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Abstract

The use of the finite element method for elasticity problems results in extremely
large, sparse linear systems. Historically these have been solved using direct solvers
like Choleski’s method. These linear systems are often ill-conditioned and hence
require good preconditioners if they are to be solved iteratively. We propose
and analyze three new, parallel iterative domain decomposition algorithms for the
solution of these linear systems. The algorithms are also useful for other elliptic
partial differential equations.

Domain decomposition algorithms are designed to take advantage of a new
generation of parallel computers. The domain is decomposed into overlapping or
non-overlapping subdomains. The discrete approximation to a partial differential
equation is then obtained iteratively by solving problems associated with each
subdomain. The algorithms are often accelerated using the conjugate gradient
method.

The first new algorithm presented here borrows heavily from multi-level type
algorithms. It involves a local change of basis on the interfaces between the sub-
structures to accelerate the convergence. It works well only in two dimensions.

The second algorithm is optimal in that the condition number of the iteration
operator is bounded independently of the number of subdomains and unknowns.
It uses non-overlapping subdomains, but overlapping regions of the interfaces be-
tween subdomains. This is an additive Schwarz algorithm, which works equally
well in two or three dimensions.

The third algorithm is designed for problems in three dimensions. It includes
a coarse problem associated with the unknowns on the wirebaskets of the subdo-
mains. The new method offers more potential parallelism than previous algorithms
proposed for three dimensional problems since it allows for the simultaneous solu-

tion of the coarse problem and the local problems.
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Chapter 1

Introduction

1.1 An Overview

The finite element method for elliptic partial differential equations results in
extremely large, sparse linear systems. We propose and analyze three new, paral-
lel, iterative algorithms for the solution of these linear systems. The underlying
iterative scheme is often the preconditioned conjugate gradient method where we
construct the preconditioner using domain decomposition techniques.

Domain decomposition algorithms are designed to take advantage of a new
generation of parallel computers. The domain is decomposed into overlapping or
non-overlapping subdomains. In the former case the algorithms are often referred
to as Schwarz methods, in the latter they are called iterative substructuring meth-
ods. This distinction is not always clear. For instance, Dryja and Widlund [36]
have shown that the basic iterative substructuring algorithm, see Section 3.2, can
be analyzed as a Schwarz method. For a discussion of the relationship between
the overlapping and non-overlapping schemes, see also Bjgrstad and Widlund [10]
and Chan and Goovaerts [21].

The discrete approximation to a partial differential equation is obtained itera-
tively by solving problems associated with each subdomain and passing informa-
tion between neighbors. When a large number of subdomains are used, a global
problem, which involves one or a few unknowns from each subdomain, must also be
included since otherwise the convergence rate deteriorates rapidly with the num-
ber of subdomains. The best of these algorithms have condition numbers which

are bounded independently of the number of subdomains and unknowns or which



grow like (1 +log(H/R))*. Here H is the diameter of a subdomain and % is the di-
ameter of an element. These algorithms are often accelerated using the conjugate
gradient method. The particular domain decomposition algorithm is then defined
by the preconditioner for the conjugate gradient method.

The alternating Schwarz method [75] is believed to be the first domain de-
composition algorithm. In its original form it involves solving problems on two
subdomains serially. We discuss this algorithm more completely in Chapter 2.
Domain decomposition algorithms where the subproblems are solved in such a
serial fashion like the alternating Schwarz method are referred to as multiplica-
tive schemes. In [35], Dryja and Widlund show how Schwarz’s algorithm can be
restructured so that all the subproblems may be solved in parallel. In this case
the methods are referred to as additive algorithms. Xu discusses many domain
decomposition algorithms in [86]. He uses the terms recursive subspace correction
(RSC) and simultaneous subspace correction (SSC) for multiplicative and additive
cases, respectively.

The first new algorithm presented here borrows heavily from the literature on
multi-level, multigrid type algorithms. It involves a local change of basis on the
interfaces between the substructures to accelerate the convergence. It works well
only in two dimensions.

The second new algorithm is optimal in the sense that the condition number
of the iteration operator is bounded independently of the number of subdomains
and unknowns. The subdomains do not overlap, but overlapping subregions of
the interfaces between the subdomains are used. This is an additive Schwarz
algorithm; it works equally well in two or three dimensions.

The third new algorithm is an iterative substructuring algorithm designed for
problems in three dimensions. It includes a coarse problem associated with the
unknowns on the wirebaskets of the subdomains. The new algorithm offers more
potential parallelism than previous, similar algorithms proposed for three dimen-
sional problems because it allows for the simultaneous solution of the coarse prob-
lem and the local problems.

The structure of this thesis is as follows. In Chapter 1 we discuss the equations
of linear elasticity and the finite element method. Chapter 2 is devoted to the

basic algorithms and tools of domain decomposition. In Chapters 3, 4, and 5 we



introduce and analyze our three new algorithms. We analyze the operation counts
for some basic domain decomposition algorithms in Chapter 6.

Portions of this thesis have already appeared as technical reports, two of which
have been accepted for publication. Parts of Chapter 3 are contained in [78]. The
algorithm in Chapter 4 was introduced in [77]. The main new result in Chapter 5
will appear in [76].

One of the recurring themes in this thesis is the relative ease with which differ-
ent domain decomposition ideas can be combined to produce a multitude of new
algorithms. Another is the recognition that many of the proposed preconditioners
are merely block diagonal preconditioners in a new basis suggested by the underly-
ing geometry. A third is that just as the global stiffness matrix is constructed from
pieces corresponding to the subdomains, the preconditioner can be constructed in
a similar manner.

We now briefly review some of the literature. Papers which relate directly to
this thesis will be discussed more completely in the following chapters.

Very early, Sobolev [79] showed that the Schwarz alternating method converges
for the equations of linear elasticity. More recent work on elasticity has been
done by several scientists. Using the Neumann-Dirichlet algorithm, Bjgrstad and
Hvidsten [6] have solved actual industrial problems with some success. De Roeck
(28], De Roeck, Le Tallec, and Vidrascu [56] and De Roeck and Le Tallec [29]
have implemented the algorithm proposed in Bourgat, Glowinski, Le Tallec, and
Vidrascu [11] for elasticity problems. This algorithm involves solving a Dirichlet
problem and Neumann problem for each subdomain at each iteration. Hughes and
others have used element-by-element preconditioning [46],[82], on large structural
problems. The preconditioned problems for these latter two algorithms can require
hundreds of conjugate gradient iterations.

For the p-version finite element method, Mandel has analyzed iterative sub-
structuring type algorithms for elasticity [60],[61],[62],[63]. Other work for the
p-version finite element method has been carried out by Babuska, Craig, Mandel,
and Pitkéranta [1], and Babuska, Griebel, and Pitkdranta [2]. For the p-version
finite element method, the elements themselves, which are associated with many
degrees of freedom, are treated as subdomains.

Russian mathematicians are also working on domain decomposition algorithms



for elasticity and related elliptic problems. In [54], Kolotilina and Yermin have
performed numerical experiments on the three dimensional Navier equations using
a block SSOR with a particular ordering inspired by the geometry. This work is
also for the p-version finite element method. In the preconditioned problems,
they observe only a slight growth in the condition number as p, the degree of the
finite element basis functions, increases. Their scheme has some similarities to
a multiplicative version of Mandel’s work cited above. However, Kolotilina, and
Yermin work with a fixed number of p-elements and do not explore the behavior
of the condition number as a function of the number of p-elements.

In [49], Kaporin, Kolotilina, and Yermin continue these experiments and ad-
vocate the merging of neighboring p-elements and the use of an iterative method
to solve the reduced, Schur complement, system. They also find that for larger p
performing an incomplete, approximate factorization of the blocks, rather than a
complete factorization, is more computationally efficient. The incomplete factor-
ization they use is discussed in Kolotilina and Yermin [53].

The work of Nepomnyaschikh [68] contains some important theory which is
helpful in analyzing a variety of domain decomposition algorithms. One of his
important results is introduced in detail in Chapter 2. The work by Matsokin and
Nepomnyaschikh [66] discusses a Schwarz alternating algorithm which has some
similarities to the algorithm presented in Chapter 4.

Much work using domain decomposition has focused on the scalar elliptic
problem, including Bjgrstad and Widlund [8],[9]; Bramble, Pasciak, and Schatz
[12],[15]; Chan and Resasco [23],[24]; Dryja [33],[34]; Dryja and Widlund [35],[36];
and Widlund [84]. Experimental work on the relative effectiveness of various do-
main decomposition algorithms on several types of parallel computers have been
performed by Gropp and Keyes [50],[51],[52]. Gropp and Keys have experimented
with non-self-adjoint problems and with problems in fluid dynamics.

For recent extensions of the theory for domain decomposition algorithms to

non-self-adjoint elliptic equations and parabolic problems, see Cai [19],[18] and

Cai and Widlund [20].



1.2 Sobolev Spaces

Sobolev space methods provide powerful tools in the study of elliptic problems
and are also extremely useful in analyzing finite element methods. We introduce
the basic concepts in this section. To fix some notations, we let & represent an
element in a bounded Lipschitz region @ C R™ of diameter O(H). Let u,v, f,g
be scalar valued functions. Bold face (e.g. u) will be reserved for vector valued
functions and subscripted variables such as u; will indicate the th component of
a vector valued function. The number of components of u will be denoted by ¢. C'

and ¢ will be generic constants. We need only work with the real Sobolev spaces.

1.2.1 The Norms

The L? norm is defined by

lullfa@ = | uida.

The space L* is defined to contain all functions u for which ||ul|i2(q) < oo. The

H' semi-norm is defined by

[ulipey = [ (Vu)- (Vu)da.

We define the weighted H' norm by

1
||u||12t11(9) = |u|12111(9) + ﬁHUH%z(Q)

The space H*({2) consists of all functions u for which both u and all of its first
derivatives are in L*(Q). The space Hj(Q) is the subspace of H'()) consisting
of all functions v € H'(2), which are the limits of C§°(€2) functions. The space
C5 () consists of infinitely continuously differentiable functions whose support
lies in €.

The definitions are easily extended for vector valued functions by

1] [Z2 0 ZHWHB

and

q
||u||%11(9) = E ||ui||?q1(9)
=1



When we speak of the H' space of vector valued functions, we write (H'())?,

however, when we explicitly express the norm, we will drop this notation and write

[[ul|gi@y rather than  |[u|m1q))e.

1.2.2 Three Useful Lemmas

The following three inequalities establish equivalences of certain norms in some

subspaces of H'(Q).

Lemma 1.2.1 (Friedrichs’ inequality) There ezists a positive constant C()
such that, for all u € H}(Q),

[lull @) < C(Q) ula )

Lemma 1.2.2 (Poincaré’s inequality) There exists a positive constant C(Q)

such that, for all u € H'(Q),

1
lullfney < C@lulhe + gt [ udo)®).

Lemma 1.2.3 (Poincaré-Friedrichs’ inequality) If Ty C 90Q is of positive
measure then there exists a positive constant C(£2,Tg) such that, for allu € H'(Q),

lullye @) < €O To)(lulhnny + 37 [ )

Proofs of Poincaré’s inequality may be found in [38],[69],[71], Friedrichs’ inequality
may be found in [71] and Poincaré-Friedrichs’ inequality in [69].

1.3 Trace Spaces

Certain trace spaces play an important role in the analysis of many domain
decomposition algorithms. We consider the same Lipschitz region 2 as in the
previous section.

Let T" be a simple, closed curve (surface) in Q. We define
|l 12y = ﬁl}lth |71 (q)-

An equivalent semi-norm is given by,

[ = g,



cf. Miranda [67]. To define a full norm on I', we use
ey = oy + el e
If I' C T then we define
|ﬁ|1211§0/2(f) = |u|12111/2(r)7 where ulp = @ and u|pp = 0.

HI/Q(IA’) is a strict subspace of H'/%(T'). A norm equivalent to H&{Q(f’) is given by

2
~12 ~ 12 U ($)
[ 172,04 — |1 1/2(T d £y
Wy = Vil + f; p(z) )

where p(z) is the distance from z to the boundary of I'. For a more detailed

discussion of trace spaces; cf. Grisvard [43] or Lions and Magenes [57].

1.4 Ellipticity
1.4.1 The Scalar Case

We are interested in partial differential equations of the form
au

— in 1.1

S gl = e (1)

u =0, on I'y C 09, (1.2)

ou .
ZZaij(x)—ni =g, onI'y =00\ Ty. (1.3)
i dz;

Here 1 is the unit outward normal to 9€2. We require that the measure of I'y be
strictly greater than zero. This insures a unique solution to problem (1.1-1.3).
To obtain a variational form for this equation, we note that,
9] Ou 0 Ju Ov Ju
—va; v—1a;(t)=— + a;j(x)m——=.
&r ]( )8”0] 812 ]( )81;] + ]( )a”CZ afﬁj
Assuming enough smoothness, we can integrate over () to obtain

/ s () ou / 0 ais(z) / (2) +/ 80 Ou
vhsa(e)=— = [ =—wv —aj;

a0 Ox; Q (9@- (9.1] 6;1:Z ! 3;1:] (93:Z 8.1]
Summing over ¢ and j, we obtain an important Green’s formula

80 Ou

/:rmzzvn aij(@ axj / ZZU a” axj / Zza” dx; (917]

(1.4)



Let V be the set of all v such that v € H'(Q) and v|r, = 0. Using equation (1.4),

a weak form of the partial differential equation (1.1-1.3) is

Ov Ou
/in:zj:aij(f’?)afma—%—éfv—l-/rlgv, ueV, YveV. (1.5)

We introduce the bilinear form aq(u,v) and the linear form f(v) by rewriting

equation (1.5) as

ag(u,v) = f(v), weV, YveV. (1.6)
For any symmetric, positive definite problem the related minimization problem is
given by
: .1
11%1‘1,1](11)—%él‘rll§ag(u,u)—f(u). (1.7)

We are interested in when solutions to equations (1.6) and (1.7) exist and whether
they are the same. The related problem of whether the solution of equation (1.6)
is a classical solution of (1.1-1.3) will not be discussed, cf. [38],[48],[57].

Let W be a Hilbert space with the inner product (-,-) and norm || - ||. We

review the following definitions.

e The bilinear form a(-,-) is continuous if there exists a constant C' > 0 such
that
|a(u, v)| < Clul[[]v]], Vu,v € W.

e The bilinear form a(-, -) is strongly elliptic or coercive if there exists a constant
¢ > 0 such that
a(v,v) > c||v||?, Yv e W.

e The linear form f(-) is continuous if there exists ¢ > 0 such that

[f(o)l <clloll,  VveW.

The following abstract theorem allows us to determine conditions on a;;(x) for

existence and uniqueness of solutions to equation (1.6).

Theorem 1.4.1 (Lax-Milgram Lemma [26],[55]) Let W be a real Hilbert space,
let a(-,-) be a continuous, strongly elliptic (coercive) bilinear form defined on W,
and let f be a continuous linear form on W. Then there exists one and only one

element u € W which satisfies

a(u,v) = f(v), Yo e W. (1.8)



Lemma 1.4.1 If the same hypothesis hold as in the Laz-Milgram Lemma and

a(-,-) is symmetric then
1
min ia(u, u) — f(u)

ueW

exists and the minimizing u satisfies (1.8).

To apply the Lax-Milgram Lemma to the variational problem (1.6), we use
the fact that H'(€) is a Hilbert space. We need to verify that agq(-,-) is strongly

elliptic (coercive), i.e.
ag(u,u) > c||u||12ql(9), Yu e V.
We therefore require
2.2 viai(x)y; 2 ey, Vi€ Q, Vye R"
Y ;
It follows that
www = [¥3 S g

C/Q(Vu)2

= C|‘U|12111(Q)

Y

> cllullfng)-

The final step makes use of the Poincaré-Friedrichs’ inequality, and the fact that

u 1s zero on I'y.

1.4.2 The Vector Valued Case

We can apply the same procedure to the vector valued case. Consider the

partial differential equation,

6 6uk _ oz .
_zj:zk:zl:a—%ﬁukl(x)a— — Ju m Q7

T



Again, using a Green’s formula for each component of u separately, we obtain the

variational problem,
ag(u,v)=f(v), uwueV, ¥weV,

where
8u k

(u,v) /Zzzzavl Bijm(x %’
:/inzfivrl_/l“lzi:givh

and the space V C (H'(2))? is given by
V={ve(H' Q) :v|,=0}

To apply the Lax-Milgram Lemma in this case, we require that

Zzyzzjﬁz]kl ykzl > CZ yZZ] ) Vo e Qv vy € Rn7

5,7 k,l 2,]

Again we get strong ellipticity (coercivity) by
auZ 8uk
GQ(U, U) - / ZZEZ Ukl 0—.17[
/ Z am
(9"cj

= C|U|H1(Q)

Y

> cf|ullf g

(1.9)

Vz e R%.

We conclude by using Poincaré-Friedrichs’ inequality, and the fact that u is zero

on I'y.

1.5 Elasticity

The equations of linear elasticity model the displacement u(z) of a body

which is fixed along a portion of its boundary, ['g, and is subject to a surface force

of density g along the other portion of the boundary, I'y = 9Q \ T'g. The body

is also subject to a volume force in its interior (such as gravity) given by f, see

Figure 1.1.

10



Figure 1.1: A Sample Domain

The equations of linear elasticity [25],[44],[45], are a coupled elliptic system,
and can be written in the form
3
oij(u) = > aijuen(u),
k=1
2 aa”

Z i7 n Q,

ulr, =0, and Zaij(u)ﬁj =g; on I'1 =00\ T,.
=1

The symmetric three-by-three stress matrix, €;;(u), is given by
1 8ui 8u]-
6”(1,1) - 5(81’] + axl)

The tensor «;jx 1s a symmetric, positive definite operator which operates on sym-

metric three-by-three matrices. o;; is called the strain. 0 is the outward normal
on I';.

From a Green’s formula, we obtain the variational formulation

ag(u,v)=f(v), uwueV, ¥WweV,

with
anluny) = [ 3 awesv). S = [ 3ot [ S

11



and

V= {ve(H(Q) : v, =0}

A special case of interest is when the material properties are independent of
position, i.e. the material is homogeneous, and the behavior of the material is the
same in all directions, i.e. the material is isotropic. In this the case the equations

for the strain reduce to

3

oij(u) = MY exr())i; + 2pei(n).

k=1
Here A > 0 and p > 0 are the Lamé coefficients, which represent physical properties

of the material. Using familiar notations, we find that

> auk 8ui 6uj
°. Joy; °. Quy, Ou;  Ou;
Z =2 (M 37)4; + -+ ) = fi,
20 (u) ;( (k:1 AL ”(8:::]- 90 ) =1
or , ) . 2
Fuy, 0%u; 0 ui .

> 9Py, 0%u;
. A L= f; 1.10
;M&C? O+ g (1.10)
or
pAu+ (A +p)VV-u =1 (1.11)

To put the equation in variational form, we multiply equation (1.10) by v;,

integrate over ), sum over ¢ and integrate by parts. We then obtain

ov; 6u2 81}2 au
ey S ey S a] /szf [ g
=1 j=1 =1 T; o}
Again we express this in terse notation as,
ag(u,v) = f(v), ueV,VveV. (1.12)

An equivalent formula for ag(u, v) using the stress matrix €;;(u) is given by

wv) = [22 Ses(we, )+ AL G0 G (11

=1 7=1 7=1

12



The proof that aq(u,v), as given in equation (1.13), is strongly elliptic (co-

ercive) in the (H'(€))® norm is non-trivial. This is because we need to bound

du;
Oz

by combinations of the form (2% %). The following
J i

all combinations of
inequality, due to Korn (1909), establishes strong ellipticity (coercivity) and hence

existence and uniqueness for the variational problem (1.12).

Lemma 1.5.1 (Korn’s inequality [26],[38],[70]) If 02 is Lipschitz, cf. [70],
then

lulli @) < C(Q)(/Q 2 e(u) + [[ul]z).
i\
A consequence of Korn’s inequality is, cf. [25],
Theorem 1.5.1 If the measure of I'y C OS2 is greater than zero and
V={ve(H Q) :v|, =0},

then
cllullig < [ Y ew < Cllulfipq, VueV.
27]

The strong ellipticity (coercivity) of the bilinear form follows from,

3 3 3 Ous
— ¢ 2 72\2
calww) = [ 233w+ A5
3 3 )
> 2u €;:(u
JEDMILIT

> 2pc||ul[fq)-

Instead of the Lamé coefficients, we can work with Young’s modulus, E, and
Poisson’s ratio, v, defined implicitly by,

FEv FE

A= - .
1+ v)(1-20) =10

Using these parameters, the differential equation (1.11) becomes

E 1—v
A u) = f. 1.14
At 5,V (1.14)

Note that the second coeflicient blows up as v approaches 1/2.

13



1.6 Finite Elements for Elasticity

1.6.1 Formulation

The finite element formulation is obtained by replacing the infinite dimensional
space V with a finite dimensional subspace V! C V. We triangulate the domain
Q into non-overlapping regions called elements, generally triangles, rectangles,
tetrahedra, or bricks. VI is then defined to be the space of continous, piecewise
linear, bilinear, trilinear, quadratic, etc. functions on the elements.

For VB we need to define a convenient basis {¢?}. We use a nodal basis.
In the simplest case the ¢’ are vector valued functions, which are one in a single
component at a single vertex of an element and zero in all the others, and piecewise
linear, bilinear, etc. inside each of the elements.

The finite dimensional variational problem is obtained by representing an ap-

proximation to u in the basis ¢7,

u' =3 y¢,

J
and inserting this into the variational problem
ag(Y_y;¢’, 6") = f(¢"), Vg*.
J
We define the stiffness matriz
Ej = aa(¢’,¢"),

and the load
b = f(¢"),
thus producing a linear system
Ky =b.
The solution u” = > y;¢’ is called the Galerkin approximation and is the agq-
orthogonal projection of the true solution u onto the subspace VR, For a fuller

discussion of the finite element method and its analysis, cf. Ciarlet [26] or Strang

and Fix [81].
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1.6.2 Types of Elements

We now briefly discuss several particular elements, which often arise in engi-
neering practice. For a more detailed discussion of the elements and the exact
forms of the arising stiffness matrices, see Przemieniecki [74].

The first of these consists of triangular elements with piecewise linear functions.
The nodal basis functions for this space are one, or a unit vector, at a single vertex
node, zero at all the others and linear on each element. For the Laplacian, when
the elements are isosceles right triangles, the resulting stiffness matrix has exactly
the same form as that arising from using finite differences with the five point
stencil. This is a well known model problem.

The membrane plane quadrilateral element is constructed for in-plane displace-
ments at six nodes. The nodes are at the four quadrilateral vertices and two inte-
rior points. The basis functions are quadratic in the displacements x and y. The
two interior nodes are eliminated by Choleski factorization before the element is
combined with its neighbors; this elimination is referred to as static condensation.
Hence it has eight degrees of freedom, two for each vertex node. This element has
been used in some of the experiments reported in this thesis, see [4].

The flat, thin shell quadrilateral element is based on Kirchoff’s plate bending
theory, see [4],[74]. In general such an element has six degrees of freedom for
each node, three displacements and three rotations. Again, the basis functions are
quadratic and the two interior nodes are eliminated by static condensation. This
element is generally ill-conditioned and its use increases the difficulties of using

iterative solvers on the resulting linear system.

1.6.3 Substructuring Methods

Substructuring provides an efficient direct factorization method for the solution
of the resulting linear system. It is based upon the fact that if we divide the domain
 into substructures, which are larger than the elements, not only can we form the
stiffness matrix for different substructures independently, but we can also eliminate

the interior variables of the substructures independently. If we define

Kj = ag (¢, ")
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Elimination Tree

Figure 1.2: Pictorial Representation of Substructuring
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and
b = fa(¢"),
then, by properly merging the columns and rows of the K and ), we can form

K and the load b. Similarly the subvector of y associated with substructure €2; is

y). Symbolically
K=Y K% and b=> 50

This is the subassembly process.

We order the nodes on the interior of the substructures first and write this as

2 (1) (9)
‘y(i) = ( y{i) ) ) bt = ( b(li) ) )
YB by

0 _ K}_”T K}f) |
KW Kk

Symbolically the linear system is,

S AEAESTE A
“\ K5 K5 )\ =\ b

We eliminate the interior nodes,

> ( Ky K ) ( yy ) -y . Z_)ﬁ,;') )
S5 s ) U ) =2 g v g

Sy =K, — KW KT KL
is a Schur Complement for substructure {2; and is independent of the other sub-

structures.

The reduced linear system is now
L)

This method can be applied recursively, combining several substructures and again
eliminating those nodes which lie in the new interior. We represent this process in
Figure 1.2. For very large problems there may be 8 to 10 levels of this recursion.
The substructures are sometimes referred to as superelements since once their

interior nodes have been eliminated, they play the role of elements.
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A great advantage of this method is that if several substructures are identical
then they need to be formed and factored only once. A commercial code which
uses this method is available from Veritas Sesam Systems, Oslo, Norway. This
code has recently been parallelised for general multi-processor machines [47]. The
parallelisation is done at two levels. Problems on separate subdomains are fac-
tored on individual processors and also larger factorizations are spread over several
processors. For a good discussion of this approach, see Hvidsten [47].

On the lower levels the problems are small and sparse and can be factored
quickly. As one moves up the tree the problems become larger and denser. The
ease of parallelisation is also much higher at the lower levels. In practice most
of the cpu time is spent at the higher levels of the tree. This suggests that we
should stop the factorization at some point and solve the reduced system using a
preconditioned conjugate gradient method. The development and analysis of such

methods is a major goal of the thesis.
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Chapter 2

Domain Decomposition
Techniques

2.1 Iterative Methods

The iterative method of choice for many domain decomposition algorithms
is the preconditioned conjugate gradient method (PCG). This is a well known
algorithm so we will not discuss it in detail, see cf. [27],[41]. For completeness, we
give one version below.

The conjugate gradient method is often an effective iterative algorithm to solve

the symmetric, positive definite system
Az =b.

For a well conditioned matrix A, the conjugate gradient algorithm may converge
to a good approximate solution in relatively few iterations. When A is not well
conditioned, which is generally the case for discretizations of elliptic problems, we

can introduce a preconditioner M and solve the linear system
M Az = M™'b.

The preconditioner M is chosen so that the linear system My = Ax is easily solved
and also so that M~ A is well conditioned. This latter requirement insures that
the conjugate gradient algorithm will converge in a small number of iterations.
We note that in the conjugate gradient algorithm given below we need not
explicitly form the matrices A and M~'. We only need to know how to apply

them to a given vector.
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Preconditioned Conjugate Gradient Algorithm [73]

Choose z°.

r® =b— Az".

Solve M7° = r°,

po =70,

For k=0,1,...
ap = —(*,77)/(p*, Ap¥)
2R = gF g ph

rAtl = pk 4y ApF
Test for convergence
Solve M7+l = phtl
By = (fk-|-1 ’ Tk+1)/(7:k7 Tk)
pFHL = L gk

end k

The reduction in the energy norm of the error after n steps of PCG can be

bounded by, see e.g. [41],

2
Pt
where
Rl
=T
and

_ AmaX(M—lA))
© Amin(MTA)”
The PCG method works well for problems with small condition number, k, so

we should chose the preconditioner M so that M~!A is well conditioned and the

operation M ™'z is inexpensive.

2.2 Multiplicative Schemes

2.2.1 The Classical Alternating Schwarz Scheme

The earliest domain decomposition method was suggested in an existence proof

by Schwarz in 1869, [75]. Let us consider the domain as shown in Figure 2.1 with
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Figure 2.1: Subdomains for Schwarz’s Method

Q = U, on which we wish to solve

—Nu=7Ff in Q,
u=20 on 0f).

The Schwarz alternating procedure approximates the solution iteratively by solv-

ing problems on the individual subdomains.

—NAynt2 = f in Q,
Wt =y on 01);.
and
—Au"tt = f in Q,
Wt = /2 on 01,.

Schwarz established that this method converged using the Maximum Principle.
In the 1930’s Sobolev extended the result to the partial differential equations of
linear elasticity, [79]. Recent work by Lions [58] has interpreted the algorithm in

a variational framework. If we let
a(u,v) =/ Vu-Vv and  f(v) =/ fv
Q Q
then the algorithm can be written as

a(w I — o) = f(v) —a(u'v),  wVE—un e HY(), Vo € Hi(S),
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and
a(u™t — w2 p) = f(v) — a(uTVEv),  urt — w2 € HE(Q,), Yo € HE(Q,).

At each half-step the correction is thus the projection of the error onto the subspace

H} () or Hy(23). The projection P; is given by
a( Pu,v) = a(u,v), Pu € Hy(),Yv € Hy(S%).

The error propagation operator for one complete step of the alternating Schwarz
method is simply
(I — P)(I— P).

For numerical computation we would always work with some finite element sub-

spaces V* C HY(Q) and V* N HL(Q;).

2.2.2 The Abstract Multiplicative Schwarz Scheme

The alternating Schwarz method is a particular case of an abstract multiplica-

tive Schwarz scheme. We consider the finite dimensional variational problem
a(u,v) = f(v), YvoeV, wuelV. (2.1)

Let V; be subspaces of V so that V = Vi +-- -4+ Vy. Associated with each subspace
is a corresponding orthogonal projection operator P;, onto the subspace V;, such
that

a(Pu,w) = a(u,w) = f(w), VweV, PuelV,. (2.2)
P;u can be determined by introducing a basis {1/)](2)} for V; and expanding P;u in
that basis, Pu = 3, agi);b;i). This results in the linear system

FOa0) = £0),

where Igj(;) = a(@by),'g/)l(i)), and @ is the vector defined by f(;bj(z)) The abstract
multiplicative Schwarz scheme proceeds by serially projecting the error onto the
subspaces V;. The error propagation operator for one complete step of the alter-

nating Schwarz method is given by
II,(I — P).
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New theoretical tools for the analysis of multiplicative Schwarz schemes have
just recently been developed. Recent work on the two subspace case for the contin-
uous problem has been done by Lions [58]; see also Nepomnyaschikh [68]. For the
finite element formulation the two subspace case has been discussed in Bjgrstad
[5], Mandel and McCormick [64] and Bjgrstad and Mandel [7]. More general the-
ories for the case of more then two subspaces have been introduced by Widlund
[85] and Mathew [65]. The most successful results so far have been obtained very
recently by Bramble, Pasciak, Wang, and Xu [16]. We review their abstract theory
which can be used in analyzing multiplicative variants of the algorithms presented
in this thesis.

Assume we have J symmetric (in the a(-,-) inner product), positive semi-

definite linear operators 7; of norm bounded by w < 2. Define E; by
E=(I-T)I-T—y) --(I-T).

The T; are either projections onto the subspaces V; or approximations thereof.
The effectiveness of the particular multiplicative algorithm is determined by the

reduction in the error for one complete iteration of the scheme, i.e.,
Eyola < 2ol

Explicit bounds on v are now available. We demonstrate below how those bounds
can be obtained.

We first note two useful identities

E,_—-FE =TFE_, (2.3)
and '
[-E =Y TE_,. (2.4)
7=1

Using equation (2.3) Bramble, Pasciak, Wang, and Xu [16] establish the inequality,

Lemma 2.2.1 With the above definitions of E; and T;,
J
|Egvl; < vz = (2= w) ) a(TEiwv, Eiy).

=1
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We next need to make two assumptions on the subspaces V; and the operators

T;. Assume there exists a C§ such that
J
a(v,v) < C3Y a(Tv,v), Yo e V. (2.5)
=1

The second assumption involves a strengthened Cauchy-Schwarz inequality, i.e.

let € be the matrix such that
la(vi,vi)] < ei]-a(vi,vi)l/?a(vj,vj)lm, Yv; € V;,Vv; € V. (2.6)

The relevant quantity in equation (2.6) is p(&), the spectral radius of £. We should
note that as the overlap between the spaces increases the bound in equation (2.5)
will generally improve while the bound in (2.6) will degrade, i.e. the spectral
radius p(€) will increase.

A main result of Bramble, Pasciak, Wang, and Xu is given in
Theorem 2.2.1 Assume equation (2.5), holds then
[Egv]a < 7[vla,
with

2—w 2—w

CIT 1wl (] —1)/2) 2001+ P (T = 1)/2)"

7 =1 — max(

Proof. This is Theorem 2.1 in Bramble, Pasciak, Wang, and Xu [16]. The
proof makes use of Lemma 2.2.1 and the identity (2.4). |
When many of the subspaces do not intersect Bramble, Pasciak, Wang, and Xu
[16] have strengthened their result to take this into account. Recently, Xu [86] has

obtained an even stronger result.

Theorem 2.2.2 Assume (2.5) and (2.6) hold. Then
|Egvla < 7[v]a,

with

2—w

T 2CHL+ P p(E)

v=1
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An important special case of this general result is when the T; are projections
P; onto the subspaces V;. For this result, we can replace assumption (2.5) with the
assumption: for all v € V there exists a decomposition v = 3 v; with v; € V; such

that
J

Z a(v;,v;) < C’ga(v, v).

=1
For the proof of this result see Lemma 2.3.3 in the following section. In addition,

we note, since the P; are orthogonal projections, w is one.

2.3 Additive Schwarz Schemes

One of the possible problems with the multiplicative Schwarz methods is the se-
rial nature of the fractional steps of each iteration. The additive Schwarz schemes
were designed by Dryja and Widlund [35] to remove the inherent sequential be-
havior of the fractional steps.

Again we consider the finite dimensional variational problem
a(u,v) = f(v), YoeV, wuelV. (2.7)

As before, let V; be subspaces of V' such that V =V, +--- + V. Associated with
each subspace i1s a corresponding projection operator P;, which is the orthogonal
projection in the a(u,v) inner product onto the subspace V;.

The additive Schwarz method, see Dryja and Widlund [36], of solving equa-

tion (2.7) is introduced in terms of an auxiliary problem
Pu=> Pu= £, (2.8)

which has the same solution as equation (2.7). Since Pu can be found by equa-
tion (2.2) without knowing the solution of (2.7), we first compute f and then solve
equation (2.8) using the conjugate gradient method, without further precondition-
ing.

The reason for going from problem (2.7) to problem (2.8) is that, by a suitable
choice of the subspaces V;, we can turn a large ill-conditioned system into a very
well conditioned problem at the expense of solving many small independent linear
systems. The following three lemmas allow us to develop bounds on the condition

number of P.
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Lemma 2.3.1 Consider the undirected graph with a node for each subspace Vi,
and an edge between node 1 and node j iff V;N'V; # 0. Let p be the number of
colors needed to color the graph so that no two nodes connected by an edge have
the same color. Then

/\max(P) < p.

Proof. All the subspaces for a particular color are disjoint, hence their corre-
sponding projection operators are mutually orthogonal. Therefore the sum of the
projection operators of a particular color is itself a projection operator. P then is
the sum of p projection operators each of norm one. |

Working with a strengthened Cauchy-Schwarz inequality, i.e. as in the multi-

plicative case, we obtain the stronger result.

Lemma 2.3.2 Assume equation (2.6) holds then
Amax(P) < p(€).

The following lemma allows us to obtain bounds on the smallest eigenvalue of
P. This result is given in Nepomnyaschikh [68] and for the two subspace case in

Lions [58], cf. also Dryja and Widlund [35].

Lemma 2.3.3 Assume that for all u € V, there exists a representation v =73, u;

with u; € V; such that
Za(ui,ui) < Cla(u,u) (2.9)

then
Amin(P) > C; 2.

Moreover, if C¢ is the best possible constant for equation (2.9), then Apin(P) =
1/C¢.

Proof.
|U|§ = Z a(u7 Ui) = Z a(u, PZLLZ) = Za(Piu,ui).

7 % %

Therefore,
fuly < Q2 1Pl 20 fuil2)12.

k3 k3
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By the assumption of the lemma and a property of projections,

lul2 < CFY " |Pul? = C3 > a(Pu,u) = Ca(Pu,u).

To show that the bound is strict, we construct explicit decompositions of wu.
Let u* be the eigenvectors of P with eigenvalues A} < --- < Aoy < A\ < --- <\,

Define a decomposition of u* by

In fact this is the best decomposition of u*. To see this we assume that u* = 3, w?

is a better decomposition, i.e.,

1
g a(wf,'wf) < —a(uk,uk).
Ak

We then conclude that

1
a(u®,ub) < /\—a(Puk,uk) = a(u®, u"),
k

since u* is an eigenvector.

We conclude the proof by explicitly constructing for all u # u!, a decomposition

so that

> au;,u) < /\ia(u, u).

i 1

Let u # u' be of norm one and expand it in the eigenvectors of P,

U= Zakuk with > ap =1
k k

Define u; by

Then using a property of projections and the orthogonality of the eigenvectors, we

obtain,
2
S a(uu) = Y FEa(uw)
i w Ak
1
< /\—la(u,u)



|
It is easy to construct and analyze preconditioners which use approximate
solvers using additive Schwarz techniques. The preconditioned matrix P can be

written as

P=3%BfA.

The B represents a pseudo-inverse since the individual terms in the sum are
singular. We introduce new operators C;" which are spectrally ‘near’ B, and

define P by
The «; offer an additional chance to improve the condition number by adjusting

the scaling between the various P

We can now give bounds on the condition number of P.If
mixTB;"x < OziCETCZ-I_:E < JWZ-;UTB;":C,
then
Amax(Pe) S max -‘/M’L Amax(P)7

and

~

Amin(P) Z Il'liIl m; Amln(P)

We wish to examine the structure of the B} a little more carefully. Let S; be

a matrix whose columns span the space V;. Then Bj can be written as
B = SF(s;A8)7's..
For most of the approximate solver techniques, C is of the form
ct =SHG)™S,.

The G; are chosen to be spectrally equivalent to the matrices S;AS7. This then
insures the spectral equivalence of B and C}.

Remark: The case when the C are chosen in another manner is not well
understood. The problem is that the null spaces of the two operators no longer
match. This then changes in a nontrivial manner the fundamental subspaces of

the algorithm.
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Remark: Nothing general can yet be said about the relative utility of the
additive and multiplicative versions of the same scheme in a parallel environment.
The same two parameters p(€) and C? determine the convergence behavior of both
variants; however, there is no general theory which explicitly relates the actual
convergence rates of the two variants, except in the case of two subspaces where
it is well understood, cf., [5],[7], and [64]. The architectures of the various parallel
machines available seem more likely to determine which variant to prefer rather
than a strict mathematical analysis would. We note that the multiplicative variant
would, in general, be non-symmetric, therefore to accelerate it with conjugate
gradient we must introduce additional fractional steps to make it symmetric. We

could instead accelerate the nonsymmetric problem directly using GMRES.

2.4 The Need for a Global Problem

For a domain decomposition algorithm with a small number of subdomains
good convergence may be obtained even with only local communication, e.g. at
each iteration of the algorithm information is passed only between neighboring
subdomains. If a large number of subdomains are used then the convergence rate
deteriorates rapidly with the number of subdomains unless an additional feature
is added to the algorithm to provide for global communication of information
in each iteration. Assume that the diameter of the domain is of order one and
the representative diameter of the subdomains is of order H. In [84] Widlund
shows that without a global coarse problem the condition number of the iteration
operator grows like 1/H?.

For iterative substructuring algorithms two types of global coarse problems
have been proposed in the literature. We shall refer to the resulting algorithms
as the vertex based methods and the wirebasket based methods. The wirebasket
refers to all nodes which belong to the closure of more than two substructures.
The vertex based algorithm introduces a coarse problem which is basically the
discretization of the Laplacian (or the operator in question) on the coarse grid
defined by the subdomains. This works well in two dimensions, but without addi-
tional enhancements it performs poorly in three dimensions, see Section 3.2. This

has provided the impetus for the development of the second type of coarse prob-
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lem. The wirebasket based approach involves first calculating an average value
for each subdomain by solving a problem which involves a relatively small number
of unknowns from each subdomain, the unknowns on the wirebasket, and then
solving local problems. Such methods can have good asymptotic behavior in three
dimensions. Both of these approaches are discussed in detail in this thesis and we
believe important new insights are offered.

For additive Schwarz type algorithms a simple vertex based coarse problem
works well in both two and three dimensions. The more generous overlap in
Schwarz methods negates the need for a more elaborate coarse problem. This is
because the extra overlap allows more freedom in the selection of the partition of
u into the subspaces as required for Lemma 2.3.3. A disadvantage of the extra
overlap is that the condition number may not be independent of the jumps in
the coefficients of the differential equation between subdomains, while it is for the

iterative substructuring algorithms. This is discussed in the next section.

2.5 Global Bounds from Local Bounds

For many domain decomposition algorithms it is possible to bound the con-
dition number of the preconditioned problem by bounds obtained locally, i.e. by
bounds obtained on individual substructures. This important observation is used
in Bramble, Pasciak, and Schatz [12],[14] and presented very clearly in Mandel
[59]. Iterative substructuring algorithms share this property. Additive Schwarz
algorithms with overlapping regions do not have this property.

Let K®) be the contribution of substructure €; to the stiffness matrix K and
K be the contribution of substructure €; to the preconditioner &'. For instance,

in the appropriate basis, K9 may be a block diagonal part of K. If
KO < KO < KO, Vi,
then
min cZ-R' < K < max CZ-I%

or equivalently,
N max; C;
K(KTK) < — =

min; ¢;
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We shall refer to the quantity %ch as the local bound. For this technique to

min; c;

work it is necessary that
null( K) = null(K®) Vi.

Whenever this condition is satisfied, we also obtain the important result that if
the coefficients of the equation are slowly varying on each subdomain then the
condition number of the preconditioned problem is independent of the jumps in
the coefficients between substructures.

Several domain decomposition methods have been designed to insure that these
null spaces coincide, cf. Bramble, Pasciak, and Schatz [15], Dryja and Widlund
[37], and Mandel [59].

We note that for the scalar model problem any substructure which has no
part of its boundary with given Dirichlet data has a null space of the constant
functions. Those with any part of their boundary having given Dirichlet data have
only the trivial null space. For linear elasticity the null space is more complicated,
being the set of infinitesimal rigid motions, i.e. translations and rotations. In
the plane this is a three dimensional space, in three space it is six dimensional.
Boundary substructures may have reduced null spaces depending on how many

possible motions are inhibited by the boundary conditions.
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Chapter 3

A Hierarchical Domain
Decomposition Method

3.1 Introduction

In this chapter, we consider second order, self-adjoint, uniformly elliptic dif-
ferential equations on a two dimensional polygonal domain 2. The problems are
solved numerically by using continuous, piecewise linear finite elements. The do-
main is first subdivided into nonoverlapping, triangular substructures €2;, and
these are further triangulated into elements. H denotes the diameter of a typical
substructure and & the diameter of one of its elements.

We develop a domain decomposition algorithm similar to those considered
by Bjgrstad and Widlund [8],[9]; Bramble, Pasciak, and Schatz [12],[13]; Dryja
and Widlund [36]; and Widlund [84]. When using these methods, the variables
interior to individual substructures are first eliminated. The resulting reduced
system, the Schur complement, therefore only involves the variables associated
with T', the set of edges and vertices of the substructures. This system is then
solved by a preconditioned conjugate gradient method, where the preconditioner
is constructed from certain problems associated with the interfaces I';; = 9€2; N 09
between the substructures, and a global coarse problem associated with the vertices
of the substructures. We note that it is shown in Dryja and Widlund [36], that
such a preconditioner naturally can be viewed in terms of a splitting; cf. Varga
[83]. In the splitting, the couplings between the groups of variables, associated
with individual edges of the substructures, are eliminated. It is explained in [36]

how results and algorithms for the two substructure case can be used to construct
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and analyze problems on many substructures.

Various preconditioners have been proposed for the subproblems associated
with the edges I';;. For each I';;, this is essentially a two subregion problem, and
we can therefore take advantage of a number of results obtained in early work
on domain decomposition algorithms. Already in 1980, Dryja [31], see also [32],
introduced an effective preconditioner J, which is the square root of a discrete,
one dimensional Laplacian on I';;. The same preconditioner was also discussed
in Bjgrstad and Widlund [9] and Bramble, Pasciak, and Schatz [12]. Other pre-
conditioners for these two subregion subproblems, such as the Neumann-Dirichlet
algorithm, were considered by Bjgrstad and Widlund [9]; Bramble, Pasciak, and
Schatz [13]; Chan and Resasco [23]; Chan and Keyes [22]; Dihn, Glowinski, and
Périaux [30]; and Golub and Mayers [40]. A number of the resulting algorithms for
the many substructure case are known to be almost optimal in the sense that the
condition number is bounded by C(1+1log(H/h))?. For a more complete discussion
see Bjgrstad and Widlund [9] and Widlund [84] for the two subregion and many
subregion cases, respectively.

An alternative almost optimal algorithm, which uses a hierarchical basis, has
been introduced by Yserentant [88]. His bound on the condition number is of
the same form. When the standard finite element nodal basis is replaced by
a hierarchical basis, the transformed matrix becomes much better conditioned.
The preconditioner is then obtained by discarding the off diagonal blocks and by
replacing all but one of the diagonal blocks by diagonal matrices.

In this chapter, we consider a hybrid method demonstrating that a successful
and simple preconditioner can be obtained by changing the basis of the spaces
associated with individual edges I';;. Our proof uses only tools of linear algebra and
Yserentant’s main result. We show that the new method has a smaller condition
number than Yserentant’s original method; thus it grows no faster than C(1 +
log(H/h))?, a result confirmed in our numerical experiments.

Our work has been inspired by recent work of Babuska, Craig, Mandel, and
Pitkaranta [1], Babuska, Griebel, and Pitkéranta [2] and Mandel [60],[61],[62]
where efficient preconditioners for the p-version of the finite element method are
developed by using hierarchical basis functions and partial orthogonalization of

the basis functions. Similarly, our algorithm for the h-version involves a change of
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basis. It is extremely easy to carry out, and it results in a much better conditioned
linear system.

Remark: We should note that recent results on extending hierarchical basis
methods to more general multilevel schemes have been obtained by Bramble, Pas-
ciak, and Xu [17]. They have successfully constructed multilevel schemes with
performance exceeding that of Yserentant’s hierarchical basis method for prob-
lems in both two and three dimensions. See Yserentant [89] for a comparison
of the two methods. It may be possible to apply some of the techniques of this
chapter to the schemes of Bramble, Pasciak, and Xu as well.

Remark: We note that an accelerated version of Yserentant’s algorithm has
been developed by Bank, Dupont, and Yserentant [3]. It can be viewed as a sym-
metric multiplicative scheme while the original formulation is an additive scheme.
The algorithm proposed in this chapter is an additive scheme. Multiplicative
versions can therefore be developed straight forwardly.

We consider a second order, self adjoint, coercive, bilinear form aq(u,v) on
and, for simplicity, impose a homogeneous Dirichlet condition on 9€2. The problem

is then to find v € H} () such that
a(uv) = (F0), Yo HYQ)

For the two levels of triangulations into substructures 2; and elements intro-
duced earlier, we assume shape regularity and that the elements and substructures
satisfy the usual rules of finite element triangulations; see e.g. Ciarlet [26]. V(Q)
and V"(Q) are the spaces of continuous, piecewise linear functions, on the two
triangulations, which vanish on the boundary 0.

The discrete problem is then to find u;, € V*(Q) such that

a(up,vy) = (f,vn), Vo, € VHQ). (3.1)

3.2 A Partial Change to Hierarchical Basis

The space V¥ plays a major role in many domain decomposition algorithms,
since it allows the easy construction of a global coarse problem, which is needed
for the global transportation of information. We will briefly discuss this space

and the manner in which it is used. In the following we will always work only
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with the Schur complement, though the same results hold for the original stiffness
matrices. Let V* be the subspace of functions in V'’ which are discrete harmonic on
the interiors of the subdomains. The basis functions {¢*} are defined to be equal
to the usual finite element basis functions on the interface between substructures
and extended as discrete harmonic onto the interiors of the subdomains.

We first consider the substructures, which have diameters on the order of H,
as large elements and consider their nodal basis functions, {1?}. The space V is

the space spanned by {¢’}. We decompose the space Vh into
Vi=V e (VR VH),

Any function in V" can be represented in the basis {¢*} or in the partial hierar-
chical basis. We group the nodal basis functions into two groups, those associated
with the vertex of a substructure, {4}, }, and all the rest, {¢%}. The two represen-

tations can then be written as
u =Y ay ! + Y ap bk,
7 k

and
ut =Yy dv + Y ym, b
j k

The mapping between the two sets of coefficients is given by

()=o) ) ()= 7))

In the case of linear basis functions, R? simply represents linear interpolation.
These mappings are completely local to each substructure, i.e., we can map the
coefficients between the two different basis one substructure at a time without any

information about other substructures. This we write algebraically as

AN ATE AT AR IATE A)
2 )= JUb ) Uk )=l T D

We now show how it is possible to obtain global bounds from local bounds (see

Section 2.5) using the partial change to the hierarchical basis. Consider

sWr st
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We first make a partial change to hierarchical basis, by post-multiplying by

: (0"
(i) _ I R
“=(5 ")

and pre-multiplying by T, This gives,

7O O — Sk Non-zero }
Non-zero S‘(}%,
We now replace Sgg with any non-singular preconditioner and drop the coupling

between the vertices and the other nodes. This gives,

SY. 0
0o 8% )
We can also replace the matrix 53%/ with any spectrally equivalent matrix. We
note that g{f%/ is spectrally equivalent to the discrete Laplacian on the coarse grid.

Finally, we return to the nodal basis by post-multiplying by 7"~ and pre-
multiplying by 7™ and obtain

I o\ /589 o I —RO" ,
S():(_Rm I)( o 50 ) o T . (3.2)

This final form of the local contribution to the preconditioner has the same null
space as SO, as is needed, see Section 2.5. It is important to note that we never
need to explicitly carry out this change to a partial hierarchical basis. The same
procedure can be carried out for the stiffness matrices arising from linear elasticity
without any difficulties, because the null space of infinitesimal rigid motions is
contained in the V7 space.

By subassembly we can construct the global preconditioner

s (I 0 Spp 0 I —RT

5‘(-1% I)(O S*VV)(O I ) (33)
This procedure is possible because the actions of the RO for two adjacent sub-
domains along a shared edge (face) are identical, e.g. linear interpolation from
the shared vertex nodes. This property is very important and is not shared by

the wirebasket based algorithms of Mandel [59] and Bramble, Pasciak, and Schatz
[15].
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The preconditioner is easily inverted to give
5*—1:<RIT)S;%,(R I)+(é)5}5}5(1 0).
Note that there are independent problems associated with each edge (face and
edge) and the coarse problem.

In [36], Dryja and Widlund describe and analyze, using an additive Schwarz ap-
proach, the basic iterative substructuring method, which is a vertex based method.
We will now briefly review this method and their results. The preconditioner is
obtained by making a partial change to hierarchical basis as described above. The
couplings between the different edges (edges and faces in three dimensions) are
then dropped as are the couplings between the edges (edges and faces) and the
vertices of the substructures. This produces a block diagonal preconditioner with
a block for each edge (face and edge) and a block for the substructure vertices.

In the additive Schwarz analysis of this method the subspaces of V" that Dryja
and Widlund use are V# and the spaces V" N H}(Q, UT,; UQ;), where Q; and
(); are neighboring subdomains. They proceed by partitioning u" as required for

Lemma 2.3.3 and obtain the result, for two dimensions,
K < C(1+ log(H/h)).
In three dimensions the bound is
k< C(H/h)(L + log(H/ ).

These bounds are sharp.

We now present an argument why the bound in three dimensions is at least
C(H/R) in the case of piecewise linear elements. In constructing the partition of
u” as required for Lemma 2.3.3, we must use the interpolant of u” at the vertex
nodes because the only space with functions which can be nonzero at the vertices
of the subdomains is the V# space. Consider the finite element function u” which
is one at a single subdomain vertex and zero at all other nodes. Let « represent
the elements for which u” is nonzero, and 3 the substructures which contain the

given vertex. The volume of a is O(h?) and that of 3 is O(H?).
The H () energy of u” is

a1y = /Q(Vuhf — O(h),
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and the energy of its interpolant onto V¥ is
T g1y = / (VI"u")? = O(H).
B

Therefore the energy of its interpolant is O(H/h) as large, thus the bound for
Lemma 2.3.3 must be at least O(H/h). This is also the reason why Yserentant’s
hierarchical basis method is generally unsuccessful in three dimensions. For a

detailed analysis of the hierarchical basis method in three dimensions, see Ong

72].

3.3 The Hierarchical Basis Method

The hierarchical basis method provides a general purpose preconditioner for
second order elliptic problems in the plane; see Yserentant [87],[88]. The algorithm
is given in terms of a set of spaces V% .7 = 0,- -, j, which are successive refinements
by a factor of two of V% = V#. V"% is the set of piecewise linear finite element
functions after ¢ levels of refinement from the original coarse triangulation with

Vi = V" V" is a direct sum of subspaces
Vh:‘/oh@‘/ih@"'@‘/jh;

where V/* = V#4\ V%1, In other words, V;" is the set of piecewise linear functions in
V" which are zero at the nodal points of the triangles of all coarser triangulations,
see Figure 3.1 for a one-dimensional case. For the spaces Vi, we choose a basis
of standard nodal functions of V% associated with the new nodes. The resulting
basis for the entire space V" is much closer to being orthogonal in the H' sense,
than the standard nodal basis functions, and the stiffness matrix is therefore much
better conditioned.

Yserentant’s preconditioner is block diagonal in the new basis. The first block
is defined by the finite element model for the subspace V and the others are

diagonal. In matrix notation the resulting system, which is solved by a conjugate

gradient method, is of the form
D YV?HTKHD Y% = ¢,

or equivalently,



VAVAN l

[ 1

Figure 3.1: Hierarchical Basis Functions in One Dimension

Here K is the original stiffness matrix, H represents the transformation from
the hierarchical to the nodal basis, and D is block diagonal and obtained from
HTKH, as described above. In an implementation, there is no need to represent
the stiffness matrix explicitly in the new basis. Instead, we perform the basis
change on the vectors as needed.

The important theorem due to Yserentant [88] is

Theorem 3.3.1 For a uniformly elliptic, scalar partial differential equation which
has been discretized using a quasi-uniform hierarchical h-version finite element
method in two dimensions with j = log(H/h) levels of triangulation the condition

number of the preconditioned stiffness matriz satisfies
K(K)=r(D"YVPH'KHD™Y?) < C(j + 1)

In [88], Yserentant develops the algorithms needed for performing the basis
change between the hierarchical and the nodal basis and demonstrates that each
requires fewer than 2n additions and n divisions by 2, where n is the dimension
of the finite element space. The following algorithm is valid for both one and two

dimensions.

Algorithm to form = «— Hz
for £ = 1 to number of levels
for 7 with z; on level &
r=x; + (xn, + 212,)/2
next ¢
next k

The integer arrays I1 and I2 contain pointers to the two neighbors of z; which

are on the next coarser level. We can regard the algorithm as defining a factored
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form of the matrix H. The nodal to hierarchical transformation is similar. We
note that the coarse mesh needs not be uniform; see Figure 3.1. If the refinements
are not uniform, then the weights in the algorithms have to be adjusted. It is also

possible to continue the refinement only in selected subregions.

3.4 Iterative Substructuring Methods

We again examine the iterative substructuring algorithms introduced in Section
3.2 from a slightly different perspective.
Iterative substructuring algorithms use a different splitting of the space V"

into N 4 1 subspaces;
VE = Vi © Vo' () © - @ V' () -

For each substructure ©;, we thus have a subspace V(€2;) = VAN HL(;). The

elements of V/

W m ale plecewise, discrete harmonic functions, i.e. they are orthogo-

nal, in the sense of the bilinear form a(-, -), to all the other subspaces. It is easy to
show that an element of V)" is uniquely determined by its values on I' = [J 95;.

In a first step of many substructuring algorithms, the variables interior to the
(2; are eliminated. We partition the vector v = (z;,2p) and the stiffness matrix
K accordingly. The system that remains to be solved is, after a block Gaussian
elimination step,

Schur(K)xg =g. (3.4)

Here Schur(K) is a Schur complement defined by
Schur(K) = Kpp — K{gK; K;p.

A particular iterative substructuring method is defined by the choice of a pre-
conditioner for equation (3.4). Finally, when accurate enough values on I' have
been computed, the values elsewhere are determined by solving N separate Dirich-
let problems on the individual substructures. We note that it is not necessary to
compute the elements of Schur(K) since, in the conjugate gradient iteration, this
matrix is needed only in terms of matrix-vector products. Such a product can be

found at the expense of solving one problem on each of the substructures.
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A number of preconditioners can be described as follows: We first carry out a
partial change of basis, associating the standard basis functions of V# with the
vertices of the substructures. As shown in Section 3.2, we represent the Schur

complement, in the new basis, as

Sere  Sev

ng SVV '
Here Syy is denotes the part of the Schur complement associated with the ver-
tices of the substructures and Sgg is that part associated with the edges between

substructures.

The preconditioner for this system is given by

Ser 0
0 SVV ’

where gvv is the matrix for the coarse mesh finite element problem and gEE 18
a block diagonal matrix. Each of its blocks is associated with the variables of a
single edge I';;. The operator J, mentioned before, can be used for this purpose;

for other examples of such algorithms, see the references given in Section 3.1.

3.5 The Hybrid Algorithm

We can combine the two main ideas of Section 3.3 and 3.4, as follows: We first
represent the stiffness matrix in the hierarchical basis and then eliminate the inte-
rior variables of all the substructures. We proceed by solving the remaining Schur
complement system approximately without further preconditioning. Finally we
use the resulting values as boundary data for the local problems on the individual
substructures.

In the new algorithm, we proceed differently, but as we will see, we will ob-
tain the same approximate solution without the considerable expense of explicitly
converting the stiffness matrix into the hierarchical basis. In our algorithm we
work with the standard nodal basis, while eliminating the interior variables, only
changing to the hierarchical basis on I', the set of interfaces and vertices. The

resulting linear system is similar to that of Section 3.4
DghHLpSchur(K)Hppip = §
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It is important to note that we do not use any further preconditioning of the
variables associated with the edges I';;.

This method offers several possible advantages over the standard hierarchical
basis algorithm. The conjugate gradient iteration is carried out over a much
smaller set of unknowns and as we will show that the condition number is smaller.
The solution of the subproblems is easily parallelizable since they are independent.
The hierarchical basis method in its original form appears to offer less opportunity
for this trivial type of parallelization. The change of basis required in each iteration
step now consists of completely independent one dimensional problems instead of
a two dimensional problem. The basic observation is that the values at a node on
[';; can be computed using only the coefficients for the hierarchical basis functions
related to that edge.

We now prove the almost optimality of our algorithm using two simple lemmas

and Yserentant’s result.

Lemma 3.5.1 Let G represent a change of basis which leaves the space of vari-
ables on T' invariant. Then the Schur complement associated with this set of un-

knowns is independent of the choice of bases for V().

Proof. Let z; be the vector of unknowns associated with V(Q), Yk, and

xp be those associated with I'. The most general basis transformation considered

zr \ _( Gu Gis Ty
rg | 0 GsBs g |’

In the new basis, the stiffness matrix is

I;, _ G%} 0 K;r Kip G Gis

A straightforward calculation shows that its Schur complement satisfies

here is of the form

Schur(K) = GLzSchur(K)Gpp .

The following result follows easily by a Rayleigh quotient argument.
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Refinement levels 1 2 3 4 5) 6 7
# of unknownson I' 3 7 15 31 63 127 255
H/h 4 8 16 32 64 128 256
New method 1.68 2.66 3.82 5.18 6.75  8.52 10.50
No preconditioning  3.05 6.88 14.20 28.63 57.37 114.79 230.49

Table 3.1: Condition Numbers for Two Subdomain Case

Lemma 3.5.2 Let K be symmetric, positive definite. Then, the condition num-

bers of K and its Schur complement satisfy

k(Schur(K)) < k(K).

Our main result is given in

Theorem 3.5.1 The condition number of the hybrid algorithm, introduced in this
section, is bounded by that of Yserentant’s method. Thus, it is bounded by C(1 +

log(H /).
Proof. We use Lemma 3.5.1 twice and the fact that D is block diagonal to
obtain
Schur(D-'2HTKHD='?) = Dgy/*Schur(HTKH)Dg}*
Dg?HL . Schur(K)HgpDgyl” .
By using Lemma 3.5.2, we obtain

/Q(D];}B/QHEBSchur([x”)HBBD];}B/Q) k(Schur(DV2HT K HD-1/?))

w(DVPHTKHD™'/?),

IA I

which is bounded by C(1 + log(H/h))?; see Yserentant (Thm. 4.1) [8§]. |

3.6 Numerical Experiments

3.6.1 General Results

In a first set of experiments, we consider the domain Q = Q; UQ, where
and Q, are unit squares aligned along an edge I' = Q; N Q;. We use the standard
regular mesh and the usual five point discretization for the Laplacian. The results

are listed in Table 3.1.
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Remark: Our experiments show that the condition number grows faster than
(141log(H/h)) for the two subdomain case. We note that for a number of precon-
ditioners the condition number remains bounded in this case. This is true for the
preconditioner J if we solve a Dirichlet problem, cf. [9], but not for a Neumann
problem. Yet our method and that based on the J operator both have condition
numbers which grow like (1 + log(H/h))? in the many subdomain case.

In a second set of experiments, we consider the case of many substructures.
The unit square €2 is subdivided uniformly into 4, 16, 64, or 256 square subdomains
and the same model problem is solved using uniform meshes. We compare our
results with a set of experiments reported in Yserentant [88]. The results are given
in Table 3.2.

The coarse problem and the problems associated with the edges which together
make up the preconditioner are independent. We can therefore scale the contribu-
tion of the coarse model by a scalar factor a selecting the value of the parameter
for which the convergence is fastest. In our numerical experiments, we have found
that for our model problem « ~ 3.6 is the best for a wide range of refinements.
We note that the condition number grows quadratically in the logarithmic factor

for all @ > 0. Our numerical results are reported for o« = 3.6.

3.6.2 On the Selection of «

Our hierarchical preconditioner is obtained by subassembly just as the precon-
ditioner for the basic iterative substructing algorithm. The local contribution to
the preconditioner has the same null space as S, Hence the global bound on the
condition number of the preconditioned problem is bounded by the worst bound on
the local problems, see Section 2.5. Therefore the optimal « obtained locally will
likely be near the global optimal «. Since we are only dealing, in the theory, with
bounds on condition numbers and not the condition numbers themselves it is not
clear that the optimal « in the two cases need to correspond exactly. Numerically

we observe that they often are close.

In Figure 3.2 we plot the global condition number and local condition number as
a function of « for a large problem with H/h = 32 and 256 square subdomains and

the model problem. The behavior in Figure 3.2 is representative of the relationship
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Levels 3 4 5 6 7 8 9
# of unknowns in 2 7 15% 312 63* 1277 255%  511°
Yserentant’s method 10.59 19.53 31.85 47.14 65.38 86.51 110.49
4 Subdomains
New method 3.35 5.18 10.87 15.45
No preconditioning 9.77 21.50 44.97 91.98
H/h 4 8 16 32
# of unknowns on I’ 13 29 61 125
16 Subdomains
New method 489 794 11.81 16.45
No preconditioning 35 75 155 316
H/h 4 8 16 32
# of unknowns on T’ 81 177 369 753
64 Subdomains
New method 5.29 852 12.54 17.32
No preconditioning 137 290 599 1217
H/h 4 8 16 32
# of unknowns on I’ 385 833 1729 3521
256 Subdomains
New method 5.46 8.71 12.78 17.61
No preconditioning 546 1152 2372 4766
H/h 4 8 16 32
# of unknowns on T’ 1665 3585 7425 15105

Table 3.2: Condition Numbers for the Many Subdomain Case
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Figure 3.2: Local vs Global Condition Numbers

between the local condition number and the global condition number. We conclude
by stating that, in certain situations, we may nearly determine the optimal « by
solving only local problems. However, interesting questions still remain on the

determination of optimal scaling.

3.6.3 Numerical Comparisons to Other Methods

We numerically compare four different edge preconditioners for the problem

with many substructures. They are given below.

e The J operator first proposed by Dryja in [31] and used very successfully by
Bramble, Pasciak, and Schatz in their important algorithm for the case with

many substructures [12].
e The operator we shall call G proposed by Golub and Mayers [40].

e The hierarchical domain decomposition algorithm, which we call the H

method.

e The basic iterative substructuring method, i.e. the method where the Schur

complements for each edge are actually formed and factored, this we sym-

bolize in the tables by V.
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Edge

Unknowns along Edge

Solver 3 7 15 31
16 Subdomain Case

J 544 7 899 9 13.44 10 18.44 11

H 489 7 794 10 1181 11 1645 13

G 483 8 734 9 1053 9 1439 9

vH 492 7 759 9 1089 10 14.84 11

No Preconditioning  35.26 18 75.10 33 155.20 53 315.82 78
Number of Unknowns 81 177 369 753
H/h 4 8 16 32

Table 3.3: Condition Numbers and Iteration Counts for Model Problem

Edge Unknowns along Edge
Solver 3 7 15 31
64 Subdomain Case
J 5.52 8 8.99 9 13.44 10 18.46 11
H 5.26 9 851 11 1253 13 1730 14
G 547 10 8.15 9 11.60 10 15.72 10
VH 5.35 9 819 10 11.54 12 15.62 13
No Preconditioning  137.38 46 290.44 70 59853 * 1216.67 *
Number of Unknowns 385 833 1729 3521
H/h 4 8 16 32

Table 3.4: Condition Numbers and Iteration Counts for Model Problem

Again the model problem is studied but we should keep in mind that the results
will be the same in the case when the coefficients are constant on each substructure

but have large jumps between substructures, assuming that the correct scaling of

the preconditioner on each subdomain is used.

From Tables 3.3, 3.4 and 3.5 we conclude that the three preconditioners are

basically equivalent. Our stopping tolerance is a relative decrease in the energy

norm of the error of 107°.

3.6.4 Results for Elasticity

We first consider the two domain case, as discussed above, where we use mem-

brane elements to model our elasticity problem. There are two degrees of freedom
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Edge Unknowns along Edge
Solver 3 7 15 31

256 Subdomain Case

J 5.57 7 8.99 9 13.45 10 1847 11
H 5.46 9 8.71 10 1278 12 17.61 13
G 5.62 10 8.41 9 11.98 10 16.21 10
VvH 546 9 827 10 1177 12 1590 13
No Preconditioning  545.90 94 1151.95 * 2372.39 * 4766.38 *
Number of Unknowns 1665 3585 7425 15105
H/h 4 8 16 32

Table 3.5: Condition Numbers and Iteration Counts for Model Problem

Membrane Elements

Preconditioning H/h

4 8 16 32
None 237 4 496 7 10.06 13 20.20 21
Hierarchical 282 4 399 7 573 11 759 14
J 1.50 4 172 5 178 6 180 6
Number of unknowns 6 14 30 62

Table 3.6: Condition Numbers/Iteration Counts for Two Subdomain Case

per node, one for horizontal and one for vertical displacement. These results are
listed in Table 3.6, along with results using the J operator, in the style of Dryja
[31].

In Table 3.7 we report on the case of many subdomains. Again we select a
weight « on the ‘coarse’ problem which leds to good condition numbers. As with

the Laplacian, the different methods are about equally effective.

Lastly we consider the two subdomain case using shell elements. We also use
the hierarchical domain decomposition method and the J operator. The results
are listed in Table 3.8. For shell elements there are three degrees of freedom per
node; displacements in the x, y, and z directions. Since shell elements model
physically thin materials the z displacements may be on a different scale than the

x and y displacements. This is reflected in the poorer results obtained.
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Number Nodes Number of VvH Hierarchical J Operator

of along Unknowns  Method Method Preconditioning
Subdomains Edge on I

16 3 162 10.52 15 10.69 15 10.46 16
7 354 14.84 17 16.08 20 14.88 16
15 738 19.83 19 22,11 23 20.04 18
31 1506 25.51 20 28.89 26 25.95 20

64 3 770 12.13 18 1224 18 11.95 18
7 1666 16.92 19 18.28 23 16.82 20
15 3458 22.37 22 2490 26 22.44 23
31 7042 28.52 25 32.21 30 28.85 22

256 3 3330 12.42 18 12.72 18 12.39 18
7 7170 17.31 19 18.16 23 17.01 20
15 14850 22.88 22 2473 26 22.70 23
31 30210 29.15 25 3230 29 29.07 23

Table 3.7: Condition Numbers and Iteration Counts for Membrane Elements

Shell Elements

Preconditioning H/h

4 8 16 32
None 41.82 6 40.74 12 86.98 23 396 42
Hierarchical 31.67 7 2217 12 26.42 20 51.44 28
J 25.09 6 13.36 11 14.64 18 33.58 28
Number of unknowns 9 21 45 93

Table 3.8: Condition Numbers/Iteration Counts for Two Subdomain Case
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Chapter 4

An Optimal Preconditioner for
Linear Elasticity

4.1 The Algorithm

We consider the Schur complement problem,
SmB =9,

obtained by a substructuring approach, see Chapter 1, after the interior variables
have been eliminated. This problem will be solved using an additive Schwarz style
scheme.

The variational problem is to find uj € V" such that
GQ(’ﬁh,’ﬁh) = f(ﬁh), Vﬁh S f/h,

where V" is the subspace of V" of functions which are discrete harmonic in the
interiors of the subdomains. The matrix formulation of the problem is to find x5
such that

ypSes =yp9,  Yys.

As in Chapter 1, the vectors yg and zp are the coefficients of the finite element
functions associated with the interface I'.

The numerical algorithm will be constructed in an additive Schwarz frame-
work. We work with subspaces of V" associated with overlapping regions of I and

a global coarse space. We cover the surface (or curve) I with overlapping patches,

{TF TFi TV} defined below. We can regard the boundaries of the substructures
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Figure 4.1: Subspaces for a Cubic Substructure

as consisting of three parts: the substructure vertices, the edges between substruc-
ture vertices and the faces of the substructures (in two dimensions there are only
vertices and edges). The T'f% are the faces of the substructures. We choose I'¥ to
be regions consisting of an edge and an overlap of order H onto all of the adjacent
faces. The I'"* are regions consisting of a vertex and an overlap of order H onto
all adjacent faces and edges. We constrain the overlap so that no portion of I' is
covered more than four times. See Figure 4.1 where we represent the restriction
of the face, edge and vertex regions to a single substructure.

The subspaces of V" are given by
vH,
Vi ={¢ € V" : supp(g|r) S T},
Vi ={¢ € V" :supp(g|r) C I},
and
Vi ={¢ € V" supp(¢|r) STV},

It is easy to see that each of these spaces is a subspace of V" and that

V= (VR +(CVE) + 0.
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The projection onto each ‘face’ subspace is given by

where Ry, 1s the restriction operator, which returns only those unknowns which
are associated with I'f*, and Sy, is the principal minor of the Schur complement S
which is associated with that same set of unknowns. The projections onto ‘edge’
and ‘vertex’ subspaces are formed in the same manner. Naturally the restriction
operators R need never be explicitly represented. Instead we would use something
like hardware scatter-gather.

For the coarse space V¥, the projection operator is of the form
Py = RLKZ'RyS.

The operator RY, represents linear interpolation from V¥ to V" and Ky is the
stiffness matrix for the original problem treating the substructures as elements.
Ky can also be obtained by making a partial change to a hierarchical basis of each
S®*) so that the nodal functions associated with the vertices of the substructure
are the nodal functions in the V¥ space; cf. Smith and Widlund [78] and Section
3.2. The principal minor of the Schur complement, which is associated with these
vertex nodes, then forms the contribution to the stiffness matrix Ky from the
given substructure.

We now present a detailed description of the algorithm. We note that many

opportunities exist for parallelism between and within each step.
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The New Algorithm

1.

10.

11.

Steps 1 though 6 can be regarded as a preprocessing stage independent of the

e A A e

Form the stiffness matrices

20 _ K}})T Ix}] )
K5 Kg)
for each substructure by integration.
Factor K%)

Form the Schur complements SV) = K](Bj ])3 — I{%TI(}JI')AK? ),

for each substructure.

Form and factor the coarse stiffness matrix Kp.
Form, by subassembly, Sz, Sg,, and Sy,.
Factor Sg;, Sg,, and Sy,.

Form the right hand sides b\ for each substructure by integration.

)T

Modify the right hand sides; bg) = bg) — K}% Ix”%)_lb(lj).

Solve Sxp = bp using a preconditioned conjugate gradient method with the

preconditioner

S«—l = jox’ﬁl RH + Z R%;; Sf;leFz + Z jo SEJI REJ + Z R%;k S‘_'kl RVk ’
7 J k

Form the right hand sides for the problems on the interiors of the subdomains

0 — o) — K9 Kl)e),

()7 4l)

Solve for the interior unknowns Jc(lj ) — KI‘;

particular loads; they need not be repeated for different loads.

If we exclude from the algorithm all of the overlap and the ‘vertex’ spaces
we obtain the iterative substructuring algorithm presented in Dryja and Widlund

[36], see Section 3.2. That is, in the definition of S_l, we drop the terms

and restrict 'y, to be the edge extended out to but not including the first nodes
on the adjacent faces. This implies that the restriction operator Rp; retrieves

only those coefficients associated with the nodes along the edge.

T o-—1
Z RVk SVk RVk
k

93
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algorithm it also retrieves some coefficients associated with nodes on the adjacent
faces. The iterative substructuring algorithm is also very similar to that introduced
by Bramble, Pasciak, and Schatz [12]. In two dimensions these algorithms have
condition numbers which grow like (1 + log(H/h))?, while in three dimensions the

condition numbers for these algorithms grow faster than (H/h), see Section 3.2.

4.2 A Proof of Optimality

The main result for this algorithm is now given in

Theorem 4.2.1 The condition number of the preconditioned system is bounded
independently of the size of the substructures H and the size of the elements h,

1.€.

Proof. We note that no node on I' is contained in more than 4 of the regions
%, T'% and T'V. Therefore the graph, as described in Lemma 2.3.1, can be colored
by a fixed finite number of colors. Hence, by Lemma 2.3.1, we have Apax(P) < C.

We now use the uniform ellipticity of our bilinear form aq(u,u),
cllullfngy < aalu,u) < Cllullfg),

to show that we can work in the (H'(£))? norm instead of the equivalent norm
induced by aq(u,u). To obtain a lower bound, we must demonstrate that for all

u" € V", there exists a representation
~h _ ~H ~h ~h ~h
at=at ) g+ iy, £ ) iy,
i j k

so that

@™ 7y + i N | o) + 25 Nk, i ) + 2k a3 i o)

(4.1)
< G3llaM [ g
where Cj is independent of @, h and H.
We construct this representation as follows. We extend the boundary regions

% TF TV into the interiors of the neighboring substructures. This results in a
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large collection of overlapping regions. Now apply the result of Lemma 4.2.1, given
below, to each component of the vector valued function @" separately to obtain a

representation of 4",
~h _ H o h h R
' =t Y up ) up + ) uy,
B J k

which satisfies

||UH||%11(Q) + Z ||uls,

ey + 20wk ) + 20wy @) < Colla"| 3 q)-
J k

The equivalence of the H(2) norm and semi-norm on V" follows from Friedrichs’
inequality and allows us to apply the result in Lemma 4.2.1.

We now define our representation by restricting these new functions to I' and
then extending them as discrete harmonic functions.

~h

ﬁH|F — uH|r, i h

r =ug

r,

g |0 =g v, dylr = uy,|r,

The definition of discrete harmonic as the minimizing extension then gives us the
needed bound. We then apply Lemma 2.3.3 to conclude the proof. [

We note that by applying the techniques of Chapter 2, we can show that the
multiplicative version of this newly proposed scheme also converges independently
of h and H for the equations of linear elasticity. This follows because the necessary
estimates for the multiplicative and additive versions are identical, see Chapter 2.

We now develop a partitioning result for finite elements in two and three di-
mensions which is needed for several of our proofs.

For two or three dimensions let 2 be a polyhedral (polygonal) domain which
has been triangulated into substructures which are shape regular, with diame-
ter O(H). Continue the triangulation to obtain a triangulation with elements of
diameter O(h). Furthermore assume that € has been covered with N shape reg-
ular overlapping regions 2;, (not necessarily related to the coarse triangulation
above) each with a diameter O(H), each of which overlaps all its neighbors with
an overlap of O(H). Let VHZ(Q) C HL(Q) and V*(Q) C HZ(2) be the spaces of
continuous, piecewise linear functions, on the two triangulations, which vanish on

the boundary 92. We then construct the following spaces

Vi=vH  VI=v'nHL).
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The following theorem is a variation of a result given in Dryja and Widlund [36].

Lemma 4.2.1 For all u" € V" there emists ul € V" with u" = Eﬁo ul such that

k3

N
h h
ol hy < Colu”[fay,
=0
where Cy 1s independent of v, h and H.

Proof. From Strang [80], we know that there exists a linear map Iy: V> VH

which satisfies

Ju" = Tu"([7, ) < CH|u"[31(q (4.2)
and
u" — Ipu 3 o) < Clullin - (4.3)
We then define
ug = fHuh, wh = ul — ug

and
uZ}-L = Ih(eiwh).
I}, is the linear interpolation operator onto the space V" and the 6; form a partition
of unity with 6; € C§°(2;),0 < 6; <1 and Efvzl 6; = 1. Since I, is a linear operator,
it is immediate that N
ul = > ul,

i=0
Because of the generous overlap between subregions, we can insure that the gra-
dients of #; are well behaved. That is, the #; can be constructed so that their
gradients satisfy |V6;|7. < C'/H?. If we let K represent any single element in the

triangulation this implies that
116; = 8]} (i) < C(h/H). (4.4)

Here 6; is the average of #; on element K.
We now estimate the H! norm of u” over a single element.
2

= Ifi(éiwh + (6 — 0;)w") H(K)
< 2060 G gy + 2| In(6; — 0:)w") i ey

|U2}'L|%11(K)

which can be bounded using an inverse inequality by

|‘“?|§11(K) < 2|9z"wh|12ql(1<) + Ch™?||1n(6; — 9i)‘wh)||%2(1()-
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We now use equation (4.4) and the trivial inequality ||6;||z < 1 to obtain

Jus

iy S 200t + CHZ? W [Fo -

Since a finite bounded number of u? are nonzero for any element K, we obtain,

when summing over ¢,

N
> lug

=1

h —2|,.,h
%11(1() < Clw |12111(K) +CH?|Jw ||%2(K)'
Next sum over the elements K,

N
> Jui
=1

@) < Clwlhg) + CH | [w"||720).
To finish the argument, we use equations (4.2) and (4.3) to obtain

N
Yl i) < Colu" i q)-
1=0

Theorem 4.2.2 The classical additive Schwarz scheme, cf. Dryja and Widlund,
[84],[85],[36], has a condition number bounded independently of h and H for the

equations of linear elasticity.

Proof. We note that no node on 2 is contained in more than a fixed number of
the overlapping regions. Therefore no element of the space V" can belong to more
than that fixed number of subspaces; hence by Lemma 2.3.1 we have Apax(P) < C.

We next use the uniform ellipticity of our bilinear form aq(u, u),
clulfpig) < aau,u) < Clulfpg),

to make it possible to work in the (H'(£2))? norm. To complete the proof we use
the partitioning result of Lemma 4.2.1 and Lemma 2.3.3. [

We note that by applying the techniques of Chapter 2, we can show that
the multiplicative version of the classical additive Schwarz scheme of Dryja and
Widlund also converges at a rate independent of h and H for the equations of

linear elasticity.
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4.3 Numerical Experiments in Two Dimensions

We have performed numerous experiments with problems in two dimensions.

The problems considered are

e The Laplacian using the usual five point stencil;

e The equations of linear elasticity using 4 node square membrane elements

with 2 degrees of freedom per node; cf. [4];

e The equations of linear elasticity using 4 node square shell elements with 3

degrees of freedom per node; cf. [4].

Experiments have been performed on square and L-shaped regions; since there
was no appreciable difference between the two cases results are only given for
the square regions. The substructures are squares. For the elasticity problems
the stiffness matrices were generated using the SESAM code [4], a large, reliable
commercial structural analysis code, using a Poisson ratio of .3.

The experiments were run twice, once using all the subspaces as indicated in
the algorithm and once excluding the ‘vertex’ spaces. As expected, the condition
number remains bounded by a constant independent of H and k when all the spaces
were included. When the ‘vertex’ spaces were excluded the condition number
appears to grow like (1 4 log(H/h))?, also as expected.

The selection of an appropriate stopping condition for the preconditioned con-
jugate gradient method is crucial. A stopping criterion based only on a norm of
the residual can make comparisons between preconditioned and unpreconditioned
results misleading since the eigenvalues of the two operators can be of completely
different orders of magnitude. For instance, for elasticity problems the eigenvalues
of the original stiffness matrices can be of order 10'? while the eigenvalues of the
preconditioned problems generally are of order 1. We have therefore chosen to use

the stopping condition

|[residuall| ;> < e||approx. solution||;2 Amin(S™1S).

~

Amin(S719) is calculated using the Lanczos method at very little extra expense.
We have chosen to use € = 107°; this assures that roughly five digits of the solution

are correct and not many more, regardless of the preconditioner used.
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Number Nodes Number of No Without With

of along Unknowns Preconditioner ‘Vertex’  ‘Vertex’
Subdomains Edge onT Spaces Spaces
16 3 81 35.26 14 492 7 245 6

7 177 75.10 24 759 9 255 7

15 369 155 37 10.89 10 2.82 7

31 753 315 51 14.84 11 299 7

64 3 385 137 32 535 9 2.60 8

7 833 290 49 8.19 10 2.68 8

15 1729 598 70 11.54 12 2.78 8

31 3521 1216 * 15.62 13 287 8

256 3 1665 545 62 546 9 2.63 8

7 3585 1151 91 8.27 10 2.70 7

15 7425 2372 * 11.77 12 280 7

31 15105 4766 * 1590 13 289 7

Table 4.1: Condition Numbers and Iteration Counts for the Laplacian

Overlap in nodes 0 1 2 3 4 5 6 7 8
Condition number 15.62 4.49 4.01 3.78 3.52 3.38 3.01 292 281
Iterations 13 8 8 8 8 8 8 8 8

Table 4.2: Condition Number as Function of Overlap for the Laplacian

No Preconditioning

Without ‘Vertex’

With ‘Vertex’

Iter. Spaces Spaces
i el GEEY el G el ()
1 9.8x107! .99 3.0 x 1072 03 3.0 x 1072 03
2 9.6x 10" 98 9.9 x 1073 10 1.0 x 1072 10
3 9.5x 10" 98 2.2 x 1073 13 4.1 %1072 16
4 9.3x10" 98 1.2 x 1073 19 9.0 x 1074 17
5 9.2x 107! 98 6.3 x 10~ 23 7.0 x 1075 15
6 9.1x10" 98 4.5% 1071 28 2.5 x 107 17
7 89x 107! 98 1.0 x 10~* 27 9.4 x 107¢ 19
8 88x 107! 98 3.6 x 107 28 3.3 x 107¢ 21
9 8.6 x 10" 98 9.5 x 10~° 28 3.8 x 1077 19
10 8.4 x 107! 98 6.3 x 1076 30 6.7 x 1078 19
11 82x 107! 98 7.7 x 1076 34 2.4 x 1078 20
12 7.9 x 107 98 3.0 x 1076 35 5.9 x 107° 21

Table 4.3: Errors and Convergence Rates for Laplacian
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Number Nodes Number of No Without With

of along Unknowns Preconditioner ‘Vertex’  ‘Vertex’
Subdomains Edge on I’ Spaces Spaces
16 3 162 22.16 19 10.52 15 3.51 10
7 354 46.63 28 14.84 17 3.51 10

15 738 96.34 41 19.83 19 3.56 10

31 1506 196 60 25.51 20 3.62 10

64 3 770 84.82 37 12.13 18 3.85 10
7 1666 178 55 16.92 19 385 10

15 3458 368 79 22.37 22 3.84 10

31 7042 47 * 28.52 25 3.89 10

256 3 3330 334 75 12.42 18 391 10
7 7170 705 * 17.31 19 3.90 10

15 14850 1453 * 22.88 22 3.89 10

31 30210 2921 * 29.15 25 394 10

Table 4.4: Condition Numbers and Iteration Counts for Membrane Elements

Overlap in nodes 0 1 2 3 4 5 6 7 8

Condition number 28.55 5.59 4.85 4.36 4.01 3.89 388 3.89 3.89

Iterations 25 12 11 10 10 10 10 10 10

Table 4.5: Condition Number as Function of Overlap for Membrane Elements

No Preconditioning Without ‘Vertex’ With ‘Vertex’
Iter Spaces Spaces

i el (Y el ()Y el ()Y
1 9.7x10™! 98 8.0 x 1072 .08 8.7x 1072 .09
2 95x107! 98 3.7x 1072 .19 4.2 x 1072 .20
3 93x107! .98 1.1 x 1072 22 1.6 x 1072 .25
4  92x107! 98 6.3 x 1072 28 3.9x107? .25
5 9.0x107! 98 3.7x107° .33 1.1 x 1073 .26
6 88x107! 98 3.4 x107° .39 5.1x107* 28
7 86x107! 98 2.0 x107° 41 1.6 x 1074 .29
8 83x107! .98 1.4 x 1073 44 4.4 x107° .29
9 81x107! .98 5.1 x 107* 43 1.7x 107° .30
10 7.8x107! .98 2.3 x 107 43 5.4 x 107° .30
11 75x107! 97 2.5 x 107* A7 1.5 x 107 .30
12 7.2x107! 97 2.6 x 107* .50 5.1 x 1077 .30

Table 4.6: Errors and Convergence Rates for Membrane Elements
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Number Nodes Number of No Without With

of along Unknowns Preconditioner ‘Vertex’  ‘Vertex’
Subdomains Edge on I’ Spaces Spaces
16 3 243 452 47 10.51 17 3.48 10
7 531 442 66 14.83 18 3.48 10
15 1107 970 101 19.81 21 3.53 10
31 2259 * * 25.48 23 3.60 10
64 3 1155 1751 118 11.99 18 3.72 10
7 2499 1707 128 1593 19 3.74 10
15 5187 3800 193 22.12 23 3.83 10
31 10563 * * 2824 26 3.88 10
256 3 4995 * 239 11.63 17 3.73 10
7 10755 * 246 16.19 19 3.81 10
15 22275 * 365 22.58 22 3.85 10

Table 4.7: Condition Numbers and Iteration Counts for Shell Elements

Overlap in nodes 0 1 2 3 4 5 6 7 8

Condition number 28.24 5.62 4.81 4.33 3.98 3.87 3.87 3.88 3.88

Iterations 23 12 11 10 10 10 10 10 10

Table 4.8: Condition Number as Function of Overlap for Shell Elements

No Preconditioning Without ‘Vertex’ With ‘Vertex’
Tter. Spaces Spaces

i el G el G el ()Y
1 * * 6.8 x 1072 07 7.4 x 1072 07
2 * * 3.2x 1072 18 3.6 x107? 19
3 * * 9.4 x 107 21 1.4 x 1072 .24
4 * * 5.3 x 107? 27 3.4 x107° .24
5 * * 3.1x107? .32 1.0 x 1073 .25
6 * * 3.1x107? .38 4.7 x 107* .28
7 * * 1.9 x 1073 41 1.4 x 1074 .28
8 * * 1.4 x 1073 44 3.9x10° .28
9 * * 5.5 x 1074 43 1.6 x 107 .29
10 * * 3.3x107* 45 4.9 x 107° .29
11 * * 2.5 x 1074 AT 1.3 x107° .29
12 * * 2.5 x 1074 .50 4.6 x 1077 .30
13 * * 2.4x107* .53 1.5 x 1077 .30

Table 4.9: Errors and Convergence Rates for Shell Elements
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In Table 4.1 the experiments are conducted for the Laplacian. The overlap of
the ‘vertex’ spaces onto the ‘edge’ spaces is chosen to be H/4. In Table 4.2, we
examine the effect of varying the amount of overlap of the ‘vertex’ spaces onto the
‘edge’ spaces for the case with 64 substructures and 31 nodes along the edge of
each substructure. We see that the overlap is very important but a small overlap
has almost as much effect as a larger overlap. We give a sample of the convergence
behavior in Table 4.3, showing the discrete L? norm of the error as a function of
the number of iterations. This is again for the case of 64 substructures and 31
nodes along the edge of each substructure. These tables are repeated for the linear
elasticity problems.

For completeness, we give a sample of the cpu times on a Sun Sparcstation and
Convex supermini computer. The times are only for the conjugate gradient portion
of the algorithm and do not include the calculation of the stiffness matrices nor
the time for the backsolves onto the interiors of the substructures. We note that
the preconditioned problems are solved much faster than the unpreconditioned

problems. See Table 4.10.

4.3.1 Effect of Aspect Ratios

The aspect ratios of substructures can strongly affect the conditioning of the
preconditioned problem. An ideal preconditioner would generate condition num-
bers independent of the aspect ratio of the substructures.

We have run experiments on elasticity models which have substructures with
large aspect ratios. The first set of experiments involve using rectangular sub-
structures with square elements, hence there are a different number of elements
along the different edges of the substructures, see Table 4.11. Also included in the
same table are results which use a nonuniform mesh. All the results are for the

case with 256 subdomains.

4.3.2 Effect of the Poisson Modulus

For certain two dimensional elasticity models, i.e. membranes and shells, the
‘locking’ phenomenon occurs when v is 1 rather than .5. We examine the effect of

this locking on the preconditioning.
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Number Nodes Number of No Without  With
of along Unknowns Preconditioner ‘Vertex’ ‘Vertex’
Subdomains Edge on I’ Spaces  Spaces

Timings on Sun Sparcstation

16 3 243 7.03 2.38 2.04
7 531 23.98 7.20 5.43
15 1107 119.67 28.71 18.63

64 3 1155 73.16 7.23 4.93
7 2499 181 7.23 4.93
15 5187 945 115 59.69

256 3 4995 586 27.26 19.26
7 10755 1394 103 62.46
15 22275 7332 449 232
Timings on Convex (Vectorized only)

16 3 243 1.73 .94 .75
7 531 5.73 2.36 1.81
15 1107 26.79 8.29 5.77
31 2259 200 30.80 19.75

64 3 1155 16.72 3.02 2.21
7 2499 39.38 8.13 5.68
15 5187 196 30.41 16.99
31 10563 1502 117 56.75

256 3 4995 131 11.76 9.54
7 10755 301 32.93 22.61
15 22275 1469 117 65.63

Table 4.10: Timings for Shell Problem (in seconds of CPU time)
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Nodes  Number of No Without With
along  Unknowns Preconditioner  ‘Vertex’ ‘Vertex’
Edge on I’ Spaces Spaces

Aspect Ratio 1 to 2

3by 7 5250 580 120 28.19 30 9.11 17
7 by 15 11010 1179 174 36.72 32  9.02 17
15 by 31 22530 2071 249 46.03 35 895 16

Aspect Ratio 1 to 4

3 by 15 9090 714 145 134 59 58.84 39
7 by 31 18690 1435 208 170 65 59.06 38
3 by 3 3330 1003 172 62.51 37 4898 34
Thby 7 7170 2123 251 99.51 48 55.81 38
15 by 15 14850 4380 364 138 56 57.98 38
31 by 31 22906 8554 525 175 65 58.58 38

Aspect Ratio 1 to 8

3 by 31 16770 736 157 627 115 380 90

Table 4.11: Condition Numbers and Iteration Counts for Membrane Elements
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Effect of Poisson Modulus

Poisson  Number of No Without With
Modulus Unknowns Preconditioner “Vertex’ “Vertex’
on I’ Spaces Spaces

16 Subdomains

3 738 96.34 41 19.83 19 3.56 10
D 98.54 45 23.95 21 418 11
95 226 67 195 41 2586 20
99 670 96 954 57 T79.80 27

64 Subdomains

3 3458 368 79 2237 22 384 10
D 374 87 2841 24 470 12
95 829 139 261 77 33.15 29
99 2555 222 1334 147 101 49

256 Subdomains

3 14850 1453 * 2288 22  3.89 10
D 1475 173 2939 24 484 12
95 3250 270 281 96 34.61 34
99 10126 451 1453 196 107 58

Table 4.12: Condition Numbers and Iteration Counts for Membrane Elements

Using membrane elements with an H/h of 16, we calculate the condition num-

bers and iteration counts as v approaches 1. The numerical results are listed in

Table 4.12.
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Chapter 5

Iterative Substructuring Methods
for Three Dimensions

5.1 Introduction

In this chapter we introduce a new iterative substructuring algorithm for prob-
lems in three dimensions. We then prove that the condition number of the resulting
preconditioned problem is bounded by C'(1+log(H/k))*. In addition, the condition
number is independent of the jumps in the coefficients of the differential equation
between substructures.

The following Sobolev type inequality holds for finite element functions in two

dimensions,

[[u" = alff(q,) < C(1+ log(H/h))lu"

2
HY(Q:)

Here « is any convex combination of the values of u” in €;. Using this inequality,
it can be shown that a coarse mesh interpolant of u” can have an energy which

exceeds that of " by at most a factor of C(1+ log(H/h)).

However in three dimensions we only have a much weaker bound
lu" = al[f(e,y < COH/R)u" i q,).
() ()

Therefore, in this case, interpolating the value of u” from a vertex can result in
a O(H/h) change in the energy. See Section 3.2 for a detailed discussion of this
point.

It was observed by Bramble, Pasciak, and Schatz [15] that, for three dimen-

sions, there exists a much stronger bound. Let a be any convex combination of
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values of u” at the wirebasket nodes, then

hl|[u" = allfwy < C(1+log(H/h))|u" g, (5.1)

Here W represents the wirebasket on substructure €2;. The wirebasket based schemes
of Bramble, Pasciak, and Schatz [15] and Dryja [33] are based on calculating the
average value of u” on the wirebasket and then interpolating these values onto the
faces of the substructures.

The use of the average value of u” over the entire wirebasket of the substructure
makes it impossible to perform the coarse problem solution in parallel with the
local problems. We can see this by noting that the local contribution to the
preconditioner can be written in the form of (3.2). However, the action of the
of the two transformation matrices R®" generally provide different values on the
face, since each R®" also depends on values not available to both substructures.
We, therefore, cannot express the global form of the preconditioner as in (3.3).

Therefore the coarse problem and face problems cannot be solved in parallel.

5.2 Wirebasket Based Methods

5.2.1 The New Method

To introduce the new algorithm we observe that the estimate (5.1) remains
valid if we replace the entire wirebasket by a line segment of length O(H). In the
new algorithm we will interpolate averages for the parts of the wirebasket adjacent
to each face, see Fig. 5.1.

We construct the preconditioner one substructure at a time, using a method
quite similar to that of Section 3.2, and obtain the preconditioner by subassembly.
We first order the nodes on the faces and then the nodes on the wirebasket. The
local contribution of the substructure €2; to the Schur complement is

50— ( Sik Sk ) ,
Siw  Siw
We are solving the reduced, Schur complement problem so the nodes interior to
the substructures play no role in the description.
Let T7W" map the weighted average of the values of the boundary nodes of

each face (the adjacent vertices and edges) to the node of the corresponding face.
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Nodes on the wirebasket: W Nodes on a face: FY

zw: vector with a component of one at
each node on W.

Zgpi: vector whose components associated
with OFY are one, all others are zero.
It is of the same length as zyy.

Zs: vector whose components associated
with £V are one, all others are zero.

Ug;: finite element function with support
in F7.

0, : finite element function with support
in F7? and equal to one at all

nodes of FV.
Nodes on the boundary of a face: OFY

Figure 5.1: Nodal subsets associated with a substructure Q2

68



Let 31(7237 be the block diagonal part of 51(723; with a block for each face. The local

contribution to the preconditioner is then,

o I ON(SE o0 I —7®"
=\ 7o g o ¢»)\o 1 )

Note that the structure is similar to that of the preconditioner introduced in
Section 3.2.
We define G by

waé(i)xw = IIIDl(lzgl(I%/) — 'w(i)zw)TG(i)(ww — ’LT)(Z')Z&/)). (5.2)
GO is given by 6(H/h)I or §(H/h) times a constant (block) diagonal matrix and
21(/;/) is a vector of all ones of the same dimension as Jc(viv), see Figure 5.1. The
optimizing w® corresponds to the weighted average of the values of z on the
wirebasket of substructure €2;. The G is constructed in this manner to force the
(A;'(i), and hence g(i), to have a null space of the constants. Since this is also the
null space for S we immediately obtain that the condition number is independent
of the number of subdomains, see Section 2.5. For subdomains with a Dirichlet
boundary G is simply GO,

The 6(H/h), a scalar function of (H/h), is chosen to optimize the scaling
between the ‘coarse’ problem and the ‘face’ problems. Our results show that when
6(H/h) = (1 +1log(H/h)), the condition number of the preconditioned problem is
bounded by C(1 +log(H/h))* in three dimensions. On the other hand, if §( H/h)
is chosen to be a constant then the bound is C(1 + log(H/h))?.

The global preconditioner is obtained by subassembly,

s 10 Spr 0 I —17
“\-T I o GJ)\o I

Here Spp and G are obtained by subassembly from 31(;37 and GO respectively. As
in Section 3.2, we have used the fact that the action of the T(Z')T7 for two adjacent

subdomains along a shared face, are identical. The preconditioner is easily inverted

5*—1:<TIT)(;—1(T I)—|—(é)§;}7(1 0). (5.3)

Note that the resulting operator has independent parts associated with each face

to give,

and a coarse problem. This is not true of the algorithms of Bramble, Pasciak, and

Schatz [15]; Dryja and Widlund [37]; or Mandel [59].
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To derive an explicit formula for T, we need to introduce some more nota-

(1) (1)

tions. Let zj; be a vector of the same length as z)’ with zeros at all nodes except

(1)

those associated with face F? where the coefficients are one. Let Zaf] be a vector
(i)

of the same length as xy; which is zero at all nodes except those on the boundary

of the face F’ where the coefficients are one, see Figure 5.1. Then
)T &) DT ~G) 6 =1 A
IO = A 604 e
J

We use this complicated notation to make it possible generalize the method to
the case of linear elasticity. In that case the z(9) are matrices with columns forming
a basis for the null space of S and the w(*) are vectors with components for each
column of 2(), The notation is essentially borrowed from Mandel [59]. We give the
detailed analysis of our algorithm only for the scalar case. However the results for
the elasticity problem follow immediately.

This trick of scaling a portion of the preconditioner with 6(H/h) has been
previously used by Dryja [33] for a version of the Neumann-Dirichlet algorithm

and has inspired this new result.

5.2.2 Previous Wirebasket Methods

In [59], Mandel, motivated by the desire to obtain condition numbers inde-
pendent of the number of substructures, proposed the following algorithm for the
p-version finite element method. Let z() be the vector of all ones of the same
length as (). The local contribution to the preconditioner is written as

27§04 — (2@ — g 0)7 ( i Oi) ) (2 — 00,

@)
G can be given by
I or diag(S%,)W)

or a block diagonal part of Sg/)w- We no longer need a factor 6(H/h).

The method of Bramble, Pasciak, and Schatz [15], which predates Mandel’s
algorithm, is essentially a special case of his algorithm. We have chosen to present
Mandel’s version since it fits more easily into our framework. Mandel’s method

and those of Bramble, Pasciak, and Schatz [15] are inherently more sequential than
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f(H/h)

0 5 10 15 20 25 30 35 40
H/h

Figure 5.2: Graphs of (1 +log(H/h))?, (1 +log(H/R))?, and (H/h)(1 +log(H/hR))

the vertex based method and the new method. This is because they all require the
determination of an ‘average’ value for each substructure before the local problems
can be solved. This might produce a bottleneck in the parallel implementation of
these methods.

In Figure 5.2 we plot the functions (1 + log(H/h))*, (1 + log(H/k))?, and
(H/Rh)(1 4 log(H/h)) in order to see the relative utility of the asymptotically

faster methods even for small values of H/h.

5.2.3 Solving the Coarse Problem

For all of these ‘averaging” methods we need to solve a quadratic problem of

the form

minz 5(:5(’) - .L@(Z)Z(Z))TB(Z)(m(Z) _ ,LD(Z)Z(Z)) _ ITf,
with @w® defined by
arg mjn(x(i) — 'ﬁz(i))TB(i)(:,;(i) _ 'ﬁz(i))_

For the new method, this is the system associated with the matrix G. For the other
wirebasket based methods all the variables associated with the preconditioner are

involved.
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We use the solution technique due to Mandel [59]. We note that Bramble,
Pasciak, and Schatz [15] used different tools and provide a technique which appears
less generally applicable.

We write the problem as

min Y min —(x(i) — 'w(i)z(i))TB(i)(m(i) - 'w(i)z(i)) —ztf.

We then take derivatives with respect to = and w(®. This results in the linear
system,
ON

BO() — 2050y = o, Vi,

Bz —)Y_ B 050 = £ (5.4)
We then eliminate  and get the following system for the w(",

(207 BO0)p) _ 0T B0 B=1$> BU)()g() — O BB},
J

Once the @ are known z can be found by solving (5.4).

5.3 Proofs of Almost Optimality

In this section we establish the convergence properties of the new method and
Mandel’s method. We first give a series of lemmas and then state and prove our
results. Many of the techniques are similar to those used in Bramble, Pasciak, and
Schatz [15] and Dryja [33]. However, our algorithm is quite different as is some of
the analysis.

We first use the approach of Section 3.2 to reduce the calculation of the con-

dition number to a singe subdomain.

Lemma 5.3.1 The vertex based method, the new method and the other wirebasket
based methods satisfy

. : Gt g(9)
n(§715) < DX Amax(ST ST)
min; Apin( S S0)
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In the rest of this section  C R? is a substructure of diameter H. We use the
weighted H' norm,

1
||u||12t11(9) = |u|12111(9) + ﬁHUH%z(Q)a
and the weighted H'/? norm,
ullFrery = lulinee) + EHUH%Q(F)'
Lemma 5.3.2 In two dimensions

||} ooy < C(1+log(H/R))|[u"|[1q)-

Proof. See e.g. Bramble, Pasciak, and Schatz [12], or Dryja [33]. |
The following lemma is a consequence of Lemma 5.3.2 and is obtained by
applying it to two-dimensional slices one at a time. Proofs of the first and second

parts are given in Bramble, Pasciak, and Schatz [15] and Dryja [33], respectively.

Lemma 5.3.3 Let I be a line segment, of length O(H), in Q. Then
hl|u"(|fory < C(1 + log(H/R))l[u"|[fg)-
If, in addition, u" is the average of u* on I then

hlfu® — @[y < C(1+ log(H/h))[u"

2
HI(Q) .

The following extension theorem is given in Bramble, Pasciak, and Schatz [15].

Lemma 5.3.4 Letu” be a discrete harmonic, piecewise linear, finite element func-

tion in Q. Then there exists a C, independent of h and H, such that
|uh|H1(Q) < C|uh|H1/2(F)7

for all u”.
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Lemma 5.3.5 Let u" be the average of u" over an interval I, of length O(H).

Hher (1 + log(H/h)
N 1+ log
(i) < ¢S

2

||uh H(Q)

In addition,
_ h
(u")? < Cﬁ||uh||z22(1)-

Proof.

(@ < CRH (X u(w:)’
1€l
< CR*H?*L'HY ul(x;)
€l
= ChH_1||Uh||122(1)

H u HY(Q)"

IN

C

|
Let T be the boundary of Q, and F* C T be a face. Let @+ be the finite element
function which is one at the interior nodes of F and zero at all of the other nodes

on .

Lemma 5.3.6 For 6 defined above

=

Proof. This is an intermediate result in the proof of Lemma 5.3.7. [

Lemma 5.3.7 Let ult, be the finite element function which is equal to u" on the

interior nodes of F* but zero on OF, then

sy < CCL+ TogCH /Pl By
Proof. This is Lemma 4.3 in Bramble, Pasciak, and Schatz [15]. |
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Lemma 5.3.8 Let I be a line segment in Q of length O(H) and let uly, be the
finite element function which equal to u” on I but which vanishes at all nodes not
on I. Then

|‘U{Lv|12ql/2(r) < Ch||uh||z22(1)-

Proof. This is Lemma 4.1 in Bramble, Pasciak, and Schatz [15]. |
Lemma 5.3.9 Let u" be the average of u" on an interval I, of length O(H). Then

121[30/2(}7;‘) S C(l + 1Og(H/h))2|uh

Proof. We use Lemma 5.3.7, Lemma 5.3.5, and Lemma 5.3.6 to obtain

2 < 9l h
e S 2

ho_ —h 2 olhg |2
|ufi — 0" O o T 2|u"Op

Hol*(F Hol? (F)

< C(1+log(H/h))[[u"[[31().

To conclude the argument, we note that the left hand side is unchanged if a
constant is added to u*. We therefore shift u* by a constant so that it’s average
is zero. We can then replace the norm on the right hand side with a semi-norm
using a Poincaré inequality. We return to the H'/? semi-norm using Lemma 5.3.4.

The main result for the new algorithm is given in

Theorem 5.3.1 For the new wirebasket method using G = (1 + log(H/h))I,
(i.e. 6(H/h) = (1+1log(H/h))), the condition number is bounded by

k(S7LS) < C(1+ log(H/h))?.
Moreover if GY) = I then
k(S71S) < C(1 + log(H/R)).

Proof. We prove the first result; the second result follows easily. We will
establish

T

NOISOME o o
< T 60, 0) < (1T §6) L0 55
(11 log(H/R))2 =" o * (5.5)
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We prove the result for an interior subdomain; a similar proof holds for subdomains
on the boundary. We need the following definitions. Let w be the average value
of u" on the nodes of the wirebasket and w?*" be the average value of u* on OF".
Recall that u%i is the finite element function which is equal to u” at the interior
nodes of face F*, but is zero on OF!. W = UJF" is the union of the line segments
which make up the wirebasket and u’, is the finite element function which is equal
to u” at the nodes of W, but is zero at all of the other nodes of I'. Using these

notations the lower bound of (5.5) is equivalent to

6(H/h)h||uh — w||l22(W) + Z |u]fm HF‘ 1/2(F“) ~ C(l + log(H/h))2|u |H1/2 (1)

We bound each of the left hand terms separately.
S(H/h)h||u" — @l < c6(H/h)(L +log(H/R))u"[31q)
< (1 +1og(H/))? [u" |5 g
< 1+ log(H /)R B

This follows from Lemma 5.3.3 and Lemma 5.3.4. We bound the other terms using
Lemma 5.3.9,

e~ 07

We now must prove the upper bound,
0§00 < 0p® §0) (),

We shift u”, by a constant, so that the average of u” on the wirebasket is zero, i.e.

w = 0. The upper bound is then equivalent to
|uh|12ql/2(r) < C(‘S(H/h)hH“hHlZ?(W) + E |upi — aneFt
We show this bound by,
|uh|12ql/2(r) = |Z(U% - 'waFieFi) +ugy + Z'waFieF" 121[1/2(1“)
< CEZ ult — ‘LZ’aFier‘ Z
C(XZ: ulti — @ O |2

S C(Z |UF¢ — UJa HFI

1/2(Fz))

w1y ey + Z 0% i B2 )

IN

HM2 (7 + h||uh||122(w) +(1+ 10g(H/h))h||uh||122(W))

2oy OCH /IR0 )
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The bound follows from Lemma 5.3.8, Lemma 5.3.5 and Lemma 5.3.6. [
We conclude by proving the result for the previous wirebasket method. Note
that this is essentially the result in Bramble, Pasciak, and Schatz [15].

Theorem 5.3.2 For the previous wirebasket method, using G = I, the condition

number s bounded by
k(S71S) < C(1 + log(H/R))2.
Proof. We will prove the result

()T &) (i) o o
X X T T A

< 0T ) 0) < (1pT 86 5)
(11 log(H/R))2 =" o= *

We shift u” by a constant so that its weighted average is zero. Using the definitions

given in the previous theorem the lower bound follows from

h||uh||l22(W) + Z [ 12113({2(1?1') <c(l+ 10g(H/h))2|uh|12ql/2(r)-

This inequality follows from Lemma 5.3.3, Lemma 5.3.7, Lemma 5.3.4 and a quo-
tient space argument.

Lemma 5.3.8 implies the upper bound.

|uh|fql/2(r) = | Z“%l + U{LVﬁIl/?(F)

K3

ey |U€V|i11/2(r))

ZSO/Q(FL‘) + Al ™[ w))-

5.4 The New Method as an Additive Schwarz
Method

The new wirebasket based method can be described in the additive Schwarz
framework. This leads to a more complete understanding of the algorithm and
its properties. To date, the analysis is somewhat incomplete since we have been
unable to construct a partition of u* and prove our result using Lemma 2.3.3 in

the style devised by Dryja and Widlund. However, since we have already given an
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alternative proof, the additive Schwarz analysis is only needed to put the algorithm
in perspective. It should be noted the original inspiration for this new algorithm

arose from additive Schwarz analysis.

5.4.1 Two Dimensions

As usual, in the development of the algorithm, we will be working exclusively
with the Schur complement rather then the original stiffness matrices. This does
not preclude its possible application in other circumstances. In the case of the
vertex based method, we work with the usual nodal basis functions of V# and
V" In the new wirebasket based method, we work with a different basis for our
coarse space and hence a different coarse space. We will refer to this new space
as VH. Let gb(‘%) be the usual nodal basis function of the jth subdomain vertex for
the substructure £2; and let qﬁg; be the kth nodal basis function on the /th edge of

the substructure, see Figure 5.4. A basis for our new coarse space is given by
; o, 1 i ;
o) = 04 + 530 oy, + 01k
k

The | and m denote the two subdomain edges adjacent to the jth subdomain
vertex. The complete function is obtained by a discrete harmonic extension of this
function to the interior of the subdomains. We give a schematic drawing of one
of these basis functions in Figure 5.3. Their support resides in a few neighboring
subdomains, in fact the same subdomains where the nodal basis functions of V#
have their support. The basic structure of VH is the same whether we work with
triangular, rectangular or more general quadrilateral subdomains. This description

of the space was inspired by the work of Dryja and Widlund [37].

We now outline how the new wirebasket based method is obtained in the style
of an abstract additive Schwarz scheme. We use the subspaces V¥ and a space
for each edge. To make this clear we first look at a single substructure. We first
convert the Schur complement into a modified partial hierarchical basis. This
procedure is similar to that outlined in Section 3.2. The basis change performed

by T is the same as in Section 5.2.1.

( I 0) st sl (I TO* )
7 )T 7 '
o 1)\ st s )\o 1
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Usua Nodal Basis Function New Nodal Basis Function
Figure 5.3: The New Basis

This gives

st s ).
Sty GO

By subassembly the global Schur complement in this new basis is represented by

SpE SYE
St, G |-

The preconditioner is then obtained by retaining the block diagonal part of this
matrix with a block for each edge and the block G. The resulting matrix is then

converted back to the original basis. The preconditioned operator then is

0 I 0 é_l T I S‘I;E SVV ) )

These transformations are for exposition only and need never be used in compu-

tations. Note that equation (5.6) is the sum of projections,
P+ Z Py
k

An implementation of this algorithm would require the calculation of Pz acting

on a vector. Since we do not wish to perform the calculation of G we replace
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that portion of the preconditioner with an operator which, in two dimensions, is
spectrally equivalent to it and for which we have a fast method of evaluation. This
operator is the G defined in Section 5.2.1. We devote a large part of this section
to proving that G and G, or equivalently G and G, are spectrally equivalent

in two dimensions.

Theorem 5.4.1 For scalar problems in two dimensions, with piecewise linear fi-
nite elements and a uniform triangulation, the operators GO and G are spectrally

equivalent, i.e. there exists ¢ and C independent of h and H so that
cx' Gy < TGOy < CzT'GYg.

Proof. We only give the proof for an interior subdomain; the arguments for
boundary subdomains are similar. We also restrict the proof to triangular subdo-
mains; the proof can easily be extended for more general polygonal subdomains.
We first demonstrate the result for the model problem and then show that the
result can be extended to any scalar, uniformly elliptic operator on more general
subdomains.

For the model problem, by simple calculations

1 —-1/2 —-1/2

GO=1|-12 1 —1/2
~1/2 -1/2 1

and
- 2/3 —1/3 —1/3
GO =1 -1/3 2/3 -1/3
-1/3 —-1/3 2/3

These two matrices are clearly spectrally equivalent with constants independent

of h and H.

We now generalize to scalar, uniformly elliptic operators, such that
clulfga,y < ag,(u,u) < Clulig,)-
This inequality also holds for our finite dimensional subspace

C|uh|§11(ni) < an‘(uh7uh) < Clu”

Again, we are only concerned with a subspace of this space, the space of discrete

harmonic functions. Let S to be the Schur complement for our particular problem
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and let @) to be the Schur complement obtained by using the same triangulation

for the Laplacian. It follows from equation (5.7) that
catQu < a'Sx < Ca'Qu.

This is true for any basis we work with. We therefore chose to work with the
modified partial hierarchical basis defined above. In the next step, we select the
principal minors of the matrices S and () associated with the vertex nodes. This

results in

ca’Qz < TGz < C2'Qu. (5.8)

Here () corresponds to the definition of G for the Laplacian. Equation (5.8)
demonstrates that we need only prove our result for the Laplacian to be assured
that it holds for all scalar, uniformly elliptic problems.

We now show how to extend the result to general triangular subdomains. We
assume that there exists an affine mapping from a reference subdomain to our
subdomain. In Figure 5.4 we indicate the general mapping from the reference
substructure to an actual substructure. For the Laplacian we know that if the
Jacobian of the mapping and its inverse are bounded away from zero, then the re-
sulting stiffness matrix is spectrally equivalent to the stiffness matrix for the model
subdomain. Their Schur complements will therefore have this same property.

We have thus demonstrated that for a scalar, uniformly elliptic operator in two
dimensions on a triangular subdomain whose interior angles are bounded below,
i.e. the Jacobian, and its inverse, of the affine map are bounded away from zero,

G is spectrally equivalent to G. [

Corollary 5.4.2 In two dimensions, the new wirebasket based method, with piece-

wise linear or bilinear elements, has a condition number which s bounded by

(1+log(H/R))* even if $(H/R) is a constant.

Proof. We show that the upper bound is a constant, even if 6(H/h) is equal to
one, using only linear algebra and the structure of the stiffness matrix. This proof

is done in the style of additive Schwarz proofs. We are interested in

Amax(S7 S0 =
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Reference Substructure

General Substructure

Figure 5.4: Mapping from Reference Substructure

(07 7)) Sy Sv | ( oV
o Sk SPe ) \ ap)
max , — : =
(mv tE ) 0 I 0o SW B SO § Y
(yv Ye ) )T ' (H)7* (i)
O T J\svp Sy )\T" T)\ys
max — . =
y#0 ( O ()T ) G6H y%f)
Yv YE 0 51(53; yg)
) (G S ()
A AV
max — - =
V70 (407 407 G0 vy
Yv Ui 0 ](EZ)E yg)
. _ S{O NI (0 . a6 gl (D)
O T (G | )(yv) SO ooove | [y
Yy | A (1 3 Y Y a()T i 7
G e ) Gl ) O ) sy sy ) L
0] )
w5 ) () 6w (S ) ()

From Theorem 5.4.1 we know that G is spectrally equivalent to G(). From this
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and the fact that Sg;z < C'Sg;;, we conclude

o . (6)F a6 gl
Anax(§051) - < mmax<(G0 ) )(Gm Sw))

Sik )\ Sk Stk
= Chnax(PY + 3P

E
< 5C

This upper bound is obtained in the same manner as the upper bound for additive
Schwarz methods, by noting that the preconditioned problem is the sum of a fixed
number of projections, (one for the ‘coarse’ part, Pg), and one for each edge, Pg))
each with a maximum eigenvalue of one. |

One of the great strengths of the additive Schwarz analysis is that it may be
used when the preconditioner is obtained from a set of subspaces which do not
form a direct sum of the solution space. This allows us to augment a precondi-
tioner by including additional subspaces in regions of the solution space where
the preconditioner is less effective. This is the chief trick used in Chapter 4. We
therefore attempt to improve the new wirebasket based method by including the
additional vertex subspaces introduced in Chapter 4. The numerical results, in a

following section, suggest the conjecture.

Conjecture 5.4.1 In two dimensions, the new wirebasket based method with the

additional vertex spaces has a condition number bounded by C(1 4+ log(H/h)).

This result is weaker than that obtained in Chapter 4. It would be interesting
to prove this result and also to obtain a result of this form for problems in three

dimensions.

5.4.2 Three Dimensions

We proceed, as in the previous section, to present the new wirebasket based
method as an additive Schwarz method. This section is devoted to its description
in three dimensions.

Let 3; be the number of nodes on dF?, the boundary of face number j. We
define a basis, {1/),(;)}, for the ‘coarse’ space in the following manner. For each gbgj)

on the wirebasket, there is a corresponding 1/),(;) given by,

o = o) + Dz T ol
VO
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The qﬁgj)l] are all the nodal basis functions on the faces adjacent to the wirebasket
node k. The functions g/),(j) are one at the kth node of the wirebasket, a small
constant Lj on each of the adjacent faces and zero at all other wirebasket and face
nodes. They are extended as a discrete harmonic function inside the subdomains.

As in two dimensions, we now make a partial change of basis. The precondi-
tioner is obtained by dropping the couplings between the various faces and between
the faces and the wirebasket. The preconditioned problem is then the sum of pro-

jections,
Pé + Z Pr.
F

Again, as in two dimensions, the calculation of Pg acting on a vector is difficult to
perform. We therefore replace Pz with Q4. The explicit form of Pz and Q4 can

be written down using notations previously introduced.
TT 2 -1
= ( ; ) G'(T 1)S8

P~:(TIT)(;—1(T I)s.

Q

Q

The term
TT 2 -1
( ; ) G (T 1)
appears in equation (5.3). Note that Ps is a projection in the S inner product
while Q¢ is not, though it is close to being one. Also note that the ()4 is scaled by

the logarithmic factor 6(H/h). Such a scaling was not needed in two dimensions.

5.5 A Hierarchical Basis for the New Method

Continuing the tradition of building new domain decomposition algorithms
from bits and pieces of previous methods, we use the hierarchical basis domain
decomposition method, see Chapter 3, but using, for a coarse problem, the new
wirebasket based method proposed in this chapter. At first glance it seems likely
that the condition number should grow like (1+log(H/h))*. However, the growth
is probably only proportional to (1 + log(H/k))?.

In Figure 5.5 we plot the local bound on the condition number, as described in

Section 2.5, for the model problem using the hierarchical domain decomposition
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Local bound on condition number as a function of H/h
55 T T T T : :

50l Modified hierarchical domain decomposition i
45+ 1
40 L -
g
e 3b5r E
>
z
5 30+ 1
g 5 i
o
20+ B
151 Standard hierarchical domain decomposition
10+ E
5 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

log(H/h)"2

Figure 5.5: Condition Numbers for the Modified Hierarchical DD Algorithm

algorithm as introduced in Chapter 3 and its modification using the new wirebasket
based method. We observe that for both methods the condition number appears
to grow quadratically in the logarithm of H/h.

Conjecture 5.5.1 In two dimensions, the hierarchical domain decomposition al-
gorithm with a coarse problem, as borrowed from the new wirebasket based method,

has a condition number which s bounded by
C(1+log(H/R))*.

Such a result might offer some insight as to how we could build a multilevel
preconditioner, based on a wirebasket approach, for problems in three dimensions

using techniques similar to those of Chapter 3.

5.6 Numerical Experiments in Two Dimensions

We wish first to confirm, with numerical experiments, the expected theoretical
behavior of the algorithms and secondly to get a feel for the relative effectiveness
of the various methods. However, we must always bear in mind that superiority
in the two dimensional case need not carry over into three dimensions. The vertex
based method performs the best in two dimensions but we know theoretically that

in three dimensions its behavior is asymptotically worse.
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The first set of experiments, reported in Table 5.1, Table 5.2 and Figures 5.6 to
5.11, are for the Laplacian on the unit square. However, due to the construction
of these methods the results do not change even if the coefficients of the equation
were constant on the substructures but had large jumps between substructures,
see Section 2.5. The preconditioner labeled E and V' has no global problem. It
is block diagonal with a block for each edge and a block for each vertex and is
included for comparison purposes. Also included in the tables are the local bounds
as described in Section 2.5. The vertex based standard iterative substructing
algorithm is indicated in the tables and graphs by V#. We indicate in the tables
the previous wirebasket method as, described by Mandel, with the label Mandel.
The stopping condition in determining the iteration counts is a relative decrease
of 107° in the energy norm of the error.

We also ran the same set of experiments after enriching the preconditioner by
including the vertex spaces, as suggested in Section 5.4.1, see Table 5.3, Table 5.4
and Figures 5.12 to 5.17. From the graphs, we note the following behavior for the
standard vertex based method, Mandel’s version of the wirebasket method and

the new wirebasket based method.

e All of the methods appear to have a condition number bounded indepen-

dently of the number of substructures.

e Without the enriching of the vertex spaces all of the methods have condition

numbers which grow like (1 + log(H/h))*.

e With the enrichment represented by the vertex spaces, the condition number
of the vertex based method becomes bounded. For the new wirebasket based
method and Mandel’s version of the earlier wirebasket method the condition

number appears to grow like (1 4 log(H/h)).
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Preconditioner Number of Substructures Local

2by2 4by4 8by8 12by 12 16 by 16 Bound

3 Nodes on T';;

VH 3.11 4.92 5.46 5.37 5.40 5.67
Mandel 6.00 9.00 9.85 10.03 10.12 10.47
New Method 5.60 6.95 7.63 7.76 7.78 7.89
Eand V 6.00 18.96 72.10 160.78 284 o0
I 9.77 35.26 137 307 517 o0
Unknowns on I 13 81 385 913 1665

7 Nodes on T';;

VH 4.55 7.58 8.30 8.38 8.42 8.60
Mandel 8.60 12.48 13.61 13.84 14.12 14.80
New Method 10.09 12.81 14.13 14.37 14.42 14.62
Eand V 8.6 25.59 95.4 212 375 00
I 21.50 75.1 290 649 1152 o0
Unknowns on I 29 177 833 1969 3585

15 Nodes on T';;

VH 6.32 10.55 11.18 11.27 11.29 12.15
Mandel 12.46 16.89 18.20 18.50 18.63 20.16
New Method 16.04 20.67 22.88 23.33 23.40 23.71
Eand V 12.46  33.80 122 270 477 o0
I 45 155 599 1338 2372 o0
Unknowns on I 61 369 1729 4081 7425

31 Nodes on I';;

v 8.43 14.46  15.22 15.63 15.89 16.33
Mandel 17.02 21.76 23.14 23.43 23.57 26.08
New Method 23.73 30.86 34.27 34.96 35.03 35.52
E and V 17.02  42.53 149 327 o7 00
I 92 316 1217 2718 4700 00

Unknowns on I 125 753 3521 8305 15105

Table 5.1: Condition Numbers for Model Problem
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Preconditioner Number of Substructures

2by2 4by4 Sby8 12by12 16 by 16

3 Nodes on I';;

VH 4 7 9 9 9
Mandel 4 10 11 13 13
New Method 4 9 12 13 12
Eand V 4 10 19 27 35
I 4 14 28 40 53
Unknowns on I 13 81 385 913 1665
7 Nodes on T';;
VH 5 8 10 10 9
Mandel 5 11 14 17 17
New Method 5 12 15 16 15
Eand V 5 10 22 31 40
I 8 22 41 59 77
Unknowns on I 29 177 833 1969 3585
15 Nodes on T';;
VH 5 9 10 9 9
Mandel 6 12 17 20 20
New Method 6 13 18 18 19
Eand V 6 12 25 36 46
I 16 31 60 84 *
Unknowns on I 61 369 1729 4081 7425
31 Nodes on T';;
VH 5 9 9 9 9
Mandel 7 15 23 25 25
New Method 7 17 21 21 21
Eand V 7 15 32 46 60
I 25 45 81 * *

Unknowns on I 125 753 3521 8305 15105

Table 5.2: Iteration Counts for Model Problem
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Figure 5.6: Model Problem Without Vertex Spaces
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Figure 5.7: Model Problem Without Vertex Spaces
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Figure 5.9: Model Problem Without Vertex Spaces
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Figure 5.10: Model Problem Without Vertex Spaces
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Figure 5.11: Model Problem Without Vertex Spaces
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Preconditioner Number of Substructures Local
2by2 4by4 8by8 12by 12 16 by 16 Bound
3 Nodes on I';;
VH 1.98 245 2.60 2.63 2.64
Mandel 4.73 9.22 10.02 11.26 11.39
New Method 2.83 4.40 4.81 4.89 4.92
Unknowns on I 13 81 385 913 1665
7 Nodes on T';;
yH 2.09 2.55 2.68 2.70 2.70
Mandel 5.67 11.10 13.23 13.65 13.82
New Method 4.07 6.63 7.34 7.48 7.53
Unknowns on I 29 177 833 1969 3585
15 Nodes on T';;
yH 2.15 2.82 2.78 2.80 2.81
Mandel 6.27 12.60 15.50 16.09 16.32
New Method 5.22 8.92 10.00 10.20 10.28
Unknowns on I 61 369 1729 4081 7425
31 Nodes on I';;
yH 2.19 2.99 2.88 2.88 2.89
Mandel 6.61 14.23 17.88 18.61 18.89
New Method 6.30 11.22 12.77 13.06 13.16
Unknowns on I 125 753 3521 8305 15105

Table 5.3: Condition Numbers with Vertex Spaces
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Preconditioner Number of Substructures

2by2 4by4 8by8 12by 12 16 by 16
3 Nodes on I';;
yH 4 7 7 7 7
Mandel 4 11 15 16 17
New Method 4 9 11 11 11
Unknowns on I 13 81 385 913 1665
7 Nodes on T';;
yH 6 7 7 7 7
Mandel 6 12 16 18 18
New Method 6 11 13 13 13
Unknowns on I 29 177 833 1969 3585
15 Nodes on T';;
yH 6 7 7 7 7
Mandel 7 12 17 20 20
New Method 7 11 14 15 14
Unknowns on I 61 369 1729 4081 7425
31 Nodes on I';;
yH 6 6 6 6 6
Mandel 7 12 18 21 22
New Method 7 11 16 16 16
Unknowns on I 125 753 3521 8305 15105

Table 5.4: Iteration Counts With Vertex Spaces
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Figure 5.13: Model Problem With Vertex Spaces

94



Condition Number

Condition Number

Condition Number as Function of H: 15 nodeson[’;;

16

16

18 T T T T
16 Mandel - [ -4
14+ .
12 / 1
10 0New Method ° 0
(¢)
8- i
6] .
D
a4tk i
VH
2“ I I I I I I
2 4 6 8 10 12 14
H
Figure 5.14: Model Problem With Vertex Spaces
Condition Number as Function of H: 31 nodeson[’;;
20 T T T T
18- B |
-~ Mande
16+ .
14 f |
; New Method o
(e}
12+ .
[0}
10+ .
8-, i
6" ]
VH
a4k i
2*’/ I I I I I
2 4 6 8 10 12 14
H
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Chapter 6

Operation Counts

6.1 Introduction

A standard way of judging the efficiency of various algorithms is to count the
number of floating point operations (flops) needed. With the advent of paral-
lel and vector machines these counts must be weighed very carefully with other
considerations, but they are still one of the most important single components.

We will consider the case of a square domain partitioned with a regular grid of
square substructures with N substructures along each edge of the domain. Each
substructure will consist of a regular grid of square elements with n elements along
each edge of the substructure, see Figure 6.1. We shall impose a homogeneous
Dirichlet boundary condition on the domain. We define the interface between
substructures by I' = U9, \ 0€2. In Figure 6.1, we note that the elements form a
regular Nn — 1 by Nn — 1 mesh in the domain. The vertices of the substructures
form a regular N — 1 by N — 1 grid. We also note, for later use, that the total
number of edges, I';; = 0Q; N 0Q;, is 2N(N — 1). The number of nodes on I is
given by 2N(N — 1)(n — 1) + (N — 1)%. We will assume throughout that n and N
are of the same order of magnitude, otherwise the number of terms we must keep
in the operation counts become unmanageable.

The usual 5-point stencil, which arises from using a regular grid of triangles
and the space of piecewise linear functions, P;, can be included in this discussion

even though the elements, strictly speaking, are not square, see Figure 6.2.
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6.2 Nested Dissection

Throughout this section we will assume nested dissection is used whenever the
stiffness matrix associated with a regular grid is to be factored.

In [39], George gives the operation counts for the nested dissection of a regular
finite element mesh. In counting floating point operations, to be consistent with
George’s study, we will only count multiplications and divides. They are given for

a p by p mesh by

e to factor the stiffness matrix

267 121

%PB — 17p* log,(p) + TPQ + O(plog,(p))

e to perform a backsolve and forward solve on the resulting factorization

31,

146
- P’ loga(p) — TPQ + 48plog,(p) + O(p).

o The storage requirements for the factors are,

31 73
- P’ logy(p) = 50" + 24plog,(p) + O(p).
The operation counts for using nested dissection for the grid as defined in

Figure 6.1 is easily calculated to be

2 2
2i87(Nn)3 — 17(Nn)?logy(Nn — 1) + —3(Nn)2

for the factorization and

1 14
%(Nn)(‘) log,(Nn —1) — ?6(]\771)2 + 17Nnlog,(Nn —1)

for the backsolve and forward solve. The amount of storage needed is

1 1
3Z(Nn)2 log,(Nn —1) — 7E?)(Nn)2 + ;Nn log,(Nn —1).

These are useful numbers to compare with results for domain decomposition al-

gorithms.
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6.2.1 Iterative Substructuring with Overlap
Floating Point Operations

We now calculate the number of operations needed for an iterative substruc-
turing algorithm with overlapping, see Chapter 4. We will assume a overlap of
twenty-five percent. Experimentally this seems to be a reasonable choice though

further work needs to be done to determine an optimal overlap.

1. Factor K = LT N2(267 3 —1Tn%logy(n — 1) + 3 23 n?) + O(N?*nlog,(n)).
2. Form L_T(L_IK}Q) N%(62n°log,(n — 1) — 322n?) + O(N(‘)n2 log,(n)).
3. S0 = KO - KW' L-TL1KD 48N2p2,
4. Form L_TL_lb(Ii) N%(Zntlogy(n — 1) — £8n?) + O(N?nlog,(n)).
5.0 =8l — KON LTy 12N,
6. Factor Edge Spaces %N2n3 + O(N*n?).
7. Factor Vertex Spaces %Nan + O(N*n?).
8. Factor Coarse Problem 2:%7.7\73 — 17N?%*log,(N — 1) + O(N?).
9. Conjugate Gradient iteration

a. Matrix Multiply 16 N%n2,

b. Edge Space solves 2N?n?,

c. Vertex Space solves N2n2,

d. Coarse Problem solve  2EN?logy(N — 1) — L5N? + O(N logy(NV)).

e. Interpolation 4N?n.
f. Inner Products 12N?%n.
10. b\ =0 — K0 12N2n,
11. :c(;) = L_TL_lb(Ii) N?*(Zn?logy(n — 1) — 1%n?) + O(N?nlogy(n)).

We have shown, theoretically and numerically, in Chapter 4, that the number of
iterations required to converge to a fixed precision for this algorithm is independent

of both n and N, cf. [77]. The overall operation count is then given by
1 2
585409 N2n2 + 2687]\73 + O(N2 log,(N —1)+ N2p? log,(N —1)).

If we let N = n then we obtain an algorithm which is of lower order than nested
dissection O(N?n?log,(n — 1)) vs O(N?n?). Multigrid on the other hand is still
only O(N?n?).

62N*n’log,(n—1)—
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Storage Requirements

QOutside of the CG iterations

1. LLT = K® B N?n?logy(n — 1) — ZN?*n? + O(N*nlogy(n — 1)).
2. K'Y 12N 2.
3. Vectors 2N*n?,
Inside of the CG iterations
1. SO 8N*n?.

2. Local Preconditioners %N2n2.

3. Vectors 12N?%n.

6.2.2 Additive Schwarz
Floating Point Operations

Below we give the operation counts for the additive Schwarz method as pro-
posed by Dryja and Widlund, cf. [36]. Again we use an overlap of twenty-five
percent.

1. Factor K = LLT Nz(%rﬁ — %nQ logQ(%n -1+ %rﬂ) + O(N*nlog,(n)).
2. Factor Coarse Problem %NS — 17N?log,(N — 1) + O(N?).
3. Conjugate Gradient iteration

a. Matrix Multiply 9N?n? + O(Nn).

b. Subspace solves  N?(22n?log,(3n — 1) — Bln?) + O(N?nlog,(n)).

d. Coarse Problem 2-N?logy(N —1) — B5N? + 17N log,(N — 1)

+ O(N).
e. Interpolation 2N?*n? + O(Nn).
f. Inner Products 6N?n* + O(Nn).

The overall operation count for the additive Schwarz method is given by

7209 267 279 153 3
ﬁNQTLS —|— %NS —|— (?q — T)NQTLQ 10g2(§n — 1) —|— O(N2n2 —|— N2 1Og2(N))
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Here g is the number of conjugate gradient iterations required plus one. Again as
with iterative substructuring with overlap we know theoretically [36] and numer-
ically [42], that the number of conjugate gradient iterations required to obtain a

solution of a given precision is independent of n and N.

Storage Requirements

Inside of the CG iterations

1. LLT = K® ZENn?log,(3n — 1) — ©INn? + O(N*nlog,(n)).
2. Vectors 6N*n?.
3. K SN2n?.

6.2.3 Iterative Substructuring with Approximate Solvers
Floating Point Operations

One version of this algorithm, due to Bramble, Pasiack, and Schatz, is out-
lined in great detail in [12]. Another using a different preconditioner for the edge

variables is described in Chapter 3 and in Smith and Widlund [78].

1. Factor K = LT NQ(%n:)’ — 17n?log,(n — 1) + %nQ) + O(N*nlog,(n)).
2. Factor Coarse Problem %NS — 17N?log,(N — 1) + O(N?).
3. Conjugate Gradient iteration
a. Matrix Multiply
K}gv 12N?%n.
L_TL_IK}%U N?(Zn?logy(n — 1) — %) + O(N?nlogy(n)).
7 :
KW L-Tp'KYy 12N,
b. Subspace solves 2N?n
d. Coarse Problem L N?logy(N — 1) — BEN? + 17N log,(N — 1)

e. Interpolation 4N?n.
f. Inner Products 12N?%n.
4. 00 =l - g0 12N 2.
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5. x;) = L_TL_lbg-i) N%(Zn?log,y(n — 1) — £%n?) + O(N*nlogy(n)).

2

The overall operation counts for this method is given by

267 31 267
%NQTLS + (q? — 17)]\72712 log,(n — 1)+ %NB + O(NQn2 + qNQZogg(N)).

This class of methods is non-optimal; we know theoretically and numerically,
see Chapter 3 and [12],[78], that the number of iterations required for a fixed

precision increases linearly with log(n), i.e. ¢ = C'log(n).
Storage Requirements

Outside of the CG iterations

1. Vectors 6N*n?.
Inside of the CG iterations
1. LLT = K® L N?n?logy(n — 1)
—BN*n? + O(N*nlogy(n — 1)).
2. K\ 12N2n.
3. KUL 8N2n.
4. Vectors 12N?%n.

6.3 Band Solvers

We again calculate the operation counts, this time assuming an underlying
band solver for solving the subdomain problems and the coarse problem. The
operation counts for factoring a symmetric positive definite m by m matrix with
bandwidth p is given by, see, e.g., [41],

2 3

3
mr % + 5(mp —p?).

2

The cost for a backsolve-forward solve on the factored matrix is
2m(p+ 1) — p*.
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6.3.1 Iterative Substructuring with Overlap
Floating Point Operations

We now calculate the number of operations needed for the iterative substructur-
ing algorithm with overlapping introduced in Chapter 4. We will assume a overlap
of twenty-five percent. Experimentally this seems to be a reasonable choice though

further work needs to be done to determine an optimal overlap.

1. Factor K = LT NQ(%n4 — gn3 —2n*) 4+ O(N*n)
2. Form L_T(L_lK}i)) N?%(8n* — 20n® + 16n?) + O(N*n)
3. S0 = KO — KWYL-TL-1K)) 48N2p?
4. Form L_TL_lb(Ii) N?(2n® —5n?) + O(N*n)
5. 00 = pl) — KO (L-TL-1pl)) 12N
6. Factor Edge Spaces %Nan + O(N*n?).
7. Factor Vertex Spaces éNQn3 + O(N*n?).
8. Factor Coarse Problem %N‘l — %NS —2N? + O(N)
9. Conjugate Gradient iteration
a. Matrix Multiply 16N*n?.
b. Edge Space solves 2N*n?,
c. Vertex Space solves N2nZ,
d. Coarse Problem solve 2N? —5N?* + O(N)
e. Interpolation 4N?*n.
f. Inner Products 12N*n.
10. b\ = () — g0 12N2n.
11. x(;) = L_TL_lb(Ii) N?(2n® —5n?) + O(N*n)

We have shown, theoretically and numerically, in Chapter 4, that the number of
iterations required to converge to a fixed precision for this algorithm is independent

of both n and N, cf. [77]. The overall operation count is given by

1 1
;N2n4 — %N%@B + §N4 + (29 — 2)]\73 + O(N2n2).
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Storage Requirements

QOutside of the CG iterations

1. LLT = K® N?(in* —2n3 + 3n?) + O(N*n)
2. K'Y 12N2n.
3. Vectors 2N*n?,
Inside of the CG iterations
1. SO 8NZn?.
2. Local Preconditioners %NQnQ.
3. Vectors 12N?%n.

6.3.2 Additive Schwarz

Floating Point Operations

Below we give the operation counts for the additive Schwarz method as pro-

posed by Dryja and Widlund, cf. [36].

1. Factor K() = LLT NQ(%TL4 + %nS — 28—7n2) + O(N*n)
2. Factor Coarse Problem %N‘l — %NS —2N?*+ O(N)
3. Conjugate Gradient iteration

a. Matrix Multiply IN?*n? + O(Nn).

b. Subspace solves N2(24—7n3 — n?)

d. Coarse Problem solve 2N? —5N%* + O(N)

e. Interpolation N?n? + O(Nn).

f. Inner Products 6N*n? + O(Nn).

The overall operation count for the additive Schwarz method is given by

81 1 5 63 27
?\72 4 7\74 2 ?\73 7\72 3 O 7\72 2 )
v " TV HRam N+ (g e )N+ O(N )
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Here g is the number of conjugate gradient iterations required plus one. Again as
with iterative substructuring with overlap we know theoretically [36] and numer-
ically [42], that the number of conjugate gradient iterations required to obtain a

solution of a given precision is independent of n and N.

Storage Requirements

Inside of the CG iterations

1. LLT = KO SN2t
2. Vectors 6N2n2.
3. K %Nznz.

6.3.3 Iterative Substructuring with Approximate Solvers
Floating Point Operations

One version of this algorithm, due to Bramble, Pasciak, and Schatz, is out-
lined in great detail in [12]. Another using a different preconditioner for the edge

variables is described in Chapter 3 and in Smith and Widlund [78].

1. Factor K = LT NQ(%n4 — gn3 —2n*) 4+ O(N?*n)
2. Factor Coarse Problem %N‘l — %NS —2N?+ O(N)
3. Conjugate Gradient iteration

a. Matrix Multiply

K}gv 12N*n.
LT KWy N2(2n® — 5n%) + O(N2n)
KW L-TL1 KWy 12N%n

b. Subspace solves 2N?n

d. Coarse Problem solve 2N? —5N%* + O(N)

e. Interpolation 4N?*n.

f. Inner Products 12N?n.

4. 00 =l - g0 12N2n.
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5. x;) = L_TL_lbg-i) N?(2n® — 5n?) + O(N*n)
The overall operation counts for this method is given by

1 1 H 7
§N2n4 + §N4 + (29 — 6)]\73 + (6 + 2q).7\72n3 + O(N2n2).

This class of methods is non-optimal. We know theoretically and numerically
[12],[78] that the number of iterations required for a fixed precision increases lin-

early with log(n), i.e. ¢ = C'log(n).
Storage Requirements

QOutside of the CG iterations

1. Vectors 6N?n?,
Inside of the CG iterations
1. LLT = K® N?(in* — 2n® + 3n?) + O(N*n)
2. K 12N2n.
3. KU, 8N2n.
4. Vectors 12N*n.

6.4 Determining the Optimal Domain Size

We wish to find a strategy for deciding on the sizes for the subdomains. We
first consider attempting to minimize the operation count without any other con-
siderations. This would, in general, be a poor way of determining the optimal size
for subdomains, but it is a starting point. It is virtually impossible algebraically to
determine the best subdomain size given the complexity of the operation counts,
so instead we will proceed graphically. We consider the case when the grid is a
1000 by 1000 mesh and then a 10,000 by 10,000 mesh. We plot the operation
count as a function of the size of the substructures measured by the number of
mesh points along one edge. Remember that we are using for our model a square

domain with square subdomains. The results are depicted in Figure 6.3 and 6.4.
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The main conclusion is that to decrease the operation counts very small sub-
domains are the best. This is no surprise since the leading terms are of the form
O(N?*n*). This type of analysis suggests that we should use hundreds or thousands
of very small subdomains.

We also see that iterative substructuring with approximate solvers has the best
properties; the operation counts are lower than the other two methods and they
are much less dependent on having small subdomains. We can use much larger
subdomains and still have almost optimal results.

The additive Schwarz methods of Dryja and Widlund and the iterative sub-
structuring algorithms with approximate solvers generally require much more stor-
age space since the iterations require all the data for the interior of the subdomains
as well as for the boundaries. Therefore for very large problems, like linear elas-
ticity problems, iterative substructuring with overlap may be preferred since it
requires much less in-core or swapped storage space. No general statement can be
made as to which algorithm will perform best in a variety of situations.

We note that since these calculations are somewhat imprecise, we have per-
turbed them by a large lower order term, 100N ?n?, with no effect on the qualitative

behavior of the graphs. We take this as a sign that the results have some validity.

6.5 Comparison to Unpreconditioned Problem

The application of the conjugate gradient method to the original unprecondi-
tioned linear system has a very small cost per iteration. The number of operations
required for one iteration of the conjugate gradient method is about 15N?n? flops.
This includes the matrix-vector multiply and inner product calculations.

For the model problem, the condition number of the unpreconditioned problem
grows like O(ﬁ) Thus the number of iterations required would be O(Nn). The
overall operation count for the conjugate gradient method is then O(N?®n?).

For the domain decomposition methods using a sparse interior solve the leading

terms of the operation counts are given below.

1. 62N*n3log,(n — 1) + %NS — Iterative substructuring with overlap.
2. %J\ﬂn?’ + %NS — Additive Schwarz.

3. 22%7]\72713 + %NS — Iterative substructuring with approximate solves.
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When band solvers are used, the leading order terms are given by,

1. 12—7N2n4 + %N‘l — iterative substructuring with overlap,
2. %N2n4 + %N‘l — additive Schwarz,

3. %N2n4 + %N‘l — iterative substructuring with approximate solves.

The domain decomposition algorithms are constructed to be robust. The con-
dition numbers, and hence iteration counts, will not depend strongly on the ge-
ometry, nor will they depend strongly on the form of the differential equation.
This is not true of the conjugate gradient method applied to the original stiffness
matrix. In that case, a differential equation resulting in a poorly conditioned stiff-
ness matrix will cause a large number of iterations and thus a higher operation
cost. In addition, since the unpreconditioned conjugate gradient method requires
such a large number of iterations, reorthogonalisation may be required. This is an
expensive operation.

No general conclusion can yet be drawn as to the long term superiority of the
different approaches to the iterative solution of linear systems arising from finite

element and finite difference discretizations of partial differential equations.
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