
Scaling Multicore Databases via Constrained
Parallel Execution

TR2016-981

Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi †, Haibo Chen†, Jinyang Li
New York University, † Shanghai Jiao Tong University

ABSTRACT

Multicore in-memory databases often rely on traditional con-
currency control schemes such as two-phase-locking (2PL) or
optimistic concurrency control (OCC). Unfortunately, when
the workload exhibits a non-trivial amount of contention,
both 2PL and OCC sacrifice much parallel execution op-
portunity. In this paper, we describe a new concurrency
control scheme, interleaving constrained concurrency con-
trol (IC3), which provides serializability while allowing for
parallel execution of certain conflicting transactions. IC3

combines the static analysis of the transaction workload
with runtime techniques that track and enforce dependencies
among concurrent transactions. The use of static analysis
simplifies IC3’s runtime design, allowing it to scale to many
cores. Evaluations on a 64-core machine using the TPC-
C benchmark show that IC3 outperforms traditional con-
currency control schemes under contention. It achieves the
throughput of 434K transactions/sec on the TPC-C bench-
mark configured with only one warehouse. It also scales
better than several recent concurrent control schemes that
also target contended workloads.

1. INTRODUCTION
Rapid increase of memory volume and CPU core counts

have stimulated much recent development of multi-core in-
memory databases [42, 15, 20, 27, 49, 52, 34, 56]. As the
performance bottleneck has shifted from I/O to CPU, how to
maximally take advantage of the CPU resources of multiple
cores has become an important research problem.
A key challenge facing multi-core databases is how to sup-

port serializable transactions while maximizing parallelism
so as to scale to many CPU cores. Popular concurrency con-
trol schemes are based on two-phase locking (2PL) [5, 19] or
optimistic concurrency control (OCC) [26, 5]. Both achieve
good parallel execution when concurrent transactions rarely
conflict with each other. Unfortunately, when the workload
exhibits contention, the performance of both schemes crum-
bles. 2PL makes transactions grab read/write locks, thus
it serializes the execution of transactions as soon as they
make a conflicting access to some data item. OCC performs
worse under contention because it aborts and retries con-
flicted transactions.
There is much parallelism left unexploited by 2PL and

OCC in contended workloads. As an example, suppose trans-
actions 1 and 2 both modify data items A and B. One can
safely interleave their execution as long as both transac-
tions modify items A and B in the same order. Under 2PL
or OCC, their execution is serialized. This paper presents

IC3, a concurrency control scheme for multi-core in-memory
databases, which unlocks such parallelism among conflicting
transactions.

A basic strategy for safe interleaving is to track depen-
dencies that arise as transactions make conflicting data ac-
cess and to enforce tracked dependencies by constraining a
transaction’s subsequent data access. This basic approach
faces several challenges in order to extract parallelism while
guaranteeing serializability: How to know which data access
should be constrained and which ones should not? How to
ensure transitive dependencies are not violated without hav-
ing to explicitly track them (which is expensive)? How to
guarantee that tracked dependencies are always enforceable
at runtime?

IC3’s key to solving these challenges is to combine run-
time techniques with a static analysis of the transaction
workload to be executed. IC3’s static analysis is based on
the foundation laid out by prior work on transaction chop-
ping [4, 7, 6, 41]. In particular, it constructs a static conflict
graph (SC-graph) in which a transaction is represented as a
series of atomic pieces each making one or more database ac-
cesses. Two pieces of different transactions are connected if
both access the same table and one of the accesses is a write.
A cycle involving multiple pieces of some transaction (i.e.
an SC-cycle) indicates a potential violation of serializability
when interleaving the execution of those pieces involved in
the SC-cycle. Transaction chopping precludes any SC-cycle
in a workload by merging pieces into a larger atomic unit.
By contrast, IC3 permits most types of SC-cycles and relies
on its runtime to render them harmless by constraining the
execution of the corresponding pieces.

The runtime of IC3 only tracks and enforces direct depen-
dencies; this is more efficient and scalable than explicitly
tracking and enforcing transitive dependencies, as is done
in [33]. Without the aid of static analysis, this simplified
runtime does not expose much parallelism: once a transac-
tion T becomes dependent on another T ′, T has no choice
but to wait for T ′ to finish in order to prevent potential
violations of transitive dependencies. Static analysis helps
unlock the parallelism inherent in a workload. If there exists
an SC-cycle connecting the next piece p of T to some piece p′

of the dependent transaction T ′, then IC3 can shortcut the
wait and execute p as soon as p′ has finished without waiting
for the rest of T ′. As most SC-cycles are among instances of
the same type of transaction, this shortcut is very common
and is crucial for IC3’s performance. Static analysis also
helps IC3 ensure all tracked dependencies are enforceable at
runtime. In particular, we identify a class of SC-cycles as

deadlock-prone in that they may cause deadlocks when IC3

tries to constrain piece execution. We remove the subset of
SC-cycles that are deadlock-prone by combining pieces.
We contrast IC3’s approach to existing work [36, 2, 48, 46,

16] that also expose parallelism among contended transac-
tions (see § 7 for a more complete discussion). Dependency-
aware transaction memory (DATM) [36] and Ordered shared
lock [2] permit safe interleaving should it arise at runtime
and otherwise abort. As such aborts may cascade, IC3’s ap-
proach to pro-actively constraining execution for safe inter-
leaving is more robust. Deterministic database [48, 46, 16]
generates a dependency graph that deterministically orders
transactions’ conflicting record access in accordance with
transactions’ global arrival order. This fine-grained runtime
technique avoids certain unnecessary constraining incurred
by IC3 because static analysis cannot accurately predict ac-
tual runtime conflict. However, as the dependency graph
is generated by one thread, deterministic database does not
scale as well as IC3 when running on a large number of cores.
We have implemented IC3 in C++ using the codebase

of Silo [49]. Evaluations on a 64-core machine using mi-
crobenchmarks and TPC-C [44] show that IC3 outperforms
traditional 2PL and OCC under moderate to high amounts
of contention. For the TPC-C benchmark configured with 1
warehouse, IC3 achieves 434K transactions/sec on 64 threads
while the throughput of 2PL and OCC is under 50K trans-
actions/sec. IC3 also scales better than deterministic lazy
evaluation [16] and DATM [36] under high contention.

2. MOTIVATION AND APPROACH
In this section, we consider those parallel execution op-

portunities that are not exploited by 2PL and OCC. We
discuss the challenges in enabling safe interleaving (§ 2.1)
and explain IC3’s key ideas at a high level(§ 2.2).

2.1 Parallelism Opportunity and Challenges
When concurrent transactions make conflicting database

access, much opportunity for parallelism is lost when us-
ing traditional concurrency control protocols like 2PL and
OCC. Consider two transactions, T1 and T2, each of which
reads and modifies records A and B, i.e. T1=R1(A), W1(A),
R1(B), W1(B) and T2=R2(A), W2(A), R2(B), W2(B).
Both 2PL and OCC effectively serialize the execution of
T1 and T2. However, safe parallel execution of T1 and T2

exists, as shown by the example in Figure 1a. In this exam-
ple, once T2 reads record A after T1’s write, T2’s subsequent
read from record B will be constrained to occur after that of
T1’s write to B, thereby ensuring serializability. Some exist-
ing protocols, such as Commit conflicting transactions [36]
and Ordered sharing lock [2], augment OCC or 2PL to per-
mit the safe interleaving in Figure 1a should it happen at
runtime. However, if the actual interleaving happens to be
unsafe (e.g. W1(A) → R2(A) but R2(B) → W1(B)), these
protocols [36, 2] abort offending transactions, resulting in a
cascading effect because interleaved data access have read
uncommitted writes. To avoid costly cascading aborts, it
is better to actively constrain the interleaving to guaran-
tee safety instead of passively permitting interleaving that
happens to be safe.
The example of Figure 1a suggests an intuitive, albeit

naive, solution to exploit parallelism. Specifically, the database
could track the dependencies among transactions as they
make conflicting data accesses (including read-write or write-

(a) An example of safe parallel ex-
ecution of two conflicting transac-
tions

(b) Transitive dependency makes
it difficult to track and enforce de-
pendency.

Figure 1: Opportunity & Challenge.

write conflicts). It would then ensure that tracked depen-
dencies are not violated later (i.e. no dependency cycles
arise) by delaying a transaction’s subsequent data access
when necessary. For the example in Figure 1a, we would
track T1 → T2 when T2 performs R2(A) after W1(A). Sub-
sequently, the database would block R2(B) until W1(B) has
finished in order to enforce the dependency T1 → T2. While
this naive approach works for the example in Figure 1a, it
does not work for general transactions, due to the following
challenges.

Knowing which data access to enforce dependency
on. In order to minimize unnecessary blocking, we need
to know the series of records to be accessed by a transac-
tion beforehand. In the example of Figure 1a, if T2 knows
that its dependent transaction T1 will update record B (and
T1 makes no other access to B), T2 only needs to wait for
W1(B) to finish before performing its own access R2(B). If
a transaction’s record access information is not known, T2

must wait for T1 to finish its execution in entirety, leaving
no opportunities for interleaving.

Handling transitive dependencies. The naive ap-
proach is not correct for general transactions, because it does
not handle transitive dependencies. To see why, let us con-
sider the example in Figure 1b, in which T3 becomes depen-
dent on T2 (i.e. T2 → T3) after T3 has written to record A af-
ter T2. During subsequent execution, T2 becomes dependent
on another transaction T1, resulting in the transitive depen-
dency T1(→ T2) → T3. This transitive dependency needs to
be enforced by delaying T3’s write to record C after that
of T1. Techniques for tracking transitive dependencies at
runtime have been proposed in the distributed setting [33],
but the required computation would impose much overhead
when used in the multi-core setting.

Tracked dependencies are not always enforceable.
The naive approach assumes that it is always possible to
enforce tracked dependencies. While this assumption holds
for some workloads, it is not the case for arbitrary real-world
transaction workloads. For example, if T1 =W1(A),W1(B)
and T2 = W2(B),W2(A), no safe interleaving of T1 and T2

exists. If the database permits both to execute concurrently,
it is impossible to enforce the tracked dependencies later.

2.2 IC3’s Approach
To solve the challenges of safe parallel execution, one could

rely solely on the runtime to analyze transactions’ record
access information and to enforce the dependency among
them. Deterministic databases [48, 46, 16] take such an ap-

proach. They generate a dependency graph that determinis-
tically orders transactions’ conflicting record access in accor-
dance with transactions’ global arrival order and enforces the
dependency during execution, sometimes lazily [16]. While
this approach can enforce dependency precisely, it does not
scale well to a large number of cores, as the dependency
analysis is performed by one thread and can become a per-
formance bottleneck (§ 6). IC3 uses a different approach that
augments runtime techniques with an offline static analysis
of the workload. Below, we discuss the main ideas of IC3.
Static analysis. Most OLTP workloads consist of a mix

of known transaction types. For each type of transaction,
we typically know which table(s) the transaction reads or
writes [4, 41, 33, 55]. Utilizing such information, static anal-
ysis chops each transaction into pieces, each of which makes
an atomic data access. IC3’s runtime decides which pair
of pieces needs to be constrained (e.g. if both make con-
flicting access to the same table) to enforce tracked depen-
dencies. Moreover, static analysis can also determine when
there may exist no safe interleaving at runtime and take
preemptive steps to ensure all tracked dependencies are en-
forceable. The upside of static analysis is that it simplifies
IC3’s runtime dependency tracking and enforcement. The
downside is that it can cause the runtime to unnecessarily
constrain certain safe interleaving. We discuss techniques to
mitigate the performance cost of over constraining (§ 4.1).
Efficient runtime dependency tracking and enforce-

ment. IC3 tracks and enforces only direct dependencies
which occur between two transactions when they make con-
secutive, conflicting access to the same record. By augment-
ing these direct dependencies with information from offline
static analysis, IC3 can ensure all transitive dependencies
are obeyed without explicitly tracking them.
To see how static analysis helps, let us consider a naive

scheme that can obey all transitive dependencies while only
tracking direct ones. In this scheme, every transaction T

must wait for its directly dependent transactions to commit
before T is allowed to commit or perform subsequent data
access. Such conservative waiting ensures that all transi-
tive dependencies are obeyed. For example, in Figure 1b, T3

waits for its directly dependent transaction T2 to commit be-
fore it proceeds to write to record C. Because T2 also waits
for its directly dependent transaction T1 to commit before
T2 commits, we are able to ensure T1 → T3 for their corre-
sponding access to record C without ever explicitly tracking
and discovering the transitive dependency T1 → T2 → T3.
The naive scheme kills the parallel execution opportunity

shown in Figure 1a. For example, it will prevent the inter-
leaved execution in Figure 1a, as T2 waits for T1 to commit
before it is allowed to perform R2(B). The key to make
direct dependency enforcement work well is to leverage the
static analysis of the workload. With the help of static anal-
ysis, we add two rules that bypass the default behavior of
making T2 wait for its direct dependency T1 to commit. 1)
if static analysis shows that no potential transitive depen-
dencies may arise between T1 and T2 due to T2’s next data
access, the runtime can safely let T2 perform that access
without blocking for T1. 2) if static analysis shows that
T2’s next data access might potentially conflict with some
of T1’s later access, then T2 only needs to wait for the cor-
responding access of T1 to finish instead of waiting for the
entirety of T1 to finish and commit. The second rule applies
to Figure 1a to allow its interleaving. Both rules are cru-

cial for achieving good performance for practical workloads.
We will elaborate the combined static analysis and runtime
techniques in the next section (§ 3) and provide intuitions
for their correctness.

3. BASIC DESIGN
This section describes the design of IC3. We discuss how

IC3 analyzes static conflict information (§ 3.1), how its run-
time utilizes this information to track and enforce depen-
dency (§ 3.2), and lastly, how IC3 ensures that all tracked
dependencies are enforceable (§ 3.3). We provide a proof
sketch for correctness in § 3.5.

(a) SC-graph when considering
each operation as a single piece

(b) SC-graph after merging

Figure 2: SC-graph [41] with two instances of the same
transaction type.

3.1 Static Analysis
IC3 is an in-memory database with a one-shot transaction

processing model, i.e., a transaction starts execution only
when all its inputs are ready Many existing databases have
the same transaction model (e.g., H-store [42], Calvin [46,
48], Silo [49]). IC3’s current API provides transactions over
sorted key/value tables whose primitives for data access
are: Get(“tableName”, key), Put(“tableName”, key, value),
Scan(“tableName”, keyRange)1.

In this paper, we assume the transaction workload is static
and known before the execution of any transaction. We relax
this assumption and propose techniques to handle dynamic
workloads and ad-hoc transactions in § 4.5. IC3 performs the
static analysis by first constructing a static conflict graph
(SC-graph), which is introduced by prior work on transac-
tion chopping [4, 7, 6, 41]. In an SC-graph, each transaction
is represented as a series of atomic pieces each making one
or more data access. Pieces within a transaction are con-
nected by a S(ibling)-edge. To construct an SC-graph for a
given workload, we include two instances of each transaction
type and connect two pieces belonging to different transac-
tions with a C(onflict)-edge if they potentially conflict, i.e.,
two pieces access the same column of the same database ta-
ble and one of which is a write access. IC3 analyzes user
transaction code to decompose each transaction into pieces
and to construct the resulting SC-graph (see details in § 5).
Suppose the example of Figure 1a corresponds to a workload
consisting of the following one type of transaction:

1Get/Put/Scan also optionally take column names as pa-
rameters to restrict access the specified subset of columns.

MyTransaction(k1,v1,k2,v2):
v1 =Get(“Tab1”, k1)
Put(“Tab1”, k1, v

′

1)
v2 =Get(“Tab2”, k2)
Put(“Tab2”, k2, v

′

2)

The corresponding SC-graph for this workload is shown
in Figure 2a. SC-graphs reveal potential violations of se-
rializability at runtime. Specifically, if there exists an SC-
cycle [41] which contains both S- and C-edges, then a cor-
responding cyclic dependency (i.e., a violation of serializ-
ability) may arise at runtime. Figure 2a has an SC-cycle
containing two instances of the same transaction, therefore,
there is a danger for T1 and T2 (two instances of T) to en-
ter a cyclic dependency at runtime, e.g., with execution or-
der R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B),
W1(B). While transaction chopping combines pieces to
eliminate all SC-cycles, IC3 renders SC-cycles harmless at
runtime by constraining piece execution to prevent the cor-
responding dependency cycles.

3.2 Dependency Tracking and Enforcement
IC3 executes a transaction piece-by-piece and commits the

transaction after all its pieces are finished. The atomicity
of each piece is guaranteed using traditional concurrency
control (OCC). IC3 ensures the serializability of multi-piece
transactions by tracking and enforcing dependencies among
concurrent transactions. To control performance overhead
and improve multi-core scaling, IC3 only tracks and enforces
direct dependencies at runtime. Without static analysis, a
transaction T must wait for all its dependent transaction to
commit before T can perform any subsequent data access,
which precludes most scenarios for safe parallel execution.
Static analysis helps IC3 avoid or shorten such costly wait
in many circumstances.
Algorithm 1 shows how IC3 executes each piece and Algo-

rithm 2 shows how IC3 executes and commits a multi-piece
transaction. Together, they form the pseudo-code of IC3.
IC3 uses several data structures to perform direct depen-
dency tracking. First, each transaction T maintains a de-
pendency queue, which contains the list of transactions that
T is directly dependent on. Second, the database maintains
an accessor list [36], one per record, which contains the set
of not-yet-committed transactions that have either read or
written this record.
Piece execution and commit. The execution of each

piece consists of three phases, as shown in Algorithm 1:

● Wait Phase (lines 3-9). Once a transaction T has be-
come dependent on another transaction T ′, how long
should T wait before executing its next piece p? There
are three cases, as determined by information from the
static analysis. In the first case (lines 3-4), piece p

does not have any C-edges and thus is not part of any
SC-cycle involving T and T ′. This means one cannot
violate T ′ → T by executing p immediately, without
constraints. In the second case, piece p is part of an
SC-cycle that involves only T and its dependent trans-
action T ′. In other words, p has a C-edge connecting
to some piece p′ in T ′. For case-2, p only needs to
wait for p′ to finish (line 6-7). The third case is when
neither case-1 or case-2 applies (line 8-9), then T has
to wait for T ′ to finish all pieces and commit. The
intuition for why p only needs to wait for p′ in the

Algorithm 1: RunPiece(p, T):

Input: p is a piece of transaction T

1

2 // Wait Phase:
3 if p does not have any C-edge // case-1
4 skip to execute phase
5 foreach T ′ in T .depqueue:
6 if ∃ p′ of T ′ and p has a C-edge with p′ // case-2
7 wait for p′ to commit
8 else // case-3
9 wait for T ′ to commit

10

11 // Execute Phase
12 run user code to execute p

13

14 // Commit Phase
15 lock records in p’s read+writeset (using a sorted order)
16 validate p’s readset
17 foreach d in p.readset:
18 Tw ← last write tx in DB[d.key].acclist
19 T .depqueue += Tw

20 DB[d.key].acclist += (T,”reader”)
21 foreach d in p.writeset:
22 Trw ← last read/write tx in DB[d.key].acclist
23 T .depqueue += Trw

24 DB[d.key].acclist += (T,”writer”)
25 DB[d.key].stash = d.val
26 release grabbed locks
27

28 return status //whether p has committed or aborted

second case is subtle; basically, if IC3 ensures that no
(direct) dependencies are violated due to the SC-cycle
involving only T and T ′, then no transitive dependen-
cies are violated due to SC-cycles involving T, T ′ and
some other transaction(s). To see why, we refer readers
to the proofs (§ 3.5 and Appendix A). Note that case
2 is actually quite common; SC-cycles are most likely
to occur among instances of the same transaction type
(Figure 2a shows such an example). These SC-cycles
make case-2 applicable.

● Execution Phase (line 12). In this phase, IC3 exe-
cutes user code, and accesses database records. In the
database, the value of a record reflects the write of the
last committed transaction. In addition, each record
also keeps a stashed value, which reflects the write of
the last committed piece. A read of the record returns
its stashed value, instead of the actual value. This
ensures that a transaction T can read the writes of
completed pieces in another transaction T ′ before T ′

commits. This allows for more interleavings that are
not available to 2PL or OCC. All the writes of a piece
are simply buffered locally.

● Commit Phase (lines 15-25). First, IC3 must check
that p has executed atomically w.r.t. other concurrent
pieces. We perform the validation according to OCC:
IC3 grabs all locks on the piece’s readset and writeset
(line 15) and checks if any of its reads has been changed
by other pieces (line 16, with details ignored).

Second, we augment T ’s dependency queue

Algorithm 2: RunTransaction(T):

1 // Execute Phase
2 foreach p in T :
3 RunPiece(p, T)
4 retry p if p is aborted (due to contention)
5

6 // Commit Phase
7 foreach T ′ in T .depqueue:
8 wait for T ′ to commit
9 foreach d in T .writeset:

10 DB[d.key].value = d.val
11 delete T from DB[d.key].acclist
12

13 return status //whether T has committed or aborted

(T.depqueue) due to any write-read relations that
arise from p’s reads. Specifically, for each record in
p’s readset, we append to T.depqueue the last writer
according to the record’s accessor list (line 18-19). We
then add T to the record’s accessor list.

Third, we update T.depqueue and the corresponding
accessor lists based on p’s writeset. This update is
similar to that done for p’s readset, except we must
account for both read-write and write-write relations
(lines 22-24). We then update the record’s stashed
value with the write value (line 25).

Transaction commit. After all its pieces have finished,
transaction T proceeds to commit. First, T must wait for
all its dependent transactions to finish their commits (lines
7-8). This is crucial because we must ensure that T ’s writes
are not overwritten by transactions that are ordered before
T in the serialization order. Then, it updates the value of
the corresponding record in the database according to its
writeset and removes itself from the record’s accessor list
(lines 10-11). We note that, unlike 2PL or OCC, the com-
mit phase does not require holding locks across its writeset.
This is safe because 1) T explicitly waits for all transactions
serialized before itself to finish, and 2) conflicting transac-
tions that are to be serialized after T wait for T ’s writes
explicitly during piece execution (lines 5-9).
Examples. Now we use the examples in Figure 1a and

Figure 1b again to see how IC3 works. After merging the
deadlock-prone SC-cycles shown in Figure 2a into Figure 2b
(details in § 3.3), we can enforce the interleaving as follows:
after T1 has executed the piece RW1(A), IC3 appends T1

to record A’s accessor list. When T2’s first piece, RW2(A),
finishes, IC3 checks A’s accessor list and puts T1 in T2’s de-
pendency queue. When T2 tries to execute its next piece,
RW2(B), it will have to wait for RW1(B) to finish because
the two pieces are connected by a C-edge and RW1(B)’s
transaction (T1) appears in T2’s dependency queue. In Fig-
ure 1b, T2 is in T3’s dependency queue when T3 is about
to execute W3(C). Since, W3(C) has a C-edge with some
transaction but not with T2, it has to wait for T2 to fin-
ish all pieces and commit. As T2 can only commit after its
dependent transaction T1 commits, W3(C) only executes af-
ter T1 has finished, thereby ensuring W1(C) → W3(C) and
guaranteeing serializability.

3.3 Ensuring Tracked Dependencies are En-
forceable

(a) R1,W1,R2,W2 is a deadlock-
prone SC-cycle.

(b) An example runtime interleav-
ing with deadlocks.

Figure 3: A deadlock-prone SC-cycle suggests potential run-
time deadlock.

As we discussed earlier, tracked dependencies are not al-
ways enforceable at runtime for arbitrary workloads. When
this happens, the basic IC3 algorithm encounters deadlocks
as pieces enter some cyclic wait pattern. The traditional ap-
proach is to run a deadlock detection algorithm and abort all
deadlocked transactions. Unlike 2PL, however, in the con-
text of IC3, aborts have a cascading effect: not only must
we abort all deadlocked transactions, we must also abort all
transactions that have seen the writes of aborted transac-
tions and so forth. A number of concurrency control pro-
tocols adopt such an approach [2, 36]. However, as we see
in § 6, cascading aborts can be devastating for performance
when the workload has a moderate amount of contention.

IC3 adopts a different approach to prevent deadlocks.
Again, we leverage the static analysis to identify those pieces
that can cause potential deadlocks. We combine those pieces
(belonging to the same transaction) together into one larger
atomic piece. This ensures all tracked dependencies enforce-
able at runtime with no risks of deadlocks.

Given an SC-graph, what patterns suggest potential dead-
locks? Consider the example in Figure 3a in which T1 ac-
cesses table Tab1 before Tab2 and T2 does the opposite. In
the underlying SC-graph, this corresponds to an SC-cycle
whose conflicting pieces access different tables in an incon-
sistent order. We refer to this SC-cycle as a deadlock-prone
SC-cycle. Deadlock-prone SC-cycles indicate potential run-
time deadlocks. Figure 3b gives an example execution that
is deadlocked: T1 reads record B before T2’s write to B

(T1 → T2) while at the same time T2 reads record A before
T2’s write to A (T2 → T1). This cyclic dependency will even-
tually manifest itself as a deadlock when T1 and T2 try to
commit. In the example of Figure 3b, the deadlock appears
earlier as T1 and T2 wait for each other before they attempt
to modify record C. In addition to accessing different tables
in an inconsistent order, an SC-cycle is also deadlock-prone
if multiple conflicting pieces of a transaction access the same
table.

To eliminate deadlock-prone SC-cycles, IC3 combines
pieces into a larger atomic piece using the following algo-
rithm. First, we add direction to each S-edge to reflect the
chronological execution order of a transaction(Figure 4a).
Second, we put all pieces connected by C-edges into a single
vertex. The first two steps result in a directed graph whose
edges are the original S-edges (Figure 4b). Third, we itera-
tively merge all the vertexes involved in the same directed
cycle into one vertex until the graph is acyclic (Figure 4c).

(a) Make S-edge directed to re-
flect the execution order within
a transaction.

(b) Put pieces connected with
C-edges into the same vertex

(c) Make the graph acyclic by
merging the vertexes involved
in a cycle

(d) For each merged vertex,
combine pieces of the same
transaction into one piece.

Figure 4: How to combine pieces to remove deadlock-prone SC-cycles and avoid runtime deadlock.

Last, we combine those pieces of a merged vertex that be-
long to the same transaction into a single piece. Figure 4d
shows the resulting SC-graph of Figure 3a after combining
those pieces. Note that there are no longer deadlock-prone
SC-cycles in Figure 4d, so IC3 is guaranteed to encounter no
deadlocks when enforcing tracked dependencies.

3.4 Applicability of IC3
IC3 is not beneficial for all application workloads; it is

only effective for contentious workloads that access multiple
tables within a single transaction. For these workloads, the
static analysis is likely to produce transactions containing
multiple pieces, thereby allowing IC3 to exploit the paral-
lelism opportunity overlooked by 2PL/OCC by interleav-
ing the execution of conflicting pieces. For workloads that
only access a single table within a transaction, IC3 does not
provide any performance gains over traditional concurrency
control such as 2PL or OCC. For example, if all transactions
only do read and then modify a single database record, then
static analysis merges the two accesses so that all transac-
tions consist of a single (merged) piece. As a result, IC3

behaves identically to the traditional concurrency control
protocol which it uses to ensure the atomicity of a piece.
Workloads that access multiple tables within a transaction

are quite common in practice. For example, all transactions
in the popular TPC-C and TPC-E benchmarks access mul-
tiple tables and thus contain multiple pieces (§ 6 gives more
details). We have also manually analyzed the 14 most pop-
ular Ruby-on-Rails applications on GitHub and found most
of them contain transactions accessing multiple tables (Ap-
pendix C).

3.5 Proof Sketch
Due to space limitations, we only give a proof sketch here.

A more rigorous proof is included in the appendix. We are
going to prove that IC3 always ensures serializability by only
generating acyclic serialization graph.
In a proof by contradiction we assume there is a cycle

in the serialization graph, denoted by T1→T2→...→Tn→T1.
Treating each piece as a sub-transaction, the cycle can be
expanded as q1..p1→q2..p2→...→qn..pn→q1. Because we use
OCC to protect the atomicity of each piece, the directed
edge in the cycle reflects the chronological commit order
of pieces, therefore there must be at least a pair of qi and
pi such that they are not the same piece. Then this cycle
corresponds to an SC-cycle in the SC-graph, which means

no piece in the cycle can skip checking direct dependent
transactions in Algorithm 1. Moreover, the cycle necessarily
implies a deadlock at transaction commit time, so none of
the transaction in the cycle can commit.

Consider a fragment pi→qj→pj in that cycle. For pj , be-
cause it can neither skip the checking phase nor successfully
wait for Ti to commit (Ti can never commit due to dead-
lock), pj can only execute after it waits for the commit of
a piece ri in Ti that has a C-edge connection to itself. Our
static analysis ensures that this ri must be chronologically
later than pi, otherwise there will be a non-existent cycle
qj→pj→qj in the SC-graph.

Using the above property, we can inductively “shrink” the
cycle until there is no qi→pi in the cycle. Eventually after m
(m < n) times iteration, we will get a new cycle, represented
as qm1 ←p

m
1 →q

m
2 ←p

m
2 →...→q

m
n−m←p

m
n−m→q

m
1 , which necessar-

ily implies a directed cycle in the SC-graph we have already
eliminated, which is a contradiction to the result of static
analysis. Therefore, a cycle in the serialization graph cannot
exist, hence IC3’s scheduling is always serializable.

4. OPTIMIZATION AND EXTENSIONS
This section introduces several important performance op-

timizations and extends IC3 to support user-initiated aborts.

4.1 Constraining Pieces Optimistically

(a) Static analysis may constrain
piece execution unnecessarily.

(b) Constrain piece optimistically
by moving the waiting phase to be
after piece execution and before its
commit.

Figure 5: Constrain the interleaving optimistically to reduce
false constraint

Static analysis can cause the runtime to unnecessarily con-
strain certain safe interleaving. Figure 5a shows an example
runtime execution for the SC-graph in Figure 2. T1 and T2

write to the same record A in Tab1 but write to different
records (B and B′) in Tab2. However, under Algorithm 1,
as T2 is dependent on T1 after both write to A, T1 can not
execute W2(B

′) until W1(B) is finished. Such unnecessary
constraining sacrifices parallelism.
As each piece is protected by OCC, we can constrain its

execution optimistically to unlock more parallelism. The
basic idea to constrain each piece’s commit phase instead of
its execution phase. This can be done by reordering the wait
phase and execution phase in Algorithm 1. For each piece,
it first optimistically executes the piece without blocking
(execute phase). Then, it waits according to the rules of the
wait phase. Last, it will validate and commit the piece.
Figure 5b shows the allowed interleaving of the previ-

ous example with optimistic constraining. Unlike before,
W2(B

′) can execute concurrently with W1(B). However,
before T2 commits its second piece, it needs to wait for T1’s
second piece to finish committing. As the commit time of
each piece is typically shorter than its execution time, this
optimization reduces the size of critical section in which ex-
ecution needs to be serialized.

4.2 Rendezvous Piece

Figure 6: The SC-graph involving two types of transactions.
T2’s P2 is the rendezvous piece of T1’s P2 and T ′1’s P2.

Figure 7: Constrain the interleaving with the rendezvous piece.
Before T execute W1(B), it only needs wait T2 finishes W2(C)

When executing a piece p in T that is potentially involved
in any conflicts (Algorithm 1, line 5-9), IC3 needs to find T ’s
dependent transaction T ′, and then either 1) wait for a piece
in T ′ that may potentially cause conflicts with p to finsih, or
2) wait for the entire T ′ to commit if no such pieces in T ′ ex-
ist. In the latter case, the wait could be expensive depending
on how soon T ′ will commit. As an optimization to reduce
this cost, we introduce a concept named rendezvous piece.
For piece p in transaction T , its rendezvous piece in another
transaction T ′ works as a promise that after this rendezvous
piece finishes, T ′ can form no more conflicts with T involv-
ing p. More specifically, if we can find a later piece q in T

(after p) and another piece r in T ′, such that q and r are
connected by an C-edge in static analysis, r will be a ren-
dezvous piece of p in T ′. We then can use r to synchronize

T with T ′. In this case, IC3 can simply wait for r to finish
before committing p, and doing so is sufficient to ensure no
undesirable interference could ever happen.

During static analysis, after merging operations, IC3 looks
for rendezvous pieces of every piece in other transaction
types, and tags the information in the generated SC-graph.
Afterwards, IC3 can leverage this information at runtime to
cut down waiting time. As an example, Figure 6 shows an
SC-graph with two types of transactions T1 and T2. The
piece p2 of T1 has no C-edge directly connecting to T2, but
a later piece p3 of T1 directly connects the p2 of T2. Dur-
ing static analysis, p2 is identified as the rendezvous piece of
p2 of T1. Afterwards, during the execution, before T1 exe-
cutes p2, it only needs to wait until T2 finishes p2, as shown
in Figure 7.

4.3 Commutative Operation
Two write pieces commute if different execution orders

produce the same database state. Therefore, it may seem
unnecessary to constrain the interleaving of commutative
pieces. However, this is not correct as write pieces do not
commute with read operations that IC3 uses to generate a
periodic consistent snapshot in the background 2. IC3 solves
this issue by deferring the execution of commutative op-
eration to the transaction commit phase3. In our current
implementation, users make commutativity explicitly by us-
ing a new data access interface, Update(”tableName”, key,
value, op) where op is user-specified commutative accumu-
lation function such as addition.

4.4 Handling User-initiated Aborts
So far, we have presented IC3 on the assumption that

transactions are never aborted by users and thus can always
be retried until they eventually succeed. We now explain
how IC3 handles user-initiated aborts.

In IC3, when a transaction is aborted (by the user), all
the transactions that depend on it must also be aborted.
IC3 supports this cascading aborts by using an abort bit for
each entry in the accessor list. When a transaction aborts,
it unlinks its own entry from each accessor list that it has
updated and sets the abort bit for all the entries appearing
after itself. Before a transaction commits, it checks the abort
bits of all its accessorlist entries. If any of its entry has the
abort bit, then the transaction aborts itself.

4.5 Online Analysis
So far, IC3 only handles static workloads where all the

types of transactions are known beforehand. To accept a
new type of transaction which is not known before, an intu-
itive way is pausing the system to update the SC-graph. But
can we dynamically update the SC-graph without stopping
the world?

Adding a transaction type results in a new SC-graph;
if IC3 switches the SC-graph without pausing the system,
concurrent transactions may use different SC-graphs. When
IC3 updates the SC-graph, IC3 may merge conflicting pieces
in the old SC-graph to avoid deadlock-prone SC-cycles.

2
IC3 runs read-only transactions separately from read-write

transactions by using thse snapshots, same as is done in
Silo [49].
3Such deferring is always possible because commutative
write pieces do not return any values used by later pieces.
Otherwise they do not commute.

Figure 10: Transitional SC-graph example

First, let us consider the simple case that no merging incurs.
In this case, the C-edges in the new SC-graph is the superset
of the C-edges in the old SC-graph; for the transactions in
the old workloads, their instances using the new SC-graph
can concurrently execute with the ones using the old SC-
graph. As a result, IC3 can process the transactions in old
workload until all worker threads use the new SC-graph.
Figure 8 shows an example: The static workload has one

transaction (T1) which first updates Tab1 then reads Tab2.
A new transaction (T2), issued by user at runtime, updates
both tables’ records. To process T2, IC3 needs to update
the SC-graph from Figure 8a to Figure 8b. With the above
strategy , IC3 should only process T1 during the update. Fig-
ure 8c shows a possible execution: as IC3 updates SC-graph
when transactions are running, concurrent transactions may
use different SC-graphs. But the system is still consistent,
because both SC-graphs ensure the atomicity of the first
piece
Now, let us consider another case that the update of the

SC-graph requires merging the conflicting pieces. For this
case, the above strategy is insufficient to ensure the con-
sistency. Figure 9 gives an example. The new transaction
(T2) accesses the tables in the opposite order with the trans-
actions (T1) in the old workload. To avoid deadlock-prone
cycle, IC3 needs to merge the conflicting pieces in Figure 9a,
and generate the new SC-graph (Figure 9b). Figure 9c gives
a possible execution of two instances of T1 at runtime. T1

using the old SC-graph commits the updates separately; T ′1
with using new SC-graph commits the update in a single
piece, and does not enforce the interleaving with T1. As a
result, this interleaving introduces a cyclic dependency.
To ensure consistency, IC3 extends the above strategy by

introducing transitional SC-graph which is a combination
of both the old and new SC-graphs; transactions in the
old workload should use the transitional SC-graph until all
worker threads begin to use the new SC-graph. The transi-
tional SC-graph allows nested conflicting piece: a conflicting
piece includes multiple sub-pieces; sub-pieces from different
transactions can be connected with C-edges. The conflicting
pieces, which are from the old SC-graph and merged into a
single piece, become the sub-pieces in the transitional SC-
graph. At runtime, IC3 uses the transitional SC-graph to
enforce the sub-piece’s execution and tracks the dependency
at the end of each sub-piece. However, IC3 only validates
the correctness and commits the updates when the outer
piece finishes. Enforcing the sub-piece’s execution ensures
the serial order of transactions using transitional SC-graph
and old SC-graph. At the same time, as the granularity of
validation and commit is the entire piece, IC3 is capable to
use Algorithm 1 to ensure the serial order of transactions
using transitional SC-graph and the new SC-graph.
Figure 10 is the transitional SC-graph of Figure 9a and

Figure 9b. IC3 merges the conflicting pieces in Figure 9a
into single piece in Figure 9b, thus each piece in Figure 10
has two sub-pieces accordingly. Figure 11 shows how IC3

Figure 11: Using transitional SC-graph when add a trans-
action to SC-graph

enforces transaction’s execution with the transitional SC-
graph. IC3 tracks the dependency with T1 after executing
the first sub-piece of T ′1, then it enforces the second sub-
piece’s execution to ensure the consistency. However, IC3

only commits the updates of T ′1 at the end of entire piece.
Removing a transaction type also leads to the up-

date of the SC-graph. As removing a transaction type may
exclude C-edges from the SC-graph, then some conflicting
pieces can be split into multiple pieces. Let us first con-
sider the simple case that no splitting happens, similarly, it
is safe to execute the remaining transactions concurrently,
as the C-edges in new SC-graph is the subset of the C-edges
in old SC-graph. Second, if removing transaction requires
splitting some pieces, the SC-graph generated is the old SC-
graph when IC3 adds this transaction. As a result, it is safe
to use transitional SC-graph to ensure the consistency when
updating the SC-graph requires split.

5. IMPLEMENTATION
We have built the IC3 runtime in C++ and implemented

the static analyzer in Python. This section describes the
basic implementation that performs static analysis in a sep-
arate pre-processing stage. We have also extended IC3 to
perform online analysis in order to handle dynamic work-
loads, the details of which are given in [51].

5.1 Pre-processing and Static Analysis
The static analysis is done by a Python script in the pre-

processing stage, before the system is to execute any trans-
action. Therefore, the overhead of static analysis does not
affect IC3’s runtime performance. The analyzer parses the
stored procedures (in C++) to determine the scope of trans-
action piece and construct the corresponding SC-graph. The
granularity of the analysis is at the level of columns, i.e.
two pieces are connected by a C-edge if they both access
the same column and at least one of them is write. To sim-
plify the analysis, users are currently required to explicitly
define the names of tables and columns accessed via the
Get/Put/Scan API. This restriction enables the analyzer to
easily identify each database access, label each access as an
individual piece, and determine which pieces are connected
via C-edges. When processing an if-else statement, the
analyzer includes the table access of both branches in the
corresponding transaction in the SC-graph. For table ac-
cesses within a for loop, they are grouped into one piece (it
is possible to split loops using known compiler techniques,
but we did not implement it.)

After the analyzer obtains the raw SC-graph by parsing
the stored procedures, it applies the algorithm in § 3.3 to
merge some pieces if necessary. For each table access, the

(a) The SC-graph before the update. (b) The SC-graph after the update. (c) Consistency can be ensured if the sys-
tem only processes T1 type transactions.

Figure 8: The new SC-graph is a supergraph of the old SC-graph

(a) The SC-graph before the update. (b) The SC-graph after the update. (c) rule 1 is insufficient to provide consis-
tency

Figure 9: The new SC-graph is not supergraph of old SC-graph when the update merges conflicting pieces.

final output of the analyzer contains its corresponding piece
identifier and its C-edge information (i.e., the identifiers for
those pieces with a C-edge to it). The IC3 runtime loads
the C-edge information based on the analyzer’s output prior
to execution. We currently rely on manual annotation to
associate the piece identifier with each table access. If a
piece contains more than one table access, users must enclose
those accesses within a pair of begin_piece and end_piece

statements. As a result of the pre-processing, the IC3 run-
time has sufficient information to implement line 3 and 6 in
Algorithm 1.

5.2 Runtime Implementation
IC3’s runtime implementation is based on the codebase

of Silo [49], a high-performance in-memory database. Silo
implements OCC on top of Masstree [31], a concurrent B-
tree like data structure. We change the concurrency con-
trol protocol to IC3 and reuse Silo’s implementation to sup-
port read-only transactions using snapshots, durability, and
garbage collection.
IC3 uses a tuple to represent each table record and its

meta-data. Among others, the meta-data includes the
record’s accessor list (implemented as a linked list), the
stashed value and a version number for ensuring piece atom-
icity using OCC.
IC3 uses n worker threads to execute transactions, where

n is the number of cores in the machine. We implement
MCS lock [32], a type of spinlock that scales well to many
cores [9]. Each tuple is associated with a separate MCS lock
which protects the atomicity of operations on the tuple.
Each running transaction is associated with a data struc-

ture, referred to as its context, that holds information such
as the transaction ID, its dependency queue, the current
piece being executed, and its status. The context data struc-
ture has a fixed size and is reused for a new transaction.
Piece Execution and Commit (Lines 11-26, Algo-

rithm 1). IC3 uses OCC to ensure the atomicity of each
piece. During piece execution, IC3 buffers writes in the
piece’s write-set and copies the version number of each

record being read in the piece’s read-set. To commit piece p,
IC3 first acquires the MCS locks for all tuples corresponding
to p’s read- and write-set. Then, IC3 checks whether the
version numbers in the read-set differ from those currently
stored in the tuples. Suppose validation succeeds for piece
p of transaction T . Then, for each record accessed by p,
IC3 adds the piece’s transaction ID (T) to the tuple’s acces-
sor list, updates the tuple’ stash value if the corresponding
access is a write, and copies the transaction ID of the last
conflicting entry in the tuple’s accessor list to T ’s depen-
dency queue (lines 17-25, Algorithm 1). Last, IC3 releases
the MCS locks.

Piece wait (lines 2-9, Algorithm 1). There are three
cases for how long a piece should wait before execution. The
IC3 runtime can determine which case applies to piece p

by examining p’s C-edge information. This information is
calculated by the static analyzer during pre-processing and
loaded in the runtime’s memory prior to execution.

By default, the worker thread waits by spinning. If piece
p needs to wait for its dependent transaction T ′ to commit
(line 8, Algorithm 1), the worker thread continuously reads
several pieces of information in T ′’s context and checks 1)
whether the status of T ′ becomes “committed”. 2). whether
the transaction ID stored in the context of T ′ has been
changed; this occurs when T ′ finishes and its context data
structure is re-used by other transactions. If piece p needs
to wait for a specific piece p′ in T ′ to commit (line 6-7, Algo-
rithm 1), the worker thread also additionally spins to check
whether the current piece being executed by T ′ is after p′.
If so, piece p can proceed to execution without waiting for
T ′ to commit. Each read of the spin variables (i.e., trans-
action status, transaction ID, or current piece identifier) is
done without locking because the underlying memory in-
structions involving no more than 8-bytes are atomic. IC3

adds a memory barrier whenever a spin variable is modified.
Apart from the default spin-wait strategy, we also ex-

plored a suspend-wait strategy in which a worker thread sus-
pends a blocked transaction to execute others. The imple-
mentation of suspend-wait is done using C++ co-routines.

If a piece needs to wait, the worker thread puts the cur-
rent transaction in the thread’s pending queue and switches
to execute other runnable transactions (that the worker has
previously suspended) or a new one. We implement the
pending queue as a lock-free queue so that suspending a
transaction will not block other worker threads.
We choose spin-wait as the default strategy because it

leads to better performance in our experiments. For ex-
ample, when running TPC-C new-order transactions with
64 worker threads accessing one warehouse, the spin-wait
strategy has 2.14X throughput than the suspend-wait strat-
egy (340K TPS vs. 158K TPS). This is because the overhead
of the context switching and lock-free queue manipulation
out-weights the overhead of spin-wait for short waits which
are the case in TPC-C. Suspend-wait may be beneficial for
workloads involving long waits.

5.3 Secondary Index Implementation
The current implementation of IC3 relies on users to up-

date and lookup in secondary indexes, similar to what is
done in Silo [49] and Calvin [16]. Specifically, users need to
represent each secondary index as a separate table that maps
secondary keys to the records’ primary keys. To ensure con-
sistency, one must access the secondary index table in the
same user transaction that reads or writes the base table.
For example, in our implementation of the TPC-C bench-
mark, the new-order transaction inserts into the base order
table and then inserts to the order table’s secondary index,
all in the same transaction. Because secondary indexes are
read or updated as part of regular user transactions, we can
use the same static analysis and runtime implementation.

6. EVALUATION
This section measures the performance and scalability of

IC3. We first compare IC3 to OCC and 2PL using mi-
crobenchmarks and TPC-C. We use the OCC implemen-
tation of Silo [49]. We implement 2PL ourselves by associ-
ating each record with a scalable read-write lock 4. Then,
we present the comparison with other alternatives with con-
tended workloads. Last, we analyze the effect of different
optimization methods. Due to space limitation, we leave
evaluations on the TPC-E benchmark, the effect of user-
initiated aborts (which may cascade) and transitive depen-
dencies in the technical report [51].

6.1 Experiment Setup
Hardware. Our experiments are conducted on a 64-core

AMD machine with 8 NUMA nodes. Each node has 8 cores
(Opteron-6474). Each core has a private 16KB L1 cache
and every two cores share a 2MB L2 cache. Each NUMA
node has a 8MB L3 cache and 16GB local memory (128GB
in total). The machine runs a 64-bit 4.0.5 Linux kernel.
Workloads and metrics.
This evaluation includes three benchmarks, a micro

benchmark which does simple random updates, the widely-
used TPC-C [44] benchmark and a more complex TPC-E
benchmark [45]. We use TPC-C to compare the performance
of IC3 with alternatives.
For each benchmark, we first evaluate the performance of

IC3 with increasing contention rate. Then, we study system

4Our implementation of 2PL eliminates the chance of dead-
lock by sorting the locks in a consistent order

scalability under high contention. Further more, we also
evaluate the online analysis mechanism and the amount of
transitive dependencies at runtime. Last, we study if the
real-world applications can potentially benefit from IC3.

Throughput is the primary metric in this evaluation. Ev-
ery trial is run for a fixed duration (i.e., 30 seconds) to record
a sustainable throughput. We manually pin each thread to a
single core, and ensure that the number of worker threads
equals to the number of cores. When disk logging is enabled,
IC3 can only scale up to 16 cores due to the limitation of I/O
bandwidth (two disks) in our test machine; thus, we disable
logging by default.

6.2 Microbenchmark
We begin our evaluation with a simple microbenchmark

involving one type of transaction. Each transaction executes
a controllable number of pieces and each different piece ac-
cesses a different table. Each piece randomly updates 4 dis-
tinct records from the same table. Each piece is protected
using 2PL. To avoid deadlock, the records are sorted when
each piece starts. Each table has 1M records. Each record
has a 100-byte value and a 64-bit primary key.

For each piece, the contention rate is controlled by vary-
ing the selection scope of its first operation between 10 and
1M. When a piece selects a record out of 10, it has 10% con-
tention rate. Figure 12(a) shows the performance of work-
loads with each transaction with moderate size (10 pieces).
When the selecting scope is 1,000,000 (contention rate is
nearly 0), IC3’s throughput is about 15% lower than that of
2PL and OCC (167K vs. 196K vs. 189K TPS). This extra
cost is mainly from manipulating the linked list for depen-
dency tracking. When the contention rate increases to 1%
with 100 records to select from, the performance of IC3 re-
mains unchanged (167K TPS) , while 2PL and OCC have
23% and 52% performance slowdown accordingly (149K vs.
196K and 93K vs.189K TPS). OCC’s performance drops
greater than 2PL because the 1% contention rate among
pieces can cause 65% transaction aborts in OCC. When
the contention rate is greater than 1%, IC3’s performance
degrades more gracefully. With 10% contention rate, IC3

has 45% performance loss, (90K vs. 167K TPS), while the
throughput of 2PL and OCC drops 86% and 90% respec-
tively (27K vs. 196K and 18K vs. 189K TPS).

We also evaluate IC3’s performance speedup with con-
current execution under highly contended workload. Fig-
ure 12(b) shows the throughput improvement under highly
contented workload (10% abort rate) with an increasing
number of worker threads. The throughput of IC3 keeps
growing to 64 worker threads, while 2PL and OCC can only
scale to 16 cores. With 64 worker threads, IC3 outperforms
its single thread version by 9X (90K vs. 9.9K TPS), while
2PL gets 3X speedup (29K vs. 10K TPS) and OCC only
gets 1.5X speedup (16K vs. 10K TPS).

We also analyze the effect of transaction length on per-
formance. For the workload with short transactions having
only 2 pieces, it has 70% performance degradation when the
contention rate is increased from 0 to 10% (1350K vs. 410K
TPS). Under high contention level with 10% abort rate, IC3
achieves 10X speedup with 64 worker threads compared with
the performance with only 1 thread (43K TPS vs. 410K
TPS). For the workload with the longer transaction con-
taining 64 pieces, it has 37% performance degradation when
the contention rate is increased from 0 to 10% (23K vs. 15K

0K

50K

100K

150K

200K

0% 2% 4% 6% 8% 10%

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

e
c
)

Conflicting Rate of Each Pair of Pieces

IC3
2PL
OCC

(a) Throughput with increasing
contention rate.

1K

25K

50K

75K

100K

 1 4 8 16 32 48 64

Number of Threads

IC3
2PL
OCC

(b) Throughput with increasing
number of worker threads.

Figure 12: Microbenchmark

0K

100K

200K

300K

400K

500K

600K

700K

800K

 1 4 8 16 32 64

Number of Warehouses

IC3
2PL
OCC

(a) Throughput with increasing
contention rate.

0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

 1 4 8 16 32 64

Number of Threads

IC3
2PL
OCC

(b) Throughput with increasing
number of threads.

Figure 13: TPC-C Benchmark

TPS). For highly contended workloads with 10% abort rate,
IC3 achieves 15X speedup (1K vs. 15K TPS) over a sin-
gle thread. IC3 can improve the workloads’ performance for
workload under high contention regardless of the number
of pieces in the transaction. However, IC3 achieves more
speedup for longer transactions.

6.3 TPC-C
In the TPC-C benchmark, three out of five transactions

are read-write transactions that are included in the static
analysis and processed by IC3’s main protocol. Figure 14
shows the SC-graph. The other two are read-only transac-
tions and are supported by the same snapshot mechanism in
Silo [49]. In TPC-C, we decrease the number of warehouses
from 64 to 1 to increase the contention rate. When there
are 64 warehouses, each worker thread is assigned with a lo-
cal warehouse, so each thread will make most of the orders
using its local warehouse. Only a small fraction of transac-
tions will access remote warehouses. When there is only one
warehouse, all worker threads make orders from this global
shared warehouse, suggesting a high contention rate.

Figure 13(a) shows throughput of 64 worker threads with
the increasing contention rate. Under low contention, IC3’s
throughput is 6% lower than 2PL due to the overhead of de-
pendency tracking. However, both IC3 and 2PL have around
15% performance degradation than OCC due to mandating
locks on read-only accesses. For IC3, except manipulating
the accessor list, it also needs to acquire the lock on read-
only operations if the access is included in the conflict piece.
For 2PL, it needs to acquire the read lock before each read-
only access.
Under high contention rate, IC3 performs much better

than 2PL and OCC. As the number of warehouses decreases
to 1, the throughput of IC3 only drops by 32% (643K vs.
435KTPS). In contrast, the performance of 2PL and OCC
degrades dramatically when the total number of warehouses
is less than 16. OCC suffers 64% throughput degradation
at 8 warehouses with 63% abort rate. When there are only
4 or less warehouses, OCC has only a few hundreds of TPS
(e.g. 341 TPS for 4 warehouses) as the abort rate is more
than 99%. For 2PL, its performance degrades 59% with 8
warehouses and 93% with 1 warehouse.
Figure 13(b) shows the scalability of IC3 when sharing

a global warehouse. IC3 can scale to 64 threads with 22X
speedup over one thread (435K vs. 19K TPS)). However,
the performance is only improved by 27% from 32 cores to
64 cores. The major reason is that all payment transactions
update the same warehouse record and contend on the same
cache line. This can be further optimized by distributing
the record, such as phase reconciliation [34]. One may find

Figure 14: The SC-graph of 3 Read Write Transactions in
TPC-C

that IC3’s scalability with TPC-C is better than in our mi-
crobenchmarks. This is because not all pieces’ execution in
TPC-C will be constraint (i.e., commutative pieces, read-
only pieces and read-only transactions). Such pieces can be
concurrently executed with the conflicting pieces, which in-
creases the concurrency. Both OCC and 2PL can only scale
to 4 cores, with 49K TPS and 43K TPS accordingly. After
4 threads, the performance of 2PL does not change notably,
but the performance of OCC degrades drastically because
conflicting transactions are frequently aborted.

6.4 Comparison with Alternative Approaches
This subsection continues to use TPC-C to compare IC3

with four important alternative approaches under highly
contended workloads.

Transaction chopping: We first apply transaction
chopping [41] to TPC-C and merge pieces to eliminate SC-
cycles. Each merged piece is protected using 2PL or OCC.

0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

 1 4 8 16 32 64

T
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

Number of Threads

IC3
TXN Chopping(2PL)
2PL
TXN Chopping(OCC)

(a) Transaction chopping

0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

 1 4 8 16 32 48 64

Number of Threads

IC3
Deterministic DB

(b) Lazy evaluation

0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

 1 4 8 16 32 64

Number of Threads

IC3
Nested OCC
OCC

(c) OCC across pieces

0K

50K

100K

150K

200K

250K

300K

350K

 1 4 8 16 32 64

Number of Threads

IC3
DATM
OCC

(d) Dependency-aware OCC

Figure 15: Comparison with prior approaches under high contention. New-order only for dependency-aware OCC

We also exclude C-edges between any commutative opera-
tions. Figure 15a shows the performance when all worker
threads share a global warehouse. Transaction chopping
with 2PL only gets marginal benefit compared to 2PL: it
cannot scale beyond 8 threads, as most operations of new-
order and delivery transaction need to be merged. After 8
threads, IC3 scales better than transaction chopping and its
performance is 4X under 64 threads(435K vs. 100K TPS).
When using OCC to protect the merged piece (Chopping-
OCC in Figure 15a), it has similar performance as chopping-
2PL when the number of threads is less than 8. With 8
worker threads, its performance is worse than chopping-2PL
(75K vs. 99K TPS) due to piece aborts and retries. As con-
tention further increases with more than 8 worker threads,
the throughput of chopping-OCC degrades significantly.
Deterministic database with lazy evaluation: We

also compare against the deterministic database with lazy
evaluation [16]. Deterministic database divides each trans-
action into two phases: now phase and later phase. The
system needs to execute all transactions’ now phases sequen-
tially to generate a global serialized order and analyze the
dependency of their later phases. Then the later phases can
be executed deterministically according to the dependency
graph generated in the now phase. Execute high conflict-
ing operations in the now phase can improve the temporal
locality and increase the concurrency of later phases.
We use the implementation released with the paper. Fig-

ure 15b shows the scaling performance of deterministic
database under one global TPC-C warehouse. We use one
extra worker thread to run all the transaction’s now phases
and use the same number of worker threads with IC3 to
run the later phase concurrently. We tune the setting such
that the number of transaction can be buffered in the now
phase and choose the threshold (i.e., 100) with the high-
est throughput. We issue 1M transactions to the system for
processing to get the throughput result.
With a single thread, lazy evaluation is better than IC3

(38K vs. 19K TPS). This is because: 1) One extra thread is
used to execute all highly contended operations which paral-
lelise the execution and achieve good cache locality; 2) Some
operations are deferred and even never executed; 3) Differ-
ent code base for both benchmark and system implementa-
tion also contribute the performance difference. When the
size of transaction batch is 100, their system achieves high-
est throughput under 16 worker threads (318K) 5. However,
its performance degrades after 16 threads and IC3 can even

5This number is lower than what is reported in [16] because
their evaluation used a more powerful CPU (Intel Xeon E7-
8850)

achieve better performance after 32 threads.
Using OCC to ensure serializability across pieces.

We evaluate another strategy, called Nested OCC, that
chops each transaction into pieces and uses OCC to ensure
atomicity within and across pieces. At the end of each piece,
it validates the records read by the piece and retries the piece
if validation fails. At the end of the transaction, it validates
the records read in all pieces. Similar to IC3, commutative
operations are not included in the conflicting pieces.

Figure 15c shows performance of Nested OCC for TPC-
C under high contention. Since the contention within a
piece only causes the re-execution of the piece instead of
the whole transaction, Nested OCC has slower abort rate
than OCC with 4 worker threads (15% vs. 42%). As a
result, its performance is 62% better than OCC and 30%
better than IC3 with 4 worker threads. With an increasing
number of threads, the throughput of Nested OCC drops sig-
nificantly like OCC due to dramatically increased abort rate.
With 64 worker threads, its abort rate is 98% which is the
same as OCC. This is because, with more worker threads,
pieces are more likely to interleave in a non-serializable man-
ner, thereby causing aborts. By contrast, as IC3 enforces
the execution order among the concurrent conflicting pieces,
thereby avoiding aborts and achieving good scalability with
many threads.

Dependency-aware transactional memory
(DATM) [36] is the last compared algorithm. Under
DATM, a transaction can observe the update of conflicting
uncommitted transactions. All conflicting transactions will
commit successfully, if the interleaving of the conflicting
operations are safe. However, this method also allows
unsafe interleaving which will incur cascading abort.

We port DATM by modifying OCC to be dependency
aware. Each record keeps an accessor list to track the ac-
cessed transactions. However, since original algorithm tar-
gets software transaction memory, we make slightly opti-
mized choices for our implementation of DATM. Our imple-
mentation only keeps the memory pointers of the received
or written value. We can check if a read is stale by check-
ing the memory pointer, which saves the cost from memory
compare. Like [36], we use timeout for deadlock prevention.

As DATM is designed for software transactional mem-
ory, it does not support range query and deletion. Thus
we only evaluate it with new-order transactions in TPC-C
under high contention: all workers share the same ware-
house. After profiling with different timeout thresholds, we
found the best performance can be achieved when the time-
out threshold is set to 0.45 ms on our 2.2GHz CPU. Fig-
ure 15d shows the performance. We also include OCC and
2PL as reference. Since DATM can manage dependency

0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

 1 4 8 16 32 64

T
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

Number of Threads

+Commutative Op. Support
+Optimistic Constraint

Basic Algorithm

(a) Optimistic interleaving con-
straint & Defer the commutative
operation.

0K

50K

100K

150K

200K

250K

300K

 1 4 8 16 32 48 64

Number of Threads

With Rendezvous Piece
Without Rendezvous Piece

(b) Rendezvous piece

Figure 16: Analysis the effect of each optimization method.
Optimization is applied from bottom to top for each group.

among uncommitted conflicting transactions, DATM scales
to 8 threads with 125K TPS, which is better than all others.
With 8 threads, IC3 gets 95K TPS, while 2PL and OCC
achieve 105K TPS and 1K TPS accordingly. However, the
performance of DATM degrades with the increasing num-
ber of cores, mainly due to more cascading aborts and an
increased cost per abort. With 16 threads, the abort rate
is 81% and the abort rate increases to 99% (with 92% for
observing an aborted transaction’s update).

6.5 Factor Analysis
To understand the overhead and the benefit of each op-

timization, we show an analysis with TPC-C (Figure 16)
when all threads share one warehouse (high contention).
Figure 16a shows the analysis result. “Basic” is the perfor-
mance of the basic algorithm(§ 3.2). Enforcing the interleav-
ing optimistically (“+Optimistic Constraint”) improves the
performance by 32% with 64 threads (224K vs. 296K TPS).
The performance is improved by 40% (296K vs. 435K) if we
run the commutative operations without constraints.
Optimization with rendezvous piece.

..
.

..
.

..
.

..
.

Figure 17: SC-graph with new-order and last-order-status

Because TPC-C contains no rendezvous pieces, we modi-
fied the benchmark to include a new transaction called last-
order-status; it checks the status of the latest order made
by some new-order transaction. This transaction contains
three pieces: it first reads next o id from a random dis-
trict, then uses this id to read records from the ORDER ta-
ble, and lastly, it reads from the ORDERLINE table. The
corresponding SC-graph involving new-order and last-order-
status is shown in Figure 17. The second and third pieces
of last-order-status are rendezvous pieces for the new-order
transaction. We configure a benchmark with 50% new-order
and 50% last-order-status. Figure 16b shows the evaluation
result. Compared with the basic protocol, the performance
is improved by 23% with rendezvous piece with 64 cores

(289K vs. 235K TPS).

6.6 Impact of Durability

0K

100K

200K

300K

 1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

Number of Threads

IC3
Durable IC3

2PL
Durable 2PL

OCC
Durable OCC

(a) Throughput of Durable TPC-C
with low contention

0K

100K

200K

300K

 1 2 4 8 16

Number of Threads

IC3
Durable IC3

2PL
Durable 2PL

OCC
Durable OCC

(b) Throughput of Durable TPC-C
with high contention

Figure 18: Throughput of Durable IC3 with TPC-C

0

100

200

300

 1 2 4 8 16

L
a
te

n
c
y
 (

m
s
)

Number of Threads

Durable IC3
Durable 2PL

Durable OCC

(a) Latency of Durable TPC-C
with no contention

0

100

200

300

 1 2 4 8 16

Number of Threads

Durable IC3
Durable 2PL

Durable OCC

(b) Latency of Durable TPC-C
with high contention

Figure 19: Latency of Durable IC3 with TPC-C

This section shows the impact of durability on latency and
throughput. Due to the limitation of I/O bandwidth in our
test machine (two hard disks), we evaluate the systems with
at most 16 cores. We choose TPC-C benchmark and still
use the low and high contention configurations.

Figure 18a shows the impact of supporting durability on
throughput under low contention. All three systems can
scale to 16 cores with durability support. The durability
introduces around 5.59% overhead for IC3.

Figure 18b shows the impact on throughput under high
contention. For OCC, the transaction abort becomes the
performance killer and both versions of OCC cannot scale
beyond 4 threads. In contrast, durability has insignificant
influence on the throughput of IC3 and 2PL.

Figure 19a and Figure 19b illustrate the latency of OCC,
2PL and IC3 with durability support. The latency of a
transaction is evaluated by measuring the time from which
a transaction is issued to the time it is durable on the disks.
The latency of Silo is a little different from their original
paper [49], because there was a bug in their code and that
is now fixed in the current version. Under high contention,
the latency of OCC increases notably due to frequent aborts
and retries. Like the throughput, the latency of IC3 is stable
with the increasing number of cores.

6.7 Impact of User Initiated Abort
In IC3, if a transaction T is explicitly aborted by user code,

all transactions that have read the stash values of T’s com-
mitted pieces should abort. We evaluate the performance
impact of cascading aborts (caused by user initiated aborts).
using same micro-benchmark in § 6.2. In the experiments,

0K

20K

40K

60K

80K

100K

120K

140K

0% 2% 4% 6% 8% 10%

T
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

User Initiated Abort Rate

10% conflict rate
5% conflict rate

no conflict

(a) The impact of user initiated
abort rate under different con-
tention level.

0K

20K

40K

60K

80K

100K

 1 4 8 16 32 64

Number of Threads

No user initiated abort
5% user initiated abort rate

10% user initiated abort rate

(b) The impact of user initiated
abort rate with increasing the
number of worker threads under
high contention.

Figure 20: Impact of user initiated abort

0K

20K

40K

60K

80K

100K

120K

140K

0% 10% 20% 30% 40% 50% 60% 70%

T
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

Conflict Rate

IC3
OCC

(a) Throughput with the increas-
ing of contention

0K

20K

40K

60K

80K

100K

120K

140K

 1 4 8 16 32 64

T
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

Number of Threads

IC3
OCC

(b) Throughput with the increas-
ing of the number of threads un-
der high contention

Figure 21: TPC-E Benchmark (Read-Write Transactions)

each transaction aborts after commiting a piece with varied
probabilities.
Figure 20(a) shows the throughput of IC3 under different

user abort rates with 64 worker threads. As expected, the
throughput decreases as user abort rate increases. For work-
loads with no conflict, the performance drop is only due to
user aborts. With 10% user initiated abort rate, IC3 has
around 4% performance degradation (102K vs. 89K TPS).
If the workload has 5% conflict rate, 10% user initiated abort
rate causes 20% performance loss. This is because the cas-
cading aborts result in 37% transaction abort rate. When
the conflict rate increases to 10%, 10% user aborts causes
30% performance loss (105K vs. 75K TPS), as cascading
abort causes 55% transaction abort rate.
Figure 20(b) shows the throughput of IC3 as the number

of worker threads increases for workloads with 10% conflict
rate. When the number of worker threads is less than 8, IC3
has similar throughputs for different user abort rates. This is
because there is little cascading abort caused by user aborts:
10% user abort only incurs 2% cascading abort. Beyond 8
worker threads, higher user initiated abort rate leads to more
throughput decrease due to the cascading abort. With 64
worker threads, 5% user abort rate incurs 37% transaction
abort rate (resulting in 15% less throughput) while 10% user
abort rate incurs 55% transaction abort rate (resulting in
30% less throughput).

6.8 TPC-E Benchmark
We also implement the TPC-E benchmark to evaluate the

performance of IC3 in a more complex OLTP setting. In
TPC-E, 4 out of 10 transactions are read-write transactions
and need to be included in the static analysis. We only
compare IC3 with OCC in the TPC-E evaluation because
our implementation of 2PL does not do deadlock detection.
Unlike TPC-C, we cannot guarantee user transactions ac-
cess records in a common order, therefore, we cannot use

0K

100K

200K

300K

400K

500K

600K

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

e
c
)

Time Line (seconds)

Online Analysis (Dynamic update SC-graph)
Offline Analysis (Stop the world)
Offline Analysis (Analysis at beginning)

Figure 22: TPC-C benchmark under high contention with
64 worker threads

2PL without deadlock detection. We evaluate IC3 and OCC
using read-write transactions and vary the contention rate
by changing the access range in the security table.

Figure 21(a) shows the performance of 64 worker threads
with the increasing contention rate. When the conflict rate
increases to 70% (this occurs when all worker threads share
a security record), IC3 only has 14% slowdown compared
with no contention. In contrast, the performance of OCC
degrades dramatically from 14K TPS to 2K TPS due to high
abort rate (95%). Figure 21(b) shows the scalability of these
two protocols with 70% conflict rate, the performance of IC3
increases with the number of worker threads from 8K TPS
to 123K TPS and achieves the highest throughput with 32
worker threads, while the performance of OCC degrades af-
ter 8 worker threads. IC3 does not scale beyond 32 threads;
this is likely because we did not implement the intializa-
tion of table data on multiple NUMA nodes due to time
constraits (we implemented this optimization for all other
benchmarks). As a result, all memory accesses end up on a
single NUMA node, limiting scalability.

6.9 Online Analysis
To evaluate the effect of online analysis, we use the TPC-C

benchmark with 64 worker threads. All worker threads share
a single warehouse. At the beginning, we only run three
type of transactions: New-Order, Order-Status and Stock-
Level. Then, we add Payment transaction at the 10 seconds
and Delivery transaction at the 20 seconds. To compare the
performance of different schemes, we also implement other
two offline analysis schemes. The first one is analyzing all
the transactions before the system starts (Analysis at begin-
ning). The second one is stoping the system when updating
the SC-graph (Stop the world). Figure 22 shows the com-
parison result, we calculate the throughput per 0.1 seconds.
X-axis is the time line, while Y-axis is the throughput. At
beginning, ”Analysis at beginning” is worse than the other
two schemes. This is because some commutative pieces of
new-order becomes conflicting pieces after involving Pay-
ment and Delivery transactions. When add payment/deliv-
ery transactions, the ”stop the world ” scheme’s performance
degrades seriously. This is because we set a barrier to stop
the system when update the SC-graph. However, dynamic
update the SC-graph with our algorithm can keep the per-
formance when update the SC-graph.

6.10 Transitive Dependencies
We use the new-order transaction to study the relation-

ship between the amount of transitive dependencies and the
number of cores. All transactions access 10 DISTRICT

tables under one warehouse and a single STOCK table.
At runtime, we record each transaction’s direct dependent
transactions with an in-memory log; we analyze the tran-

Cores 1 2 4 8 16 32 64
Direct Dependencies 0 0.2 0.3 0.6 0.8 2.8 6.3
Transitive Dependencie 0 0 0.002 0.018 0.13 0.97 9.5

Table 1: The average number of direct/transitive dependencies with TPCC neworder transaction.

sitive dependencies with the log after the program finishes.
We calculate the average number of direct/transitive depen-
dencies per transaction. Table Table 1 shows the analysis
result. For the direct transitive dependency, its amount in-
creases with the number of cores; with 64 cores, on average,
each transaction directly depends on 6 transactions as they
access the same DISTRICT . For the transitive dependen-
cies, its amount increases linearly with the number of cores.
With 32 cores, each transaction transitively depends on 1
transactions on average; but, with 64 cores, the number in-
creases to be 9. However, at runtime, each transaction only
needs to tracks 1 transaction (w.r.t., last direct dependent
transactions) on average.

6.11 Web Applications Study
To determine if real-world applications can potentially

benefit from IC3, we analyze 14 most popular ruby-on-rails
web applications on GitHub according to their GitHub stars.
As most applications use active record interface instead of
SQL, thus we only analyze the user defined transactions
manually. Table 2 shows the analysis result. 11 out of 14
applications have transaction types that access more than
one table only four of them have extreme simple transactions
which access only one table and can potentially benefit from
IC3. As a further analysis, we construct their SC-graph and
identify the deadlock prone SC-cycles. Results show that all
of the 11 applications can take the advantage of IC3. This
is because their SC-graphs have IC3 compatible SC-cycles,
and therefore IC3 can ensure the serializability by enforc-
ing the interleaving among conflicting pieces. For example,
for the most complex workload Canvas LMS which has 46
user defined transactions, 30 out of 46 transactions access
more than one table and each transaction accesses 2.8 ta-
bles on average. In these 30 transactions, 12 transactions
are involved in a deadlock-prone SC-cycle. After merging
the deadlock prone SC-cycles into atomic pieces, there are
still 20 transactions which have more than one conflicting
piece. All of them can benefit from IC3.

7. RELATED WORK
One purpose of concurrency control is constraining inter-

leavings among transactions to preserve some serial order,
using various approaches like 2PL [1, 26, 8, 14], timestamp
ordering [10, 5, 29] and commit ordering [37, 38]. One main
difference with prior approaches is that IC3 constrains in-
terleavings at a much finer granularity, i.e., a transaction
piece. This exposes more concurrency for database transac-
tions, while still preserving serializability.
IC3 is built upon prior work on statically analyzing trans-

actions to assist runtime concurrency control. Bernstein
et al. [7, 6] use a conflict graph to analyze conflicting re-
lationships among transaction operations and preserve se-
rializability by predefining orders of transactions. How-
ever, they handle cyclic dependency by quiescing all other
transactions other than a transaction in the cycle, while
IC3 dynamically constrains interleaving of transaction pieces

to preserve serializability, which may lead to more concur-
rency. Others have proposed decomposing transactions into
pieces [18, 4, 13, 41]. To preserve serializability after chop-
ping, Garcia-Molina [17] shows that if all pieces of a de-
composed transaction commute, then a safe interleaving ex-
ists. This, however, is a strong condition and many OLTP
workloads do not suffice. Shasha et al. [41] show that se-
rializability can be preserved if there is no SC-cycle in an
SC-graph. Zhang et al. [55] further extends this theory to
achieve lower latency in distributed systems. In contrast,
IC3 tracks dependency at runtime and constrain the inter-
leaving with SC-graph. Cheung et al. [11] also use static
analysis to optimize database applications. However they
target the code quality of the database applications which
are running on application servers.

There exist some approaches [36, 2] that try to improve
performance by being aware of dependencies. Ordered shar-
ing lock [2] allows transactions to hold locks concurrently.
It ensures serializability by enforcing order protected oper-
ation and lock releasing must obey the lock acquired or-
der . Ramadan et al. [36] developed a dependency aware
software transactional memory. They avoid false aborts by
tracking dependency. However, both permit unsafe inter-
leaving which cause cascading aborts. IC3 only permits safe
interleaving during the execution. Callas [53] is a piece
of work done concurrently with ours that also constrains
the interleaving of transaction pieces to ensure serializabil-
ity. Although the basic algorithms of Callas, called runtime
pipelining, is very similar to IC3, they are applied in differ-
ent settings (distributed vs. multicore). Furthermore, the
details of the algorithms are different, e.g. Callas does not
support dynamic workloads via online analysis [51] and does
not include the technique of § 4.1.

Deterministic database [48, 47, 46] leverages a sequencing
layer to pre-assign a deterministic lock ordering to eliminate
a commit protocol for distributed transactions. Faleiro et
al. [16] proposes a deterministic database with lazy evalu-
ation on multicore settings. However, they only allow con-
currency after the system knows exactly the data accessed
information [40]. Thus, the sequencing layer can become a
performance bottleneck with large number of cores.

Recently, there has been work to re-schedule or reconcile
conflicting transactions to preserve serializability. For exam-
ple, Mu et al. [33] reduces conflicts by reordering conflicting
pieces of contended transactions to achieve serializability.
However, they require the entire dependency graph is gen-
erated to before reordering. This approach is not practicable
on multicore settings. Narula et al. [34] utilize commutativ-
ity of special transaction pieces to mitigate centralized con-
tention during data updating. Compared to this work, IC3
is more general and can be applied to general transactions.

Researchers have applied techniques to reduce or even
eliminate concurrency control [24, 12, 3]. H-store and its
relatives [42, 24, 20, 50] treat each partition as a standalone
database; local transactions can run to completion with-
out any concurrency control. Cross-partition transactions
can then be executed using a global lock. Hence, perfor-

Name Description Total Mul-Tables D-SC IC3-SC GitHub Stars
Canvas LMS Education 46 30 12 20 1,542
Discourse Community discussion 36 28 3 26 16,019
Spree eCommerce 7 3 - 3 6,802
Diaspora Social network 2 1 - 1 10,331
Redmine Pro ject management 17 8 - 8 1,560
OneBody Church portal 2 1 - 1 1,229
Community Engine Social networking 2 - - - 1,117
Publify Blogging 5 1 - 1 1,497
Browser CMS Content management 4 3 - 3 1,200
GitLab Code management 8 5 - 5 16,523
Insoshi Social network 3 - - - 1,585
Teambox Project management 4 1 - 1 1,873
Radiant Content management 2 - - - 1,609
GitLab CI Continuous integration 2 - - - 1,420

Table 2: Ruby-on-rails applications used in analysis (Total: the total number of user defined transactions in the workload.
Mul-Tables: the number of transactions which access more than one table. D-SC: The number of transactions which are
involved in a deadlock prone SC-Cycle. IC3-SC: The number of transactions which have more than one conflicting piece and
are involved in a compatible SC-Cycle.). GitHub starts record the number of stars on GitHub as of October 2015.

mance highly depends on whether the partition of database
fit the workload and the performance would degrade notice-
ably when cross-partition transactions increase [49]. Gra-
nola [12] requires no locking overhead for a special type of
distributed transactions called independent transactions.
IC3 continues this line of research by optimizing transac-

tion processing in multicore and in-memory databases [35,
25, 27, 28, 15, 49, 30, 56, 54]. Recently, some databases start
to improve multicore scalability by eliminating centralized
locks and latches [22, 23, 39, 21] for databases implemented
using 2PL. However, the inherent limitation of 2PL such
as read locking constrains its performance under in-memory
settings. Several recent systems instead use OCC [1, 26] to
provide speedy OLTP transactions, using fine-grained lock-
ing [49] or hardware transaction memory to protect the com-
mit phase [29, 52]. As shown in this paper, IC3 notably
outperforms both OCC and 2PL under contention.
Subasu et al. [43] describe a hybrid design by using sev-

eral replicated database engines, each running on a sub-
set of cores, where a primary handles normal requests and
other synchronized replicas handle read-only requests. In
this case, IC3 could be used to accelerate the primary copy.
Dora [35] uses a thread-to-data assignment policy to run
each piece accessing a partition to reduce contention on the
centralized lock manager. Though it also decomposes the
execution of a transaction into pieces, each piece still uses
locks to ensure an execution as a whole, while each piece in
IC3 executes concurrently with others rather than respecting
the synchronization constraints.

8. CONCLUSION
Multi-core in-memory databases demand its concurrency

control mechanism to extract maximum parallelism to uti-
lize abundant CPU cores. This paper described IC3, a new
concurrency control scheme that constrains interleavings of
transaction pieces to preserve serializability while allowing
parallel execution under contention. The key idea of IC3 is
to combine static analysis with runtime techniques to track
and enforce dependencies among concurrent transactions.
To demonstrate its effectiveness, we have implemented IC3

and evaluations on a 64-core machine using TPC-C showed
that IC3 has better and more scalable performance than
OCC, 2PL, and other recently proposed concurrent control
mechanisms under moderate or high levels of contention.

Acknowledgements. The authors would like to thank
Dennis Shasha, Lidong Zhou and all the reviewers for their
insightful comments and feedback on this work. This work is
supported in part by NSF award CNS–1218117, NSF award
CNS–1514422 and AFOSR grant FA9550-15-1-0302.

References
[1] D. Agrawal, A. J. Bernstein, P. Gupta, and S. Sengupta.

Distributed optimistic concurrency control with reduced
rollback. Distributed Computing, 2(1):45–59, 1987.

[2] D. Agrawal, A. El Abbadi, R. Jeffers, and L. Lin. Ordered
shared locks for real-time databases. The VLDB Journal,
4(1):87–126, 1995.

[3] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Coordination avoidance in
database systems. Proceedings of the VLDB Endowment,
8(3), 2014.

[4] A. J. Bernstein, D. S. Gerstl, and P. M. Lewis.
Concurrency control for step-decomposed transactions.
Information Systems, 24(8):673–698, 1999.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems.
Addison-wesley New York, 1987.

[6] P. A. Bernstein and D. W. Shipman. The correctness of
concurrency control mechanisms in a system for distributed
databases (sdd-1). ACM Transactions on Database
Systems (TODS), 5(1):52–68, 1980.

[7] P. A. Bernstein, D. W. Shipman, and J. B. Rothnie Jr.
Concurrency control in a system for distributed databases
(SDD-1). ACM Transactions on Database Systems
(TODS), 5(1):18–51, 1980.

[8] H. Boral, W. Alexander, L. Clay, G. Copeland,
S. Danforth, M. Franklin, B. Hart, M. Smith, and
P. Valduriez. Prototyping bubba, a highly parallel database
system. Knowledge and Data Engineering, IEEE
Transactions on, 2(1):4–24, 1990.

[9] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and
N. Zeldovich. Non-scalable locks are dangerous. In Linux
Symposium, 2012.

[10] M. J. Carey. Modeling and evaluation of database
concurrency control algorithms. 1983.

[11] A. Cheung, S. Madden, A. Solar-Lezama, O. Arden, and
A. C. Myers. Using program analysis to improve database
applications. IEEE Data Eng. Bull., 37(1):48–59, 2014.

[12] J. Cowling and B. Liskov. Granola: low-overhead
distributed transaction coordination. In Proceedings of the
2012 USENIX conference on Annual Technical Conference,
pages 21–21. USENIX Association, 2012.

[13] C. T. Davies. Data processing spheres of control. IBM
Systems Journal, 17(2):179–198, 1978.

[14] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The gamma
database machine project. Knowledge and Data
Engineering, IEEE Transactions on, 2(1):44–62, 1990.

[15] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.

Hekaton: SQL ServerâĂŹs memory-optimized OLTP
engine. In Proc. SIGMOD, 2013.

[16] J. M. Faleiro, A. Thomson, and D. J. Abadi. Lazy
evaluation of transactions in database systems. In
Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 15–26. ACM,
2014.

[17] H. Garcia-Molina. Using semantic knowledge for
transaction processing in a distributed database. ACM
Transactions on Database Systems (TODS), 8(2):186–213,
1983.

[18] H. Garcia-Molina and K. Salem. Sagas, volume 16. ACM,
1987.

[19] J. Gray and A. Reuter. Transaction processing: concepts
and techniques, 1993.

[20] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking glass, and what
we found there. In Proc. SIGMOD, pages 981–992. ACM,
2008.

[21] T. Horikawa. Latch-free data structures for DBMS: design,
implementation, and evaluation. In Proc. SIGMOD, pages
409–420. ACM, 2013.

[22] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and
B. Falsafi. Shore-MT: a scalable storage manager for the
multicore era. In Proc. EDBT, pages 24–35. ACM, 2009.

[23] H. Jung, H. Han, A. D. Fekete, G. Heiser, and H. Y. Yeom.
A scalable lock manager for multicores. In Proc. SIGMOD,
pages 73–84. ACM, 2013.

[24] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker,
Y. Zhang, et al. H-store: a high-performance, distributed
main memory transaction processing system. VLDB
Endowment, 1(2):1496–1499, 2008.

[25] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap
main memory database system based on virtual memory
snapshots. In Data Engineering (ICDE), 2011 IEEE 27th
International Conference on, pages 195–206. IEEE, 2011.

[26] H.-T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database
Systems (TODS), 6(2):213–226, 1981.

[27] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M.
Patel, and M. Zwilling. High-performance concurrency
control mechanisms for main-memory databases. In Proc.
VLDB, 2011.

[28] J. Lee, M. Muehle, N. May, F. Faerber, V. Sikka,
H. Plattner, J. Krueger, and M. Grund. High-performance
transaction processing in sap hana. IEEE Data Eng. Bull.,
36(2):28–33, 2013.

[29] V. Leis, A. Kemper, and T. Neumann. Exploiting
Hardware Transactional Memory in Main-Memory
Databases. In Proc. ICDE, 2014.

[30] J. Lindström, V. Raatikka, J. Ruuth, P. Soini, and
K. Vakkila. Ibm soliddb: In-memory database optimized
for extreme speed and availability. IEEE Data Eng. Bull.,
36(2):14–20, 2013.

[31] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for
fast multicore key-value storage. In Proc. EuroSys, pages

183–196, 2012.
[32] J. M. Mellor-Crummey and M. L. Scott. Algorithms for

scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer Systems
(TOCS), 9(1):21–65, 1991.

[33] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
more concurrency from distribted transactions. In
Proceedings of the 11th USENIX conference on Operating
Systems Design and Implementation, pages 479–494.
USENIX Association, 2014.

[34] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase
reconciliation for contended in-memory transactions. In
Proceedings of the 11th USENIX conference on Operating
Systems Design and Implementation, pages 511–524.
USENIX Association, 2014.

[35] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. VLDB Endowment,
3(1-2):928–939, 2010.

[36] H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel.
Committing conflicting transactions in an stm. In ACM
Sigplan Notices, volume 44, pages 163–172. ACM, 2009.

[37] Y. Raz. The principle of commitment ordering, or
guaranteeing serializability in a heterogeneous environment
of multiple autonomous resource managers using atomic
commitment. In VLDB, volume 92, pages 292–312, 1992.

[38] Y. Raz. Serializability by commitment ordering.
Information processing letters, 51(5):257–264, 1994.

[39] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking
for main memory database systems. Proceedings of the
VLDB Endowment, 6(2):145–156, 2012.

[40] K. Ren, A. Thomson, and D. J. Abadi. An evaluation of
the advantages and disadvantages of deterministic database
systems. Proceedings of the VLDB Endowment,
7(10):821–832, 2014.

[41] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez.
Transaction chopping: Algorithms and performance
studies. ACM Transactions on Database Systems (TODS),
20(3):325–363, 1995.

[42] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural
era:(it’s time for a complete rewrite). In Proc. VLDB,
pages 1150–1160, 2007.

[43] T. Subasu and J. Alonso. Database engines on multicores,
why parallelize when you can distribute. In Proc. Eurosys,
2011.

[44] The Transaction Processing Council. TPC-C Benchmark
(Revision 5.9.0). http://www.tpc.org/tpcc/, 2007.

[45] The Transaction Processing Council. TPC-E Benchmark
(Revision 1.13.0). http://www.tpc.org/tpce/, 2014.

[46] A. Thomson and D. J. Abadi. The case for determinism in
database systems. Proceedings of the VLDB Endowment,
3(1-2):70–80, 2010.

[47] A. Thomson and D. J. Abadi. Modularity and Scalability
in Calvin. IEEE Data Engineering Bulletin, page 48, 2013.

[48] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi. Calvin: fast distributed transactions for
partitioned database systems. In Proceedings of the 2012
ACM SIGMOD International Conference on Management
of Data, pages 1–12. ACM, 2012.

[49] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy Transactions in Multicore In-Memory Databases. In
Proc. SOSP, 2013.

[50] L. VoltDB. Voltdb technical overview, 2010.
[51] Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li. Scaling

multicore databases via constrained parallel execution.
Technical Report TR2016-981, New York University, 2016.
http://ic3.news.cs.nyu.edu/techreport16.pdf.

[52] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted
transactional memory to build a scalable in-memory
database. In Proc. EuroSys, 2014.

[53] C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and
Y. Wang. High-performance acid via modular concurrency
control. In Proceedings of the 25th Symposium on

http://ic3.news.cs.nyu.edu/techreport16.pdf

Operating Systems Principles, pages 279–294. ACM, 2015.
[54] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and

M. Stonebraker. Staring into the abyss: An evaluation of
concurrency control with one thousand cores. Proceedings
of the VLDB Endowment, 8(3):209–220, 2014.

[55] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera,
and J. Li. Transaction chains: achieving serializability with
low latency in geo-distributed storage systems. In Proc.
SOSP, pages 276–291. ACM, 2013.

[56] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases
with fast durability and recovery through multicore
parallelism. In Proceedings of the 11th USENIX conference
on Operating Systems Design and Implementation, pages
465–477. USENIX Association, 2014.

Appendix: Proof

Definition: Let each S-edge in an SC-graph become
directed following the chronological order of pieces. Also,
repeatedly merge vertexes (pieces) connected by C-edges to
a single vertex. Afterwards, a cycle in the graph is defined
as an x-cycle. Similarly, a path is defined as an x-path.

Fact 1. The offline static analysis ensures there is no
x-cycle.

We use the concept of serialization graph as a tool to prove
serializability. A schedule is serializable iff the serialization
graph is acyclic. Because we use OCC to protect the
execution of each piece, if we consider each piece as a
(sub-)transaction, we have the following property.

Fact 2. The serialization graph of pieces is acyclic.

If two pieces pi and pj from two different transactions are
connected as pi→pj in the serialization graph, they have a
chronological commit order as tc(pi) < tc(pj), and pi, pj
should be also connected by a C-edge in the SC-graph. We

can denote the chronological commit order as pi
c
→pj .

If two pieces qi and pj are connected by an S-edge in the
SC-graph, and qi is ahead of pi in chronological order, we

denote this as qi
s
→pj .

Fact 3. IC3 tracks per-record longest path in the
serialization graph.

If Ti→Tj (expanded as pi→pj) is a longest path in the
serialization graph, after pj is committed, Ti will appear in
Tj ’s depqueue. This also suggests that Tj will only enter
its commit phase after Ti commits.

Theorem 1. The schedule of IC3 is serializable as it
always generates acyclic serialization graph.

Now we are going to prove IC3 is serializable by proving
the serialization graph is acyclic. Assume there is a cycle
in the serialization graph, let it be T1→T2→...→Tn→T1; We
are going to prove that the cycle necessarily implies there
is an x-cycle in the SC-graph, which leads to a
contradiction to Fact 1.
Expand each transaction in the cycle T1→T2→...→Tn→T1

to pieces, as

q1
s
Ðp1

c
→q2

s
Ðp2

c
→...

c
→qn

s
Ðpn

c
→q1

The symbol “
s
Ð” above (between a pair of qi

s
Ðpi) represents

following three possible cases:

1. qi and pi are the same piece, i.e. qi = pi.

2. qi and pi are different pieces, they are connected by
an S-edge, and qi is chronologically ahead of pi,

denoted by qi
s
→pi.

3. qi and pi are different pieces, they are connected by
an S-edge, and qi is chronologically behind pi,

denoted by qi
s
←pi.

To simplify without loss of accuracy, we use the symbol
s
↛

to represent the combination of the first and second cases;
s
↚ to represent the first and third cases.

Lemma 1. No transaction in cycle can commit.

According to Fact 3, the cycle T1→T2→...→Tn→T1

necessarily implies an chronological cycle in the commit
order, i.e. tc(T1) < tc(T2) < ...tc(Tn) < tc(T1), which is not
possible. According to IC3’s protocol, a cycle in the
serialization graph will necessarily cause a deadlock in
transaction commit phase, which means no transaction is
able to commit. Actually, such deadlock can never form in
the first place. The following part explains that.

Lemma 2. ∃ i : qi ≠ pi

Assume for every pair of qi and pi, they are the same piece.
Then the cycle leads a contradiction: the cycle should not
exist according to Fact 2.

Lemma 3. ∃ i, j : qi
s
→pi and pj

s
→qj

Proof by contradiction. Without loss of generality, assume

∀i ∶ qi
s
→pi. Then the cycle will necessary imply an x-cycle

in static analysis, which contradicts with Fact 1.

Lemma 4. For a fragment pi
c
→qj

s
→pj

c
→qk, there will be a

piece ri in Ti, such that pi
c
→ri

c
→qk.

qj
s
→pj refers to that before pj executes, qj already

commits, leaving Ti in Tj ’s depqueue. Therefore, when pj
commits, it shall either wait Ti commits, or it waits until
all pieces in Tj that has C-connection to itself commits.
According to Lemma 1 it has to be the latter case. Assume
the last piece in Ti that has C-connection to pj is ri. ri
cannot be neither be pi or any piece before pi. Otherwise

ri
s
↛pi

c
→qj

s
→pj

c
←ri will form a x-cycle, which contradicts

with Fact 1.
With Lemma 4, we can inductively prove the cycle in
serialization graph will necessarily implies an x-cycle in
static analysis.
In the cycle:

q1
s
Ðp1

c
→q2

s
Ðp2

c
→...

c
→qn

s
Ðpn

c
→q1

If there exists j that qj
s
→pj , without loss of generosity, we

can safely assume j = n. We can shrink the cycle following
Lemma 4, then the cycle becomes as follows.

q1
s
Ðp1

c
→q2

s
Ðp2

c
→...

c
→qn−1

s
Ðpn−1

s
→rn−1

c
→q1

Transform the above cycle into:

q11
s
Ðp11

c
→q12

s
Ðp12

c
→...

c
→q1n−1

s
Ðp1n−1

c
→q11

Repeatedly reduce the cycle following Lemma 4, for m
times (m < n), until we have:

qm1
s
↚pm1

c
→qm2

s
↚pm2

c
→...

c
→qmn−m

s
↚pmn−1

c
→qm1

Consider each pair of qmi
s
↚pmi in the above cycle, there

exists at least one pair of qmi and pmi such that qmi ≠ p
m
i .

Otherwise we will have qm1
c
→qm2

c
→...

c
→qmn−m

c
→qm1 , which is

not possible. Then means the above cycle necessarily
implies an x-cycle in the SC-graph, which is a
contradiction to the result of static analysis.
Q.E.D.

	Introduction
	Motivation and Approach
	Parallelism Opportunity and Challenges
	IC3's Approach

	Basic Design
	Static Analysis
	Dependency Tracking and Enforcement
	Ensuring Tracked Dependencies are Enforceable
	Applicability of IC3
	Proof Sketch

	Optimization and Extensions
	Constraining Pieces Optimistically
	Rendezvous Piece
	Commutative Operation
	Handling User-initiated Aborts
	Online Analysis

	Implementation
	Pre-processing and Static Analysis
	Runtime Implementation
	Secondary Index Implementation

	Evaluation
	Experiment Setup
	Microbenchmark
	TPC-C
	Comparison with Alternative Approaches
	Factor Analysis
	Impact of Durability
	Impact of User Initiated Abort
	TPC-E Benchmark
	Online Analysis
	Transitive Dependencies
	Web Applications Study

	Related Work
	Conclusion

