, be a derivation using
Ri., which rewrites term t to term t'. Then, there is a derivation D using R such
that D rewrites t to t' and |D| > |Dgyqy|.

Proof: Consider one rewriting step Dyq,[t] in Dy, which rewrites sqq, to sgag by rule
liag = Tdag 0 Raag. In Dyaylt], one of redexes of sqq, is rewritten, say it is u. There
must be many copies of u in s all of which can be rewritten by the rule [— r in R.
We arrange these rewritings by [— r in a sequence, obtaining a derivation using R
which rewrites s to s'.

We expand each rewriting step in Dy,, in this way, obtaining a rewriting derivation
D using R which rewrites ¢ to t'. Because each rewriting step in Dy, is expanded to
at least one rewriting step in D, we have |D| > |Dyq,]. O

Termination and Confluence

We say a TRS R is terminating if for any term ¢, there is no infinite rewriting chain
using R for t.

Proposition 4 If R is terminating, then Ry, ts terminating.

Proof: 1If there is an infinite sequence of rewritings using Rg4,,, by proposition 3, we
can construct an infinite sequence of rewritings using R, contrary to the condition
that R is terminating. Therefore, R4, 1s terminating. O

A TRS R is said confluent if for any ¢, two rewriting derivations ¢t = s; and t = sy
imply that there exists a term ¢’ such that there are two rewriting derivations s; — ¢/
and sy = t'.

Unfortunately, the condition that R is confluent does not guarantee that Ry,
is confluent. One of courter-examples is given by [HP88b]: R = {f(z) — g(z,z),
f(a) = N, g(a,d’) = N, a — d,a" — a}. Ris confluent for tree representation. For
dag representation, term f(a) can be rewritten to N and ¢(a, a), but the latter can

only be rewritten to g(a,a’), that means ¢g(a,a) cannot be rewritten to N by rule
g(a,a’) — N.

In this paper, our major concern is that given a terminating and confluent TRS,
how to compute normal forms for terms fast. Fortunately, if R is both terminating
and confluent, we can guarantee that Ry, is terminating and confluent. To prove
this, we need the proposition below:

Proposition 5 t is reducible using R if and only if t4q, 1s reducible using Ryq,.

Proof: First, because matching (special case of unification) between dags obtains
the same substitution for variables as matching between the corresponding trees (see
[PWT78]), we have the claim that ¢ can be matched by s if and only if ¢4, can be
matched by s44,.

Therefore, t can be rewritten by a rule r from R if and only if ¢4,, can be rewritten
by the corresponding rule of r from Rg,,. a

Proposition 6 If R is terminating and confluent, then Ry, , is terminating and con-
fluent.

Proof: Termination of Ry,, 1s proved above. We prove confluence of Rg,, as follows.

Given any term tg,,, suppose there are two rewriting derivations t,,, — S44, and
tiag — sélag. Since R4,, terminating, we rewrite sg,, and sélag to their normal forms
Ugey and uy,, respectively. If ug,, = uj,,, we are done. Suppose ugy, # uj,,. By
proposition 3, there are two tree rewriting derivations using R that rewrite t to u
and u' respectively. By proposition 1, ug., 7# uy,, implies that v # u'. Since R is

confluent, one of v and v’ must be reducible using R. By proposition 5, one of ug,,
and uy, must be reducible using Rg,,, but this is contrary to the assumption that
both ug,, and ugag are normal forms for Rg,,. Therefore, we must have u4,, = uﬁlag.
Confluence is proved. |

Non-ambiguity

We say a TRS is non-ambiguous if there are no two rules Iy — r; and I — ry in R
such that a non-variable subterm of /; can be unified with I3, except that [; — r; and

l, — 7y are the same rule and the non-variable subterm is [; itself.

Because unification between dags obtains the same substitution for variables as

unification between corresponding trees (see [PWT78]), for R and corresponding Rg,,,

!/

if there are two rules lj,, — 7rgqy in Rye, and Zdag

— T&ag such that a non-variable
subterm of /;,, can be unified with Z&ag, then we have tworulesinl — r and I’ — ¢/

in R such that a non-variable subterm of [can be unified with I’. Therefore, we have

Proposition 7 If R is non-ambiguous, then Rg,, 1s non-ambiguous.

Normal Form Computation

We are concerned about how to efficiently compute normal forms for terms given
terminating and confluent TRSs. For a terminating and confluent TRS, any term
has a unique normal form. We have already shown that if R is terminating and
confluent, then Rgy,, is terminating and confluent. Naturally, we would ask if any ¢
has the same normal form using R as t4,, has using Ry,,.

Proposition 8 If R is terminating and confluent, the normal form of any term t
using R is the tree representation of the normal form of t4,, using Rya,.

Proof: By proposition 6, Rg,, is terminating and confluent. ¢4,, has a unique normal
form ¢}, ,

taag to t,,. By proposition 3, there is a tree rewriting derivation D using R that

that means, there is a dag rewriting derivation Dy,, using R4,, that rewrites

rewrites t to t'. By proposition 5, t' is irreducible. Since ¢ has only one normal form,
t' is the unique normal form of ¢. a

Intuitively, for a terminating and confluent TRS, we can use the corresponding dag
TRS to compute the unique normal form for any term more efficiently, since several
rewriting steps in tree rewriting are replaced by one dag rewriting step. Staple’s
speed-up theorem in [Sta80b] implies the following proposition:

Proposition 9 Let R be a terminating and non-ambiguous TRS, t be any term, |t|

the length of the shortest derivation to compute t’s normal form, and |ti.,| the length
of the shortest derivation to compute ti,,’s normal form. Then, |tia,| < |t|.

Non-left-linear

The “graph rewriting” [BEG87] and “jungle evaluation” [HP88a] have some trouble
when they are used for non-left-linear rewriting systems. Our systems can be eas-
ily used for non-left-linear systems. The matching algorithm has no problem when
dealing with non-linear terms represented by dags [PW78]. In dag representation,
the same variables share the same node. Therefore, the dag rewriting for a non-left-
linear rule is no different from the dag rewriting for a left-linear. To make clear, we
give an example for a non-left-linear system. Meanwhile, to show how dag rewriting
saves rewriting steps, we draw out for tree rewriting and dag rewriting all possible
derivations that rewrite a given term to its normal form. See figure 4. We simply see
that by dag rewriting, we have not only shorter derivations but also a much smaller
term space (that are all terms in all derivations). This becomes important when we
design strategies for optimization of rewriting. In the following section, we will give

several efficient strategies.

Example. System={f(z,z) — g(h(x),z),9(x,y) — N(z,y),a — ¢,b — d} and term
fla,a).

=

(ava f(a,c) g aa

f(c.a) g (a),a) fle,c) glh(e) g
g0l } (2))
hic
N(H(c).c) Bk Q éh
dag rewriting tree rewriting

Figure 4

4 Optimization of Dag Rewriting

Dag representation of rewriting systems can speed up the rewriting process, as de-
scribed in the previous sections. In this section, we will consider how to speed up
dag rewriting and propose several strategies for this purpose.

Optimization of rewriting has been discussed on tree representation [HL79]. Some
researches [BLT9][PMT74] have been done for dag rewriting, but they addressed only

recursive programs, other than term rewriting systems that are our target.

Let t be a term and x a variable. NumVar(z,t) denotes the number of occur-
rences of z in t. We define:

10

Variable-fewer TRS: For any variable x and any rule | — r, NumVar(z,l) >
NumVar(z,r).

Variable-more TRS: For any variable 2 and any rule I — r, NumVar(z,l) <
NumVar(z,r).

Variable-equal TRS: For any variable x and any rule I — r, NumVar(z,l) =
NumVar(z,r).

If a redex is not a proper subterm of any redex, it is called an outermost redez.
If a redex does not contain any proper subterm as a redex, it is called an innermost
redex. Let t be a term and t,,, a proper subterm of ¢t. The path from the root of ¢ to
the root of t5,, (excluding the root of t5,) is called the root path of ts, in ¢, denoted
by root-path(tsu,t). E.g., for term t = f(g(h(a, f(a,b))),c), root-path(f(a,b),t) is
f-g-h, and root-path(c,t) is f. Let t be a term, ts,; a proper subterm in ¢, and ts
also a redex. If there is a rule [— r and a variable z in [such that root-path(zx,!)
matches a substring of root-path(tsu,t), we call t5, a variable redez (of rule [— r) in
t. E.g., TRS={f(9(z),a) — h(z,d), b — c}, in term t = f(g(g(a, f(a,b))),c), bis a
redex because of the second rule, root-path(z, f(g(z),a)) is f-g where f(g(x),a) is the
left side of the first rule, and root-path(b,t) is f-g-f, so f-g is a substring of f-g-f and b
is a variable redex in t. Using these definitions, we define the following strategies:

Outermost strategy. To rewrite a term, choose an outermost redex.

Variable-delay strategy. To rewrite a term, if there are non-variable-redexes,
choose a non-variable-redex to rewrite; otherwise, all of redexes are variable redexes
and we choose a variable redex to rewrite.

Innermost strategy. To rewrite a term, choose an innermost redex.

In the previous sections, a derivation is a sequence of rewriting steps. To simplify
terminology, from now on, a derivation is defined as a sequence of rewriting steps to
rewrite a term to its normal form. Any two derivations that rewrite the same term
to its same normal form are said equivalent. An optimal derivation is the shortest
one among all equivalent derivations. The ith rewriting in derivation D is denoted
by D[i]. D[i,j] (i < j) denotes all rewritings from D[¢] through D[j]. A derivation
in which at each step the outermost strategy is used is called a outermost derivation.
The variable-delay derivation and innermost derivation are defined in the same way.

The paper [Li90] has studied the optimization of tree rewriting for terminating,
left-linear and non-ambiguous TRSs. The major results are:

(1) For variable-equal TRS, any derivation is optimal;

(2) For variable-more TRS, an innermost derivation is optimal;

(3) For variable-fewer TRS, any derivation D has an equivalent outermost deriva-
tion D’ such that |D'| < |D|;

(4) For variable-fewer TRS, any outermost derivation D has an equivalent variable-
delay derivation D' such that |D'| < |D].

11

In this paper, we will consider validity of these strategies on dag rewriting and also
extend these results to non-left-linear TRSs. Our discussion is based on the result
obtained in the last section that if a tree TRS is terminating and non-ambiguous,
then the corresponding dag TRS is terminating and non-ambiguous. We will discuss
left-linear TRSs first, and then consider non-left-linear cases. We assume, if without
any other comments, that any TRS to be used is terminating and non-ambiguous,
and that any TRS and any term are in dag representation.

A rule r is said root-rewrites to a term t if the redex is t itself. Let rule r rewrite
term t. If r root-rewrites ¢, we call r is applied on t; if r root-rewrites a proper
subterm of ¢, we call r is applied inside t; if we don’t care whether this rewriting
occurs on or inside t, we say r is applied to t. Let s be a proper subterm of ¢. If r
root-rewrites a subterm of ¢ which is a proper superterm of s, we say the rewriting
occurs above s in t. Let s be a proper subterm of term ¢. Any proper subterm of ¢
whose root is not on the root path of s in t is called a general sibling of s.

4.1 Variable-More TRSs

In tree rewriting, for left-linear and variable-more TRSs, any innermost derivation
is optimal. But in dag rewriting, for the same subclass of TRSs, any derivation is
optimal (no condition “innermost”). That means, for this subclass of TRSs, we don’t
need to worry about the order of rewritings on redexes, and we can use any derivation
to get the normal form with the shortest length.

Lemma 1 In a derivation constructed by a left-linear and variable-more TRS, any
redex does not disappear unless it 1s rewritten.

Proof: Suppose D is a derivation constructed by a left-linear and variable-more TRS

R, s is a redex after D[], and D[4+ 1] rewrites t(# s).

Case 1. t is inside s. t must be a variable redex of s. Suppose s is a redex of rule r.
Since R is left-linear, after rewriting of ¢, s remains a redex of rule r.

Case 2. t is above s. s must be a variable redex of . Since R is variable-more, s
remains a redex after rewriting of ¢.

Case 3. t is a general sibling of s. Obviously s remains a redex after rewriting of ¢.
(|

Theorem 1 In dag rewriting, for a left-linear and variable-more TRS, given any
term, any derivation for that term is optimal.

Proof: Suppose D and D' are two derivations for term t and |D’| < |D|. Suppose
DI[1,7) = D'[1,7] and D[i + 1] # D'[t 4+ 1]. D[i+1] rewrites s and D[t 4+ 1] rewrites s'.
By lemma 1, s remains a redex until it is rewritten in the subsequent derivation of
D'. Suppose s is rewritten in D’ by rule r at step D'[7](¢z < 7). All function symbols

12

(and constants, if there are) in s matched with function symbols in the left side of r
are called the critical part of s. Note that those subterms in s matched with variables
of r are not in the critical part.

Suppose j =it + k (7, j defined above). Let t,;, be the term after step D'[i 4 p]
in D' (0 <p<k—1). Rootrewrite s in t; by rule r, ¢; becoming t;. Consider
applying D'[s + 1], D'[i + 2], ..., D'[i + k — 1] to t;. Let # be the term after rewriting
step D'[1 +p](0 < p < k—1). We prove by induction that ¢;, and #, (0 <p < k—1)
are almost the same except the critical part.

Basis. p = 0. Remember that ¢, is rewritten to t{ by applying rule r to the root
of s in t;19. Because r is variable-more and left-linear, and r is represented by a dag,
only the critical part is changed. Hence, the claim holds for the basis.

Induction. Suppose the claim holds for p — 1(0 < p < k — 1). That means,
tiyp—1 and ¢, ; are almost the same except the critical part. Suppose s* in t;y, ; is
root-rewritten at step D'[t 4+ p]. We have three cases.

Case 1. s” i1s inside s. s* must be a variable redex of s, which is not in the critical
part, that means, s* isin ¢, ;. Hence D'[i 4 p] can be applied to s* in ¢, ;. Therefore
tir, and t, are almost the same except the critical part.

Case 2. s* is above s. s must be a variable redex of s*. Suppose s is rewritten by
rule r and the position of s* in #;;, 1 is p. Let 5™ be the subterm in ¢, _, at position
p. s and s** are almost the same except the critical part which is under s, so rule r

k%

can be applied on s**. Since s is a variable redex in s** of rule r, the critical part is

not changed.

Case 3. s* is a general sibling of s. Obviously, D'[i 4+ p] can be applied to both ¢;4,_1
and t,_;, and t;;, and # are almost the same except the critical part.

The claim is proved. We have known that ¢;,;4_; and t)_, are almost the same
except the critical part. Note that D'[j] (i.e. D'[i + k]) root-rewrites s. The term
obtained by this rewriting to t;_; (i.e. t;44—1) is exactly the same as t)_; because
the critical part is changed. The significance is that if we move the rewriting on s
at D'[j] to just in front of D'[i + 1], all the rewritings from D'[¢ 4+ 1] through the
end of D’ are not affected. By this way, we construct a new derivation D" such that
D" is equivalent to D', |D"| = |D'|, and D"[1,: 4+ 1] = D[1,7 + 1]. Keeping on this
way, we can eventually construct a derivation D" such that D" is equivalent to D’,
|D"| = |D’|, and D" is a prefix of D. This is impossible since D" is equivalent to
D. O

4.2 Left-Linear TRSs

We have shown that for a left-linear and variable-more TRS, all derivations have the
same length. But for a left-linear and variable-fewer TRS, for a term, we may have

13

derivations to compute its normal form with different lengths. The reason is that
some variable (say x) which is in the left side of a rule does not occur in the right side
of the rule, so that when the rule is applied, the redex matched by = may disappear
without rewriting and different order of rewritings have different effects. For example,
given system {f(z,y) — N,a — b} and term f(a,b), we have two derivations with

different lengths: f(a,b) — N and f(a,b) — f(b,b) — N.

In [Li90], we have shown that for left-linear and variable-fewer any derivation
has an equivalent outermost derivation which has no more rewriting steps. In other
words, for any derivation, we may find an equivalent outermost derivation which are
more efficient. With dag representation, we can lift the condition “variable-fewer”
to get the same result, that means, the result is valid for any left-linear TRS (don’t
forget non-ambiguity condition).

Theorem 2 In dag rewriting, for a left-linear TRS, any derivation D has an equiv-
alent outermost deriwation D' such that |D'| < |D].

Proof: Let R be a linear TRS, D a derivation, and tail-length(D) the length of the

subderivation in D from the first non-outermost rewriting through the end.
We use induction on tail-length(D) to prove:

Claim: D is equivalent to an outermost derivation D’ such that tail-length(D’)=0
and |D'| < |D|.

Basis. tail-length(D)=0. Trivial.

Induction. Suppose the claim holds for the derivation with smaller tail-length func-
tion value than D. Suppose the first non-outermost rewriting occurs on the redex
5. There must be an outermost redex s,,; containing s properly. Since R is non-
ambiguous, s must be a variable redex in s,,;. Suppose the rule appliable on s,,; is 7
which has variables 1, ..., x; at the left side and the subterms matched with x4, ...,
are $i,...,Sk. s is a subterm of one of {sy,...,s,}. Suppose Dy, is the subderivation
of D from the rewriting of s through the end. We discuss in cases what rewriting will
happen to s, or above s,,; in Dyyy. Let Dyeuq denote the remaining subderivation
in D except Dy

Case 1. All rewritings to s, or above are applied only on or inside sy, ..., s;. This
case 1s impossible since r will be appliable, even in the case that R is non-left-linear.
Because identical terms will be rewritten to a same term by the confluence property.
In the following cases, suppose r’ is the first rule applied on a redex that is not a
subterm of any one of s, ..., s; and ' is applied to or above s,,; .

Case 2. ' is applied on a proper subterm of s,,;. r’ superposes r, contrary to the
condition that R is non-ambiguous, so this case is impossible.

Case 3. 1’ is applied on s,,;. Before r’ is applied, all rewritings to s,,; must be on
or inside sy, ..., 8, by case 2. Suppose s; becomes 3;-(1 <1t < k) and sy, becomes S;ut

14

just before r’ is applied.

Because R is left-linear, obviously x; matches si(1 <7 < k) and r can be applied
on s .. Since R is non-ambiguous, only one rule can be applied to a term. Therefore,

r'=r.

We move rewriting by r in front of the rewriting on s, D becoming D’. We suppose
that in D the rewriting on s is D[i] and the rewriting on s, is D[j](¢ < j). Suppose

" " 1"t

. "
Sout 18 rewritten to s, , by r in D' and s/, is rewritten to s”/, by r in D. s, and s,,,

are the same except the changes to sy, ..., s;. Since R is left-linear and is represented
by dags such that the different occurrences of the same variable at right sides of rules
point to the same node, we can assume the distinct variables at the right side of r
are i ,..., 2, (1 <1 < ... <1; < k). In D', all 54, ..., are rewritten to 3;-1, '”78;k by
the same rewritings between D[i] and D[j] in D. All other rewritings between D]
and D[j] occur on the general siblings of s,,; and they are not affected by moving
of the rewriting on s,,, so they can be applied in D'. Hence, D’ is equivalent D
and |D'| < |D|. tail-length(D') < tail-length(D). By induction hypothesis, the claim
holds for D'.

Case 4. 1’ is applied above s,,;. By case 2, before r' is applied, all rewriting to S,y
must be on or inside sy, ..., s;. If s,,; were not a variable redex of 1/, r would superpose
r’. Therefore s, is a variable redex of r’. Suppose the term being rewritten by r/
is t. By non-ambiguity, all proper subterms in ¢ not corresponding to variables of
r’ are normal forms. Suppose derivation Dy, reduces a proper subterm t' of ¢ to
its normal form and one step of Dy, is in Dygy. Obviously, tail-length(Dy,,) < tail-

1

length(D). By induction hypothesis, we can obtain an outermost derivation D, ,
equivalent to D,,;, and |D;ub| < |Dgyp|. Since t' must be a general sibling of s,,; and
s, all rewritings to ¢’ has no effect to s, so we can move all steps of D, , in front of the
rewriting step of s, and obtain a derivation equivalent to D with smaller tail-length
function value. Using the induction hypothesis again for the modified D, we can
prove the claim holds for D. Therefore we can assume that in D, all derivation steps
used in rewriting all proper subterms in ¢ not corresponding to the variables in r’ are
in Djeqq. In this case, 1’ is appliable at the beginning of Dy4;, but this is contrary to
the supposition that r is an outermost redex at the beginning of D;,;;.

We have enumerated all cases. The claim does hold. The theorem immediately
follows the claim. a

Even outermost strategy is not able to guarantee to generate the optimal deriva-
tion. One of examples is as follows: system f(z,b) — N,a — b,c — d and term

f(c,a). Both ¢ and a are outermost redexes, but which one is rewritten first has

effect on the length of derivation. ¢ first: f(c,a) — f(d,a) — f(d,b) — N and a
first: f(c,a) — f(e,b) — N.

The variable-delay strategy, the strategy better than outermost strategy, is given

15

in [Li90] for left-linear and variable-fewer TRSs. With dag representation, the “variable-
fewer” condition can be lifted, so that we have a more general result for variable
strategy. Before we go to the formal description, we need a lemma.

Lemma 2 Let D be an outermost derivation of a non-ambiguous TRS and t a non-
variable outermost redex after some steps of D. In D, t remains a non-variable
outermost redex until it 1s rewritten.

Proof: Suppose after D[i] in D, t is a non-variable outermost redex. If ¢ is no longer
a non-variable outermost redex after D[: 4 1], there are only two possibilities: t
itself is rewritten at step D[i + 1] or a redex t’ which is above t is rewritten at step
D[i + 1]. For the lemma, we only need to discuss the latter case. Because t is a
non-variable redex, t is unifiable with a non-variable subterm of ¢, which is contrary
to the condition that the TRS is non-ambiguous. O

Theorem 3 In dag rewriting, for a left-linear TRS, any outermost derivation D has
an equivalent variable-delay derivation D' such that |D'| < |D].

Proof: . Let R be a linear TRS, D an outermost derivation, and tail-length(D)
denote the length of the subderivation of D from the first non-variable-delay rewriting
through the end.

We use induction on tail-length(D) to prove:

Claim: D is equivalent to a variable-delay derivation D’ such that tail-length(D’)=0
and |D'| < |D|.

Basis. tail-var-length(D)=0. Trivial.

Induction. Suppose the claim holds for the outermost derivation with smaller tail-
length function value than D. Suppose after D[i] in D there is a non-variable out-
ermost t,,, and a variable outermost t,,, and the latter is rewritten at step DIi].
Before D[], all derivation steps are applied by variable-delay strategy. By lemma 2,
tnon Will be rewritten in D at step D[j] (¢ < j). Construct an intermediate derivation
as follows.

D" : Move rewriting on t,,, in front of the rewriting on ..

All rewritings between D[i] and D][j] in D can be done between D'[i 4 1] and D'[j]
in D', because those redexes being rewritten between the steps are all outermost
and they cannot be inside or above t,,,, so the rewriting on t,,, does not affect
them. Therefore D" is equivalent to D and has the same length. By theorem 2, the
subderivation between D"[¢ 4+ 1] and the end has an equivalent outermost derivation
with equal or smaller length, say it is Dy,;. Concatenating D”[1,¢] with with Dyuq,
we obtain D', which is equivalent to D, is outermost, and has smaller tail-length
function value. By induction hypothesis, the claim holds for D’. |

16

4.3 Non-Left-Linear TRSs

For term rewriting, one of the great advantages of dag representation is that different
occurrences of a variable in a term point to the same node. In the last subsection,
taking advantage that several occurrences of a variable at right side of rules share one
node, we showed that any derivation is optimal for non-ambiguous and variable-more
TRSs and that outermost strategy and variable-delay are good candidates for efficient
normal form computation for any non-ambiguous TRS. In this subsection, we will
take advantage that the different occurrences of a variable at left side of rules share
one node, which will lead us to new discoveries for non-left-linear TRSs. We have
noted that most of research on efficient term rewriting before focused on left-linear

TRSs.

Let rule | — r rewrite term t and [be a non-linear term. Specifically, suppose
variable z occurs in [multiple times. In dag representation, all occurrences of z in [
share one node. When [matches a subterm ¢’ of ¢, all occurrences of x in [match a
same subterm of #'. Due to this fact, all discussions on rewriting by left-linear TRSs
in the last subsection are valid for rewriting by non-left-linear TRSs. Let’s see an
example. Most of proofs in the last subsection used “swapping” of two rewritings:
Let R be a non-ambiguous and left-linear TRS, t a redex and t’ a redex inside ¢, i.e.,
t' is a proper subterm of t. By non-ambiguity of R, ¢ must be a variable redex of
t. Since R is left-linear, the variables at left side of rules are different and they may
match different subterms. No matter when ¢’ is rewritten, ¢ is always a redex. That
means, rewriting on t’ has no effect on rewriting on ¢t. Hence, rewritings on ¢ and
t' can be swapped in any order. In dag rewriting, all occurrences of a variable at
left side of a rule match a same subterm. Rewriting on ¢ has no effect on rewriting
on t, so they can be swapped in any order. By comparison, if a non-left-linear TRS
is represented by trees, we cannot do this “swapping”’. For example, given system
{f(z,z) - N,a — b} and term f(a,a). t = f(a,a) is a redex and ' = left son a of
f is a redex inside ¢. If ¢’ is rewritten to b, we don’t have any redex of the form f(...)

furthermore.

The advantage of dag representation for non-left-linear TRSs described above
can be used in all proofs for the non-left-linear version of theorem 1, theorem 2, and
theorem 3. That is, the “left-linear” condition can be lifted. We don’t repeat the
proofs here. Therefore, we have

Theorem 4 In dag rewriting, for a non-ambiguous and variable-more TRS, given
any term, any derivation for that term is optimal.

Theorem 5 In dag rewriting, for a non-ambiguous TRS, any derivation D has an
equivalent outermost derivation D' such that |D'| < |D|.

Theorem 6 In dag rewriting, for a non-ambiguous TRS, any outermost derivation
D has an equivalent variable-delay derivation D' such that |D'| < |D].

17

5 Conclusions

We have designed a dag representation for terms and term rewriting systems, which
save space and rewriting steps as most as possible in the view that redundant space
and rewritings are avoided. The term represented by a tree is uniquely mapped
to a dag. This simple corresponding relationship between tree representation and
dag representation provides us a clear base to establish relationship for important
properties of rewriting system between tree rewriting and dag rewriting. We have
provided efficient strategies for dag rewriting. With dag representation, we have
designed efficient strategies for non-left-linear rewriting systems.

We have given efficiency analysis for each step in rewriting a term. But more
complexity analysis for comparing tree rewriting and dag rewriting is interesting. In
general, the more number of subterms are shared, the more efficient the dag rewriting
is. We may consider about the average complexity. Matching two dags is efficient.
How to find a redex in a dag term is another interesting topic. Since occurrences of
subterms in a term are much fewer if the term is represented by a dag, the redex
finding process will be much more efficient.

Acknowledgements

I would like to thank Zvi Kedem for guide and support, and Krishna Palem for helpful
discussions.

References

[BEG87] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glaueert, J.R. Kennaway, M.J.
Plasmeijer and M.R. Sleep, “Term graph rewriting,” PARLE’87 (Parallel Archi-
tecture and Language Furope), Vol. II, LNCS 259, pp.141-158, 1987.

[BL79] G. Berry and J.-J. Levy, “Minimal and optimal computation of recursive pro-
grams”, JACM 26, pp.148-175, 1979.

[CKS8T] C.Choppy, S.Kaplan and M.Soria, “Algorithmic complexity of term rewriting
systems,” 2nd Int. Conf. on Rewriting Techniques and Applications, pp.256-270,
1987.

[Der85] N. Dershowitz, “Computing with Rewrite Systems,” Information and Conlrol
65, pp.122-157, 1985.

[GM86] J.A. Goguen and J. Meseguer, “EQLOG: Equality, types and generic modules
for logic programming”, in (D. DeGroot and G. Lindstrom, Eds.) Logic Program-
ming: Functions, Relations and Fquations, Prentice-Hall, Englewood Cliffs, NJ,
pp.295-363, 1986.

[HKP88] A. Habel, H.-J. Kreowski and D. Plump, “Jungle evaluation,” Fifth workshop
on Specification of Abstracl Data Types, LNCS 332, pp.92-112, 1988.

18

[HL79]

[HP88a]

[HP8Sb]

[KB70]

[HuS0]
[Li90]
[PMT74]
[PWTS]
[Rob71]
[Sta80b]

[SYS6]

G. Huet and J.-J. Levy, “Computations in nonambiguous linear rewriting sys-
tems”, INRIA Tec. Report 359, 1979.

B. Hoffmann and D. Plump, “Jungle evaluation for efficient term rewriting,” In-
ternational Workshop on Algebraic and Logic Programming, LNCS 343, pp.191-
203, 1988.

B. Hoffman and D. Plump, “Jungle evaluation for efflicient term rewriting,”
Report No. 4/88, Fachbereich Mathematik und Informatik, Universitat Bremen,
1988.

D.E. Knuth and P.B. Bendix, “Simple Word Problems in Universal Algebras,” in
(Leech, J. ed.) Computational Problems in Abstract Algebra, Pengamon, Oxford
U.K., pp.263-297, 1970.

J.M. Hullot, “Canonical forms and unification,” 5th Conf. on Automated Deduc-
tion, LNCS 87, pp.318-334, 1980.

K. Li, “Complexity of rewriting and optimization of rewriting,” Proc. of 2nd
Conf. on Algebraic and Logic Programming, available as in LNCS, 1990.

G. Pacini, C. Montangero and F. Turini, “Graph representation and computation
rules for typeless recursive languages,” ICALP’74, LNCS 14, pp.157-169, 1974.
M.S. Paterson and M.N. Wegman, “Linear Unification”, JCSS 16, pp.158-167,
1978.

J.A. Robinson, “Computational logic: the unification computation,” Machine
Intelligence 6, pp.63-72, 1971.

J. Staples, “Speeding up subtree replacement systems,” J. of Theor. Comp. Sci.
11, pp-39-47, 1980.

P.A. Subrahmanyam and J. You, “FUNLOG: A computational model integrating
logic programming and functional programming”, in (D. DeGroot and G. Lind-
strom, Eds.) Logic Programming: Functions, Relations and Fquations, Prentice-
Hall, Englewood Cliffs, NJ, pp.157-198, 1986.

19

