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Abstract

Muller (1998) develops a language of motion and shape change in terms of topological re-
lations and temporal order relations between regions of space-time (histories). He uses this
language to state and prove the transition rules developed in (Randell, Cui, and Cohn, 1992)
that constrain the changes in spatial relations possible for objects whose shape changes con-
tinuously. Unfortunately, Muller’s statement of the transition rules is inadequate. This paper
presents an alternative statement of these transition rules.

In an important and elegant paper, Philippe Muller (1998) develops a theory of motion based
on the geometry of four-dimensional regions of space-time, called “histories”. This approach was
suggested in Hayes’ “Naive Physics Manifesto” (1979), but Muller’s paper was the first to explore
it systematically.

Muller’s language is a first-order language over the universe of histories. Muller’s paper admits
both regions that are regular and those that are “regular and open”; i.e. the interior of regular
regions. I will modify this here to include only regular1 regions; this restriction does not affect the
issues under discussion here, and it simplifies the presentation.

The language contains three primitive binary relations:2

Cxy – Regions x and y are connected; that is, they share at least one point.
x < y — Region x strictly precedes region y temporally.
x><y — The temporal projections of regions x and y share at least one instant.

Other relations between regions are defined in terms of non-recursive first-order formulas over these.

Muller proposes the following definition (D4.2) for continuity: Region w represents a continuous
function from time to space if it is satisfies the following:

∗This research was supported in part by NSF grant #IRI-9625859. This paper began as the last section of (Davis,
2001). However, the reviewers of that paper felt, with some justification, that this material was peripheral to the
primary purposes of that paper, and should be deleted. That left me in a quandary as to what to do with this. The
material here is not really substantive enough to warrant separate publication; on the other hand, it would be a pity
to discard it entirely. I decided, therefore, to publish it just as a technical note on the Web. I have not attempted to
turn it into an independent work; rather, it should be considered as an addendum to (Davis, 2001).

1A region is regular if it is equal to the closure of its interior
2This paper follows Muller’s notational conventions: a variable is a single lower-case letter; predicates are either

prefix or infix; atomic formulas are strings of symbols without further punctuation.
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W is the whole history in the solid boundary. X is the portion of W below the dotted line.
U is the semi-circle on the left, also a subregion of W.

Figure 1: Muller’s definition of discontinuity

D4.2: CONTINUw
∆= CONtw ∧ ∀x∀u ((TSxw) ∧ x><u ∧ Puw) ⇒ Cxu.

Here “CONtw” means that the temporal projection of w is a connected time interval. “Puw”
means that u is a subregion of w. “TSxw” means that x is a “time-slice” of w. This predicate is a
little tricky. For a normal regions w and x, it asserts that x is the normalization of the restriction of
w to a time period i, where i is a regular subset of the time-line. The definition of these predicates
in terms of “C” “<” and “><” is given in (Muller, 1998).

Figure 1 shows how a discontinuous function of time fails to satisfy definition D4.2. Note that
the only part of line l contained in x is the segment between points a and b.

In (Davis, 2001) we show that the graph of a function from time to regions satisfies definition
D4.2 if and only if it is continuous with respect to the Hausdorff metric. More precisely, we state
and prove the following theorem:

Theorem 1: Let w be a bounded normal history whose temporal projection is a connected time
interval I, and let w(t) be the cross-section of w at time t ∈ I. Then w satisfies Muller’s definition
D4.2 iff w(t) is continuous in the Hausdorff distance.

However, Theorem 1 above leads to a conflict between Muller’s analysis of transitions and the
analysis that we give in (Davis, 2001). Muller claims to show that it follows from his definition that
the only transitions possible are the ones in figure 2. In (Davis, 2001) we show, on the contrary, that
functions continuous in the Hausdorff distance can execute any of the transitions in figure 3. Indeed,
note that the transition from EQ to DS described in (Davis, 2001) satisfies Muller’s of continuity.
Where, then, is the difference between Muller’s account of the transitions and ours?

(In figure 3, the significance of the arrow from the dashed circle on the right to the dashed circle
on the left is that every relation on the right can undergo a transition to any relation on the left.
That is, there should be a arrow from each of the five states on the right to each of the three states
on the left; however, we have summarized these in terms of the dashed circles, in order to simplify
the diagram.)
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Figure 2: Undirected transition graph from (Randell, Cui, and Cohn, 1992)
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Figure 3: Transition graph for the Hausdorff metric (Davis, 2001).
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Figure 4: The normalized cross-sections of x and y are always disconnected

The resolution is that Muller is using a different, and, we believe, flawed formal definition of a
“transition”. That is, the formal theorems Th 4.3 – 4.6 that Muller proves are, indeed, true, but his
interpretation of these theorems as expressing transition relations is incorrect.

Consider, for example, the form of Th. 4.3:

TSxw ∧ Pyw ∧ DCxz ∧ OVspyz ∧ x><y ⇒ ¬CONTINUw

Muller claims that this theorem expresses the impossibility of a transition from DC to OV by a
continuous function w.

The relation OVspyz is intended to mean that y and z overlap spatially in every temporal slice
of their common domain. Muller’s formal definition is

OVspxy
∆= OVxy ∧ x ⊆t x · y

An analogous spatial relation is defined for each of the RCC relations.

There are a couple of peculiarities with the above form of Thm. 4.3. First, it is not at all obvious
why this axiom should express the non-existence of a transition relation. Second, the relations DC
and OV occupy non-symmetric logical positions in this formula. (Muller is not trying to identify
the “directionality” or “dominance” of transitions, in the sense of (Galton, 1995).)

Furthermore, the spatial RCC relations are defined ad hoc; it is not clear what precisely Muller
intends and therefore not clear whether his formal definitions achieve his intentions. For example,
the above definition of OVsp has at least three apparent formal flaws. First, it is asymmetric in
x and y. Second, Muller does not define the notation x · y and it is not clear whether he means
the intersection or the normalized intersection. Third, the condition OVxy is redundant if x · y
means the normalized intersection, and does not accomplish anything reasonable if x · y means the
intersection. Another example: Muller claims that DCsp is equivalent to DC; however, figure 4
shows two histories x and y that are not DC but whose normalized spatial cross sections are always
disconnected.

A more systematic approach to representing transitions can be accomplished along the following
lines: Let x(t) and y(t) be two functions from time intervals to normal spatial regions, and let R
and P be two spatial relations. We say that x and y transition from R to P if, for some t1, t2 in the
domains of both x and y, if R(x(t1), y(t1)), P(x(t2), y(t2)) and for all t ∈ [t1, t2] either R(x(t), y(t))
or P(x(t), y(t)).
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Figure 5: The relation SPLITtxuv

Now, turning to the language of histories, let x be a normal history whose temporal projection
is a connected interval i. Define the corresponding function x(t) to be the normalization of the
cross-section of x at t, which we will abbreviate Nx(x, t). (This is not, of course, a function in the
formal language, as it maps to a purely spatial region; it is just for our informal discussion.) x is
then equal to the closure of the set {〈t, p〉 | p ∈ x(t)}. We can then define two normal histories x and
y as transitioning transition from R to P if Nx(x, t) and Nx(y, t) transition from R to P as defined
above. Our task, then, is to give a definition of the concept “The normalized cross-sections of x and
y at time t have spatial relation R,” in Muller’s language of histories.

We proceed as follows:

I. We will identify a time instant t with any history that ends at t. The following temporal
predicates will be useful:

MEETxy
∆= x><y ∧ ¬xσy ∧ ∀wz(Pwx ∧ Pzy)⇒w < z ∨ w><z

The notation xσy means that the interiors of the time-projections of x and y overlap. Muller
gives the following definition:

xσy
∆= ∃zz ⊆t x ∧ z ⊆t y

Muller also gives a definition of MEET, but his requires the use of open histories, which we have
excluded.

SAME-ENDxy
∆= ∃zMEETxz ∧ MEETyz

(x and y end at the same time.)

II. If time t is in the interior of the temporal projection of history x, then x can be split into
two histories u and v such that u ends at the end of t and v begins at the beginning of t, using the
following formula.

SPLITtxuv
∆= x = u + v ∧ SAME-ENDtu ∧ MEETtv

Note that the cross-section of x at t is equal to the union of the cross-sections of u and v, and
likewise for the normalized cross-sections (Figure 5).

III. A history a “touches” history u from above if u meets a and u is externally connected to a.
History a touches history v from below if a meets v and a is externally connected to v.
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Figure 6: The relation SAME-FACEuv

TOUCHX1au
∆= MEETua ∧ ECua

TOUCHX2av
∆= MEETav ∧ ECav

IV. If history u meets history v, then they have the same meeting face if every history a that
touches u is externally connected to a history b that touches v and vice versa. (Figure 6)

SAME-FACEuv
∆=

MEETuv ∧ [[∀aTOUCHX1au⇒∃bTOUCHX2bv ∧ ECab]∧
[∀bTOUCHX2bv⇒∃aTOUCHX1au ∧ ECab]]

V. We can now simplify the analysis of the cross section of history x at time t by creating a
new history r that consists of: the union of [the part of x before t] with [a “reflection” of the part
of x after t]. (Figure 7.)

REFLECTxtr
∆= ∃u,v,wSPLITxtuv ∧ SAME-FACEvw ∧ r = u + w

VI. History a touches the boundary of the end of history u if a has the same end as u, and no
matter how thin you slice a, the later half is EC to u (Figure 8).

TOUCHBDau
∆= SAME-ENDau ∧ ∀sSPLITsabc⇒ECuc

VI. History a touches the interior of the end of history u if a touches u but is disconnected from
any history that touches the boundary of the end of u (Figure 9.)

TOUCHINTau
∆= TOUCH1au ∧ ∀bTOUCHBDbu⇒DCba

VII. The normalized cross-section of history x at time t is a subset of the normalized cross-
section of history y at time t if the following holds: Let q and r be reflections of x and y at t. Then
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any region that touches the interior of q also touches the interior of r. (We will subscript c to RCC
relations to indicate spatial relations that hold at an instantaneous cross-section.)

PPctxy
∆= ∃q,rREFLECTxtq ∧ REFLECTytr ∧ ∀aTOUCHINTaq⇒TOUCHINTar

VII. The boundary of normalized cross-section of history x at time t is disjoint from the bound-
ary of the normalized cross-section of history y at time t if the following holds: Let q and r be
reflections of x and y at t. Let a and b be histories that touch the boundaries of the ends of q and
r. Then there exist subhistories c in a and d in b such that c touches the boundary of the end of q,
d touches the boundary of the end of r, but c and d are disconnected.

DISJ-BDtxy
∆=

∃q,rREFLECTxtq ∧ REFLECTytr∧
∀a,b[TOUCH-BDaq ∧ TOUCH-BDbr]⇒
∃c,dPPca ∧ PPdb ∧TOUCH-BDcq ∧ TOUCH-BDda ∧ DCcd.

VIII. The remaining spatial relations over normalized cross-sections of x and y can be defined
from PPc and DISJ-BDc.

TPPctxy
∆= PPctxy ∧ ¬DISJ-BDtxy.

NTPPcxy
∆= PPctxy ∧DISJ-BDtxy.

DSctxy
∆= ¬∃wPPctwx ∧ PPctwy.

(The cross-sections of x and y at t have no common interior points.)
OVctxy

∆= ∃a,b,cPPctax ∧ PPctay ∧ PPctbx ∧ PPctcy ∧DSctbx ∧ DSctcy.

ECctxy
∆= DSctxy ∧ ¬DISJ-BDtxy.

DCctxy
∆= DSctxy ∧ DISJ-BDtxy.

EQctxy
∆= PPctxy ∧ PPctyx.

IX. Following the discussion above, we can state the existence of a transition from relation Rc

to Sc in the statement

∃a,b,t,w CONTINUa ∧ CONTINUb ∧ Rctab ∧ Scwab ∧ t ⊆t w ∧
∀u t ⊆ u ⊆ w ⇒ [Rcuab ∨ Scuab].

It can reasonably be objected to this analysis that, though it observes the letter of the mereotopo-
logical enterprise, it violates the spirit, as it achieves its ends by using the very great expressive power
of first-order logic over histories to, in effect, define time instants and spatio-temporal points. Cer-
tainly, proving the correctness of rules that state the non-existence of transitions, or worse, those
that state the existence of transitions, from plausible mereotopological axioms, would seem to be
daunting if not hopeless in this expression of these rules. One might hope, therefore, that a more
natural mereotopological expression of transition rules could be found that could indeed be proved
in a mereotopological theory. It seems doubtful to me, however, that such a characterization could
be found that would be entirely satisfying.
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