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Abstract

This article explores the extension of Morgenthaler’s Virtual Control Flow technique[Mor97], which
derives control flow[ASU86] semantics directly from the Abstract Syntax Tree, from the relatively coarse
granularity of syntactic C expressions to the finer granularity of basic block expressions, that is, expres-
sions without embedded control flow. We explain why this is a better level of abstraction for program
analysis, and discuss the elements of an efficient and elegant solution, motivating the presentation by
appealing to a more explicit intermediate form. We present our algorithm, and conclude with remarks
about the suitability of Morgenthaler’s version of Virtual Control Flow for customary exhaustive data-
flow analysis.

1 Introduction

It is now well established that the abstract interpretation of programs pursued in static analysis (used, e.g.,
in program verification and optimization[AH87]) is best served by a high-level program representation. There
are a variety of reasons for this:

the analysis can more easily locate common programmatic idioms for which helpful transformations
are already known

e the association between the input program and intermediate representation can be more closely main-
tained; this is helpful for diagnostics and debugging

e code transformations, such as those performed within an interactive program development or optimiza-
tion environment, would not engender expensive reconstruction of elaborate intermediate forms

¢ avoiding complexity in program representation allows us to concentrate more resources on program
analysis

As part of ongoing research within the MILAN project[Ked], we are developing a set of prototypes to
enable reliable execution of parallel computations on distributed platforms. One research direction calls
for the construction of a source-code parallelization tool which could benefit substantially from a high-level
representation. Not only would initial construction of this tool become easier, but more elaborate analyses
might be possible by keeping the system simple. However, we discovered that taking full advantage of that
approach would not be possible unless we could extend the current state-of-the-art as represented by John
Morgenthaler’s recent work[Mor97].



1.1 Virtual Control Flow

Morgenthaler has developed a program analysis tool, Cstructure[Mor97], which uses the Abstract Syntax
Tree (AST) as the program’s sole intermediate representation. He details how the control flow[ASU86)
predecessors and successors of any statement may be computed on demand, thus providing precisely enough
information to drive the demand driven data-flow analysis he adopts. He terms this technique Virtual Control
Flow, since no Control Flow Graph (CFG) links are ever constructed.

As defined by Morgenthaler, Virtual Control Flow describes only the execution ordering between syntactic
expressions. Since embedded control flow gives rise to C expressions which are only partially executable,
the semantics of an arbitrary C expression may depend on the values of its component expressions. This
generates ambiguities akin to those associated with indirect function calls, where the actual code executed
depends on the current value of a function pointer[CG94].

To cope with this uncertainty, Morgenthaler categorizes subcomponents of expressions containing embedded
control flow as either may-execute or must-execute. A killing definition, for example, in a may-execute
context, becomes a preserving definition. However, it is easy to see that this information provides little
detail about the internal orderings within expression subcomponents, and Morgenthaler points out that
standard data-flow analysis techniques, such as SSA construction[CFR91] cannot be applied directly in
this context.

1.2 Building a CFG with Virtual Control Flow

We explore the extension of Morgenthaler’s technique to the domain of customary exhaustive data-flow
analysis, where we would actually like to construct a CFG, while avoiding the syntax-directed translation
into three-address code of [ASU86], which adds an additional layer of obfuscation to control flow which is,
after all, explicit in the source code.

Thus, we seek to calculate (and store) the predecessors and successors of every statement. Since we are
calculating the complete solution and these are two halves of a dual problem, we need only compute either
predecessor or successor information. We choose the latter for simplicity and efficiency. (We shall have more
to say about direct computation of predecessors in Section 6.)

The direct computation of successor links among statements is not very difficult. As Morgenthaler points
out, the only complications are locating the targets for unstructured and semi-structured jumps (the goto,
break and continue statements), and an efficient implementation can easily compute successors of these
and all other statements in amortized constant time from the AST.

1.3 Importance of Finer Expression Grain

This relative simplicity of control flow analysis at the syntactic expression level does not carry over to the
basic block expression level, however. Since the C language provides a very rich way of connecting expression
components into flow graphs, the proper links cannot be generated from knowledge of syntactic juxtaposition
of expressions, but depends on the operators which join them. Therefore, an effective implementation
of Virtual Control Flow for expressions requires substantially more sophistication than is necessary for
statement control flow, for which the only connectors are containment and sequencing.

C provides three basic interconnective operators for embedded control flow, &&, || and ,. (The choice
operator, ?:, will be treated in Section 2.1.) These are further complicated by operator precedence and
explicit parenthesezation.

Figure 1, for example, details the graphs corresponding to some simple expressions containing control flow,
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Figure 1: Correspondence between C expressions and flow graphs.

using only the operators && and ||. Each node in this figure is drawn with two exits. The right exit
represents the direction taken if the expression evaluates to true, and the left to the one taken if false. Note
that these two exits coalesce into one if the expression is used anywhere other than within a logical context,
i.e., an if or other loop conditional, or as an argument to one of the logical operators && or ||, or at the
beginning of a ?: construct. Figures 1(a-d) represent the default parenthesezation, while 1(e-h) represent
the alternative parenthesezation.

Notice that in two of the graphs, (b) and (g), the flow of control is richer than can be represented by
Morgenthaler’s may-execute and must-exzecute predicates. Each of the graphs shows that while both of
nodes a and b may be executed, exactly one of them must be executed. Therefore, if they both contain
killing definitions, for example, the expression as a whole must generate a killing definition, something that
Morgenthaler’s formalism will miss. On the other hand, the SSA-based scalar dependence analysis presented
in [SW95] easily handles this alternative control flow, when properly expressed in the CFG.

The above considerations, then, motivate our search as to how we may integrate the embedded control flow
of expressions into the final CFG to avoid the extra complications and imprecision Morgenthaler finds are
the consequences of the use of coarser granularity.

2 Reading Successor Links From the AST

The structure of the AST does not necessarily correspond in any obvious way to the shape of the successor
graph that must be constructed.

Figures 2 and 3, for example, demonstrates this basic disparity. Figure 2 shows the AST that represents the
expression a || b || ¢ || (d || e) && [ && g, h && i && j && k, while Figure 3 details the successor links
that need to be constructed. Note, for example, that the fact that f and h are successors of d is not even
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Figure 4: Flow graph for a?b: c.

remotely reflected in the AST topology.

Furthermore, linking to other syntactic expressions in other statements involves linking to the specific sub-
expression that is to be executed first. For an expression containing an arbitrary mix of control-flow and
non-control-flow operators, it’s not at all obvious which sub-expression is the actual entry point of the entire
expression.

2.1 The Choice Operator

The choice operator, although introducing embedded control flow, does not introduce complexity in deter-
mining successor links. This is because the operator’s return value does not define a boolean value directly,
but rather an arbitrary value[KR88]. Although this value may then be used to direct control flow, this is
only an indirect effect. Consider, for example, Figure 4. This graph shows that while control does indeed
flow through either b or ¢, control must ultimately come to internal node x, which is where the actual value
of the entire choice expression is recorded. Therefore, the choice operator does not contribute to the overall
complexity of Virtual Control Flow for expressions.

2.2 Mixing Operators

Simple expressions which contain control-flow expressions as subexpressions require special handling. In this
case, as with the choice operator, it is a value which is the result of the control flow rather than a transfer
of control. Therefore, we create dummy true and false targets for each of these control-flow expressions
which simply record the result into a temporary. Figure 5 details this construction for the expression
(@]l b) && ¢ + d&& e.

In this figure, there is a separate subgraph for the control-flow subexpression (a || b) && ¢, a separate
subgraph for the control-flow subexpression d&& e, and extra support nodes and edges to propagate the
result value of each of these subgraphs back to the original expression through compiler temporaries. Notice
that all exits of the first subgraph lead to the start of second subgraph, and all exits of second subgraph lead
to the single expression node. Furthermore, the arbitrary order of evaluation of C expressions[KR8§] tells
us that the general order of the first two subgraphs could also have been reversed.



<(a||b)&&c+ d&&e)

Figure 5: Flow graph for (a || b) && ¢ + d && e.
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Figure 6: Equivalent parse tree, with k-ary operators.

3 A More Explicit Intermediate Form

In fact, the successor links are hard to see because they are obfuscated by the construction of customary
parse tree. There are other ways to construct the parse tree of Figure 2 that make the relationships we seek
more explicit.



1: Eflow( e, t, )

2: if f is a flow operator expression then

3: Eflow( e, f ==t 7 leftoperand-of( f ) : t, leftoperand-of( f ) )
4: else if t is a flow operator expression then

5: Eflow( e, leftoperand-of( ¢ ), f )

6: else if e is a flow operator expression then

T if operator-of( e ) ==, then

8: Eflow( leftoperand-of( e ), rightoperand-of( e ), rightoperand-of( e ) );
9: else if operator-of( e ) == && then

10: Eflow( leftoperand-of( e ), rightoperand-of( e ), f );

11: else if operator-of( e ) == || then

12: Eflow( leftoperand-of( e ), t, rightoperand-of( e ) );

13: Eflow( rightoperand-of( e ), t, f )

14: else if t == f then

15: set sole successor of e to ¢

16: else

17: set true/false successors of e to ¢t and f

18: End Eflow

Figure 7: The expression flow algorithm.

Figure 6 shows the construction of a semantically equivalent parse tree. In this tree, operators are not binary,
but k-ary, reducing ordered lists of operands. (The semantics of this reduction is obvious in the case of the
three operators with which we are concerned: &&, || and ,.)

We now examine how a single pass over this tree may construct the requisite links. The first observation is
that all of the nodes a - g must ultimately lead to node h. Within this group, nodes a - ¢ must all have true
exits pointing to d. Of these, each false exit must point to the next right sibling, except for ¢, whose false
exit must point to d due to the absence of a right sibling. In general, for all children of an || node, true exits
point to the parent’s true exit, and false exits point to either a right sibling, or the leftmost leaf of the next
tree branch.

In the case of the following && node, the true exit of all it’s children point to their next sibling on the
right. Applying the logic in the preceding paragraph, then, we have exits(d ) = ( f, e ), exits(e ) = ( f, h),
exits( f)=(g,h), and exits( g ) = h.

Now that we understand how to construct the requisite links at each node in the AST knowing only the links
pending at the parent node and the operation of the current node, we show how this may be done without
explicit construction of this intermediate form.

4 The Algorithm

Figure 7 shows the pseudocode for our algorithm, Eflow. Eflow takes three arguments:

e the expression we are finding successors for
e the true target expression

o the false target expression



For expressions that appear in a non-logical context, the true and false targets identical.

The initial calls of the algorithm serve to find the leftmost leaves of ¢ and b, because it is to these leaves that
we need to link a.

5 An Example

We list in Figure 8 all the steps the algorithm goes through to generate all the links shown in Figure 3.

6 Complexity of Virtual Control Flow

6.1 Complexity of Eflow

It is easy to see that Eflow visits each node of the subject expression AST exactly once, plus, in the worst
case, most of the AST nodes of each of targetl and target2. This gives an overall complexity of

O( average number of nodes in an expression AST )
Thus the cost is linear in the size of the program.

We will now contrast this with a method which would be more in keeping with that originally presented by
Morgenthaler.

6.2 Directly Extending Morgenthaler’s Method

With the goal of keeping as little state as possible, Morgenthaler proposed that even control flow information
be computed on a demand driven basis. Thus, to compute reaching definitions[ASU86] on demand, for
example, Morgenthaler starts with a particular program point, and recursively computes predecessors at
each node until a killing definition is reached along each execution path leading to the program point.

It is interesting to note that if implementation suggested in [Mor97] were directly extended to incorporate the
finer granularity promoted in this article, efficiency would suffer greatly. Morgenthaler insists that storage
of predecessor and successor links would slow down the system and not make it responsive in interactive
editing sessions. In fact, with this extension, the truth may be the reverse.

To see this, consider once again Figure 2. It is easy to see that in the worst case, a single predecessor
computation within a complex expression with embedded control low may have to consider every component
of the expression. Since this is a recursive computation that continues until stopped by killing definitions,
it may have to examine most components of complex expressions several times. This can easily produce
quadratic running time in a single data-flow query.

Contrast this with a CFG construction. We’ve seen that fine-grain expression flow successors (and therefore
predecessors) can be computed in linear time. This computation, then, will save a great deal of time over
the simplistic ”blind search” for predecessors.

This seems to be a good example, then, of how solving a more difficult problem, finding successors and
predecessors of all nodes, can sometimes be easier than solving an apparently easier problem— finding the
predecessors of a single node.



Eflow( ‘a [ b |l c || (d ||l e) & f & g , h && i && j && k’>, ‘T’, ‘F’, ‘||’ )

Eflow( ‘a || b |l c Il (d ||l e) && £ && g’, ‘h && i && j && k’, ‘h && i && j && k’, ¢, )
Eflow( ‘a |1 b Il c || (d | e & £ & g’, ‘h &k i && j’, ‘h && i && j’, ©,7 )

Eflow( ‘a [ b Il c || (@ Il e && f & g’, ‘h && i’, ‘h && i’, ¢,’ )

Eflow( ‘a || b Il c || (A4 || &) & £ && g’, ‘h’, ‘h’, ¢,7 )

Eflow( ‘a || b || ¢’, ‘h?, ‘(d || e) && £ & g’, ‘|1’ )

Eflow( ‘a || b || ¢?, ‘h?, ‘(d || e) && £, ‘||’ )

Eflow( ‘a || b || ¢’, ¢h?, @@ |l e)?, “||’)

Eflow( ‘a || b || ¢’, ‘h?, “d’, ‘||’ )

Eflow( ‘a || b’, ‘h’, ‘c’, ‘||’ )

Eflow( ‘a’, ‘h’, ‘b’, ‘||’ )

a-—>(h, b)
Eflow( ‘b’, ‘h’, ‘c’, ‘||’ )

b-->(Ch, c)
Eflow( ‘c’, ‘h’, ‘d’, ‘||’ )

c-——>(h, d)
Eflow( ‘(d || e) && £ && g’, ‘h’, ‘h’, “,7 )
Eflow( ‘(d || e) && £, ‘g’, ‘h’, ‘&&’ )
Eflow( ‘(d || e)’, ‘f’, ‘h’, ‘&&’ )
Eflow( ‘d’, ‘f’, ‘e’, ‘||’ )

d-—>(f, e)
Eflow( ‘e’, ‘f’, ‘h’, ‘&&’ )

e —> (f, h)
Eflow( ‘f’, ‘g’, ‘h’, ‘&&’ )

f-->(g, h)
Eflow( ‘g’, ‘h’, ‘h’, ,7 )

g -——>h
Eflow( ‘h && i && j && k’, ‘T’, ‘F’, ‘||’ )
Eflow( ‘h && i && j’, ‘k’, ‘F’, ‘&%’ )
Eflow( ‘h && i’, ‘j’, ‘F’, ‘&&’ )
Eflow( ‘h’, ‘i’, ‘F’, ‘&&’ )

h--> (i, F)
Eflow( ‘i’, ‘j?, ‘F’, ‘&&’ )

i--—>(Cj, F)
Eflow( “j’, ‘k’, ‘F’, ‘&&’ )

j > (k, F)
Eflow( ‘k’, ‘T’, ‘F’, ‘||’ )

k-—> (T, F)

Figure 8: Execution trace.

7 Related Work

As a prototypical example of other efforts at maintaining a high-level intermediate code representation, we
mention only the SIMPLE language used in the McCat compiler[HDE*93]. In this work, all complexities of
the C language, including embedded expression control flow and unstructured control flow at the statement
level, are rewritten using a basic subset of the C language.

While it’s certainly true that such a representation can be analyzed more easily than the original program,
there is also a cost in system complexity associated with the introduction of this intermediate format, and



perhaps an obfuscation of the proper correspondence of the original input program to the (equivalent)
program which is being analyzed. It is this complexity that the present author has labored to avoid.
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