
On Compiling Regular Loops for
E�cient Parallel Execution

Pei Ouyang

A Dissertation Submitted in Partial Ful�llment

of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer Science

New York University

February, 1992

Approved:

Zvi M. Kedem, Research Advisor

Krishna V. Palem, Research Advisor

cCopyright by Pei Ouyang, 1992

All rights Reserved

To My Wife and Parents

iii

Acknowledgments

I would like to express my deepest gratitude to my advisors Zvi Kedem and Krishna

Palem for their guidance, supports, and encouragements over these years. My special

thanks are to Ben Goldberg, Allan Gottlieb, and Bud Mishra for being in my Defense

Committee, as well as Jiazhen Cai, Bob Paige, and Ken Perlin for being in my Oral

Committee. They have helped me not only at the committee, but also throughout my

graduate school years. I am also grateful to all of the friends I met in NYU. Their

companionship made the stay in New York City a pleasant experience. In particular, my

thanks are due to Chih-Hung Hsieh and Peizong Lee for their helpful discussions. The

fellowships from the Ministry of Education, Taiwan, R.O.C. and the Courant Institute of

Mathematical Sciences are also highly appreciated. Finally, I am indebted to my brothers

and sisters for their constant encouragement, as well as my parents for their love and

persistent support. Especially I am obliged to my dear wife for her understanding and

diligence. Together we went through our enjoyable times and tough roads. In particular,

she has been taking care of our lovely daughter for over two years by herself without any

complaint. I feel happy to share everything with her in my life.

iv

Abstract

In this thesis, we study the problem of mapping regular loops onto multiprocessors.

We develop mapping schemes that yield very e�cient executions of regular loops on

shared and distributed memory architectures. We also develop novel analysis techniques,

using which we argue about the e�ciency of these resulting executions. The quality of

the execution of these regular loops in the distributed memory setting, relies heavily on

implementing cyclic shifts e�ciently. E�ectively, cyclic shifts are used to communicate

results between individual processors, to which di�erent interdependent iterations are

assigned. Therefore, in order to achieve e�cient executions of regular loops on distributed

memory architectures, we also develop and analyze algorithms for solving the cyclic shift

problem.

In order to analyze the executions of regular loops that result from any speci�c map-

ping, we need to characterize the important parameters that determine its e�ciency. We

formally characterize a basic set of such parameters. These parameters facilitate the

analysis of the memory and the processor requirements of a given execution, as well as

its running time. Using these parameters, we analyze a greedy execution scheme, in the

shared memory model. For example, we can determine the limit on the number of proces-

sors beyond which no speedup can be attained by the greedy method, for regular loops.

The greedy scheme is of interest because it exploits the maximal possible parallelism in a

natural way.

We then address the mapping scheme of regular loops onto distributed memory ma-

chines. Unfortunately, we show that the problem of �nding an optimal mapping is com-

putationally intractable in this case. In order to provide schemes that can be actually

applied to regular loops at compile-time, we relax the requirement that the resulting ex-

ecutions be optimum. Instead, we design a heuristic mapping algorithm and validate it

through experiments. This heuristic mapping scheme relies heavily on the use of e�cient

algorithms for realizing cyclic shifts. Therefore, we also study the problem of realizing

cyclic shifts on hypercube architectures.

v

Contents

1 Introduction 1

1.1 Programming Languages and Regular Loops : : : : : : : : : : : : : : : : : 1

1.2 Parallel Computers and Multiprocessors : : : : : : : : : : : : : : : : : : : 2

1.3 Parallelizing Compilers : 4

1.4 Related Works : 5

1.5 Organization of the Thesis : 6

2 Regular Loops 8

2.1 Dependence Graphs : 11

3 Properties of Executing Regular Loops 13

3.1 Initial Iterations : 18

3.2 Ready Iterations : 26

3.3 Pending Iterations : 29

3.4 The Longest Paths : 30

4 Executing Regular loops on Shared{Memory Multiprocessors 44

4.1 The Scheduling Scheme : 44

4.2 The Analysis : 47

vi

4.3 Improvement of the Scheduling Scheme : : : : : : : : : : : : : : : : : : : 50

4.3.1 Increasing the Granularity : 50

4.3.2 Scheduling \Critical" Iterations Earlier : : : : : : : : : : : : : : : 53

4.3.3 Reducing Synchronization Cost : 55

5 The Mapping Problem and its Complexity for Distributed{Memory

Multiprocessors 62

5.1 Problem Statement : 63

5.1.1 The Free Mapping Problem : 63

5.1.2 The Linear Mapping Problem : 67

5.2 The Problem Complexities : 69

6 Executing Regular loops on Distributed{Memory Multiprocessors 76

6.1 Finding the Time Mapping Function : 79

6.1.1 A Basic Time Mapping Function : : : : : : : : : : : : : : : : : : : 80

6.1.2 An Improved Time Mapping Function : : : : : : : : : : : : : : : : 86

6.1.3 Performance Evaluation : 89

6.2 Finding the Processor Mapping Function : : : : : : : : : : : : : : : : : : : 91

6.2.1 A Processor Mapping Function for (n� 1)-dim Processors : : : : 91

6.2.2 A Processor Mapping Function for 1-dim Processors : : : : : : : : 96

6.2.3 An Improved Processor Mapping Function for 1-dim Processors : 97

6.2.4 Performance Evaluation : 100

6.2.5 Node Program : 101

6.3 Folding Virtual Processors : 106

7 Very E�cient Cyclic Shifts on Hypercubes 112

7.1 Introduction : 113

vii

7.2 Preliminaries : 117

7.2.1 The Hypercube Architecture : 117

7.2.2 Problem Statement : 117

7.3 The Shortest Path Algorithm : 118

7.3.1 The Algorithm : 118

7.3.2 Properties on Synchronous Hypercubes : : : : : : : : : : : : : : : 120

7.3.3 Properties on Asynchronous Hypercubes : : : : : : : : : : : : : : : 124

7.4 The Disjoint Link Algorithm : 127

7.4.1 The Algorithm : 127

7.4.2 Correctness : 135

7.4.3 Disjoint Link Property : 136

7.4.4 Communication Complexity : 140

7.5 The Comparison : 143

7.5.1 Average and Worst Case Comparison : : : : : : : : : : : : : : : : 145

7.5.2 Matrix Multiplication Algorithm : : : : : : : : : : : : : : : : : : : 148

8 Conclusion 152

Bibliography 155

viii

List of Figures

2.1 The regular loop. : 8

2.2 A regular loop for matrix multiplication. : : : : : : : : : : : : : : : : : : : 10

3.1 Properties of executing a regular loop. : 16

3.2 Initial iterations of a regular loop. : 20

3.3 An example for generating initial iterations by Algorithm 3.2. : : : : : : : 27

3.4 Ready iterations of a regular loop. : 29

3.5 Pending iterations of a regular loop. : 31

4.1 Two grouping methods to increase the granularity. : : : : : : : : : : : : : 51

4.2 An example of infeasible grouping. : 53

4.3 Order all initial iterations of a regular loop. : : : : : : : : : : : : : : : : : 57

6.1 A two step mapping strategy. : 78

6.2 The time hyperplane and processor hyperplane. : : : : : : : : : : : : : : : 92

6.3 Two processor folding methods. : 108

6.4 The processor folding methods with and without compression. : : : : : : : 110

7.1 Illustration for the proof of Theorem 7.3. : : : : : : : : : : : : : : : : : : 122

ix

7.2 Routing paths generated by the Disjoint Link Algorithm for a 5-cube with

shift distance 13. : 128

7.3 The subregion names for an aligned region. : : : : : : : : : : : : : : : : : 131

7.4 Mapping a processor mesh onto hypercube nodes. : : : : : : : : : : : : : : 149

x

List of Tables

3.1 An example for generating initial iterations. : : : : : : : : : : : : : : : : : 23

7.1 Summary of link usage by procedures. : 142

7.2 Average routing steps of cyclic shift algorithms over all shift distances. : : 146

7.3 Maximum routing steps of cyclic shift algorithms over all shift distances. : 147

xi

Chapter 1

Introduction

This thesis studies issues concerning the execution of regular loops on multiprocessor com-

puters.

1.1 Programming Languages and Regular Loops

In the parallel programming community, many languages have been considered for writing

programs for parallel machines. These languages include conventional languages (such

as Fortran, C, Pascal, Lisp, Prolog), conventional languages with augmented parallel

constructs (such as Fortran 8X, Concurrent C, Pascal-m, Concurrent Lisp, Concurrent

Prolog), and languages with built-in parallel constructs (such as Ada and CSP) [6] [8] [9]

[12] [29] [115] [131].

A program in one of the above languages is compiled into object code for parallel

execution. For a language with augmented parallel constructs or with built-in parallel

constructs, the compiler only needs to consider the explicit parallel constructs. For a

conventional sequential language, the compiler need to identify the source of possible

parallelism and then convert the \sequential" constructs into \parallel" constructs. It

is well known that loops constitute the major parallelism of a program in a sequential

1

language.

In this thesis, we con�ne ourselves to the loop constructs in sequential languages.

More speci�cally, the regular loop construct is considered in this thesis. Chapter 2 gives

the formal de�nition of regular loops.

The motivation for studying regular loops is twofold. First, many utility programs

have been implemented in conventional languages such as Fortran. Hence parallelizing this

\sequential" construct can save much work for writing new utilities in parallel languages.

Second, it has been shown that many algorithms can be formulated by regular loops [84].

That means the success of this research will facilitate solving a large amount of problems.

1.2 Parallel Computers and Multiprocessors

Computers can be divided into four categories [47]:

� Single Instruction Stream { Single Data Stream (SISD)

� Single Instruction Stream { Multiple Data Stream (SIMD)

� Multiple Instruction Stream { Single Data Stream (MISD)

� Multiple Instruction Stream { Multiple Data Stream (MIMD)

In this thesis, the computers considered are MIMD machines, for which we sometimes use

the term multiprocessors.

A multiprocessor consists of a set of interconnected processing elements (PE) working

independently and cooperatively. The PE's work independently in the sense that each

PE may execute di�erent operations with di�erent operands; the PE's work cooperatively

in the sense that sometimes they may have to communicate and synchronize with one

another. The communication is achieved by passing messages through an interconnec-

tion network. Typical interconnection networks include the omega network (in buttery,

2

shu�e-exchange, Bene�s, or banyan connection patterns), tree, mesh, mesh-of-trees, and

hypercube [11] [133]. Extensive work has been done on routing algorithms [69] [81] [134],

simulations among di�erent networks [5] [18] [19] [27] [34] [75] [76] [85] [89] [107] [117]

[119] [136], and architectural supports for routing algorithms [38] [53] [57] [58].

According to their communication mechanism, multiprocessors can be further divided

into two classes: shared-memory multiprocessors and distributed-memory multiproces-

sors. In shared-memory multiprocessors, a global memory can be accessed by all the PE's

through an interconnection network. Each PE communicates with other PE's via the

shared global memory. For example, in Ultracomputer [53] [118], a region of the shared

memory is used to store the ready processes. When a PE becomes free, it will access this

region and fetch a process to execute. In distributed-memory multiprocessors, no global

memory is available and each PE has its own local memory. PE's communicate with one

another by message passing. For example, in Ncube/ten, one PE can communicate with

another PE by sending out a message (using the library function nread, ntest, or nwrite)

to one of its neighboring PE's, which in turn forwards this message to its neighboring PE.

Via several forwardings, the message will �nally reach the target PE [109].

In this thesis, both shared-memory and distributed-memory multiprocessors are con-

sidered. For shared-memory multiprocessors, we study the e�ciency of a greedy schedul-

ing scheme (Chapter 4), by applying the a set of properties we derive (Chapter 3). For

distributed-memory multiprocessors, we devise an (interconnection) network independent

scheduling scheme (Chapter 6), which follows our formal scheduling scheme speci�cation

(Chapter 5).

3

1.3 Parallelizing Compilers

Executing regular loops on multiprocessors is facilitated by parallelizing compilers [6] [8].

Generally speaking, a parallelizing compiler consists of four phases:

1. Lexical, syntactic, and semantic analysis

2. Preprocessing for dependence analysis

3. Dependence analysis

4. Code generation and optimization

Phase 1 can be implemented by using traditional compiler techniques [1], and produces

an intermediate form of the source program. Phase 2 preprocesses the intermediate form

to facilitate the data dependence analysis in phase 3. Typical preprocessing tasks include

loop normalization, induction variable recognition, and wraparound variable recognition

[6] [98]. Phase 3 plays an important role in parallelizing compilers, since the more data

independence among statements can be found, the more probabilities that the program

can be parallelized. Typical data dependence tests include the greatest common divisor

(GCD) test, Banerjee Test, Shostak Test, and interprocedure tests [13] [14] [15] [20] [21]

[51] [86] [110] [125] [139]. Finally, phase 4 actually generates the object codes, which is

also optimized for e�cient parallel execution. Typical code optimization includes loop

interchanging, strip mining, loop collapsing, loop �ssion, loop fusion, recursive breaking,

and others [7] [8] [10] [45] [78] [83] [98] [102] [141] [142].

In this thesis, our concentration is on Phase 4. That is, given a regular loop which

has been preprocessed by Phase 1 to 3, and a multiprocessor, we investigate how to map

the loop structure onto the multiprocessor (interconnection network) structure, so that the

parallel execution is e�cient.

4

1.4 Related Works

Executing loops in parallel has been done extensively for various architectures. Possibly

the fastest method to execute a loop is to design special purpose hardware (e.g. a systolic

array) to execute the loop [80] [82] [84] [91]. By using several processing elements con-

nected in a speci�c way, computations of a loop are distributed among these processing

elements so that data can ow among them in a rhythmic way without conict. However,

due to the cost of the special purpose hardware, software solutions are usually preferred.

In a vector processor, vector operations are used to execute loops [4] [8] [22] [98]

[129]. These kinds of loops are usually written for numerical computations, such as

matrix multiplication, that the parallelism can be exploited across di�erent iterations.

However, the parallelism inside the same iterations is hard to exploit by a vector processor.

VLIW processors solve this problem by compacting di�erent instructions into a very long

instruction word. With such a mechanism, both the parallelism across iterations and

inside the same iterations can be exploited [3] [33] [46] [143].

In a multiprocessor environment, more possibilities are available for executing loops

[42] [56] [103] [104] [112] [114] [116] [126] [130] [140]. If all the processing elements of a

multiprocessor are synchronous, \delay instructions" can be inserted at the beginning of

iterations to ful�ll data and control dependence requirements and reduce synchronization

cost [36]. However, due to memory and interconnection network access conicts, synchro-

nization instructions are usually needed, even if all of the processing elements work at the

same speed. Nevertheless, the number of synchronization instructions inserted into itera-

tions can be reduced, as some synchronization instructions can be implied by some other

synchronization instructions [90]. In addition, when synchronization cost gets higher,

it is preferable by grouping several iterations into a larger execution unit such that the

number of synchronization instructions can be further reduced [74]. In an extreme case

5

where synchronization cost is very high, the synchronization costs can be totally avoided

by partitioning all the iterations of a loop into independent execution units, where each

execution unit need not synchronize with any other execution units [41] [100] [121].

1.5 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 formally de�nes regular loops.

Chapter 3 characterizes a set of important properties of executing regular loops on multi-

processors. These properties facilitate the design and analysis of the schemes for executing

regular loops on multiprocessors, shared-memory or distributed-memory. Chapter 4 ad-

dresses issues of executing regular loops on shared-memory multiprocessors. A greedy

scheduling scheme is �rst introduced, which is then analyzed by applying the proper-

ties obtained in Chapter 2. In addition, some possible improvements for the greedy

scheduling scheme are also proposed. Chapter 5 formulates the \mapping" problem for

distributed-memory multiprocessors (i.e., the problem of mapping a regular loop onto a

distributed-memory multiprocessor). A mapping scheme can be speci�ed either by a free

mapping representation or by a linear mapping representation. The former representation

can always specify an execution scenario with the shorter parallel execution time, yet it

needs exponential space with respect to that of the latter representation. Both repre-

sentations are addressed. In addition, some NP-hard results are also shown. Chapter 6

proposes a method for executing regular loops on distributed-memory multiprocessors.

This method is based on the linear mapping scheme, with some modi�cations so that

the parallel execution time can be shortened and the number of processors used can be

minimized. One nice property of this method is that it is independent of the structures

of interconnection networks { the parallel execution of a regular loop is reduced to the

execution of cyclic shift operations. Hence for di�erent interconnection networks, only the

6

cyclic shift algorithm needs to be re-implemented. As an example of the cyclic shift algo-

rithms, Chapter 7 is dedicated to the cyclic shift algorithms for hypercube interconnection

networks. Finally, Chapter 8 summarizes the contributions of this work.

7

Chapter 2

Regular Loops

The regular loops that will be considered in this thesis are formally de�ned in this chapter.

Throughout this thesis, a regular loop has the form shown in Figure 2.1. The variables

I1; I2; � � � ; In are called induction variables. For each induction variable Ij , its value can

range from Lj to Uj . Therefore, it is clear that there are
Qn

j=1(Uj � Lj + 1) iterations in

the regular loop.

DO I1 = L1, U1
DO I2 = L2, U2

...

DO In = Ln, Un

/� loop body �/
Statement S1
Statement S2

...

Statement Ss
ENDDO

...

ENDDO

ENDDO

Figure 2.1: The regular loop.

8

In the following discussion, an iteration will be represented by the values of its in-

duction variables. That is, when we say iteration [i1; i2; . . . ; in], it means the iteration

with induction variable Ij being equal to ij , for 1 � j � n. Note that for each induction

variable, we assume that its increment value is also 1. In addition, in our following dis-

cussion, we will assume Lj = 0 or Lj = 1. This does not harm the generality because, for

an induction variable, if its increment value is not 1 and its initial value is not 0 or 1, we

can always transform the regular loop such that the increment value is 1 and the initial

value is 0 or 1. This transformation is called loop normalization. As an example, given

the following regular loop, we can transform it so that the increment value and the the

initial value are both 1.

DO I = L, U, C
...

� � �= A(I)
...

ENDDO

If C is positive and L � U , or C is negative and L � U , then the loop can be normalized

as below:

DO I = 1, bU�L
C
c+ 1, 1

...

� � � = A(L+ (I � 1) � C)
...

ENDDO

In addition, a set of statements constitutes the loop body of the regular loop in Fig-

ure 2.1. Each statement has
Qn

j=1(Uj�Lj+1) instances, with each instance corresponding

to one iteration. Among all of the statement instances, the execution order is stipulated

by data dependencies. Two statement instances are said to be data dependent if both

of these instances want to access the same variable, with at least one instance trying to

9

modify the value of the variable in question. Three types of data dependencies exist,

namely, ow dependence, anti-dependence, and output dependence [98]. The distinction

among these types is not signi�cant in our discussion here, and we will simply use data

dependence to represent any one of them. As a concrete example, consider the following

program for matrix multiplication:

DO I1 = 1, N

DO I2 = 1, N
DO I3 = 1, N

C(I1; I2) = C(I1; I2) +A(I1; I3) �B(I3; I2)
ENDDO

ENDDO
ENDDO

Figure 2.2: A regular loop for matrix multiplication.

The statement instance at iteration [1; 1; 2] must be executed after the statement

instance at iteration [1; 1; 1], because both of the statement instances want to access the

variable C(1; 1); the statement instance at iteration [1; 2; 3] must be executed after the

statement instance at iteration [1; 2; 2], because both of the statement instances want to

access the variable C(1; 2). Other restrictions for execution orders can be derived similarly.

In addition, as an example, note that all statement instances at iteration [i1; i2; 1], for

1 � i1 � N , 1 � i2 � N , can be executed in arbitrary order, because all these instances

are data independent.

In the above example, all of the data dependencies can be represented by a single

dependence vector, that is, [0; 0; 1]. Throughout this thesis, we will consider only those

data dependencies which can be represented by dependence vectors. A lot of loop algo-

rithms can be formulated by dependence vectors, including discrete Fourier transform,

string matching, LU decomposition, and so on [84]. By imposing this restriction on our

10

model, more e�ciency can be squeezed out from the loops, with some degree of generality

being traded o�.

In summary, a regular loop is modeled by (S;D), where S is an iteration space and

D is a set of dependence vectors. The iteration space S for the loop in Figure 2.1 is the

Cartesian product [L1; U1]�[L2; U2]�� � ��[Ln; Un]. Furthermore, in the set of dependence

vectors D = fd1; d2; . . . ; dmg for the loop in Figure 2.1, each dependence vector di =

[di1; . . . ; din] is used to describe that the statement instance at iteration [s1; . . . ; sn] must

be executed after the statement instance at iteration [s1 � di1; . . . ; sn � din]. We call

iteration [s1 � di1; . . . ; sn � din] the dependent predecessor of iteration [s1; . . . ; sn], and

iteration [s1; . . . ; sn] the dependent successor of iteration [s1�di1; . . . ; sn�din]. In addition,

two basic properties of dependence vectors can be observed immediately:

1. For each dependence vector, the leftmost nonzero component must be positive.

2. jdij j < Uj � Lj + 1, for 1 � i � m, 1 � j � n.

As an example for this model, consider the regular loop in Figure 2.2. The iteration space

is [1; N]� [1; N]� [1; N], and the only dependence vector is [0; 0; 1], which means that the

outer two loops can be executed in parallel without yielding di�erent answers from that

obtained by the sequential execution of the same algorithm.

2.1 Dependence Graphs

To study the execution of regular loops, it is also useful to represent a regular loop (S;D)

by a dependence graph G = (V;E), where each vertex in V corresponds to an iteration in

the iteration space S, and an edge < v1; v2 > is in E if the iteration corresponding to v1 is

a dependent predecessor of the iteration corresponding v2. An example of a dependence

graph (for the regular loop ([1; 10]�[1; 10]; f[1; 2]; [2; 1]g)) can be found in Figure 3.1(a). In

11

addition, for convenience, we will represent a vertex v 2 V by its corresponding iteration

in S. Hence for < v1; v2 > 2 E, we can also say that v2 � v1 2 D.

Note that the size of a dependence graph is exponential with respect to the size of

representing its corresponding regular loop directly. Speci�cally, consider a regular loop

(S;D), where S = [1; U1]�� � �� [1; Un], and D = fdi = [di1; � � � ; din] j 1 � i � mg. Repre-

senting this regular loop in a \compact" form needs roughly (m+1) log(U1U2 � � �Un) bits:

dlogU1e + � � � + dlogUne bits1 are needed for the iteration space S, and m(dlogU1e +

� � � + dlogUne) bits are needed for the set of dependence vectors D. On the other

hand, in the corresponding dependence graph, the regular loop is \unrolled" com-

pletely over the iteration space. In other words, in the corresponding dependence

graph, there are U1U2 � � �Un vertices and roughly mU1U2 � � �Un edges. To represent

a vertex in the dependence graph, it is clear that at least dlog(U1U2 � � �Un)e bits are

needed. Hence the total number of bits required to represent the whole dependence

graph is about (2m + 1)U1U2 � � �Un log(U1U2 � � �Un). By comparing this value with

(m + 1) log(U1U2 � � �Un), it is clear that the size of representing a dependence graph

is at least exponential to the size of representing the regular loop directly. We will call

the former representation the unrolled form and the latter representation the compact

form.

Throughout this thesis, except when explicitly stated, we will assume the regular loop

is represented in compact form.

1For convenience, the lower bounds of the induction variables are assumed to be 1 here, and hence

need not be represented explicitly.

12

Chapter 3

Properties of Executing Regular

Loops

In this chapter, some basic properties of executing a regular loop shown in Figure 2.1 are

considered. Based on these properties, e�cient scheduling schemes for regular loops on

shared-memory multiprocessors can be designed. In Chapter 4, we will show how these

basic properties help in designing and analyzing scheduling schemes.

Previously, properties for more general loops have been studied [16] [61]. In this

chapter, the loops are con�ned to a special yet important case. By doing this, more

properties can be exploited.

Throughout this chapter, the regular loop considered is of the form (S;D), where

S = [1; U1]� [1; U2]� � � �� [1; Un], and D = fdi = [di1; � � � ; din] j 1 � i � mg. In addition,

all statements inside an iteration is assumed to be a basic execution unit. Note that

on MIMD machines, the communication cost is high when compared to that of SIMD

machines. Hence each execution unit should be large enough to balance the computation

and communication costs. However, sometimes each iteration may contain only a small

number of statements. In such a situation, several iterations need to be grouped together

13

into a larger execution unit. Some grouping techniques have been studied in [74]. we will

address the grouping problem at more detail in Section 4.3.1. For the time being, each

iteration is assumed to be a basic execution unit, which can only be executed by a single

processing element.

In our model, an iteration without any dependent predecessors is called an initial

iteration. Given a regular loop, the number of initial iterations is �xed, that is, this

number does not vary during the execution of the regular loop. Hence, the number of

initial iterations is called a static property of executing a regular loop. In Section 3.1, we

will show which iterations are initial iterations, and give an algorithm which can �nd all

of the initial iterations e�ciently.

In contrast to the static property, executing a regular loop also has some dynamic

properties. Note that an iteration can be executed only after all its dependent predecessors

have been completed. During the execution of a regular loop, an iteration will pass through

four states, namely, idle, pending, ready, and �nished states:

� An iteration is at idle state if none of its dependent predecessors have been com-

pleted.

� An iteration is at pending state if some of its dependent predecessors have been

completed, but not all of them have.

� An iteration is at ready state if all of its dependent predecessors have been com-

pleted, but it itself has not.

� Otherwise, an iteration is at �nished state.

For convenience, we will also call an iteration at idle, pending, ready, or �nished state as

an idle, pending, ready, or �nished iteration respectively. Note that an initial iteration can

only have ready and �nished states. During the execution of a regular loop, the number

14

of iterations at idle states will get less and less, while the number of iterations at �nished

states will become more and more. When the regular loop is completed, all iterations are

at �nished states. The maximal numbers of idle, pending, ready, and �nished iterations

at any instance during the execution are the dynamic properties of executing a regular

loop. It is trivial to know that at the beginning of executing a regular loop, we have

the maximal number of idle iterations, which is equal to the total number of iterations,

i.e.,
Qn

j=1 Uj , minus the number of initial iterations. Similarly, at the end of executing

a regular loop, we have the maximal number of �nished iterations, which is equal to the

total number of iterations, i.e.,
Qn

j=1 Uj . It is not trivial to determine, at any instance

during the execution, the maximal number of ready and pending iterations, which will be

addressed in Section 3.2 and 3.3 respectively.

The last property that will be studied for a regular loop is the length of the longest

paths in the associated dependence graph G. A longest path of G = (V;E) is a path

p = v0v1 . . .vl such that vi 2 V for 0 � i � l, < vi; vi+1 > 2 E for 0 � i � l� 1, and l is

the maximum over all such paths. Note that the parallel execution time of a regular loop

has intimate relation with the length of the longest paths. In Section 3.4, the method of

�nding the length of the longest paths of G is studied.

As a summary of these basic properties, let us give an example:

Example 3.1 Consider the following regular loop:

DO I1 = 1, 10

DO I2 = 1, 10

a(I1, I2) = a(I1 � 1,I2 � 2) + a(I1 � 2,I2 � 1)

ENDDO

ENDDO

15

Figure 3.1: Illustration of a regular loop (S;D), where S = [1; 10] � [1; 10] and
D = f[1; 2]; [2; 1]g.

16

Figure 3.1: continued.

17

The regular loop will be modeled by (S;D), where the iteration space S is [1; 10]�

[1; 10], and the set of dependence vectors D is f[1; 2]; [2; 1]g. Figure 3.1 (a) shows the

corresponding dependence graph, where the horizontal axis corresponds to I1 and the

vertical axis corresponds to I2. For clearness, the edges of the dependence graph are not

drawn in Figure 3.1 (b) to (d). In Figure 3.1 (b), all of the iterations enclosed in the

shadow region are initial iterations. In Figure 3.1 (c), an instance of executing the regular

loop is shown. The �lled circles are idle iterations, the triangles are pending iterations,

the rectangles are ready iterations, and the un�lled circles are �nished iterations. Finally,

in Figure 3.1 (d), two of the longest paths of the dependence graph are shown. The length

of the longest paths is 6 here.

3.1 Initial Iterations

In this section, initial iterations of a regular loop are identi�ed, and an e�cient algorithm

which generates all of the initial iterations is given.

We �rst identify which iterations of a regular loop are initial iterations. From Ex-

ample 3.1, it can be observed that all initial iterations are at the \borders" of the it-

eration space. For example, consider a regular loop (S;D), where the iteration space

S = [1; 10]� [1; 10], and the set of dependence vectors D = f[2; 0]; [1;�2]g. For the de-

pendence vector [2; 0], any iteration in the set I1 = I11 [I12 = f[e1; e2] j 1 � e1 � 2; 1 �

e2 � 10g [; does not depend on any other iteration via the dependence vector [2; 0].

(Please see Figure 3.2 (a).) Note that all iterations in the set I1 are at the \border" of

the iteration space. In addition, for the dependence vector [1;�2], any iteration in the set

I2 = I21 [I22 = f[e1; e2] j 1 � e1 � 1; 1 � e2 � 10g [f[e1; e2] j 1 � e1 � 10; 9 � e2 � 10g

does not depend on any other iteration via the dependence vector [1;�2]. (Please

see Figure 3.2 (b).) Note that all iterations in the set I2 are also at the \border"

18

of the iteration space. As an initial iteration does not depend on any other itera-

tion via any dependence vector, the set of initial iterations for the regular loop is

I = I1 \ I2 = (I11 [I12)\ (I21 [I22) = f[e1; e2] j 1� e1 � 2; 1 � e2 � 10g \ (f[e1; e2] j 1 �

e1 � 1; 1 � e2 � 10g [f[e1; e2] j 1 � e1 � 10; 9 � e2 � 10g). (Please see Figure 3.2 (c).)

The following theorem formally states which iterations are initial iterations:

Theorem 3.1 Consider a regular loop (S;D), where S = [1; U1]� [1; U2]� � � � � [1; Un],

and D = fdi = [di1; . . . ; din] j 1 � i � mg. Let

Iij=

8>>>>><
>>>>>:

f[e1; . . . ; en] 2 Sj1 � ej � dijg if dij > 0

; if dij = 0

f[e1; . . . ; en] 2 SjUj+dij<ej�Ujg if dij < 0

Then an iteration k is in I =
Tm
i=1

Sn
j=1 Iij if and only if k is an initial iteration for

(S;D).

Proof. If k = [k1; . . . ; kn] is in I , we show that it is impossible that k depends on any

other iteration in the iteration space S. Suppose on the contrary that k depends on some

other iteration, then there must exist an iteration k0 = [k01; . . . ; k
0

n] such that k = k0+ds for

some �xed s. Since k 2
Tm
i=1

Sn
j=1 Iij , k must be in Ist for some �xed t. Since k = k0+ds,

we have kt = k0t + dst. However,

� if dst > 0, then k0t = kt � dst � dst � dst = 0;

� if dst = 0, then Ist = ;, k cannot be in Ist;

� if dst < 0, then k0t = kt � dst > Ut + dst � dst = Ut.

These cases imply that k cannot depend on any other iteration in S, contradicting to our

assumption. Hence we conclude that k does not depend on any other iteration in S and

k is an initial iteration.

19

(a) Iterations which do not depend on
other iterations via the dependence
vector [2; 0].

(b) Iterations which do not depend on
other iterations via the dependence
vector [1;�2].

(c) Iterations which do not depend on
other iterations via any dependence
vector.

Figure 3.2: Illustration for the regular loop (S;D), where S = [1; 10] � [1; 10], and
D = f[2; 0]; [1;�2]g.

20

Conversely, if k 62 I , then k 62
Sn
j=1 Isj for some �xed s. In other words, k 62 Isj for all

1 � j � n. Let us consider the following cases:

� if dsj > 0, then dsj < kj � Uj ;

� if dsj = 0, then 1 � kj � Uj ;

� if dsj < 0, then 1 � kj � Uj + dsj .

De�ne k0 = [k1 � ds1; . . . ; kn � dsn]. It is clear that k0 must be in the iteration space S

and k = k0 + ds. That is, k depends on k0. This completes our proof.

The above theorem identi�es all initial iterations in a regular loop. Now we will

consider how these initial iterations can be generated in an algorithmic way.

A naive method to generate all of the initial iterations would be sweeping through

the iteration space to check for each iteration if it has dependent predecessors. This is

described by the following algorithm:

Algorithm 3.1 Consider a regular loop (S;D), where S = [1; U1]� [1; U2]�� � �� [1; Un],

and D = fdi j 1 � i � mg. The following program generates all of the initial iterations of

(S;D) by sweeping through the iteration space:

for (each iteration I 2 S) f

init = true;

for (each dependence vector di 2 D) f

if (I � di is in S) f

init = false;

break;

g

if (init is true) f generate iteration I ; g

g

g

21

In spite of the simplicity of the algorithm, the time needed to execute the algorithm

is O(m
Qn

j=1 Uj). Much time can be saved if we can avoid scanning non-initial iterations.

This motivates us to design an algorithm which generates all of the initial iterations

directly, instead of verifying if an iteration is an initial iteration. This more e�cient

algorithm can be realized by applying Theorem 3.1.

Consider a regular loop as de�ned in Theorem 3.1. For any dependence vector di, we

have:

[nj=1Iij = (Ii1) [((S � Ii1) \ ([
n
j=2Iij))

= (Ii1) [((S � Ii1) \ Ii2) [((S � Ii1 � Ii2) \ ([
n
j=3Iij))

= (Ii1) [((S � Ii1) \ Ii2) [((S � Ii1 � Ii2) \ Ii3)

[((S � Ii1 � Ii2 � Ii3)\ ([
n
j=4Iij))

= � � �

These equations motivates an algorithm which generates all of the initial iterations in a

\dimension by dimension" way.

For clarity, let us describe the algorithm by an example �rst. Consider a regular loop

(S;D), where the iteration space S = [1; 10]� [1; 10]� [1; 10] and the set of dependence

vectorsD = fd1 = [0; 2; 3]; d2 = [1;�1; 2]; d3 = [3; 1; 1]g. Let di be denoted by [di1; di2; di3]

for 1 � i � 3. The algorithm recursively divides each dimension into regions until it

reaches the last dimension. Initially, dimension 1 is divided into three regions [1,1], [2,3],

and [4,10] according to d11, d21 and d31. By doing this way, we have:

� For each iteration in the subspace [1; 1]� [1; 10]� [1; 10], it may depend on other

iterations only via d1. Dependence vectors d2 and d3 need not be considered in

\deeper" dimensions, as implied by Theorem 3.1.

22

dimension 1 dimension 2 dimension 3

fd11; d21; d31g [1,1] R1 fd12g [1,2] R11 fg [1,10]
[3,10] R12 fd13g [1,3]

[2,3] R2 fd12; d22g [1,2] R21 fd23g [1,2]
[3,9] R22 fd13; d23g [1,2]
[10,10] R23 fd13g [1,3]

[4,10] R3 fd12; d22; d32g [1,1] R31 fd23g [1,2]
[2,2] R32 fd23; d33g [1,1]
[3,9] R33 fd13; d23; d33g [1,1]
[10,10] R34 fd13; d33g [1,1]

Table 3.1: Generating initial iterations for the regular loop (S;D), where the it-
eration space S = [1; 10] � [1; 10] � [1; 10] and the set of dependence vectors
D = fd1 = [0; 2; 3]; d2 = [1;�1; 2]; d3 = [3; 1; 1]g.

� For each iteration in the subspace [2; 3]� [1; 10]� [1; 10], it may depend on other

iterations only via d1 or d2. Dependence vector d3 need not be considered in the

next \deeper" dimension, as implied by Theorem 3.1.

� For each iteration in the subspace [4; 10]� [1; 10]� [1; 10], it may depend on other

iterations via d1, d2, or d3.

These three regions are shown in Figure 3.3 by R1, R2, and R3 respectively. With dimen-

sion 1 restricted to the region [1; 1], dimension 2 will be divided, using d12 only, into [1,2]

and [3,10]. By doing this way, we have:

� For each iteration in the subspace [1; 1]� [1; 2]� [1; 10], it may not depend on any

other iterations.

� For each iteration in the subspace [1; 1]� [3; 10]� [1; 10], it may depend on other

iterations only via d1.

These two regions are shown in Figure 3.3 by R11 and R12 respectively. Finally, with

dimension 1 and 2 restricted to the region [1,1] and [1,2] respectively, initial iterations

23

in the region [1; 1]� [1; 2]� [1; 10] are generated. Table 3.1 summarizes the generation

procedure for this example. At each dimension, the table lists the dependence vectors

that are used to partition the dimension into regions, the resulting regions, and the region

names shown in Figure 3.3.

The general procedure for generating all of the initial iterations for a regular loop is

described in Algorithm 3.2.

Algorithm 3.2 Let the regular loop be (S;D), where S = [1; U1]� [1; U2]� � � �� [1; Un],

and D = fdi = [di1; di2; . . . ; din] j for 1 � i � mg. The algorithm generates the indices

of all initial iteration by recursive calls to the procedure iter(k,E), where k is the depth

of the loop under considered, and E is a set containing dependence vectors which must

be checked. Let x1; . . . ; xn; y1; . . . ; yn be global variables. At the main routine, iter(1, D)

is called.

24

procedure iter(k, E)

f if (k = n) f

xn = max(f1g [fUn + din + 1jdi 2 E; din � 0g);

yn = min(fUng [fdinjdi 2 E; din � 0g);

generate iterations in the Cartesian space [x1; y1]� � � � � [xn; yn];

g else f

T =f[f(dik); di] j di 2 E; dik 6= 0; jdikj < Ukg where

f(dik) =

8><
>:

dik if dik > 0

Uk + dik if dik < 0

E 0 = fdi 2 Ej � Uk < dik � 0 g;

finished = false;

yk = 0;

while (not finished) f

xk = yk + 1;

if (T = ;)

yk = Uk;

else

/� smallest(T) is the smallest value of all f(dik)'s in the elements of T . �/

yk = smallest(T);

iter(k+1, E0);

if (T = ;)

finished = true;

else f

for (each [f(dik); di] 2 T that f(dik) = yk) f

if (dik > 0) insert di into E0; else /� dik < 0 �/ delete di from E0;

remove [f(dik), di] from T ;

g

g

g /� while �/

g

g

25

The above algorithm is faster than Algorithm 3.1 because those iterations which are

not initial iterations are not visited. However, Algorithm 3.2 does waste time for sweeping

through \empty regions" when the last dimension n is empty. In this case, Algorithm 3.2

can be revised so that the role of dimension n is replaced by a nonempty dimension k

where xk is always less than or equal to yk . In addition, it depends on applications when

to generate all of the initial iterations. Algorithm 3.2 can be used to generate all of the

initial iterations at compiling time, or be updated to �t into a run-time self-scheduling

scheme [44].

3.2 Ready Iterations

In this section, we consider the maximum number of ready iterations at any instance

during the execution of a regular loop. Note that the number of ready iterations (or the

iterations at ready states) varies during the execution of a regular loop. The maximum

number of ready iterations is interesting because, if each iteration is executed by at most

one processor, the number of processors used to execute a regular loop can be upper-

bounded by the maximum number of ready iterations. Execution speedup cannot be

improved by increasing the number of processors to more than the maximum number of

ready iterations. The following theorem gives an upper bound for the maximum number

of ready iterations at any instance during the execution of a regular loop:

Theorem 3.2 Given a regular loop (S;D), where the iteration space S = [1; U1]�[1; U2]�

� � �� [1; Un], and the set of dependence vectors D = fdi = [di1; . . . ; din] j for 1 � i � mg.

The maximum number of ready iterations at any instance during the execution of the

regular loop is less than or equal to minf
Qn

j=1 Uj �
Qn

j=1(Uj � jdijj) j 1 � i � mg.

26

Figure 3.3: Initial iterations for the regular loop (S;D), where the itera-
tion space S = [1; 10] � [1; 10] � [1; 10] and the set of dependence vectors
D = fd1 = [0; 2; 3]; d2 = [1;�1; 2]; d3 = [3; 1; 1]g.

27

Proof. Recall that according to the de�nition of dependence vectors, we have jdij j < Uj ,

for 1 � i � m and 1 � j � n. Therefore, the value of Uj � jdij j is at least 1.

Let Iij be the same as that in Theorem 3.1. Then for each dependence vector di,

[nj=1Iij is the set of iterations which do not depend on any other iterations via di. In

addition, note that when each iteration is completed, at most one iteration can be acti-

vated via dependence vector di. Therefore, the maximum number of ready iterations at

any instances during the execution is less than or equal to minf j [nj=1 Iij j j1 � i � mg,

where j [nj=1 Iij j denotes the size of the set [
n
j=1Iij .

Without loss of generality, we assume that dij � 0 for 1 � i � m, and 1 � j � n

below in computing the value of j [nj=1 Iij j. According to the de�nition of Iij , we have:

[nj=1Iij = [nj=1f[e1; . . . ; en] 2 Sj1 � ej � dijg

= f[e1; . . . ; en] 2 Sj _
n
j=1 (1 � ej � dij)g

= S � f[e1; . . . ; en] 2 Sj ^
n
j=1 (dij < ej � Uj)g

Therefore, we have j [nj=1 Iij j =
Qn

j=1 Uj �
Qn

j=1(Uj � dij). This completes our proof.

Note that the bound given by the above theorem for the maximum number of ready

iterations is tight. That is, there exist regular loops whose maximum numbers of ready

iterations are exactly the same as the values computed by the above theorem. As an

example, consider the regular loop (S;D), where S = [1; 17]�[1; 17] andD = f[1; 3]; [3; 2]g.

According to Theorem 3.2, the maximum number of ready iterations at any instance of

executing the regular loop is 37. Figure 3.4 shows an execution instance of the regular

loop. All of the iterations in the shadow region can be at ready states simultaneously and

the number of them is exactly 37.

28

Figure 3.4: An execution instance for the regular loop ([1; 17]� [1; 17]; f[1; 3]; [3; 2]g). All
iterations in the shadow region can be at ready states simultaneously.

3.3 Pending Iterations

In this section, we address the number of pending iterations when executing a regular

loop. The following theorem gives an upper bound for the maximal number of pending

iterations at any instance during the execution of a regular loop.

Theorem 3.3 Consider a regular loop (S;D), where the iteration space S = [1; U1] �

[1; U2]�� � ��[1; Un] and the set of dependence vectorsD = fdi = [di1; . . . ; din] j 1 � i � mg.

Then the number of pending iterations at any instance during the execution of the regular

loop cannot exceed
Pm

i=1(
Qn

j=1 Uj �
Qn

j=1(Uj � jdij j)).

Proof. When an iteration becomes pending, it must be \activated" by one of its de-

pendent predecessors. For a dependence vector di, the number of pending iterations

that are activated via di cannot exceed
Qn

j=1Uj �
Qn

j=1(Uj � jdijj), as can be seen

from Theorem 3.2. Therefore, the total number of pending iterations cannot exceed

29

Pm
i=1(
Qn

j=1 Uj �
Qn

j=1(Uj � jdij j)).

Some other improvement can be imposed for the above theorem. For example, consider

the case when
Qn

j=1 Uj �
Qn

j=1(Uj � jdij j) <
Qn

j=1(Uj � jdijj) for some i. That is, the

number of initially ready iterations (considering di only) exceeds half of the total number

of iterations. Then no more than
Qn

j=1(Uj � jdijj) iterations can be \activated" by the

dependence di. Hence in this case, we can simply replace
Qn

j=1Uj �
Qn

j=1(Uj �jdij j) with

Qn
j=1(Uj � jdijj) in Theorem 3.3.

Recall that an iteration is at pending state if any of its immediately dependent prede-

cessors has been completed. Therefore, it is natural to expect that the maximal number

of pending iterations is greater than the maximal number of ready iterations. Figure 3.5

shows an execution instance of a regular loop, where all iterations in the shadow region can

be at pending states simultaneously. The number of pending iterations shown is greater

than the maximal number of ready iterations at any instance during the execution of

the regular loop (given by Theorem 3.2), and is slight smaller than the bound given in

Theorem 3.3.

The bound obtained in Theorem 3.3 may be quite large sometimes, especially when

the number of depending vectors are large. However, for most scienti�c computations,

we expect that the number of dependence vectors is small and the components of each

dependence vector are small also. In this case, Theorem 3.3 should give reasonable upper

bound for the number of pending iterations at any instance of executing a regular loop.

3.4 The Longest Paths

In this section, we discuss the issue of �nding the length of the longest paths in the

dependence graph associated with a regular loop. Note that in a dependence graph, there

may be several longest paths with the same length. However, we are satis�ed by �nding

30

Figure 3.5: A regular loop (S;D), where S = [1; 10]� [1; 10] and D = f[0; 1]; [1; 0]g. All
iterations in the shadow region can be at pending states simultaneously.

the length of the longest paths, instead of the longest paths themselves.

For any directed acyclic graph, the problem of �nding the length of the longest paths

can be solved in polynomial time [50]. A simple algorithm to solve this problem is by

applying topological sorting and dynamic programming techniques. Since the dependence

graph for a regular loop is directed acyclic (see Theorem 3.9), we can �nd the length of the

longest paths in the dependence graph in time polynomial to the size of the dependence

graph.

However, our interest is in regular loops represented in \compact" form instead of

in \unrolled" form. That is, we are interested in a polynomial time algorithm for the

following problem:

P1: Given a regular loop (S;D) represented in \compact" form, what is the length of the

longest paths in the corresponding dependence graph?

Unfortunately, We will prove there is no polynomial time algorithm to solve the above

31

problem unless P = NP. That is, we will prove that Problem P1 is NP-hard.

To prove that Problem P1 is NP-hard, we �rst de�ne a path in terms of the regular

loop representation directly as below:

De�nition 3.1 Given a regular loop (S;D), where the iteration space S = [1; U1]�� � ��

[1; Un], and the set of dependence vectors D = fdi = [di1; � � � ; din] j 1 � i � mg, a path

with length l is a sequence of iterations v0; v1; � � � ; vl, such that

1. for each iteration vk = [vk1; � � � ; vkn], we have 1 � vkj � Uj , for 0 � k � l, and

1 � j � n, and

2. for 0 � k < l, we have vk+1 = vk + di for some di, 1 � i � m.

Instead of proving Problem P1 to be NP-hard directly, we �rst prove the decidability

problem of P1 is NP-hard. The decidability problem of P1 is as below:

P2: Given a regular loop (S;D) represented in \compact" form, and an integer constant

B, is there a path in the corresponding dependence graph with length greater than

or equal to B?

To prove that Problem P2 is NP-hard, we will reduce the Set Packing Problem to

Problem P2. The Set Packing Problem is as below:

SP: Given a collection C ofm �nite sets S1; � � � ; Sm, and a positive integer K � jCj, does

C contain at least K mutually disjoint sets?

The complexity of the Set Packing Problem has been studied by Karp [70]:

Lemma 3.4 The Set Packing Problem SP is NP-complete.

32

Now we shall reduce the Set Packing Problem SP to Problem P2 in polynomial time

so that the answer to SP is true if and only if the answer to P2 is true. Hence Problem

SP can be solved in polynomial time if there exists a polynomial time algorithm to solve

Problem P2. In other words, since Problem SP has been proven to be NP-complete,

Problem P2 is NP-hard.

Theorem 3.5 Problem P2 is NP-hard.

Proof. Given an instance of Problem SP , an instance of Problem P2 is constructed as

follows:

� Let n be the total number of distinct elements in �nite sets S1; � � � ; Sm. Number

these n elements by �1; �2; � � � ; �n respectively. The idea is to \bind" an element to

a dimension of the regular loop that will be constructed.

� Construct an iteration space S = [1; U1]�� � �� [1; Un], where U1 = U2 = � � � = Un =

2.

� For each �nite set Si in C, a dependence vector di = [di1; � � � ; din] 2 D is de�ned,

where

dij =

8><
>:

1 if �j 2 Si

0 otherwise

� Let B = K, where B and K are integer constants of the instances of Problem P2

and SP respectively.

It is not hard to see the above construction can be completed in time polynomial to

the instance size of Problem SP .

Next we prove that the answer to SP is true if and only if the answer to P2 is true.

Suppose the answer to Problem SP is true, that is, suppose C contains r � K mutually

33

disjoint sets. Without loss of generality, let these r sets be S1; � � � ; Sr. Since these r sets

are mutually disjoint, an element �k is contained in at most one of the �nite set S1; � � � ; Sr.

In terms of the constructed regular loop, each dimension is thus bound by an element at

most once. That is, the following sequence is a path satisfying De�nition 3.1:

[1; 1; � � � ; 1]

! [1; 1; � � � ; 1] + d1

! [1; 1; � � � ; 1] + d1 + d2

...

! [1; 1; � � � ; 1] + d1 + d2 + � � �+ dr

Hence there is a path with length r � B in the constructed regular loop, that is, the

answer to Problem P2 is true also.

Conversely, suppose the answer to Problem P2 is true, that is, suppose the constructed

regular loop contains a path with length r � B. Since any component of the dependence

vectors is either 0 or 1, and the range of any dimension of the iteration space is [1; 2],

a dependence vector cannot be \used" more than once in the path. Without loss of

generality, let the source iteration of the path be v0 and the sink iteration of the path be

v0 + d1 + d2 + � � �+ dr. By the same argument, for any two dependence vectors dp and

dq \used" in the path, 1 � p; q � r, we cannot have dpj = dqj = 1, for any 1 � j � n. In

other words, there are r � K mutually disjoint �nite sets S1; � � � ; Sr contained in C, that

is, the answer to Problem SP is true also.

we have reduced Problem SP to Problem P2 in polynomial time so that the answer

to SP is true if and only if the answer to P2 is true. Since Problem SP is NP-complete,

we conclude that Problem P2 is NP-hard.

Note that in the proof of the above theorem, we reduced the Set Packing Problem to

34

a special case of Problem P2. This special case of Problem P2 is certainly NP-hard also.

Corollary 3.6 Problem P2 is NP-hard even if every component of all dependence vectors

is restricted to either 0 or 1.

From this corollary, we know that it is very unlikely to �nd a polynomial time algorithm

to solve Problem P2, even for the seemingly very simple case where every component of

all dependence vectors is restricted to either 0 or 1.

To make the proof of Theorem 3.5 clear, let us see an example of the reduction:

Example 3.2 Let the collection of �nite sets C be fS1 = fa; bg; S2 = fb; c; dg; S3 =

fa; c; dg; S4 = fbgg, then the total number of elements in all of the �nite sets in C is 4, that

is, �1 = a; �2 = b; �3 = c; �4 = d. Therefore, the constructed regular loop is (S;D), where

the iteration space S is [1; 2]� [1; 2]� [1; 2]� [1; 2], and the set of dependence vectors D

is fd1 = [1; 1; 0; 0]; d2 = [0; 1; 1; 1]; d3 = [1; 0; 1; 1]; d4 = [0; 1; 0; 0]g. In addition, C contains

2 mutually disjoint �nite sets S3 and S4; correspondingly, the constructed regular loop

contains a path with length 2: [1; 1; 1; 1] ! [1; 1; 1; 1] + d3 ! [1; 1; 1; 1] + d3 + d4 �

[1; 1; 1; 1]! [2; 1; 2; 2]! [2; 2; 2; 2]. It is also easy to check that C does not contain more

than 2 mutually disjoint �nite sets, neither does the constructed regular loop contain a

path with length longer than 2.

Our goal has been to prove that Problem P1 is NP-hard. This is achieved by Turing

reduction from Problem P2 to Problem P1:

Theorem 3.7 Problem P1 is NP-hard.

Proof. Let the algorithm solving Problem P1 be A(S;D; l), where S and D are input

parameters representing the regular loop in question, and l is an output parameter rep-

resenting the length of the longest paths of the regular loop. Then Problem P2 can be

solved in terms of algorithm A(S;D; l) as follows:

35

Call algorithm A(S;D; l);

if (l � B)

answer true;

else

answer false;

Therefore, if Algorithm A can solve Problem P1 in polynomial time, Problem P2 can

be solved in polynomial time also. On the other hand, since Problem P2 has been proved

to be NP-hard, Problem P1 is NP-hard also.

Since �nding the exact length of the longest paths of a regular loop is NP-hard,

solving this problem, in practice, will take time more than polynomial to the problem

size. However, we would be satis�ed sometimes if we can �nd the approximate length of

the longest paths. For example, to estimate the parallel execution time of a regular loop

as described in the next chapter, �nding the approximate length is su�cient.

In the remaining of this section, we will describe an algorithm which �nds the upper

bound of the length of the longest paths. The candidate algorithm should not unroll the

whole iteration space, since it will take too much time as we have analyzed. With these

ideas in mind, we reduce the problem of \�nding the upper bound of the length of the

longest paths" to a set of linear programming problems.

Algorithm 3.3 Given a regular loop (S;D), where the iteration space S = [1; U1]�� � ��

[1; Un], and the set of dependence vectors D = fdi = [di1; � � � ; din] j 1 � i � mg, this

algorithm �nds the upper bound of the length of the longest paths of this regular loop.

Step 1. Let us call the �rst iteration of a longest path the source iteration. The

�rst work in �nding the upper bound of the length of the longest paths is to identify the

possible source iterations. Intuitively, these source iterations should be at the \corners"

of iteration space S. Moreover, some \corners" can be excluded since a longest path

36

cannot start from those iterations. For example, consider a regular loop (S;D), where

S = [1; 10]� [1; 10] and D = f[1;�1]; [1; 2]g. There are four iterations at the corners, that

is, [1; 1]; [1; 10]; [10; 1], and [10; 10]. Since the �rst dimensions of both dependence vectors

are positive (i.e., 1), it is clear that a longest path cannot start from [10; 1] and [10; 10].

Generally, assuming that1
Pm

i=1 d
2
ij > 0, for 1 � j � n, then the set of all possible source

iterations, C, is

fsk = [sk1; � � � ; skn] j skj 2 f(j); 1 � j � ng

where

f(j) =

8>>>>><
>>>>>:

f1g if 8 1 � i � m; dij � 0

fUjg if 8 1 � i � m; dij � 0

f1; Ujg otherwise

Step 2. Let C = fs1; s2; � � � ; sag be the set of all possible source iterations obtained

in Step 1. Then the length of the longest paths in the dependence graph cannot ex-

ceed maxfv1; � � � ; vag, where vk is obtained by solving the following linear programming

problem:

LP: max vk � x1 + x2 + � � �+ xm

subject to

1 � skj +
Pm

i=1 xidij � Uj for 1 � j � n

xi � 0 for 1 � i � m

Now we prove the above algorithm computes the upper bound of the length of the

longest paths:

1If for some �xed dimension j, all dij's are zeros, then the iteration space can be partitioned into Uj

independent groups with each group corresponding to a distinct value in the range from 1 to Uj. Hence

under such circumstance, dimension j can be regarded as nonexistent in solving the problem.

37

Theorem 3.8 Given a regular loop (S;D), the length of the longest paths in the regular

loop cannot exceed maxfv1; � � � ; vag, as computed in Algorithm 3.3.

Proof. Let L1 denote the exact length of one of the longest paths, u0 ! u1 ! u2 !

� � � ! uL1
, where uk = [uk1; � � � ; ukn] for 0 � k � L1. In addition, suppose in the longest

path, dependence vector di is used by xi times, for 1 � i � m. According to the de�nition

of the longest path, all iterations in a longest path must be within the iteration space S.

Speci�cally, the \sink" iteration of the longest path must be within the iteration space S

also. Therefore, L1 must be less than or equal to L2 in the following Integer Programming

Problem:

LP2: max L2 � x1 + x2 + � � �+ xm

subject to

1 � u0j +
Pm

i=1 xidij � Uj for 1 � j � n

xi � 0 for 1 � i � m

Now we show that considering only the source iterations in C is su�cient. That is,

given a path with both source node u0 and sink node uL2
in S, it is always possible to

\shift" the path so that the new source node is at a corner of S and the new sink node is still

inS. Mathematically, we show that there exists an source iteration sk = [sk1; � � � ; skn] 2 C

such that L2 is less than or equal to L3 in the following Integer Programming Problem:

LP3: max L3 � x1 + x2 + � � �+ xm

subject to

1 � skj +
Pm

i=1 xidij � Uj for 1 � j � n

xi � 0 for 1 � i � m

The following cases explain the reason for L2 � L3 (note that u0 = [u01; � � � ; u0n] is

within the iteration space S):

38

� If 1 < u0j < u0j +
Pm

i=1 xidij � Uj , then there must exist some di such that

dij > 0. Consequently, there must exist some sk 2 C such that skj = 1 (i.e., the

new source node is at a corner of the iteration space S). In addition, it is obvious

that 1 < 1 +
Pm

i=1 xidij < Uj (i.e., the new sink node is still inside the iteration

space S.).

� If 1 � u0j +
Pm

i=1 xidij < u0j < Uj , then there must exist some di such that dij < 0.

Consequently, there must exist some sk 2 C such that skj = Uj . In addition, it is

obvious that 1 < Uj +
Pm

i=1 xidij < Uj .

� If 1 < u0j = u0j +
Pm

i=1 xidij < Uj , then we have 1 = 1 +
Pm

i=1 xidij < Uj and

1 < Uj +
Pm

i=1 xidij = Uj .

All of these cases imply that a feasible solution (x1; x2; � � � ; xm) to Problem LP2 is also a

feasible solution to Problem LP3, hence we have L2 � L3.

Finally, since all feasible solutions to an integer programming problem are also

feasible solutions to the corresponding linear programming problem, it is clear that

L3 � maxfv1; � � � ; vag, the value computed by Algorithm 3.3.

We have reduced the problem of �nding the upper bound of the longest paths' length

to a set of linear programming problems. Note that there is at least one feasible solution

to Problem LP . Since all source iterations in C are also in S, a trivial solution to Problem

LP is when x1 = x2 = � � � = xm = 0, which corresponds the case when the length of the

longest paths is zero. In addition, the maximum value of the object function in Problem

LP (i.e., vk) is always bounded. The reason for it is because the dependence graph is

directed acyclic, as proven by the following theorem:

Theorem 3.9 The dependence graph for a regular loop (S;D), where S = [1; U1]� � � � �

[1; Un] and D = fdi = [di1; � � � ; din] j 1 � i � mg, is directed acyclic.

39

Proof. According to the de�nition of dependence graph, it is clear that the graph is

directed.

We prove the dependence graph is acyclic. Suppose that there is a cycle in the depen-

dence graph, then there must exist integers x1; � � � ; xm such that x1d1+x2d2+� � �+xmdm =

0. However, note that according to the de�nition of dependence vectors, the leftmost

nonzero entry of a dependence vector must be positive. Let Dj be the set containing all

of those dependence vectors in D with their leftmost nonzero entries at dimension j. Then

for all di 2 D1, the corresponding xi's must be zeros, since there is no negative component

at dimension 1 for all dependence vectors. Furthermore, for all di 2 D2, the correspond-

ing xi's must also be zeros, since there is no negative component at dimension 2 for all

dependence vectors in D2 [D3 [� � � [Dn. Inductively, we have x1 = x2 = � � � = xm = 0.

Hence the dependence graph is acyclic.

The e�ciency of Algorithm 3.3 relies heavily on the complexity of solving the linear

programming problem. The well known simplex method is very e�cient in solving the

problem in practice. However, under worst case, the simplex method may take time

exponential to the problem size. Other algorithms like ellipsoid method or projection

method guarantee solving this problem in polynomial time [94]. However, at the worst

case, the number of linear programming problems we need to solve is exponential to the

number of dimensions of the iteration space, since the number of \corners" of the iteration

space is exponential to the number of dimensions of the iteration space. Fortunately, the

number of dimensions of most loops is less than or equal to 3 [123], hence usually no

more than 4 linear programming problems need to be solved (Note that for every source

iteration, the component at the �rst dimension is always 1.).

Finally, it is important to consider the di�erence between the exact length and the

upper bound obtained by Algorithm 3.3. For most common cases, where Uj 's are large

40

and jdij j's are small, the di�erence is expected to be minor. However, Algorithm 3.3 is

not suitable for the cases when Uj 's and jdij j's are close. For example, for the regular

loop (S;D), where S = [1; U1]� [1; U2] = [1; 100]� [1; 6] and D = f[d11; d12]; [d21; d22]g =

f[1;�5]; [1; 4]g, the di�erence between the exact longest paths' length and the upper bound

obtained by Algorithm 3.3 is large. The di�erence mainly results from that jd12j and jd22j

are very close to U2. On the other hand, we show that when Uj 's and jdij j's are not close,

the exact length and its upper bound can be quite near for certain cases:

Theorem 3.10 Consider a two dimensional regular loop (S;D), where S = [1; U1] �

[1; U2], D = fdi = [di1; di2] j 1 � i � mg, and jdij j <
1

2
Uj for 1 � i � m and 1 �

j � 2. If an algorithm for integer programming problem is used to solve Problem LP in

Algorithm 3.3, then the upper bound obtained by Algorithm 3.3 is exactly the same as the

length of the longest paths in the regular loop.

Proof. Assuming the upper bound obtained by Algorithm 3.3 is
Pm

i=1 xi, with depen-

dence vector di being used by xi times, we prove that these
Pm

i=1 xi dependence vectors

can always be \ordered" to yield a path with all its nodes being inside iteration space S.

Since only positive components are at the �rst dimensions for all dependence vectors,

it is \safe" to set the �rst dimension of the source node (iteration) to be 1. No matter

how these
Pm

i=1 xi dependence vectors are ordered, the �rst dimensions of all nodes in the

path are between 1 and U1, since di1 � 0 for all 1 � i � m. Therefore, we only need to

consider the second dimension to make sure that the whole path is within the iteration

space.

Without loss of generality, assume that
Pm

i=1 xidi2 � 0. Set the second dimension of

the source node (iteration) to 1. Order these
Pm

i=1 xi dependence vectors according to

the following algorithm:

41

1. Let P be the collection of these
Pm

i=1 xi dependence vectors;

2. Let c = [c1; c2] be the current node of the path;

Initially, c is the source node we have set, i.e., c = [1; 1];

3. while (P 6= ;) f

4. retrieve a dependence vector di from P so that

c+ di is within the iteration space S;

5. c c+ di;

6. P P � fdig;

g

Note that at line 4, we can always �nd a dependence vector in P which satis�es the

condition mentioned. Consider the second dimension of the iteration space only. Without

loss of generality, suppose before executing line 4, c2 is at the \lower half" of the second

dimension of the iteration space, i.e., c2 �
1

2
(U2 + 1). If some di is chosen such that

c+ di falls outside the iteration space, then we must have c2 + di2 < 1 and di2 < 0, since

jdi2j <
1

2
U2. However, since the sink node of the path must be within the iteration space

S as required by Algorithm 3.3, we can always �nd another dependence vector dk 2 P

such that dk2 > 0. As 1 � c2 �
1

2
(U2 + 1) and 0 < dk2 <

1

2
U2, we must have c+ dk in the

iteration space S.

In summary, given the upper bound obtained by Algorithm 3.3, we can always generate

a path with that length and of which all nodes are within the iteration space. Hence the

upper bound is tight in this case.

Note that the di�erence between the upper bound obtained by Algorithm 3.3 and

the real length of the longest paths is due to that at some dimension j, there exist both

positive and negative dij 's. If for every dimension j, either all dij 's are non-negative or

all dij 's are non-positive, then the upper bound obtained by Algorithm 3.3 are tight, as

42

described by the following theorem:

Theorem 3.11 Consider a regular loop (S;D), where S = [1; U1]�� � ��[1; Un], D = fdi =

[di1; � � � ; din] j 1 � i � mg, and for every dimension j, either all dij's are non-negative

or all dij's are non-positive. If an algorithm for integer programming problem is used to

solve Problem LP in Algorithm 3.3, then the upper bound obtained by Algorithm 3.3 is

exactly the same as the length of the longest paths in the regular loop.

Proof. For each dimension j, 1 � j � n, the proof is similar to the proof for the �rst

dimension of Theorem 3.10.

Besides showing the quality of Algorithm 3.3 by Theorem 3.10 and 3.11, we evaluate

its quality by using the 25 regular loops in [48, page 329]. Given a regular loop, let L1 be

the length of the longest paths obtained by applying Algorithm 3.3, and Lo be the real

length of the longest paths. The values of L1 and Lo for these 25 loops are shown below:

Loop 1 2 3 4 5 6 7 8 9 10 11 12 13

L1 3.00 7.20 3.00 12.00 4.50 9.00 54.00 11.25 4.50 18.00 27.00 30.38 27.00

Lo 3 7 3 12 4 9 54 11 4 18 27 29 27

L1

Lo
1.00 1.03 1.00 1.00 1.12 1.00 1.00 1.02 1.12 1.00 1.00 1.05 1.00

Loop 14 15 16 17 18 19 20 21 22 23 24 25

L1 7.20 12.00 13.50 6.00 31.50 9.00 31.50 5.00 8.00 6.67 12.00 13.20

Lo 7 11 13 6 31 9 31 5 8 6 12 13

L1

Lo
1.03 1.09 1.04 1.00 1.02 1.00 1.02 1.00 1.00 1.11 1.00 1.02

The average ratio of L1

Lo
for these 25 regular loops is only 1:03. Therefore, we expect

that the quality of Algorithm 3.3 will be very high in practice.

43

Chapter 4

Executing Regular loops on

Shared{Memory Multiprocessors

In this chapter, we describe a simple scheme for scheduling regular loops on shared-

memory multiprocessor computers. The scheme is suitable for asynchronous computers,

where the asynchronism may result from di�erent speeds among processing elements, com-

munication links, communication switching boxes, or shared-memory subsystems. The

scheme is also suitable for executing certain regular loops on synchronous computers,

where di�erent iterations of the loop may require di�erent computation times, or where

arranging non-blocking accesses to the shared-memory is di�cult.

The scheduling scheme is described in Section 4.1. An analysis of the scheduling

scheme, using the properties obtained in last chapter, is presented in Section 4.2. Finally,

some improvements over the simple scheduling scheme are introduced in Section 4.3.

4.1 The Scheduling Scheme

The scheduling scheme described here is quite straightforward: each iteration is an ex-

ecution unit (i.e., each iteration is the unit to be scheduled and will not be broken into

44

smaller pieces) and is scheduled to be executed by a free processor greedily.

The scheduling scheme is designed for executing regular loops on shared-memory mul-

tiprocessor systems where either the systems are asynchronous or memory-access conicts

in the interconnection networks are hard to be predicted and avoided. Note that some

\optimal" schemes such as [3] [37] [143] cannot be used on asynchronous multiprocessor

systems. Though the greedy scheduling scheme seems quite naive and ine�cient, it is

essential in the sense that more advanced schemes are basically evolved from it. There-

fore, understanding various properties of the basic scheduling scheme is very important

to designing more advanced schemes.

Now let us describe the scheduling scheme. Recall that during the execution of a

regular loop, an iteration will pass through four states, namely, idle, pending, ready, and

�nished states. In addition, certain iterations of a regular loop are called initial iterations,

meaning that those iterations have no dependent predecessors. (Please see Chapter 3.)

Our greedy scheduling scheme will schedule all initial iterations to be executed �rst. After

all initial iterations have been completed, there must be iterations at ready states, that is,

ready to be executed. This property can be observed from the fact that the corresponding

dependence graph is directed acyclic (Theorem 3.9). Our scheduling scheme then choose

iterations at ready states to execute. Note that an iteration will enter the ready state

when it is ready to be executed and leave the ready state when it has been completed.

The regular loop is completed totally when no more iterations can be at ready state. In

addition, when an iteration has more than one dependent predecessors, it has to stay

at pending states for sometimes and enter the ready state when all of its dependent

predecessors have been completed. This implies that our scheduling scheme need to

maintain information about when an iteration can enter from the pending state to the

ready state.

45

Based on the previous discussion, our scheduling scheme needs the following three

\pools" to store iterations:

� INIT: a data structure used to store initial iterations.

� READY: a date structure used to store ready iterations.

� PENDING: a data structure used to store pending iterations.

Note that an iteration can be stored by its induction variables instead of the whole

loop body, since the loop bodies are the same for all iterations. The scheduling scheme

is as follows. A free processor �rst tries to fetch an iteration from INIT to execute. If

INIT is empty, then an iteration is fetched from READY. Whenever a processor �nishes

executing a ready iteration ci, it \installs" each dependent successor si as follows:

1. Try to �nd the entry for si in PENDING;

2. if (si is not in PENDING) f

3. if (si has no other dependent predecessors)

4. install si in READY;

5. else

6. install si in PENDING;

g else f

7. At the si entry in PENDING, mark ci �nished;

8. if (si has no other un�nished dependent predecessors)

9. move si from PENDING to READY;

g

46

4.2 The Analysis

Although the concept of the scheme is simple, several nontrivial issues have to be consid-

ered:

1. What is the memory space needed by this scheme?

2. What is the maximum number of processing elements needed by this scheme?

3. How does one determine if the parallel execution is superior to the sequential exe-

cution?

Such issues of executing regular loops on shared-memory multiprocessors is important to

further re�ning the basic scheme to more e�cient ones. However, no discussion of them

can be found in existent literature. This section will address these issues in detail. In our

following discussion, the regular loop being considered is (S;D), where S = [1; U1]�� � ��

[1; Un], and D = fdi = [di1; � � � ; din] j 1 � i � mg.

We address the �rst issue �rst. That is, what is the memory space needed by this

scheduling scheme? The space required can be divided into two classes, that is, the space

needed by the regular loop, and the space needed by the scheduler. The space needed by

the regular loop is used to store variables of the loop. This space requirement depends

on the loop body of the regular loop and we will not discuss it here.

The space needed by the scheduler includes the space needed by the data structures

INIT, PENDING, and READY. From the discussion in Chapter 3, the maximum spaces

required by these three data structures are listed below:

INIT c1 j
Tm
i=1

Sn
j=1 Iij j , where Iij is de�ned in Theorem 3.1.

PENDING c2
Pm

i=1(
Qn

j=1 Uj �
Qn

j=1(Uj � jdijj)).

READY c3 minf
Qn

j=1 Uj �
Qn

j=1(Uj � jdij j) j 1 � i � mg

47

In the above table, c1, c2, and c3 represent the spaces required by an iteration entry

in data structures INIT, PENDING, and READY respectively. The formulae for INIT,

PENDING, and READY are derived from Theorem 3.1, 3.3, and 3.2 respectively.

Note that the value of j
Tm
i=1

Sn
j=1 Iij j (in the formula for INIT) is always smaller than

or equal to the value of minf
Qn

j=1 Uj �
Qn

j=1(Uj � jdij j) j 1 � i � mg (in the formula for

READY). In fact, the space requirement for INIT can be eliminated totally by generating

all initial iterations \on-the-y", that is, an initial iteration is generated only when a

processing element is free to execute a new iteration. The generation algorithm can be

obtained easily by revising Algorithm 3.2.

Now we address the second issue. That is, what is the maximum number of process-

ing elements needed by this scheduling scheme? The solution to this can be obtained

easily from Theorem 3.2, that is, the maximum number of processing elements needed is

minf
Qn

j=1 Uj �
Qn

j=1(Uj � jdij j) j 1 � i � mg, because only iterations at ready states can

be executed. In other words, we cannot get any speedup even if we use more than this

number of processing elements to execute the regular loop.

Finally, we address the third issue. That is, how does one determine if the parallel

execution is superior to the sequential execution? Because of the synchronization and

communication cost, it is well known that the parallel execution of a regular loop is not

necessarily faster than the sequential execution of the same loop. Therefore, the compiler

should estimate both of the parallel and the sequential times to make the right choice.

Let t denote the average execution time of an iteration, s denote the synchronization

time required by the algorithm on page 46, and l denote the number of iterations on

any of the longest paths in the dependence graph. Then the sequential execution time is

t
Qn

j=1 Uj and the parallel execution time is (t +ms)l. Therefore, the parallel execution

48

is preferred to the sequential execution when (t+ms)l < t
Qn

j=1 Uj , i.e., when

ms

t
<

Qn
j=1 Uj

l
� 1 (4:1)

The value of t can be estimated by examining the object code generated for the loop

body; the value of s can be estimated by examining the object code generated for the

algorithm on page 46; and the value of l can be estimated by applying Algorithm 3.3.

Note that the value of l is hence the upper bound of the real length of the longest path, say

l0. Therefore, Equation 4.1 is a conservative estimation for the decision of parallelization.

That is, when Equation 4.1 is satis�ed, it is safe to execute the regular loop in parallel by

using our scheduling scheme. Mathematically, we have:

l0 � l

) (t+ms)l0 � (t +ms)l < t
nY

j=1

Uj

)
ms

t
<

Qn
j=1 Uj

l
� 1 �

Qn
j=1 Uj

l0
� 1

It is also interesting to observe, from Equation 4.1, that under certain situations,

parallelizing a regular loop is preferred:

1. when the execution time of an iteration (t) is large,

2. when the synchronization cost (ms) is small,

3. when the total number of iterations (
Qn

j=1 Uj) is large, and

4. when the longest path is short (Recall Amdahl's Law).

These observations also provide the guideline for further evolving the scheduling

scheme. For example, Item 1 above indicates the granularity [11] [127] should be in-

creased to bene�t the parallelization of the regular loop. To increase the granularity,

49

several iterations should be grouped together into a larger execution unit. In addition,

Item 2 above indicates the synchronization cost should be reduced as much as possible.

Other indirect observations can also guide the improvement of our scheduling scheme.

For example, since the longest path dominates the parallel execution time, the iterations

on the longest paths should be executed as soon as possible. This idea of scheduling

\critical" iterations earlier has also been exploited under other settings [99]. In the next

section, we will present several improvement techniques for our scheduling scheme based

on these observations.

4.3 Improvement of the Scheduling Scheme

In this section, we will address some possible improvements of the greedy scheduling

scheme. Our goal is not in proposing an extremely e�cient scheduling scheme. Instead,

our intention is to show how those basic properties obtained in Chapter 3 can help opti-

mizing a scheduling scheme for a regular loop.

Three examples of improvement will be shown in this section:

1. Increasing the granularity.

2. Scheduling \critical" iterations earlier.

3. Reducing synchronization cost.

4.3.1 Increasing the Granularity

We �rst describe the technique of increasing the granularity. The motivation behind

increasing the granularity is when the grain size is too small, most of the execution time

will be spent on synchronization and communication. Hence by increasing the grain size,

the overall execution time can be reduced. In terms of the parallel execution time, we

50

(a) Grouping along the direction [0; 1] with
size 2.

(b) Grouping along the direction [0; 1] with
size 2, and along the direction [1; 0] with
size 2.

Figure 4.1: Two grouping methods for the regular loop ([1; 8]� [1; 8]; f[0; 1]; [1; 1]; [1; 0]g).

want to group several iterations into a larger execution unit so as to minimize the value of

(t+ms)l as described in last section. By grouping several iterations together, the average

execution time of an execution unit, t, is increased, yet the number of execution units on

the longest paths, l, can be reduced, hence it is possible to reduce the parallel execution

time (t+ms)l.

However, the problem of grouping is not trivial [74]. It involves how many iterations

should be grouped together, which iterations should be grouped together, and so on. We

will not go into the detail here. Instead, we will give several examples of grouping. Our

intention here is to point out a possible way of increasing the performance of the greedy

scheduling scheme. Much work still needs to be done.

Consider the regular loop ([1; 8] � [1; 8]; f[0; 1]; [1; 1]; [1; 0]g). Figure 4.1 shows two

grouping strategies: Figure 4.1(a) shows a grouping along the direction [0; 1] with size

2, and Figure 4.1(b) shows a grouping along the direction [0; 1] with size 2, as well as

along the direction [1; 0] with size 2. For clearness, the original dependence vectors are

51

not shown. After the grouping, the iteration space and dependence vectors of the regular

loop may be changed:

� Figure 4.1(a) corresponds to the regular loop ([1; 8]� [1; 4]; f[0; 1]; [1; 1]; [1; 0]g),

� Figure 4.1(b) corresponds to the regular loop ([1; 4]� [1; 4]; f[0; 1]; [1; 1]; [1; 0]g),

Together with the original regular loop, the parallel execution time (t+ms)l of these

regular loops are summarized below:

� Original loop: (t+ 3s) � 15

� The loop in Figure 4.1(a): (2t+ 3s) � 11

� The loop in Figure 4.1(b): (4t+ 3s) � 7

Note that the larger the grain size, the shorter is the longest path. Which grouping

strategies is better highly depends on the execution time of an iteration t and the syn-

chronization cost s. For example, when t = s = 1, the grouping strategy for Figure 4.1(b),

whose parallel execution time is 49, is the best among the above three possibilities. When

s = 1 and t = 2, the original loop, whose parallel execution time is 75, is better than the

other two loops generated by grouping. Actually, when s
t
< 13

24
, the original loop has the

least parallel execution time; and when s
t
> 13

24
, the loop generated by using the grouping

in Figure 4.1(b) has the least parallel execution time. This result is consistent with our

intuition. That is, when the s=t ratio is high, grouping is bene�cial since it reduces the

overall synchronization cost. At one extreme case, when the s=t ratio is in�nite, we will

group all iterations into one execution unit, i.e., assign all iterations to only one processing

element. On the other hand, when the s=t ratio is zero, we will let each execution unit

contain only one iteration.

52

Figure 4.2: Grouping along [1; 1] with size 2 for the regular loop
([1; 4]� [1; 4]; f[0; 1]; [1; 1]; [1; 0]g).

There are many other ways of grouping iterations into an execution unit. However,

some grouping methods are infeasible in the sense that it may introduce cycles in the de-

pendence graph. For example, consider the regular loop ([1; 4]� [1; 4]; f[0; 1]; [1; 1]; [1; 0]g).

Suppose the iterations are grouped together along the direction [1; 1] with size 2 (Fig-

ure 4.2(a)), the resulted loop will be ([1; 5] � [1; 2]; f[1; 0]; [�1; 0]; [1; 1]; [2; 1]g) (Figure

4.2(b)). Note that the \dependence vectors" [1; 0] and [�1; 0] in the resulted loop in-

troduce cycles in the dependence graph. Actually, the dependence vector [�1; 0] is not

allowed in our model. Therefore, this grouping strategy is infeasible.

4.3.2 Scheduling \Critical" Iterations Earlier

Now we discuss another approach to optimize our basic scheduling scheme. From the

dependence graph, it can be observed that an iteration near the \border" of the iteration

space has less dependent successors than does an iteration at the \interior" of the iteration

space. That is, when a border iteration is completed, it can \�re" less iterations than

does an interior iteration. If the iterations at ready states are fetched to execute by

free processors in arbitrary order, it may result in a situation where a free processor has

53

no iteration to fetch. For example, consider a regular loop ([1; 4]� [1; 4]; f[0; 1]; [1; 0]g).

Suppose two processors are available to execute the loop and each iteration takes 1 unit

computation time. A possible execution order would be:

time = 0 time = 1 time = 2 time = 3 time = 4

Processor 1 [1; 1] [1; 2] [1; 3] [1; 4] [2; 2]

Processor 2 [2; 1] [3; 1] [4; 1]

By this execution order, only one iteration (i.e. [2; 2]) are available for execution at time

4. This under-utilizes the available processors and hence will increase the total execution

time sometimes. On the other hand, another possible execution order would be:

time = 0 time = 1 time = 2 time = 3 time = 4

Processor 1 [1; 1] [1; 2] [1; 3] [1; 4] [2; 4]

Processor 2 [2; 1] [2; 2] [2; 3] [3; 1]

In this case, two iterations are available for execution at time 4. Therefore, This motivates

us to schedule those \critical" iterations as soon as possible, especially when the number

of available processing elements are limited.

The �rst thing we can do is to merge the data structure INIT to the data structure

READY. Note that all of the iterations in INIT are at ready states. Therefore, this saves

the space for INIT.

The second thing we can do is to organize READY as a priority queue, where the

\priority" for each iteration in the queue is equal to the number of dependent successors

of the iteration.

With these modi�cations, critical iterations at ready states will be assigned higher

priorities in the queue READY. In other words, these critical iterations will be executed

by free processors as earlier as possible.

There are other views of which iterations are critical. For example, one may regard

iterations on the longest paths as more critical, because the parallel execution time is

54

dominated by the longest paths. More works are needed to de�ne \critical" iterations

and to evaluate the e�ects to the parallel execution times.

4.3.3 Reducing Synchronization Cost

Finally, we propose an approach to reduce the synchronization time. Consider the regular

loop ([1; U1]� � � � � [1; Un]; fdi = [di1; � � � ; din] j 1 � i � mg). According to Theorem 3.3,

the maximal number of iterations in PENDING is
Pm
i=1(

Qn
j=1 Uj �

Qn
j=1(Uj � jdij j)),

which is large sometimes. Therefore, for the operation \Try to �nd the entry for si in

PENDING" in the algorithm on page 46, it is unacceptable if the si in PENDING is

searched sequentially.

In the following, we will propose a strategy organizing the data structure PENDING

to reduce the access time to PENDING. In brief, the data structure PENDING is orga-

nized as a hash table, with
Qn
j=1 Uj �

Qn
j=1(Uj � jcjj) buckets, where c = [c1; . . . ; cn] =

[
Pm
i=1 di1; . . . ;

Pm
i=1 din], with the assumption that jcj j � Uj for 1 � j � n (This should

account for most cases in practice, where Uj 's are large and jdij j's are small.). The hash

function, which maps a given iteration (key) to a bucket in the hash table, is described in

the following algorithm:

Algorithm 4.1 Consider the regular loop ([1; U1]�� � �� [1; Un]; fdi = [di1; � � � ; din] j 1 �

i � mg). Let c = [c1; . . . ; cn] = [
Pm
i=1 di1; . . . ;

Pm
i=1 din]. In addition, assume that jcjj �

Uj for 1 � j � n. Then an iteration (key) [x1; . . . ; xn] will be hashed to a bucket r by the

following computation (assume that cj � 0 for 1 � j � n for clarity):1

/� Find the initial iteration [y1; . . . ; yn] which is the ancestor of [x1; . . . ; xn] via

the virtual dependence vector c �/

1We de�ne
P

s2�
f(s) � 0 and

Q
s2�

f(s) � 1.

55

a = minfb
xj�1
cj

c j 1 � j � n; cj 6= 0g;

p = minfjjb
xj�1
cj

c = a for 1 � j � n and cj 6= 0g;

[y1; . . . ; yn] = [x1 � a � c1; . . . ; xn � a � cn];

/� �nd s, the sum of sizes from block 1 to block p� 1, where block i is the Cartesian

space [c1 + 1; U1]� � � � � [ci�1 + 1; Ui�1]� [1; ci]� [1; Ui+1]� � � � � [1; Un] �/

s =
Pp�1
i=1 (

Qi�1
j=1(Uj � cj)ci

Qn
j=i+1 Uj);

/� �nd t, the address of [y1; . . . ; yn] within block p, where block p is the Cartesian

space [c1 + 1; U1]� � � � �[cp�1 + 1; Up�1]�[1; cp]�[1; Up+1]�� � ��[1; Un] �/

let [z1; . . . ; zn] = [y1 � c1; . . . ; yp�1 � cp�1; yp; . . . ; yn];

let [v1; . . . ; vn] = [U1 � c1; . . . ; Up�1 � cp�1; cp; Up+1; . . . ; Un];

t =
Pn
i=1(zi � 1)

Qn
j=i+1 vj ;

r = s+ t + 1;

The basic idea of the above algorithm is that, given the iteration space [1; U1]� � � ��

[1; Un], and a virtual dependence vector c = [c1; � � � ; cn], all iterations can be divided into

Qn
j=1 Uj �

Qn
j=1(Uj � jcj j) independent groups according to the proof of Theorem 3.2.

The �rst step of the algorithm is to identify the group \leader" [y1; � � � ; yn] from a given

iteration (key) [x1; � � � ; xn]. Note that the set of all group leaders are equivalent to the set

of all initial iterations for the virtual regular loop ([1; U1]�� � �� [1; Un]; fc = [c1; � � � ; cn]g).

Hence the second step of the algorithm is to map all initial iterations in the virtual loop to

unique integers in the range from 1 to
Qn
j=1 Uj�

Qn
j=1(Uj�jcjj). This mapping is derived

by dividing all initial iterations into at most n n-dimensional \rectangular boxes" and

then orders the iterations in each box according to row-major order. Figure 4.3 illustrates

an example of such ordering.

56

Figure 4.3: Order all initial iterations for the regular loop ([1; 5]� [1; 6]; f[2; 3]g).

One advantage of the above access scheme is that the expected number of iterations

in each bucket of the hash table is 1 for most cases. This is because for most cases, all of

the dependent predecessors of iteration I + d1 + . . .+ dm have iteration I as a dependent

ancestor. Hence when iteration I is pending, iteration I + d1 + . . . + dm cannot become

pending as it requires at least one of its dependent predecessors be �nished, which in turn

requires iteration I be �nished.

A bucket of the hash table may contain more than one iterations only when

those iterations near the iteration space boundaries are being executed, and for

some dimensions, there are both positive and negative components of dependence

vectors at those dimensions. For example, for the regular loop ([1; 10] � [1; 10] �

[1; 10]; f[0; 1;�2]; [1;�2; 1]; [1; 0; 2]g), iteration [2; 2; 2] and iteration [4; 1; 3] (which is

equal to [2; 2; 2]+ ([0; 1;�2]+ [1;�2; 1]+ [1; 0; 2])) may be at the pending states simul-

taneously, as shown below:

57

For some certain type regular loops, we prove that any bucket of the hash table contains

at most one iteration at any instance during the execution:

Theorem 4.1 Given a regular loop ([1; U1] � � � � � [1; Un]; fdi = [di1; � � � ; din] j 1 � i �

mg), any bucket of the hash table contains at most one iteration at any instance during

the execution if either one of the following conditions is satis�es:

1. n = 2 and di2 <
1
2U2, for all 1 � i � m.

2. For each 1 � j � n, either all dij's are non-negative or all dij's are non-positive.

Proof. Assume iteration I and I 0 � I + d1 + � � �+ dm are both in the iteration space,

and iteration I is at pending state. In addition, suppose on the contrary that iteration

I 0 is also at pending state. Then by the de�nition of the pending state, at least one of

the iterations I 0 � dk, for 1 � k � m, must be at �nished state. However, by similar

discussions to that of the proofs for Theorem 3.10 (for Condition 1) and Theorem 3.11

(for Condition 2), iteration I 0� dk must be dependent on iteration I via a \path" totally

inside the iteration space. That is, iteration I 0 � dk cannot be at �nished state, neither

can iteration I 0. This completes our proof.

Finally, we prove that the number of buckets in the hash table is less than or equal to

the bound we got in Theorem 3.3:

Theorem 4.2 Consider a regular loop (S;D), where S = [1; U1]� [1; U2]� � � � � [1; Un],

and D = fdi = [di1; . . . ; din] j 1 � i � mg. Assume that Uj � j
Pm
i=1 dij j for 1 � j � n.

Then we have
Qn
j=1 Uj �

Qn
j=1(Uj � j

Pm
i=1 dij j) �

Pm
i=1(

Qn
j=1 Uj �

Qn
j=1(Uj � jdij j)).

58

Proof. We prove the theorem by considering two cases:

Case 1.
Qm
i=1 jdij j � Uj for some 1 � j � n:

Without loss of generality, assume that
Qm
i=1 jdi1j � U1. Then we have:

mX
i=1

(
nY
j=1

Uj �
nY
j=1

(Uj � jdijj))

�
mX
i=1

(
nY
j=1

Uj � (U1 � jdi1j)
nY
j=2

Uj)

= (
mX
i=1

jdi1j)
nY
j=2

Uj

�
nY
j=1

Uj

Furthermore, since we assumed that Uj � j
Pm
i=1 dij j, for 1 � j � n, we have:

nY
j=1

Uj �
nY
j=1

(Uj � j
mX
i=1

dij j)

�
nY
j=1

Uj �
nY
j=1

0

�
mX
i=1

(
nY
j=1

Uj �
nY
j=1

(Uj � jdij j))

The theorem is proved for this case.

Case 2.
Qm
i=1 jdij j < Uj for all 1 � j � n:

We �rst prove the following equation holds:

nY
j=1

Uj �
nY
j=1

(Uj � jdij j) =
nX
j=1

(
j�1Y
k=1

(Uk � jdikj)jdijj
nY

k=j+1

Uk) (4:2)

This equation can be shown true by induction on n. When n = 1, Equation 4.2

is obviously true. Suppose Equation 4.2 is true when n = l, then it is true also when

n = l + 1, because:

l+1Y
j=1

Uj �
l+1Y
j=1

(Uj � jdij j)

59

= (U1 � jdi1j+ jdi1j)
l+1Y
j=2

Uj � (U1 � jdi1j)
l+1Y
j=2

(Uj � jdij j)

= jdi1j
l+1Y
j=2

Uj + (U1 � jdi1j)(
l+1Y
j=2

Uj �
l+1Y
j=2

(Uj � jdij j))

= jdi1j
l+1Y
j=2

Uj + (U1 � jdi1j)
l+1X
j=2

(
j�1Y
k=2

(Uk � jdikj)jdijj
l+1Y

k=j+1

Uk)

=
l+1X
j=1

(
j�1Y
k=1

(Uk � jdikj)jdijj
l+1Y

k=j+1

Uk)

Based on Equation 4.2, We further prove the following claim:

if Uj � Vj then

nY
j=1

Uj �
nY
j=1

(Uj � jdij j) �
nY
j=1

Vj �
nY
j=1

(Vj � jdij j)

This claim is true because:

nY
j=1

Uj �
nY
j=1

(Uj � jdij j)

=
nX
j=1

(
j�1Y
k=1

(Uk � jdikj)jdijj
nY

k=j+1

Uk) (By Equation 4.2)

�
nX
j=1

(
j�1Y
k=1

(Vk � jdikj)jdijj
nY

k=j+1

Vk) (Since Uk � Vk)

=
nY
j=1

Vj �
nY
j=1

(Vj � jdij j) (By Equation 4.2)

Now we prove the theorem. Because of j
Pm
i=1 dij j �

Pm
i=1 jdij j, we have:

nY
j=1

Uj �
nY
j=1

(Uj � j
mX
i=1

dij j) �
nY
j=1

Uj �
nY
j=1

(Uj �
mX
i=1

jdijj) (4:3)

Let V ij = Uj �
Pi�1
k=1 jdkj j for 1 � j � n, 1 � i � m. We can reduce the right-hand

side of Inequality 4.3 as below:

nY
j=1

Uj �
nY
j=1

(Uj �
mX
i=1

jdij j)

60

=
nY
j=1

V 1
j +

mX
i=2

nY
j=1

V i
j �

m�1X
i=1

nY
j=1

(V ij � jdijj)�
nY
j=1

(V m
j � jdmjj)

=
mX
i=1

(
nY
j=1

V ij �
nY
j=1

(V i
j � jdij j))

�
mX
i=1

(
nY
j=1

Uj �
nY
j=1

(Uj � jdij j)) (By the claim above)

By combining Inequality 4.3 and the above inequality, the theorem is proved.

A di�erent approach for the proof of Theorem 4.2 can be found in [96]. The proof

presented here is much simpler than that one.

61

Chapter 5

The Mapping Problem and its

Complexity for

Distributed{Memory

Multiprocessors

In this chapter, we formulate the problem of mapping regular loops onto distributed-

memory MIMD machines, and discuss its complexity. The hypercube structure is used

for our discussion whenever the interconnection network needs to be speci�ed. The com-

plexity of executing an arbitrary program on a multiprocessor has been studied extensively

(please see [50, Section A5.2] as examples). However, because our regular loop is repre-

sented in compact form instead of in its unrolled form, the techniques used to discuss

the complexity of executing arbitrary programs cannot be applied directly to our case. In

Section 5.1, the mapping problem is formally de�ned and some terminology is introduced.

In Section 5.2, the problem complexity is discussed.

62

5.1 Problem Statement

In this section, we will formally de�ne the mapping problem. We introduce two ways

of representing the problem: the free mapping and the linear mapping. The terms free

and linear were originally used in [71]. Section 5.1.1 de�nes the mapping problem by

unrolling the whole loops. By de�ning the problem in this way, both the communication

costs and communication conicts can be stated explicitly. However, as discussed in

Chapter 2, the size of an unrolled loop can be exponential in the size of its compact

representation. This implies that solving a problem with the loop unrolled takes time

at least exponential in the size of its compact loop representation. This is not desirable

sometimes. In Section 5.1.2, the mapping problem is de�ned by two linear functions: one

is for de�ning the execution time of an iteration, the other is for de�ning the execution

place (processor) of an iteration. These two functions can be represented in size that

is linear in the compact loop representation. However, the communication costs and

communication conicts are not taken care of explicitly in this case.

5.1.1 The Free Mapping Problem

Let the regular loop that will be mapped to a distributed-memory MIMD machine be

(S;D), where the iteration space S is [1; U1] � � � � � [1; Un] and the set of dependence

vectors D be fdi = [di1; � � � ; din] j 1 � i � mg. In addition, as a concrete example,

let us assume the MIMD machine is represented by a graph (V;E) with a hypercube

interconnection topology.

The complete de�nition of a mapping problem should specify:

� the location (processor) where an iteration is executed,

� the starting time when an iteration is executed,

63

� the path which is used for iteration X to send a message to iteration X + di, where

X 2 S and di 2 D, and

� the schedule that a message uses as it traverses from one processor to an adjacent

processor over a path.

Mathematically, we have:

� � : S ! V

�(X) is the hypercube node where iteration X 2 S will be executed.

� � : S ! Z0, where Z0 is the set of non-negative integers.

�(X) is the time which iteration X 2 S starts to be executed.

� � : S �D ! Z0, where Z0 is de�ned as above.

�(X; di) represents the number of links in the hypercube path, which is the image

of the edge X ! X + di in the dependence graph for the regular loop. If iteration

X 2 S and X + di 2 S are mapped to the same hypercube nodes (i.e., �(X) =

�(X + di)), then �(X; di) = 0. Note that the hypercube path should consist of

adjacent hypercube links only. In addition, the domain of the function � should

exclude those pairs (X; di)'s where the iteration X+di 62 S. However, for simplicity,

we will not formulate this fact explicitly.

� : S � D �M ! V , where M varies depending on di�erent X 2 S and di 2 D.

Given speci�c X 2 S and di 2 D, de�neM = f1; 2; � � � ; �(X; di)g when �(X; di) > 0.

(X; di; m) represents the hypercube node that is the source of the m-th link in the

hypercube path, which is the image of the edge X ! X + di in the dependence

graph. Note that (X; di; 0) = �(X).

64

� � : S �D �M ! Z0, where M and Z0 are de�ned as above.

�(X; di; m) represents the time that the hypercube node (X; di; m) sends out the

message, starting from node �(X) and ending at node �(X + di).

To be a valid mapping, the above functions must also satisfy several constraints. For

simplicity of our discussion, we will let

� the execution (computation) time of a single iteration be e, and

� the synchronization (communication) time between a pair of adjacent processors be

c.

The constraints for the above functions are as follows:

Hypercube Structures For each edge in the dependence graph for (S;D), the image

of this edge on the hypercube must use only hypercube links:

For X 2 S and di 2 D, if �(X; di) > 0 then

(X; di; 1) = �(X)

count((X; di; j)� (X; di; j + 1)) = 1 for 1 � j < �(X; di)

count((X; di; �(X; di))� �(X + di)) = 1

where count(x) is the number of 1's in the binary representation of x.

Resource Congestion Avoidance

Computation If two iterations are mapped to the same hypercube node, then their

computation time cannot be overlapped:

if �(X1) = �(X2), then either

�(X1) � �(X2) + e

65

or

�(X1) + e � �(X2)

Communication If two messages traverse the same hypercube link, then their

communication time cannot be overlapped (it is assumed that all the links

connected to a hypercube node can send/receive data independently at the

same time):

if (X1; di; m1) = (X2; dj; m2) and (X1; di; m1+1) = (X2; dj; m2+

1), then either

�(X1; di; m1) � �(X2; dj; m2) + c

or

�(X1; di; m1) + c � �(X2; dj; m2)

Remark: When m1 = �(X1; di), let (X1; di; m1 + 1) be �(X1 + di).

The case is de�ned similarly for m2.

Data Dependence Preservation The data dependencies stipulated by the regular loop

must be satis�ed. That is, an iteration cannot be started until it has received all of

the data from its immediately dependent predecessors.

� If an iteration and its immediately dependent predecessor are mapped onto the

same hypercube node, then the communication time is assumed to be zero:

if �(X) = �(X + di) then �(X) + e � �(X + di).

� If an iteration and its immediately dependent predecessor are mapped onto

di�erent hypercube nodes, then the communication time must be taken into

consideration:

66

if �(X) 6= �(X + di) then

{ �(X; di; 1) � �(X)+e. That is, an iteration can send out a message

only after the computation of this iteration has been �nished.

{ �(X; di; j + 1) � �(X; di; j) + c for 1 � j < �(X; di). That is, a

hypercube node can pass a message to the next node only after it

has receive the message from the previous node.

{ �(X + di) � �(X; di; �(X; di)) + c. That is, an iteration can start

its execution only after it has received the message from its imme-

diately dependent predecessors.

Note that the parallel execution time of the mapped regular loop on the hypercube

machine is maxf�(X)+ e j 8X 2 Sg. The optimal mapping problem is to �nd a mapping

(i.e., to compute the values of the above functions which satisfy their constraints) so that

the parallel execution time is minimal.

It has been shown that the problem of optimally mapping an arbitrary program onto a

multiprocessor machine is NP-complete [50]. We will prove our optimal mapping problem

(a special case of the more general problem) is NP-hard in Section 5.2.

5.1.2 The Linear Mapping Problem

It can be observed from the last section that even specifying a free mapping takes a

large amount of space (and hence time). This is not always desirable. Therefore, linear

mappings are often used instead.

As before, let us consider the regular loop (S;D), where the iteration space S is

[1; U1]�� � ��[1; Un] and the set of dependence vectorsD is fdi = [di1; � � � ; din] j 1 � i � mg.

A linear mapping consists of two mapping vectors: one vector is � = [�1; � � � ; �n] for

determining the starting time to execute an iteration, the other vector is H = [h1; � � � ; hn]

67

for determining the location (processor) to execute an iteration. Mathematically, we have:

� � �X , where \�" is the inner product of two vectors, is the starting time to execute

iteration X 2 S.

� H � X , where \�" is the inner product of two vectors, is the processor to execute

iteration X 2 S.

Since the path to send a message on the parallel machine is not speci�ed explicitly,

an execution scheme must have some way of specifying a path and to solve the commu-

nication congestion implicitly. This implicit strategy depends on the target machine's

structure. We will address the implicit communication protocol for our mapping strategy

in Chapter 6.

Let us assume that the execution time of an iteration is one unit, and the communi-

cation cost between two distinct processors is zero. Then a valid mapping must satisfy

the following conditions:

1. � �X 2 Z and H �X 2 Z, for all X 2 S, and Z is the set of all integers.

This means the times and the processor labels should be integers. An immediate

consequence of this condition is that every entry of � and H must also be an

integer. This consequence can be easily proved as follows. Let X = [x1; � � � ; xn]

and Y = [y1; � � � ; yn] be two iterations in S. Suppose x1 = y1 + 1 and xj = yj for

2 � j � n. Since � �X and � � Y are both in Z, it is clear that � �X � � � Y =

� � (X � Y) = � � [1; 0; � � � ; 0] = �1 must be in Z also. Other cases can be proved

similarly.

2. � � di > 0, for all di 2 D.

For any two dependent iterations X and X+di in S, the execution time of iteration

X+di must be after that of iterationX . Hence we have ��(X+di)���X = ��di > 0.

68

3. If � � (X1 �X2) = 0, then H � (X1 �X2) 6= 0, for all X1; X2 2 S and X1 6= X2.

This says that two distinct iterations X1 and X2 cannot be executed at the same

time by the same processor. Note that � � (X1 �X2) = 0 represents that iterations

X1 and X2 are executed at the same time, and H � (X1 �X2) 6= 0 represents that

iterations X1 and X2 are executed at di�erent processors.

Note that the linear mapping scheme has been used extensively in the context of sys-

tolic arrays [84] [91] [105]. In that setting, an architecture is designed to �t a regular loop.

In contrast, in our setting, a regular loop is transformed to �t a �xed architecture. Since

in the former setting, an architecture is \synthesized" instead of being given, additional

conditions than those listed above may be speci�ed. On the other hand, in our setting,

the communication paths and the avoidance of communication conicts must be speci�ed

by other rules in the mapping strategy.

It can be observed that the parallel execution time of a linearly mapped regular loop

is maxf�Y � �Z + 1 j 8Y; Z 2 Sg. It has been shown in [71] that the optimal parallel

execution times between a linear mapping and a fast mapping are within a constant of each

other. In the next section, we will show that determining the optimal parallel execution

time of a linearly mapped regular loop is NP-hard. This is important, as it supports the

use of exponential time algorithms [84] [122] to �nd optimal linear mappings, since we

show that even determining the optimal execution time is NP-hard!

5.2 The Problem Complexities

In this section, we will prove the following problems to be NP-hard:

Problem Q1: Is there a mapping of a given regular loop onto a MIMD machine of any

size so that the parallel execution time is less than or equal to T?

69

Problem Q2: Is there a mapping of a given regular loop onto a MIMD machine of p

processors so that the parallel execution time is less than or equal to T?

Problem Q3: Is there a linear mapping of a given regular loop onto a MIMD machine

of any size so that the parallel execution time is less than or equal to T?

As before, the regular loop that will be considered is still denoted by (S;D), where

S = [1; U1]� � � � � [1; Un] and D = fdi = [di1; � � � ; din] j 1 � i � mg. We �rst prove that:

Theorem 5.1 Problem Q1 is NP-hard.

Proof. Recall that in Theorem 3.5, we proved that Problem P2 is NP-hard. That is, it

is NP-hard for the problem of deciding, in a dependence graph (represented in compact

form), if there is a path with length greater than or equal to B.

To prove Problem Q1 to be NP-hard, we reduce Problem P2 to Problem Q1. Let the

computation cost of each iteration by a processor be 1 unit, and the communication cost

between any two processors be zero. Then it is clear that the length of a longest path in

the dependence graph is one less than the optimal parallel execution time of the regular

loop. That is,

� If there is a mapping so that the parallel execution time is less than or equal to B,

then there is no path with length greater than or equal to B.

� If there is no mapping so that the parallel execution time is less than or equal to B,

then there is a path with length greater than or equal to B.

Therefore, Problem P2 can be solved by applying Problem Q1. Since Problem P2 is

NP-hard, we conclude that Problem Q1 is also NP-hard.

70

The above theorem says that it is \hard" to decide the optimal execution time of

mapping a regular loop onto a MIMD machine with any number of processors. The next

theorem says that it is still \hard" if the MIMD machine has p processors, that is:

Theorem 5.2 Problem Q2 is NP-hard.

Proof. Note that a regular loop contains U1�U2�� � ��Un iterations. Since each iteration

is executed by at most one processor, the optimal execution time cannot be improved

any further if the number of processors used is beyond U1 � U2 � � � � � Un. Therefore,

Problem Q1 can be solved by applying Problem Q2 with the number of processors p set

to U1 � U2 � � � � � Un. Since Problem Q1 is NP-hard, we conclude that Problem Q2 is

also NP-hard.

Now we prove Problem Q3 is also NP-hard. To simplify our proof, we only consider the

\time mapping", and neglect the constant \1" in the parallel execution time maxf�Y �

�Z + 1 j 8 Y; Z 2 Sg. Mathematically, the optimal linear mapping problem Q3 can be

represented as follows:

Q31: minimize maxf� � Y �� �Z j 8 Y = [y1; � � � ; yn]; Z = [z1; � � � ; zn] 2 Sg

subject to:

� � di > 0 8 di 2 D

1 � yj ; zj � Uj for 1 � j � n

To simplify the above problem, let X = [x1; � � � ; xn] = Y � Z and let Vj = Uj � 1 for

1 � j � n. Then the above problem is equivalent to the following problem:

Q32: minimize maxf� �X j 8 X g

subject to:

� � di > 0 8 di 2 D

�Vj � xj � Vj for 1 � j � n

71

Note that when � = [�1; � � � ; �n] is decided, X = [x1; � � � ; xn] can be decided immedi-

ately. This is because we want to �nd the maximal value of � �X = �1x1 + � � �+ �nxn.

Hence if �j is positive, the value of xj will be Vj ; and if �j is negative, the value of xj will

be �Vj . In either case, the value of �jxj will be j�j j Vj . Therefore, the above problem is

equivalent to the following one:

Q33: minimize j�1jV1 + � � �+ j�njVn

subject to:

d11�1 + d12�2 + � � �+ d1n�n > 0

d21�1 + d22�2 + � � �+ d2n�n > 0

� � � � � �

dm1�1 + dm2�2 + � � �+ dmn�n > 0

Instead of proving the above problem to be NP-hard directly, we prove a special case

of the above problem to be NP-hard. The special case is by letting V1 = V2 = � � � = Vn.

Hence the problem of minimizing j�1jV1+ � � �+ j�njVn = (j�1j+ � � �+ j�nj)V1 is equivalent

to that of minimizing j�1j+ � � �+ j�nj, because Vi's are constants. The new problem is as

follows:

Q34: minimize j�1j+ � � �+ j�nj

subject to:

d11�1 + d12�2 + � � �+ d1n�n > 0

d21�1 + d22�2 + � � �+ d2n�n > 0

� � � � � �

dm1�1 + dm2�2 + � � �+ dmn�n > 0

Lemma 5.3 If Problem Q34 is NP-hard, then Problem Q33 is NP-hard.

72

Proof. Since Problem Q34 is a special case of Problem Q33, We can always use Problem

Q33 to solve Problem Q34. The proof follows immediately.

To facilitate our proof, we change the optimization problem Q34 to a decision problem:

Q35: If there exist [�1; � � � ; �n] so that j�1j+ � � �+ j�nj � K

subject to:

d11�1 + d12�2 + � � �+ d1n�n > 0

d21�1 + d22�2 + � � �+ d2n�n > 0

� � � � � �

dm1�1 + dm2�2 + � � �+ dmn�n > 0

Since an optimization problem can be reduced to a decision problem, we have the

following lemma:

Lemma 5.4 If Problem Q35 is NP-hard, the Problem Q34 is also NP-hard.

Proof. It is easy to have a Turing reduction from Problem Q35 to Problem Q34. The

proof follows immediately.

Now we prove Problem Q35 to be NP-hard. Note that there is at least one feasible so-

lution [�1; � � � ; �n] to Problem Q35, because for every dependence vector di = [di1; � � � ; din],

the leftmost nonzero entry must be positive. We will reduce the Hitting Set Problem [50,

Problem SP8, page 222] to Problem Q35.

The Hitting Set Problem is de�ned as follows:

De�nition Let A = fa1; a2; � � � ; ang be a �nite set of n elements, B1; B2; � � � ; Bm be m

subsets of the �nite set A, and K � n be a positive integer. Is there a subset A0 of A with

jA0j � K so that A0 contains at least one element from each subset B1; B2; � � � ; Bm?

Lemma 5.5 Problem Q35 is NP-hard.

73

Proof. Since the Hitting Set Problem is known to be NP-complete [50, Problem SP8,

page 222], we need only to �nd a polynomial time reduction from the Hitting Set Problem

to Problem Q35 so that the former problem answers \yes" if and only if the latter problem

answers \yes".

The reduction is as follows. For each subset Bi, 1 � i � m, if aj 2 Bi, then let

dij = 1; otherwise, let dij = 0. It is easy to see that this transformation can be completed

in polynomial time.

Note that since each subset Bi is non-empty, the corresponding dependence vector di

must have at least one nonzero entry. Furthermore, each entry of di can only be either 0

or 1. Hence the requirement of a dependence vector (the leftmost non-zero entry must be

positive) is satis�ed.

We now prove that the Hitting Set Problem answers \yes" if and only if Problem Q35

answers \yes". Suppose the answer to the Hitting Set Problem is \yes", then we have a

hitting set A0, where jA0j � K, which \hits" every subset Bi at least once. If aj 2 A0,

then let �j = 1; otherwise, let �j = 0. It is clear that the conditions of Problem Q35 (the

\subject to" part) are satis�ed and j�1j+ � � �+ j�nj = �1+ � � �+ �n � K. In other words,

the answer to Problem Q35 is also \yes".

Suppose on the contrary that the answer to Problem Q35 is \yes", then we have a

vector [�1; � � � ; �n] so that the conditions of Problem Q35 are satis�ed and j�1j+� � �+j�nj �

K. Since each of the dij 's is either 0 or 1, a negative �j , provided one exists, can always

be changed to a positive one without altering the satis�ability of Problem Q35. Hence we

can assume �j � 0, for 1 � j � n. If �j > 0, then let aj 2 A0; otherwise, let aj 62 A
0. It

is clear that the set A0 hits every subset Bi and jA
0j � K. In other words, the answer to

the Hitting Set Problem is also \yes".

Now we are ready to state our main theorem:

74

Theorem 5.6 Problem Q3 is NP-hard.

Proof. By the fact that Problem Q31, Q32, and Q33 are equivalent, and by Lemma 5.3,

5.4, and 5.5, the theorem follows immediately.

75

Chapter 6

Executing Regular loops on

Distributed{Memory

Multiprocessors

In this chapter, we propose a strategy of mapping regular loops onto distributed-memory

MIMD machines by applying linear mapping techniques [71] [82] [84] [87] [122]. As shown

in the previous chapter, �nding an optimal linear mapping is computationally intractable.

In other words, �nding an optimal linear mapping needs at least exponential time com-

putation in practice. Note that exponential time algorithms [84] [91] are usually used

to �nd optimal linear mappings of regular loops onto systolic arrays. This amount of

time is worthwhile because the systolic arrays will be used repeatedly. However, on a

distributed-memory MIMD machine, if the regular loops are compiled and executed only

a few times, then the compiling time (for �nding the mappings) and the computational

time (for executing the mapped loops) should be compromised. In this chapter, heuristic

algorithms are devised to �nd mappings of regular loops onto MIMD machines. The time

complexity of the heuristic algorithms is only linear in the problem size. In addition,

76

the e�ciency of the parallelized loop (generated by our algorithms) is also veri�ed by

experiments.

A simple mapping strategy is derived by combining existing work. For example, to

map a regular loop onto a distributed-memory hypercube machine, one can \concatenate"

the following two methods:

1. Mapping a regular loop onto a systolic array [84] [91] [105].

2. Mapping a systolic array onto a hypercube machine [66].

However, this approach has the following drawback. Suppose iteration X and Y are two

interdependent iterations in a dependence graph as shown in Figure 6.1(a). After step

1 of the mapping strategy, the regular loop is mapped onto a systolic array as shown

in Figure 6.1(b). Note that the edge X ! Y in the dependence graph is lengthened

into a sequence of links in the systolic array. After step 2 of the mapping strategy,

the systolic array is mapped onto a 2-dimensional hypercube as shown in Figure 6.1(c).

Note that the sequence of links from X to Y in Figure 6.1(b) is mapped onto the path

00! 01! 11! 10 in Figure 6.1(c). Therefore, in the 2-dimensional hypercube, iteration

X will send a message to iteration Y by passing through the path 00 ! 01 ! 11 ! 10,

instead of the shortest path 00 ! 10. This is because step 2 of the mapping strategy

does not know that X and Y are two immediately interdependent iterations. Therefore, a

more \integrated" strategy is preferred. In the following, we will describe such a mapping

strategy.

Throughout the rest of this chapter, the regular loop to be considered is of the form

(S;D), where S = [0; U1] � � � � � [0; Un], and D = fdi = [di1; � � � ; din] j 1 � i � mg. The

set of integers is denoted by Z, and the set of non-negative integers is denoted by Z0. In

addition, the computation time of each iteration is assumed to be one unit.

77

Figure 6.1: A two step mapping strategy. Step 1: map a regular loop in (a) to a systolic
array in (b). Step 2: map a systolic array in (b) to a 2-dimensional hypercube in (c).

78

Our heuristic algorithm for mapping the regular loop onto a distributed-memory

MIMD machine involves three steps:

1. Find a time mapping function T such that iteration X 2 S is executed at time

T (X). Function T must satisfy the condition that the execution time of iteration

X+di is greater than that of iteration X , that is, T (X+di) > T (X), for all di 2 D

and X;X + di 2 S.

2. Find a processor mapping function P such that iteration X 2 S is executed on

processor P(X). Function P must satisfy the condition that for any two itera-

tions executed on the same processor, their execution times are di�erent, that is, if

P(X) = P(Y), then T (X) 6= T (Y), for any X; Y 2 S.

3. If the number of available processors (called real processors) is less than the number

of processors required by step 2 (called virtual processors), then fold the virtual

processors to �t in the real processors.

The following three sections will discuss these three steps at more detail. In addition,

the mapped loop exploits cyclic shift operations to transmit data among inter-dependent

iterations, if these iterations are assigned to di�erent processors. In the next chapter, we

will study cyclic shift algorithms on distributed-memory hypercube machines.

6.1 Finding the Time Mapping Function

In this section, we will determine the time mapping function T so that an iteration

X 2 S will be executed at time T (X). The time mapping function has to satisfy certain

constraints. In addition, the parallel execution time of the mapped loop should be as small

as possible. In the rest of this section, a basic time mapping function is �rst described,

which is based on the linear mapping technique [82] [84] [91] [105]. With some minor

79

modi�cations, a new time mapping function is then de�ned, which reduce the parallel

execution time of the mapped loop.

6.1.1 A Basic Time Mapping Function

In this section, we will describe a basic time mapping function T so that an iteration

X 2 S will be executed at time T (X). The discussion of this section is in the following

order:

� The time mapping function T is �rst de�ned, and the time mapping vector � is

introduced.

� The constraint to the time mapping function (or equivalently, the time mapping

vector) is stipulated.

� The optimization criteria of the time mapping function is derived.

� A simple algorithm to �nd the time mapping vector � is described.

� An improved algorithm to �nd the time mapping vector � is devised.

Consider an iteration X = [x1; � � � ; xn] in S. The time mapping function is de�ned as

follows:1

T (X) = � �X = �1x1 + � � �+ �nxn (6:1)

where the vector � = [�1; � � � ; �n] is called a time mapping vector.

To satisfy the condition that an iteration will be executed after its immediately de-

pendent predecessors, we have:

T (X + di) > T (X)

1To make the execution time of an iteration non-negative, the time mapping function T should be

de�ned as T (X) = � � X + b, where b is an integer to make the smallest T (X) be zero. However, for

clarity of our discussion, we will allow negative execution times.

80

) � � (X + di) > � �X

) � � di > 0

That is, the time mapping vector must satisfy the condition that

� � di > 0 for every di 2 D (6:2)

With the time mapping function T de�ned as above, the values of xj and yj , 1 � j � n,

can be computed as follows to get the parallel execution time T :

T = maxfjT (X)� T (Y)j j 8 X; Y 2 Sg+ 1

= maxfj�X � �Y j j 8 X; Y 2 Sg+ 1

= maxfj�(X � Y)j j 8 X; Y 2 Sg+ 1

= maxfj
nX
j=1

�j(xj � yj)j j 0 � xj ; yj � Ujg+ 1

where X = [x1; � � � ; xn] and Y = [y1; � � � ; yn]. The value of xj and yj can be set as follows

to determine the value of T :

� When �j > 0, let xj = Uj , yj = 0, hence we have �j(xj � yj) = �jUj > 0.

� When �j = 0, we have �j(xj � yj) = 0 for any xj and yj .

� When �j < 0, let xj = 0, yj = Uj , hence we have �j(xj � yj) = ��jUj > 0.

Therefore, given a time mapping vector �, the parallel execution time is

T =
nX
j=1

j�j jUj + 1 (6:3)

Our goal is to minimize the value of T .

However, as noted in the previous chapter, it is NP-hard to �nd an time mapping

vector � so that the constraint in Eq. (6.2) is satis�ed and the parallel execution time

81

in Eq. (6.3) is minimized. That is, �nding an optimal time mapping vector � will take

at least exponential time in practice. Therefore, we will describe a heuristic algorithm

below to �nd a suboptimal time mapping vector �. This algorithm was also proposed

independently in [84].

Algorithm 6.1 Given a regular loop (S;D), where S = [0; U1] � � � � � [0; Un], and D =

fdi = [di1; � � � ; din] j 1 � i � mg, determine a time mapping vector � = [�1; � � � ; �n]:

1. Let �(di) be the position of the leftmost nonzero entry of di, for 1 � i � m;

In addition, let j, 1 � j � g, be a number between 1 and n so that j = �(di) for

some di 2 D;

Furthermore, assume 1 � 1 < 2 < � � �< g � n;

2. � = [�1; � � � ; �n] = [0; � � � ; 0];

3. for j = g downto 1 f

k = j ;

�k = minfr 2 Z0 j rdik +
Pn
l=k+1 �ldil > 0; 8 di 2 D such that �(di) = jg;

g

It is obvious that the time mapping vector � computed by the above algorithm satis�es

the constraint in Eq. (6.2):

Theorem 6.1 � � di > 0 for all di 2 D, where � is computed by Algorithm 6.1.

Proof. Note that for each dependence vector di 2 D with �(di) = j, we have dip = 0

for 1 � p < j. The theorem follows immediately.

Let us see an example for Algorithm 6.1 �rst:

82

Example 6.1 Consider the regular loop (S;D), where S = [0; 10]� [0; 15]� [0; 20], and

D = fd1 = [1; 3;�1]; d2 = [1; 2; 1]; d3 = [0; 0; 2]g. Then we have:

� 1 = �(d1) = �(d2) = 1

� 2 = �(d3) = 3

By using Algorithm 6.1, we obtain � = [�1; �2; �3] = [2; 0; 1], as shown below:

d1 = [1 , 3, -1]

d2 = [1 , 2, 1]

d3 = [0, 0, 2]

� = [2, 0, 1]

With this mapping vector, it can be seen that the parallel execution time T = 2 � 10 +

0� 15 + 1� 20 + 1 = 41.

In addition, it is easy to see that the above algorithm can be computed in time O(mn),

where m is the number of dependence vectors and n is the number of nested levels of the

regular loop. In other words, the above algorithm is very e�cient since it only takes time

linear to the problem size. Recall that computing the optimal time mapping vector �

takes exponential time in practice.

Note that in Algorithm 6.1, dimension k is not considered if no dependent vector

di 2 D so that �(di) = k. By considering those dimensions also, Algorithm 6.1 can be

revised to reduce the parallel execution time:

Algorithm 6.2 Given a regular loop (S;D), where S = [0; U1] � � � � � [0; Un], and D =

fdi = [di1; � � � ; din] j 1 � i � mg, determine a time mapping vector � = [�1; � � � ; �n]:

1. Let �(di) be the position of the leftmost nonzero entry of di, for 1 � i � m;

83

In addition, let j, 1 � j � g, be a number between 1 and n so that

 j = �(di) for some di 2 D;

Furthermore, assume 1 < 2 < � � � < g < g+1 = n+ 1;

2. � = [�1; � � � ; �n] = [0; � � � ; 0];

3. for (j = g downto 1) f

� =1;

for (k = j+1 � 1 downto j) f

A = fs 2 Z j sdik +
Pn
l= j+1 �ldil > 0; 8 di 2 D such that �(di) = jg;

if (A 6= ;) f

� = r, where r 2 A and jrj � jsj 8s 2 A;

/� in case of a tie, let � be the positive one �/

if (j�Ukj � �) f

� = j�Uk j; � = k; = �;

g

g

g

�� = ;

g

The correctness of the above algorithm is obvious:

Theorem 6.2 � � di > 0 for all di 2 D, where � is computed by Algorithm 6.2.

Proof. Note that for each dependence vector di 2 D with �(di) = j, we have dip = 0

for 1 � p < j. The theorem follows immediately.

84

Now let us see an example to show how Algorithm 6.2 improves the parallel execution

time:

Example 6.2 Consider the regular loop (S;D), where S = [0; 10]� [0; 15]� [0; 20], and

D = fd1 = [1; 3;�1]; d2 = [1; 2; 1]; d3 = [0; 0; 2]g. The time mapping vector computed by

Algorithm 6.2 is � = [�1; �2; �3] = [0; 1; 1], as is shown below:

d1 = [1 , 3, -1]

d2 = [1 , 2, 1]

d3 = [0, 0, 2]

� = [0, 1, 1]

Note that the parallel execution time now is T = [�1; �2; �3] � [U1; U2; U3] + 1 = 0 �

10 + 1 � 15 + 1 � 20 + 1 = 36 units. This is less than 40 units, which is required if the

time mapping vector obtained by Algorithm 6.1 is used.

Besides the correctness of the algorithm, as well as the e�ciency of the mapped loop, it

is also easy to see that the computational complexity of Algorithm 6.2 is still linear to the

problem size. That is, with the same computational complexity as that of Algorithm 6.1,

Algorithm 6.2 can give better parallel execution time of the mapped loop sometimes.

Unfortunately, Algorithm 6.2 does not always give the shorter parallel execution time

than Algorithm 6.1 does. This is because what Algorithm 6.2 does is still \local" op-

timization instead of \global" optimization. Fortunately, Algorithm 6.1 and 6.2 can be

combined together so that the computational complexity (of the algorithm) is still linear

in the problem size and the parallel execution time (of the mapped loop) is shorter than

those derived by either of Algorithm 6.1 or 6.2.

Algorithm 6.3 Given a regular loop (S;D), where S = [0; U1] � � � � � [0; Un], and D =

fdi = [di1; � � � ; din] j 1 � i � mg, determine a time mapping vector � = [�1; � � � ; �n]:

85

1. Let �0 = [�01; � � � ; �0n] be the time mapping vector computed by Algorithm 6.1;

2. Let �00 = [�001; � � � ; �00n] be the time mapping vector computed by Algorithm 6.2;

3. if (
Pn
j=1 j�0j j Uj <

Pn
j=1 j�00j j Uj)

� = �0;

else

� = �00;

It is clear that the time mapping vector computed by Algorithm 6.3 is better than

that computed by Algorithm 6.1 or 6.2:

Theorem 6.3 Given a regular loop (S;D), where S = [0; U1] � � � � � [0; Un], and D =

fdi = [di1; � � � ; din] j 1 � i � mg, let the parallel execution times of the regular loop be T1,

T2, and T3 respectively when the time mapping vectors are computed by Algorithm 6.1,

Algorithm 6.2, and Algorithm 6.3 respectively. Then T3 is less than or equal to T1 and

T2.

Proof. This theorem follows immediately from Algorithm 6.3 and Eq. (6.3).

6.1.2 An Improved Time Mapping Function

The parallel execution time can be reduced further by modifying the time mapping func-

tion. We will �rst state the key observation, then a new time mapping function, �nally a

new algorithm to �nd the associated time mapping vector.

Note that in Example 6.2, we have:

� � � d1 = [0; 1; 1] � [1; 3;�1] = 2

� � � d2 = [0; 1; 1] � [1; 2; 1] = 3

86

� � � d3 = [0; 1; 1] � [0; 0; 2] = 2

That is, the execution time of iteration X + di, where i = 1, 2, or 3, lags the execution

time of X by at least 2 time units. However, this 2 time unit delay is not necessary,

because the data required by a dependent succeeding iteration has been available in the

previous time step. Therefore, the time mapping function can be rede�ned to be

T (X) = b� �X=2c

without violating the dependence constraint.

In general, let the displacement of a time mapping vector � be as follows:

disp(�) = minf� � di j di 2 Dg (6:4)

Then the execution time of an iteration lags the execution time of any of its immediately

dependent predecessors by at least disp(�) units. Therefore, an iteration X 2 S can be

executed at time

T (X) = b
� �X

disp(�)
c (6:5)

without violating the dependence constraint. This is because for any X; Y 2 S, if � �X �

� � Y + disp(�), then we have b ��X
disp(�) c � b ��Y

disp(�)c+ 1. The parallel execution time of a

regular loop with the new time mapping function T in Equation 6.5 is:

T = maxfjT (X)� T (Y)j j 8 X; Y 2 Sg+ 1

= maxfjb
�X

disp(�)
c � b

�Y

disp(�)
cj j 8 X; Y 2 Sg+ 1

=

8><
>:

jb

Pn

j=1
j�jjUj

disp(�) c j or

jb

Pn

j=1
j�jjUj

disp(�) c j+ 1
(6.6)

To minimize the parallel execution time (6.6) associated with the new time mapping

function (6.5), the algorithm for �nding the time mapping vector � should be revised

also:

87

Algorithm 6.4 Given a regular loop (S;D), where S = [0; U1] � � � � � [0; Un], and D =

fdi = [di1; � � � ; din] j 1 � i � mg, determine a time mapping vector � = [�1; � � � ; �n]:

1. Let �(di) be the position of the leftmost nonzero entry of di, for 1 � i � m;

In addition, let j, 1 � j � g, be a number between 1 and n so that

 j = �(di) for some di 2 D;

Furthermore, assume 1 < 2 < � � � < g < g+1 = n+ 1;

2. � = [�1; � � � ; �n] = [0; � � � ; 0];

� =1;

3. for (j = g downto 1) f

� =1;

e =1;

for (k = j+1 � 1 downto j) f

A = fs 2 Z j sdik +
Pn
l= j+1 �ldil > 0; 8 di 2 D such that �(di) = jg;

if (A 6= ;) f

� = r, where r 2 A and jrj � jsj 8s 2 A;

/� in case of a tie, let � be the positive value �/

d = minf�dik +
Pn
l= j+1 �ldil > 0 j 8 di 2 D such that �(di) = jg;

if (j�Ukj
minfd;�g � �) f

� = j�Ukj
minfd;�g ; � = k; = �; e = d;

g

g

g

�� = ;

� = minfe; �g;

g

88

Note that the value of disp(�) is computed from �. Hence by using the time mapping

vector � computed by the above algorithm, the time constraint will not be violated:

Theorem 6.4 If Algorithm 6.4 is used to compute the time mapping vector, then we have

T (X + di) > T (X), where the time mapping function is de�ned in Eq. (6.5).

Proof. From the above discussion and the reason in the proof of Theorem 6.1, the

theorem follows immediately.

Besides the correctness of Algorithm 6.4, it is also obvious that the computational

complexity of Algorithm 6.4 is linear in the problem size.

6.1.3 Performance Evaluation

In this section, we show that the parallel execution time of a mapped loop by using our

method is \very close" to the optimal parallel execution time. The following quantities

of a mapped loop are used for our comparison:

� T1: the parallel execution time of a regular loop by using the time mapping function

(6.1) and the time mapping vector obtained by Algorithm 6.3.

� T2: the parallel execution time of a regular loop by using the time mapping function

(6.5) and the time mapping vector obtained by Algorithm 6.4.

� Topt: the optimal parallel execution time of a regular loop by using the time mapping

function (6.5) and the \best" time mapping vector.

We compare T1, T2, and Topt by using the 25 algorithms listed in [48, page 329]:

89

Algorithm 1 2 3 4 5 6 7 8 9 10 11 12 13

T1 10 10 10 28 10 19 55 28 10 19 28 55 28

T2 4 10 4 14 10 10 55 14 5 19 28 55 28

Topt 4 8 4 13 5 10 55 12 5 19 28 31 28

T1
Topt

2.5 1.25 2.5 2.15 2 1.9 1 2.33 2 1 1 1.77 1

T2
Topt

1 1.25 1 1.08 2 1 1 1.17 1 1 1 1.77 1

Algorithm 14 15 16 17 18 19 20 21 22 23 24 25

T1 10 19 19 10 37 10 37 13 9 13 17 21

T2 10 19 19 10 37 10 37 13 9 13 17 21

Topt 8 13 14 7 32 10 32 6 9 7 13 19

T1
Topt

1.25 1.46 1.36 1.43 1.16 1 1.16 2.17 1 1.86 1.31 1.11

T2
Topt

1.25 1.46 1.36 1.43 1.16 1 1.16 2.17 1 1.86 1.31 1.11

From the above table, it can be seen that:

� The average ratio of T1=Topt is 1:55.

� The worst case ratio of T1=Topt is 2:50.

� For T1, 6 out of 25 regular loops can be �nished in optimal parallel execution time.

� The average ratio of T2=Topt is 1:26.

� The worst case ratio of T2=Topt is 2:17.

� For T1, 10 out of 25 regular loops can be �nished in optimal parallel execution time.

From this experiment, we expect that our methods achieve good performance in practice.

90

6.2 Finding the Processor Mapping Function

After deciding the time mapping function T and the time mapping vector �, we will

decide the processor mapping function P so that if P(X) = P(Y), then T (X) 6= T (Y),

for any two distinct iterations X; Y 2 S.

We will use the time mapping function (6.1) instead of the time mapping function

(6.5). This is because, although Equation 6.5 gives shorter parallel execution time, more

processors are needed. Yet in practice, only limited number of processors are available.

That is, the folding step described in the next section is needed. However, after the fold-

ing step, the parallel execution time is lengthened. In other words, we cannot get better

parallel execution time because of the limited number of processors. Furthermore, if the

time mapping function (6.5) is used, the processor mapping function gets more compli-

cated and the program on each processor (called node program) becomes less e�cient.

Therefore, the time mapping function (6.1) will be used in the following discussion.

As in the previous section, we will �rst introduce a simple processor mapping function

P and then give a sequence of improvement to this processor mapping function. In

addition, we will also evaluate the number of processors required by our method, as well

as sketch the node program on each processor.

6.2.1 A Processor Mapping Function for (n� 1)-dim Pro-
cessors

Consider a projection vector Q = [q1; � � � ; qn] which maps each iteration in the n-

dimensional space onto an (n�1)-dimensional hyperplane. An example projection vector

is by letting Q = �, which guarantees that all the iterations on the same time hyperplane

are projected onto di�erent processors [124]. An example of this projection is shown in

Figure 6.2. However, if � is used as a projection vector, we will use more processors than

91

Figure 6.2: A regular loop with iteration space [0; 9] � [0; 9] and time mapping vector
� = [1; 1].

necessary. We explain this in more detail below.

Some more notation is �rst introduced:

� Q = [q1; � � � ; qn] denotes a projection vector with kQk = 1, where kQk represents

the length of vector Q.

� Q̂ represents an (n�1)-dimensional projection hyperplane with normal vector Q and

containing the origin.

� Ij = [i1; � � � ; in] is a vector where ij = 1 and ik = 0 for every k 6= j.

� X = [x1; � � � ; xn] is an iteration in S. It is easy to see that X =
Pn
j=1 xjIj .

92

� �
Q(X) is the image of X projected through the projection vector Q onto the pro-

jection hyperplane Q̂. We call �Q(X) a projected vector. Mathematically, we

have �Q(X) = X � (X � Q)Q. Equivalently, we have �Q(X) = �
Q(
Pn
j=1 xjIj) =Pn

j=1 xj
�
Q(Ij).

One of our goals is to determine the projection vector so that the number of processors

used is as small as possible. In other words, we want the number of distinct images on

the projection hyperplane to be as small as possible. We will show that if the projection

vector is chosen as one of the Ij 's, 1 � j � n, then the number of distinct images is the

smallest. We need a lemma �rst:

Lemma 6.5 The rank of f�Q(I1); � � � ; �Q(In)g is n� 1.

Proof. Since �Q(I1); � � � ; �Q(In) are vectors on an (n � 1)-dimensional hyperplane, it is

clear that the rank of �Q(I1); � � � ; �Q(In) is at most n� 1. We show that the rank cannot

be smaller than n � 1.

Case 1: Q = Ik, for some 1 � k � n.

Without loss of generality, let Q = I1. Then we have:

� �
Q(I1) = I1 � (I1 � I1)I1 = 0

� �
Q(Ij) = Ij � (Ij � I1)I1 = Ij , for 1 < j � n.

Therefore, it is clear that the rank of �Q(I1); � � � ; �Q(In) is n � 1.

Case 2: Q 6= Ij , for all 1 � j � n.

Note that the condition of this case implies that �Q(Ij) 6= 0 for 1 � j � n. Suppose

on the contrary that the rank of �Q(I1); � � � ; �Q(In) is less than n � 1. Without loss of

generality, assume that:

� �
Q(In�1) =

Pn�2
j=1 �j

�
Q(Ij)

93

� �
Q(In) =

Pn�2
j=1 �j

�
Q(Ij).

Then we have:8><
>:
In�1 � (In�1 �Q)Q =

Pn�2
j=1 �jIj �

Pn�2
j=1 �j(Ij �Q)Q

In � (In �Q)Q =
Pn�2
j=1 �jIj �

Pn�2
j=1 �j(Ij �Q)Q

)

8><
>:
In�1 �

Pn�2
j=1 �jIj = (In�1 �Q)Q�

Pn�2
j=1 �j(Ij �Q)Q = aQ where a 6= 0

In �
Pn�2
j=1 �jIj = (In �Q)Q�

Pn�2
j=1 �j(Ij �Q)Q = bQ where b 6= 0

)

8><
>:
Q = 1

a(In�1 �
Pn�2
j=1 �jIj)

Q = 1
b (In �

Pn�2
j=1 �jIj)

)

8><
>:
qn�1 6= 0; qn = 0

qn�1 = 0; qn 6= 0

This is a contradiction. The Lemma follows immediately.

Now we count the number of distinct images on the projection hyperplane. Recall

that our goal is to minimize the number of distinct images as much as possible. Based on

the previous lemma, the lower bound on the number of distinct images is shown below:

Lemma 6.6 Given a regular loop with iteration space [0; U1]�� � ��[0; Un] and a projection

vector Q, the number of distinct images L on the projection hyperplane is lower-bounded

as below:

� If Q = Ik for some 1 � k � n, then L =

Qn

j=1
(Uj+1)

Uk+1
.

� If Q 6= Ij for all 1 � j � n, then L �

Qn

j=1
(Uj+1)

Uk+1
, where Uk = maxfUj j 1 � j � kg.

Proof. The lemma is clearly true for the �rst case, so we prove the second case below.

By Lemma 6.5, it can be seen that any n � 1 vectors in the set f�Q(I1); � � � ; �Q(In)g

are linearly independent. Without loss of generality, consider a subset A of the iteration

94

space, where A = f[x1; � � � ; xn�1; 0] j 0 � xj � Uj for 1 � j � n� 1g. Then for any two

distinct iterations X = [x1; � � � ; xn] 2 A and Y = [y1; � � � ; yn] 2 A, we have �Q(X) =

Pn�1
j=1 xj

�
Q(Ij) and �

Q(Y) =
Pn�1
j=1 yj

�
Q(Ij). Since �Q(I1); � � � ; �Q(In�1)g are linearly

independent, it is clear that �Q(X) 6= �
Q(Y). Because the cardinality of A is

Qn

j=1
(Uj+1)

Un+1
,

we have L �

Qn

j=1
(Uj+1)

Un+1
. By considering every Uj as a denominator, the lemma follows

immediately.

Because of Lemma 6.6, we would like to let Q = Ik for some 1 � k � n so that the

number of processors used can be minimized. However, the dimension k cannot be chosen

arbitrarily, because we still need to follow the constraint that if two iterations are assigned

to the same processor, then their execution times must be di�erent. The constraint will

not be violated if Q = Ik where �k 6= 0:

Lemma 6.7 Suppose an iteration is projected to the projection hyperplane through the

projection vector Q = Ik, then any two iterations with the same projected image will be

executed at di�erent times if any only if �k 6= 0.

Proof. Consider any two iterationsX = [x1; � � � ; xn] andX
0 = [x01; � � � ; x

0
n], where xk 6= x0k

and xj = x0j for j 6= k. It is clear that these two iterations will be mapped to the same

image. Furthermore, we can see that their execution times are the same, i.e., ��X = ��X 0,

if and only if �k = 0. The lemma follows immediately.

Based on Lemma 6.6 and Lemma 6.7, we will choose the projection vector Q = Ik,

where �k 6= 0 and Uk = maxfUj j 1 � j � n; �j 6= 0g. In terms of the processor mapping

function, we de�ne:

P(X) = X � (X �Q)Q (6:7)

With this processors mapping function, the number of processors used is exactlyQn

j=1
(Uj+1)

Uk+1
.

95

In the following section, we will de�ne a 1-dim processor mapping function by mapping

the processors on the (n�1)-dim processor hyperplane onto a 1-dim processor hyperplane.

6.2.2 A Processor Mapping Function for 1-dim Processors

In this section, we will transform the processor mapping function in (6.7) so that the

\mapped" processors lie on a one dimensional processor array. Because our iteration

space is a rectangular polytope, and our projection vector Q = Ik is in a coordinate

direction, linearizing an (n� 1)-dimensional processor hyperplane into a one dimensional

processor array is exactly the same as linearizing array elements by row or column major

order in programming languages. Note that this linearizing process does not increase the

number of processors used. That is, the number of processors used is still

P =

Qn
j=1(Uj + 1)

Uk + 1
(6:8)

where k is the dimension where �k 6= 0 and Uk = maxfUj j 1 � j � n; �j 6= 0g.

For clearness of our following discussion, the following notations are used:

� Vk = 1

� Vj = Uj + 1, for 1 � j � n and j 6= k

Then for a given iteration X = [x1; � � � ; xn] 2 S, it will be executed on processor

P(X) = H �X = [h1; � � � ; hn] � [x1; � � � ; xn] (6:9)

where

hj =

8><
>:

0 if j = k

Qn
l=j+1 Vj otherwise

(6.10)

96

We show that the processor mapping function P de�ned in this way satis�es the

condition that if P(X) = P(Y), then T (X) 6= T (Y), for any two distinct iterations X

and Y in S.

Theorem 6.8 Let P and T be the function de�ned in (6.9) and (6.1) respectively. We

have if P(X) = P(Y), then T (X) 6= T (Y), for any two distinct iterations X and Y in S.

Proof. To prove the theorem, we prove that if H �X = H � Y , then � �X 6= � � Y .

Without loss of generality, suppose the n dimensions are reordered so that k = n. That

is, assume that Un = maxfUj j �j 6= 0; 1 � j � ng.

Let X = [x1; � � � ; xn] and Y = [y1; � � � ; yn]. Suppose H �X = H � Y . Then we must

have x1 = y1, because j
Pn
j=2 hjxj�

Pn
j=2 hjyj j = j

Pn
j=2 hj(xj�yj)j �

Pn�1
j=2 hj(Uj�0) =

Pn�1
j=2 (Vj�1)

Qn�1
l=j+1 Vl =

Pn�1
j=2

Qn�1
l=j Vl�

Pn�1
j=2

Qn�1
l=j+1 Vl =

Qn�1
j=2 Vj�1 <

Qn�1
j=2 Vj = h1.

Similarly, we have xj = yj , for 1 � j � n�1. Because X 6= Y , then we must have xn 6= yn.

Since �n 6= 0 by our assumption, we have � �X =
Qn�1
j=1 �jxj+�nxn 6=

Qn�1
j=1 �jyj+�nyn =

� � Y . This completes our proof.

6.2.3 An Improved Processor Mapping Function for 1-dim
Processors

When the time mapping vector � = [�1; � � � ; �n] contains more than one nonzero com-

ponents, with at least one component greater than 1 or less than �1, then we can map

more iterations onto one processor so that the total number of processors used can be

further reduced. For clearness of our discussion, we will assume �j � 0, for 1 � j � n.

Our discussion below can be extended to the general case easily.

Given a signi�cant dimension r where �r = 1, and another signi�cant dimension k

where �k > 1, let Gi denote a group containing all the iteration [x1; � � � ; xn], where

� 0 � xk � Uk . (Dimension k is the projection direction, i.e., Q = Ik .)

97

� xr = i. (Algorithms 6.3 (for �nding a time mapping vector �) guarantees that there

exists at least a dimension r such that j�rj = 1.)

� xj = ij , where ij is a constant between 0 and Uj .

Note that all the iterations in the same group are executed on the same processor because

Q = Ik. Furthermore, let

� =
X

1�j�n
j 6=k; j 6=r

�jij

Then the Uk + 1 iterations in group Gi will be executed at time � + i; �+ i+ �k; � + i+

2�k; � � � ; � + i+ Uk�k respectively. Therefore, it can be seen that the execution times of

group Gi; Gi+1; � � � ; Gi+�k�1 are interleaved:

Gi : � + i � + i+ �k � � � � + i+ Uk�k

Gi+1 : � + i+ 1 � + i+ 1 + �k � � � � + i+ 1 + Uk�k
...

...
...

...

Gi+�k�1 : � + i+ �k � 1 � + i+ �k � 1 + �k � � � � + i+ �k � 1 + Uk�k

Based on the above observation, we can map several groups onto one processor as

follows:

G0 G1 � � �G�k�1| {z } G�k G�k+1 � � �G2�k�1| {z } � � � GbUr=�kc�k GbUr=�kc�k+1 � � �GUr| {z }
With this grouping, it can be seen that the number of processors used is:

P =

Qn
j=1(Uj + 1)

l
Ur+1
�k

m
(Uk + 1)(Ur + 1)

(6:11)

If we neglect the small rounding error of the ceiling function, then minimizing the num-

ber of processors used is equivalent to letting dimension k be the one where �kUk =

maxf�jUj j �j > 1; 1 � j � ng. Note that this can be computed in linear time.

With this grouping, the processor mapping function P needs to be rede�ned. Again

for clarity of the processor mapping function P , we use the following notation:

98

� Vk = 1

� Vr = d(Ur + 1)=�ke

� Vj = Uj + 1, for 1 � j � n, j 6= k, and j 6= r

Then for a given iteration X = [x1; � � � ; xn] 2 S, it will be executed on processor

P(X) = H �X = [h1; � � � ; hn] � [x1; � � � ; xr�1;

�
xr
�k

�
; xr+1; � � � ; xn] (6:12)

where

hj =

8><
>:

0 if j = k

Qn
l=j+1 Vj otherwise

(6.13)

Now we prove that no two iterations will be executed at the same time on the same

processor:

Theorem 6.9 If iteration X is executed at time T (X) (Eq. (6.1)) on processor P(X)

(Eq. (6.12)), then no two iterations will be executed at the same time on the same pro-

cessor.

Proof. Consider two iteration X = [x1; � � � ; xn] and Y = [y1; � � � ; yn] in S, and X 6= Y .

Suppose P(X) = P(Y), we prove that T (X) 6= T (Y), i.e., � �X 6= � � Y .

Without loss of generality, suppose the n dimensions are reordered so that r = n � 1

and k = n. That is, assume that �n�1 = 1 and Un = maxf�jUj j �j > 1; 1 � j � ng.

By the discussion similar to that in Theorem 6.8, we have:

� xj = yj , for 1 � j � n � 2.

�
j
xn�1
�n

k
=
j
yn�1
�n

k
.

� If xn�1 = yn�1, then xn 6= yn.

99

Now consider � �X and � � Y . Since xj = yj , for 1 � j � n � 2, we only need to prove

that �n�1xn�1 + �nxn 6= �n�1yn�1 + �nyn. In other words, we only need to prove that

�n�1xn�1 � �n�1yn�1 6= �nyn � �nxn:

Case 1 (xn�1 = yn�1): trivial.

Case 2 (xn�1 6= yn�1): From the fact that
j
xn�1
�n

k
=
j
yn�1
�n

k
, and the fact that �n�1 = 1,

we know that �n�1xn�1 and �n�1yn�1 can di�er by no more than �n�1. Moreover,

if �nxn is di�erent from �nyn, then the di�erence must be an integer multiple of �n.

Therefore, it is clear that we cannot have �n�1xn�1 � �n�1yn�1 = �nyn � �nxn. This

completes our proof.

6.2.4 Performance Evaluation

In this section, we show that the number of processors required by our method is \very

close" to the minimal number of processors actually required. We assume that the time

mapping vector � has been computed by Algorithm 6.3.

The quantities compared are:

� P1: the number of processor required by using the processor mapping function (6.12)

and the processor mapping vector H determined in the previous section.

� Popt: the number of minimal processors required. That is, suppose ck is the cardi-

nality of the set fX j 8 X 2 S such that �X = kg. Then Topt is the maximal value

of ck's for all possible values of k.

By experimenting on the 25 regular loops listed in [48, page 329], we obtain the

following table:

100

Algorithm 1 2 3 4 5 6 7 8 9 10 11 12 13

P1 10 10 10 5 10 10 2 5 10 10 50 30 50

Popt 10 10 10 5 10 10 2 5 10 10 50 26 50

P1
Popt

1 1 1 1 1 1 1 1 1 1 1 1.15 1

Algorithm 14 15 16 17 18 19 20 21 22 23 24 25

P1 100 100 100 100 40 100 50 75 125 125 75 75

Popt 100 100 100 100 40 100 50 75 125 95 65 65

P1
Popt

1 1 1 1 1 1 1 1 1 1.32 1.15 1.15

Note that for 21 out of 25 loops, the number of processors required by our method

is the minimal number of processors. Even in the worst case, the extra processors used

are only 32% more. The average value of P1=Popt for these 25 loops is 1:03. Therefore,

we expect that in practice, this processor mapping function, computable in linear time,

is e�cient in using processors.

6.2.5 Node Program

In this section, we will describe how the mapped regular loop is executed on each processor,

according to the time mapping function (6.1) and the processor mapping function (6.12).

We call the program executed on a processor as a node program. For ease of discussion,

we assume that �j � 0, for 1 � j � n. The node program described below can be easily

modi�ed when we have �j < 0 for some j's.

Consider the node program on a processor with identi�er pid. In the node program,

we �rst need to identify the iterations to be executed, and then execute those iterations

sequentially. In addition, in the node program, we also have to accomplish the com-

munication among interdependent iterations on distinct processors. In the following, we

will address these issues in this order. In addition, we assume that dimension k and r

101

are the two signi�cant dimensions used by the processor mapping function (please see

Section 6.2.3).

Identify the iterations to be executed:

By Eq. (6.12), an iteration X = [x1; � � � ; xn] will be executed on processor pid if and

only if

P(X) = H �X = [h1; � � � ; hn] � [x1; � � � ; xr�1;

�
xr
�k

�
; xr+1; � � � ; xn] = pid

For convenience, let [x1; � � � ; xr�1;
j
xr
�k

k
; xr+1; � � � ; xn] = [a1; � � � ; an]. By the construction

of vector H = [h1; � � � ; hn], it is easy to see that:

� 0 � xk = ak � Uk

� aj =

�
pid�

Pj�1

i=1
hiai

hj

�
, for 1 � j � n and j 6= k.

� xj = aj for 1 � j � n, j 6= k, and j 6= r.

� �kar � xr � �kar + �k � 1.

By using this solution, the iterations to be executed on processor pid can be identi�ed (by

a node program) in linear time.

Execute the iterations:

After identifying the iterations to be executed, the node program will execute these

iteration in the order stipulated by the time mapping function Eq. (6.1). Note that for

all the iterations X = [x1; � � � ; xn] to be executed by the processor pid, the induction

variables xj , for 1 � j � n, are �xed constants aj , except that 0 � xk � Uk and

�kar � xr � �kar + �k � 1. Since �r = 1, these iterations will be executed from time

t1 =
P

1�j�n
j 6=k; j 6=r

�jaj + �r(�kar) to time t2 =
P

1�j�n
j 6=k; j 6=r

�jaj + �r(�kar + �k � 1) + �kUk,

with one iteration per time unit. Note that t2 � t1 + 1 = �k(Uk + 1), the total number of

iterations executed by a single processor. The node program is sketched below:

102

1. wait for t1 unit time;

2. let xj = aj , for 1 � j � n, j 6= k, and j 6= r;

3. for (xk = 0 to Uk)

4. for (xr = �kar to �kar + �k � 1) f

5. execute iteration [x1; � � � ; xn];

6. for (each di = [di1; � � � ; din] 2 D)

send data to the processor containing iteration [x1 + di1; � � � ; xn + din];

g

Note that the above node program will not be very succinct if the projection vector

is not set to be one of the Ij , 1 � j � n. For example, the node program in [124] will

be much more complicated, because the time mapping vector � is used as a projection

vector.

Accomplish the communication:

Step 6 of the above node program involves sending a message from processor P(X)

to processor P(X + di), where X 2 S and di 2 D. We show that the shift distance of the

message is independent of the locations of the iterations:

Lemma 6.10 Given a dependence vector di = [di1; � � � ; din] and iterations X, X+di 2 S,

we have P(X + di) �P(X) =
P

1�j�n
j 6=k; j 6=r

hjdij + hrd
0
ir, where d

0
ir = bdir=�kc or ddir=�ke.

(Recall that hk = 0.)

Proof. Let X = [x1; � � � ; xn]. Then the di�erence between P(X + di) and P(X) can be

computed as follows:

P(X + di)�P(X) = (
X

1�j�n
j 6=k; j 6=r

hj(xj + dij)+hr

�
xr + dir
�k

�
)�(

X
1�j�n
j 6=k; j 6=r

hjxj + hr

�
xr
�k

�
)

=
X

1�j�n
j 6=k; j 6=r

hjdij + hr (

�
xr + dir
�k

�
�

�
xr
�k

�
)

103

Let d0ir =
j
xr+dir
�k

k
�
j
xr
�k

k
, then we have:

Case 1: If dir�k = c 2 Z, then d0ir = (
j
xr
�k

k
+ c)�

j
xr
�k

k
= c =

j
xr
�k

k
=
l
xr
�k

m
.

Case 2: If dir�k = c+ a
�k
, where a; c 2 Z and 0 < a < �k:

� When b � xr
�k
< b+ �k�a

�k
, where b 2 Z, we have d0ir = (b+ c)� b = c =

j
dir
�k

k
.

� When b + �k�a
�k

� xr
�k

< b + 1, where b 2 Z, we have d0ir = (b + c + 1) � b =

c+ 1 =
l
dir
�k

m
.

This completes our proof.

Given a dependence vector di 2 D, let d(di) =
P

1�j�n
j 6=k; j 6=r

hjdij + hrbdir=�kc. Then for

every iteration X 2 S, we have:

� If dir�k 2 Z, then P(X + di)�P(X) = d(di).

� If dir�k 62 Z, then P(X + di)�P(X) = d(di) or d(di) + 1.

Therefore, if for every iteration X , the data is sent to its dependent successors in the

order X + d1; X + d2; � � � ; X + dm, then Step 6 in the node program can be coded as

follows:

104

6. for (i = 1 to m)

if (dir�k 2 Z) f

6.1 send data to processor pid + d(di)

6.2 receive data from processor pid � d(di)

g else f

6.3 send data to processor pid + d(di)

6.4 receive data from processor pid � d(di), store it in tmp

6.5 send tmp to processor pid + 1

6.6 receive data from processor pid � 1

g

Certainly, if for some dependence vector di 2 D, d(di) = 0, then no data commu-

nication across the processors is needed for that dependence vector. In addition, note

that during the execution of a regular loop, each processor has an iteration to execute.

Therefore, the communication of data can be accomplished by exploiting the all-processor

shift algorithms:

� Step 6.1 and 6.2 is with shift distance d(di).

� Step 6.3 and 6.4 is with shift distance d(di).

� Step 6.5 and 6.6 is with shift distance 1.

Reduce the communication cost:

Some technique can be used to reduce the communication cost. Recall that in Eq. (6.4),

we de�ne:

disp(�) = minf� � di j di 2 Dg

which means that the execution time of iteration X + di, for any di 2 D, must be behind

the execution time of iteration X by at least disp(�) unit time. That is, an iteration

105

X can postpone sending data to its dependent iterations X + di, di 2 D, by at most

disp(�) � 1 unit time, without violating the time constraint. Since the communication

time involves the startup time and the data transmission time, i.e.,

(communication time)=(startup time)+(data transmission time per byte)�(# of bytes)

we can reduce the overall communication time by increasing the number of bytes per

communication. To do this, the node program is changed so that the data is sent out at

every disp(�) unit time. That is, a time counter will be used to control whether or not

to execute Step 6:

6. if ((time counter + 1)=disp(�) 2 Z)

for (i = 1 to m) f

� � �

g

6.3 Folding Virtual Processors

Since the number of available processors (called real processors) is usually less than the

number of processors (called virtual processors) required by the method in previous sec-

tion, we need to fold the virtual processors so that they �t into the real processors.

Suppose the number of real processors is Pr. Then we map virtual processor P(X), where

X 2 S, to the real processor Pf(X) as follows:

Pf(X) = P(X) (mod Pr) (6:14)

After the processor mapping function is changed, the time mapping function T needs

be changed also to Tf so that the time and processor constraints are not violated:

Time Constraint: Tf(X + di) > Tf(X), for all X 2 S and di 2 D.

106

Processor Constraint: If Pf(X) = Pf (Y), then Tf(X) 6= Tf (Y), for all X; Y 2 S.

There are two ways to de�ne the new time mapping function Tf , that is, the (virtual)

processor major folding method and the time major folding method. After the mapping

functions T and P have been determined, the execution of a regular loop can be repre-

sented as a (virtual) processor{time plane, as shown in Figure 6.3. In the following, we

will describe these two folding methods.

The (virtual) processor major folding method is by (1) cutting the plane into vertical

slates, where each slate is with width Pr, and (2) stacking the slates vertically. The graph

representation of this method is shown in Figure 6.3(a). It is not hard to see that the

new time mapping function Tf is:

Tf (X) = bP(X)=PrcTv + T (X) (6:15)

where Tv is the virtual parallel execution time, i.e., Tv =
Pn
j=1 j�j j Uj + 1.

By using this method, it is clear that the Processor Constraint is not violated. How-

ever, the Time Constraint may be violated, if, for example, an iteration X in slate 2 needs

to send data to an iteration X + di in slate 1. Therefore, to follow the Time Constraint,

we must have:

P(X + di) � P(X) 8 X 2 S and 8 di 2 D

In other words, if the condition that P(di) � 0 is satis�ed, then the time constraint will

be obeyed and hence the processor major folding method can be used. Note that the n

dimensions can be reordered sometimes so that the condition P(di) � 0 will be satis�ed.

Alternatively, the new time mapping function Tf can be de�ned by using the time

major folding method. The method is by (1) cutting the processor{time plane into bricks,

where each brick is with width Pr and height no more than disp(�), (2) stacking the

bricks in time (row) major order. The graph representation of this method is shown in

107

Figure 6.3: (a) (Virtual) processor major folding method. (b) Time major folding method.

108

Figure 6.3(b). It is not hard to see that the new time mapping function Tf is:

Tf (X) = T (X)dPv=Pre + bP(X)=Prc (6:16)

where Pv is the number of virtual processors in (6.11). With this new time mapping

function, it is also easy to see that both the time constraint and the processor constraint

are obeyed.

The two folding methods mentioned above are work preserving transformations, that

is, we have PvTv = PrTr, where Pv , Pr, and Tv are de�ned above, and Tr is the paral-

lel execution time on the real processors. However, with some minor modi�cation, these

transformations can reduce the amount of work sometimes. The key point is that the iter-

ations on the processor{time plane may not necessarily constitute a rectangle. Therefore,

the \stacking" of slates or bricks can be more compact sometimes. Figure 6.4 illustrates

the idea behind the processor major folding method. The new time mapping function can

be easily rede�ned to accomplish such a modi�cation, hence we omit the detail here.

In addition, the node programs need be modi�ed also to accomplish the folding step.

Since the virtual processors and the real processors are related by a module function

(Eq 6.14), the modi�cation is quite simple.

Moreover, recall that in the virtual processor setting, an all-processor shift algorithm

is needed. Suppose the shift distance is d. Then after the folding step, the algorithm

needs to be used is the all-node cyclic shift algorithm, with shift distance d (mod Pr),

where Pr is the number of real processors. As a concrete example of how the cyclic shift

algorithm works, the next chapter is devoted to the cyclic shift algorithms on hypercube

machines.

As a summary, given a regular loop, we map it onto a distributed-memory MIMD

machine in three steps as follows:

109

Figure 6.4: (a) (Virtual) processor{time plane. The iterations constitute the shadow
region. (b) Processor major folding method without compression. (b) Processor major
folding method with compression.

110

1. compute the time mapping function,

2. compute the (virtual) processor mapping function, and

3. fold the virtual processors into real processors.

In addition, the mapped loop exploits cyclic shift operations to accomplish the data

communication, which is the only part dependent on the interconnection structure. That

is, on a new machine, we only need to implement a new cyclic shift algorithm, and the

three steps in our mapping strategy can be easily implemented by using existing code, since

the above three steps are machine independent.

111

Chapter 7

Very E�cient Cyclic Shifts on

Hypercubes

Our mapping strategy in last chapter utilizes cyclic shift operations to achieve data com-

munications among processors. To get a better insight of the cyclic shift operation, we

devote this chapter to the cyclic shift algorithms for hypercube machines. Besides being

used by our mapping strategy, cyclic shifts are also intrinsic operations in many paral-

lel algorithms. Therefore, it is important to execute them e�ciently. In this chapter, we

present and analyze algorithms for the cyclic shift operation on n-dimensional (distributed

memory) hypercubes.

This chapter is organized as follows. Section 7.1 introduces previous work and briey

summarizes our contribution. Section 7.2 formally de�nes the model and the cyclic shift

problem. Section 7.3 presents and analyzes the Shortest Path Algorithm, which always

uses the minimal number of links to route a message. Section 7.4 shows the Disjoint Link

Algorithm, which always guarantees that all of the routing paths are link disjoint. Finally,

Section 7.5 compares the merits of various cyclic shift algorithms.

112

7.1 Introduction

The cyclic shift algorithm is interesting because, besides being used by our mapping

strategy (in Chapter 6), the cyclic shift (or rotation) operation is also used by many

algorithms (such as parallel matrix multiplication) in a natural way as a primitive step.

This has been recognized in a variety of parallel computational settings [68] [73] [137].

As noted by Johnsson [68], \many linear algebra algorithms can be formulated using

rotations as an operator on aggregate data structures". Consequently, a \better" cyclic

shift algorithm is instrumental in improving the performance of such problems. Informally,

a cyclic shift operation is that by arranging all the nodes in an n-dimensional hypercubes

into a linear array, every node will send a message to the node at distance d apart away

cyclically. Formal de�nition of the cyclic shift operation will be introduced in Section 7.2.

In this chapter, we present provably e�cient (sometimes optimal) algorithms for realizing

cyclic shifts on distributed memory hypercubes, which are popular commercially and in

research [60] [109] [120] [144].

Typically, an n-dimensional hypercube consists of 2n processors (nodes), intercon-

nected in a hypercube topology [60] . Because of its abundant communication bandwidth,

hypercube attracts many attentions: its properties and routing schemes are extensively

explored [2] [30] [55] [59] [67] [68] [72] [95] [101] [113], abundant algorithms are designed

for it [17] [23] [39] [49] [65] [79] [88] [92] [97], and embedding various data structures, such

as tree [19] [40] [85] [138], mesh [24] [25] [26] [54] [63] [64], and others [28] [31] [32] [34]

[43] [62] [77] [136], into hypercube topology is widely studied.

An array of data or processes can be embedded onto hypercube nodes either in natural

order or in Binary-Reect Grey Code (BRGC) order. Consider an array a[0::N � 1]

to be embedded onto an n-dimensional hypercube, where N = 2n. The natural order

embedding assigns a[i] to hypercube node i, while the BRGC order embedding assigns

113

a[i] to hypercube node j, where j is the BRGC representation of i. An array embedded

in one order can be transformed into the other order in n � 1 communication steps [68].

In addition, these two embedding schemes have the following important properties: for

natural order embedding, a[i] and a[i + 2k] are assigned to adjacent hypercube nodes,

where iand2k = 0 and 0 � i; i+ 2k < N ; while for the BRGC order embedding, a[i] and

a[i + 1 (mod N)] are assigned to adjacent hypercube nodes. Depending on applications

and algorithms, one of these embedding schemes is adopted over the other. For example,

the natural order embedding is used by algorithms for bitonic merge [93] and convolution

[108], while the BRGC order embedding is used by algorithms for matrix manipulations

[17] and fast Fourier transforms [23].

On an n-dimensional hypercube where an array is embedded in the natural order, a

cyclic shift operation can be performed in n communication steps, with the property that

all of the n routing paths are link disjoint [108]. However, no cyclic shift algorithm is

known on an n-dimensional hypercube when an array is embedded in the BRGC order.

In this chapter, we concentrate on the cyclic shift algorithms for the hypercubes where

arrays are embedded in the BRGC order. Note that a cyclic shift algorithm for the BRGC

order embedding can be designed by composing the \embedding order transformation

algorithms" and the \cyclic shift algorithms for the natural order embedding". However,

this composed algorithm is neither e�cient (3n � 2 communication steps are required),

nor does it maintain the link disjoint property.

Historically, Johnsson presented two algorithms (henceforth referred to as J1 and J2

respectively) for the cyclic shift operation, to which he refers as the rotation operation. As

noted in [68], to route a message from a source node to a sink node on an n-dimensional

hypercube, Algorithm J1 uses at most 2n hypercube links, while Algorithm J2 uses at

most n hypercube links. (Throughout this chapter, we will be restricting our attention to

114

routing patterns that are generated by cyclic shifts only.) The intuition behind motivating

Algorithm J1, even though it is obviously less e�cient than J2 is as follows: using more

communication links reduces the \possibility" that two routing paths will contend for the

same hypercube link, thereby reduces the need for local bu�ering (memory) to route the

conicting messages. Therefore, the hope is that link congestion can be traded-o� against

more communication steps. However, there is no analysis to substantiate this intuition.

By studying Algorithm J1 and J2 carefully, we discover surprisingly that Algorithm J2

is both faster as well as has negligible congestion. In particular, the amount of congestion

that it introduces is never worse than that introduced by Algorithm J1. this is contrary

to the intuition conveyed by the previous work about Algorithm J1. To better under-

stand this, let us re�ne hypercube architectures into the synchronous and asynchronous

communication cases. This classi�cation is central to the analysis of the congestion, and

hence the size of local bu�ers needed to realize cyclic shifts.

Speci�cally, we show that on synchronous1 hypercubes, Algorithm J2 guarantees that

a link is never used by two di�erent routing paths during the same communication step

(Theorem 7.3). Therefore, Algorithm J2 can always be used in place of Algorithm J1 on

synchronous hypercubes, with twice the speed. Furthermore, since Algorithm J2 uses no

more than n links for a routing path, it is trivially optimal.

On asynchronous hypercubes, we show that Algorithm J2 guarantees that any link is

used by at most two di�erent routing paths (Theorem 7.6). This implies that at most

one word of local bu�er per-link is su�cient, since on any link, at most two messages can

conict during the cyclic shift operation. Note that this leads to a worst-case slowdown of

one unit at every link on a routing path for any message. Therefore, even in the worst-case

Algorithm J2 can route messages between hypercube nodes in 2n� 2 steps; this bound is

1All the communication and computation steps proceed in lock-step.

115

tight. Furthermore, in this setting, we can show (trivially) that Algorithm J1 also results

in link congestion, and is thus strictly worse than Algorithm J2 in the asynchronous case

as well.

We note that in a completely asynchronous setting, any algorithm that shares links

across paths has the drawback that messages from di�erent paths are likely to contend for

the same link at the same time. Therefore, local bu�ers are necessary in this case. This

need for local bu�ers can be circumvented if we restrict our attention to message routing

schemes that do not share links for any shift distance. We present such an algorithm,

referred to as the disjoint link algorithm (Theorem 7.17). Moreover, we show that on any

n-dimensional hypercube, and given any shift distance, the algorithm uses no more than

4
3n links2 between any pair of hypercube nodes (Theorem 7.18). We note that this is no

more than 34% overhead relative to the obvious optimum, namely n.

The problem of general permutation routing in hypercubes has a rich history; please

see [35] [69] [106] [128] [135] as examples. While these algorithms are all asymptotically

e�cient (or optimal as the case might be), their analysis relies on the traditional \big-Oh"

notation. Such analysis does not explicitly account for the constants that multiply the

complexities, which are of signi�cance especially when a given operation such as cyclic shift

is used repeatedly by other more complex algorithms. It is our intent here to analyze the

complexity of our algorithms by explicitly accounting for these multiplicative constants,

for the restricted and yet important special case of permutation routing, namely cyclic

shifts.

2More precisely, when the shift distance is d, the number of links used is no more than 4

3
dlog d0e+ 1,

where d0 = d if 1 � d � 2n�1, and d0 = d� 2n�1 if 2n�1 < d < 2n.

116

7.2 Preliminaries

7.2.1 The Hypercube Architecture

An n-dimensional hypercube (or binary n-cube) is a directed graph G = (V;E), where V

contains 2n nodes labeled from 0 to 2n� 1, and E contains all of the links v1 ! v2 where

the n-bit binary representations of the labels of v1 and v2 di�er by exactly one bit. A

hypercube link is at dimension i if v1 and v2 di�ers at bit i (the least signi�cant bit is at

position 0). Two kinds of hypercubes are considered in our study. A hypercube is syn-

chronous if the computation and communication are performed in lock-step. Otherwise,

a hypercube is asynchronous. In addition, it is assumed that all of the incident links on

a hypercube node can send/receive messages concurrently, as the model used in [69].

7.2.2 Problem Statement

Associated intimately with hypercubes is the Binary Reected Gray Code (BRGC) [111].

An n-bit Binary-Reected Gray Code (BRGC) Gn is a sequence of 2n n-bit strings de�ned

recursively as below:

G1 = [0; 1]

Gn = [0Gn�1; 1G
R
n�1]

where 0Gn�1 (1G
R
n�1) means a 0(1) is inserted at the head of every string of Gn�1 (G

R
n�1),

and GR
n�1 is the sequence of strings in reversed order of Gn�1. For example, G2 =

[00; 01; 11; 10], and G3 = [000; 001; 011; 010; 110; 111; 101; 100]. In addition, let Gn(i)

represent the (i+ 1)st n-bit string in Gn. That is, Gn is the sequence of integers Gn(0),

Gn(1), Gn(2), � � �, Gn(2
n � 1).

The cyclic shift problem is de�ned as follows. In an n-dimensional hypercube, the

117

cyclic shift problem is that each node Gn(i) will send a message to node3 Gn(i +

d (mod 2n)) for all i, 0 � i � 2n � 1, and some �xed d, 1 � d � 2n � 1. Please note that

when the shift distance is an integer multiple of 2n, no message shifts are needed at all;

and when the shift distance , say d0, is not in the range as speci�ed, we can always let d

be d0 (mod 2n) and get the same results. Recall that the reason for considering routing

from Gn(i) to Gn(i+ d (mod 2n)) instead of from i to i+ d (mod 2n) is that it yields a

natural way through BRGC for embedding, which has the advantage that adjacent array

elements are allocated at neighboring hypercube nodes.

7.3 The Shortest Path Algorithm

In this section, we will introduce and analyze in detail Johnsson's algorithm J2, which is

referred to as the shortest path algorithm because it always uses the minimal number of

links to route a message.

7.3.1 The Algorithm

The shortest path algorithm is described below:

Algorithm 7.1 Given a hypercube of dimension n, a node Gn(i), and a shift distance

d, where 0 < d < N = 2n, the following algorithm routes a message from Gn(i) to

Gn(i+d (mod 2n)) by correcting successive bits that di�er in Gn(i) andGn(i+d (mod 2n)),

from the less signi�cant end to the more signi�cant end:

3When b > 0, de�ne a (mod b) � a � ba
b
c � b. Note that a (mod b) will never be negative by this

de�nition.

118

let the binary representations of Gn(i) and Gn(i+ d (mod 2n)) be gan�1g
a
n�2 � � �g

a
0

and gbn�1g
b
n�2 � � �g

b
0 respectively;

let t1; . . . ; tk be the numbers such that gatj = gbtj and t1 < t2 < � � � < tk ;

/� x means the complement value of bit x �/

gn�1gn�2 � � �g0 = gan�1g
a
n�2 � � �g

a
0 ;

path = gn�1gn�2 � � �g0;

for j = 1 to k do f

gtj = gtj ;

path = path gn�1gn�2 � � �g0; /� \ " stands for concatenation here. �/

g

The algorithm is correct because any two hypercube nodes are connected if their node

labels di�er by exactly one bit. In addition, it is mentioned by Johnsson that each such

path is subject to at most n routing steps, yet a hypercube link may be congested by

more than one paths. Johnsson explain this phenomenon by an example which routes

messages from G3(i) to G3(i+ 3 (mod 8)) for i = 0 and 1:

0: 000! 010

1: 001! 000! 010! 110

Note that in this example, the link 000! 010 is congested only in the asynchronous

communication environment. When considered in the synchronous communication envi-

ronment, the link 000! 010 is not a congested link. In the following section, we will prove

that algorithm 7.1 yields no hypercube link congestion at any synchronous communication

step.

119

7.3.2 Properties on Synchronous Hypercubes

In this section, an important property (Theorem 7.3) of executing the shortest path

algorithm on synchronous hypercubes is presented. Before describing the theorem, De�-

nition 7.1 to 7.3 are introduced �rst to facilitate the proof of the theorem.

De�nition 7.1 For a positive integer d, de�ne d = 2dlog2 de.

De�nition 7.2 A region of Gn is a sequence of consecutive BRGC numbers S � [Gn(a);

Gn(a+ 1); . . . ; Gn(b)]. Let f(S) = a, l(S) = b, and nf(S) = l(S)+ 1 (mod 2n). Then we

have:

� jSj = b� a + 1 is the size of region S.

� S is a whole region if jSj divides both f(S) and nf(S).

Note that Gn contains 2n�k whole regions with size 2k each. For any two strings in

the same whole region, their most signi�cant n � k bits are same. For any two strings in

consecutive whole regions, their most signi�cant n� k bits di�er by at most one bit.

De�nition 7.3 The wraparound subtraction around 2n for 0 � as; bs < 2n is de�ned as

follows:

bs
:

n
as =

8><
>:

bs� as if bs � as

2n � as+ bs otherwise

Using these de�nitions, we �rst prove the following two lemmas:

Lemma 7.1 Consider two n-bit strings Gn(a) = gan�1g
a
n�2� � �g

a
0 and Gn(b) =

gbn�1g
b
n�2 � � �g

b
0 in Gn. If gan�1g

a
n�2 � � �g

a
k = gbn�1g

b
n�2 � � �g

b
k, for k < n, then a and b

are in the same whole region of size 2k.

120

Proof.

From the de�nition of the binary-reected gray codes, we have Gk+1 = f0Gk; 1G
R
k g,

Gk+2 = f00Gk; 01G
R
k ; 11Gk; 10G

R
k g. By simple induction on k < n, Gn can be divided

into 2n�k whole regions where all of the 2k strings in each whole region have the same

most signi�cant n� k bits, and no two numbers in di�erent whole regions have the same

most signi�cant n� k bits. The lemma follows immediately.

Lemma 7.2 Consider two n-bit strings Gn(as) = gasn�1 � � �g
as
0 and Gn(bs) = gbsn�1 � � �g

bs
0

in Gn. For all 0 < k < n and 0 � as; bs < 2n, if bs :
nas < 2k and gask�1g

as
k�2 � � �g

as
0 =

gbsk�1g
bs
k�2 � � �g

bs
0 , then bs :

nas is odd.

Proof. Let us divide Gn into 2n�k+1 whole regions S0; S1; � � � ; S2n�k+1�1, with each

region containing 2k�1 strings. Furthermore, let Bi represent the strings in Si with each

string restricted to the least signi�cant k bits. By the de�nition of binary reected Gray

code, it is not hard to see that B0 = 0Gk�1; B1 = 1GR
k�1; B2 = 1Gk�1; B3 = 0GR

k�1; B4 =

0Gk�1, and so on. Therefore, from the conditions that bs :
nas < 2k and gask�1g

as
k�2 � � �g

as
0 =

gbsk�1g
bs
k�2 � � �g

bs
0 , we know Gn(as) and Gn(bs) must be in region S2i�1 and S2i (mod 2n�k+1)

respectively for some i. Furthermore, from the reective property between B2i�1 and

B2i (mod 2n�k+1), bs
:
nas must be odd. This completes our proof.

Now we are ready to present the main property:

Theorem 7.3 On a synchronous n-dimensional hypercube, any two messages sent from

source nodes Gn(a) and Gn(b) to sink nodes Gn(a+ d (mod 2n)) and Gn(b+ d (mod 2n))

respectively will never reach the same hypercube node at the same time step provided the

Shortest Path Algorithm is used.

Proof. For convenience, let as � a + d (mod 2n) and bs � b + d (mod 2n). In addition,

let the n-bit binary representations of Gn(v) be gvn�1g
v
n�2 � � �g

v
0 for v = a; b; c; as; bs re-

121

Figure 7.1: Illustration for the proof of Theorem 7.3.

spectively. We prove by contradiction that it is impossible that the message from Gn(a)

to Gn(as) and the message from Gn(b) to Gn(bs) will arrive at a common node Gn(c)

during the same communication step.

Suppose on the contrary that at time step p, the messages from nodes Gn(a) and

Gn(b) arrive at node Gn(c) simultaneously via the hypercube links at dimension ad and

bd respectively (please see Figure 7.1). Without loss of generality4, assume ad 6= bd and

let k � 1 = max(ad; bd).

Now from the routing scheme, we have

1. gan�1 � � �g
a
k = gcn�1 � � �g

c
k = gbn�1 � � �g

b
k.

2. gask�1 � � �g
as
0 = gck�1 � � �g

c
0 = gbsk�1 � � �g

bs
0 .

Without loss of generality, let us assume that 0 � a < b < 2n. From the fact

that gan�1g
a
n�2 � � �g

a
k = gbn�1g

b
n�2 � � �g

b
k and Lemma 7.1, we know that b � a < 2k. Since

b � a = bs :
nas, it follows that bs

:
nas < 2k. From this fact and that gask�1g

as
k�2 � � �g

as
0 =

gbsk�1g
bs
k�2 � � �g

bs
0 , it follows from Lemma 7.2 that b� a = bs :

nas is odd.

From the construction of BRGC, b� a being odd implies that the Hamming distance

between Gn(a) and Gn(b) is odd also. Furthermore, note that the Hamming distance

4If ad = bd, we can always �nd an earlier time step p0 such that ad0 6= bd0.

122

between two adjacent hypercube nodes is exactly 1. Therefore, it is impossible that the

messages sent from Gn(a) and Gn(b) will arrive at a common node Gn(c) at the same

time step when the Hamming distance between Gn(a) and Gn(b) is odd. This contradicts

to our assumption that messages sent from Gn(a) and Gn(b) will arrive at the same node

Gn(c) simultaneously.

Since from Theorem 7.3, all of the routing paths use distinct nodes at each communi-

cation step, it follows immediately that:

Corollary 7.4 On a synchronous n-dimensional hypercube, two messages sent from

source nodes Gn(a) and Gn(b) to sink nodes Gn(a+ d (mod 2n)) and Gn(b+ d (mod 2n))

respectively, will never use the same hypercube link at the same communication step pro-

vided the Shortest Path Algorithm is used.

From this corollary and the fact that the Hamming distance of Gn(i) and Gn(i +

d (mod 2n)), for any 0 � i � 2n�1, is less than or equal to n, it is clear that the Shortest

Path Algorithm takes no more than n synchronous communication steps and hence is

optimal for such an environment.

Moreover, we can give closer upper bound on the number of communication steps

needed to route a message, as described below:

Theorem 7.5 On a synchronous n-dimensional hypercube, a message sent from source

node Gn(i) to sink node Gn(i+d (mod 2n)) needs no more than 1+log d0 communication

steps, where d0 = d if 0 < d � 2n�1 and d0 = 2n � d if 2n�1 < d < 2n, provided the

Shortest Path Algorithm is used.

Proof. Since on synchronous hypercubes, no link congestion occurs during a single com-

munication step, it is su�cient to consider the number of links used by a routing path.

123

Consider the case for 0 < d � 2n�1 �rst. Let us divide Gn into a sequence of whole

regions of size d each. Note that:

� for any two strings in the same whole region, their most signi�cant n � log d bits

are same and their least signi�cant log d bits di�er by at most log d bits;

� for any two strings in contiguous whole regions, their most signi�cant n� log d bits

di�er by exact 1 bit and their least signi�cant log d bits di�er by at most log d bits.

Furthermore, it is clear the Gn(i) and Gn(i + d (mod 2n)) must be either in the same

whole region or in contiguous whole regions. The theorem follows immediately for this

case.

Now consider the case for 2n�1 < d < 2n. We note that Gn(i + d (mod 2n)) =

Gn(i � (2n � d) (mod 2n)). By similar discussion to the previous case, the theorem

follows immediately for this case.

It can be veri�ed that the largest value of d0 is 2n�1. Hence on a synchronous hyper-

cube, the number of communication steps needed by any routing path cannot exceed n

for any shift distance d.

7.3.3 Properties on Asynchronous Hypercubes

Although being optimal on synchronous hypercubes, the Shortest Path Algorithm does

use the same hypercube links more than once during the routing. Hence it may need more

communication time on asynchronous hypercubes, due to link congestion. Fortunately,

we can show that using the Shortest Path Algorithm, the maximum link congestion on

an asynchronous hypercube is not \serious", as described in the following theorem:

Theorem 7.6 When the Shortest Path Algorithm is used to solve the cyclic shift problem

on an n-dimensional hypercube, we have:

124

1. A link at dimension 0 or n � 1 is traversed at most once.

2. A link at dimension k, 0 < k < n � 1, is traversed at most twice.

Proof. When routing a message from a source node Gn(s) to its cyclic-shifted sink node

Gn(t), Algorithm 7.1 works by correcting successive bits that di�er in Gn(s) and Gn(t),

from the less signi�cant end to the more signi�cant end. Since all of the source nodes are

distinct and all of the sink nodes are also distinct, it is clear that any link at dimension

0 or n� 1 is traversed at most once.

Now consider a link at dimension k, 0 < k < n � 1, which connects node Gn(u) =

gun�1 � � �g
u
0 to node Gn(v) = gvn�1 � � �g

v
0 . By the de�nition of hypercubes, we have gui = gvi

when i 6= k and guk = gvk. If when routing a message from the source node Gn(s) =

gsn�1 � � �g
s
0 to the sink node Gn(t) = gtn�1 � � �g

t
0, the link Gn(u) ! Gn(v) is traversed,

then we have gsn�1 � � �g
s
k = gun�1 � � �g

u
k and gtk � � �g

t
0 = gvk � � �g

v
k. Now consider a set of

source/sink node pairs Gn(si) and Gn(ti), where routing a message from node Gn(si) to

node Gn(ti) will traverse through the link Gn(u) ! Gn(v). Then by Lemma 7.1, all of

the Gn(si)'s must be within a whole region of size 2k. Furthermore, by discussion similar

to that in the proof of Lemma 7.2, no more than two Gn(ti)'s can be in a region of size 2k.

Since the shift distance is the same over all source/sink node pairs, the theorem follows

immediately.

From this theorem, it can be seen that when the Shortest Path Algorithm is used on

an asynchronous n-cube, at most 2n � 2 routing steps are required. In addition, it is

trivial to give the bu�er requirement on asynchronous hypercubes:

Corollary 7.7 On an asynchronous hypercube, at most one unit message bu�er is needed

at each hypercube link when the Shortest Path Algorithm is used to solve the cyclic shift

problem.

125

It is not hard to see that Algorithm J1 [68] also needs message bu�ers on asynchronous

hypercubes. Furthermore, since Algorithm J1 will traverse through 2n � 1 links at the

worst case on an n-cube, it is strictly worse than the Shortest Path Algorithm.

Finally, the theorem tantamount to Theorem 7.5 for asynchronous hypercubes is given

below:

Theorem 7.8 On an asynchronous n-cube, a message sent from source node Gn(i) to

sink node Gn(i + d (mod 2n)) needs no more than 2 log d0 communication steps, where

d0 = d if 0 < d � 2n�1 and d0 = 2n � d if 2n�1 < d < 2n, provided the Shortest Path

Algorithm is used.

Proof. From the proof of Theorem 7.5, it can be observed that routing a message uses

at most one link which is \across" the whole region boundary, and at most log d0 links

which are \within" a whole region. Among these 1 + log d0 links, we have:

� The link across the whole region boundary is used by at most one routing path,

since the Shortest Path Algorithm routes a message by using links from the lower

dimension end to the higher dimension end.

� The link at dimension 0 within a whole region is used by at most one routing path,

because of part 1 of Theorem 7.6.

� Any link at dimension 1 to log d0 � 1 within a whole region is used by at most two

routing paths, because of part 2 of Theorem 7.6.

The theorem follows immediately.

It can be veri�ed that the largest value of d0 is 2n�1. Hence on an asynchronous

hypercube, the number of routing steps needed by any routing path cannot exceed 2n� 2

for any shift distance d.

126

7.4 The Disjoint Link Algorithm

Although the shortest path algorithm is optimal on synchronous hypercubes, it does

need bu�ers on asynchronous hypercubes. To avoid the bu�er requirement, this section

describes a cyclic shift algorithm which yields no link congestion.

7.4.1 The Algorithm

In this section, we describe an algorithm that routes a message from source node Gn(i)

to sink node Gn(i+ d (mod 2n)), for 0 � i < 2n and a �xed d, in such a way that these

2n routing paths are link-disjoint. This algorithm routes a message usually by correcting

successive bits that di�er in Gn(i) and Gn(i + d (mod 2n)), from the more signi�cant

end to the less signi�cant end, with the exception that when link congestion might occur,

some extra links are chosen to detour around the points of congestion.

Figure 7.2 shows the routing paths generated by the algorithm for a 5-cube with the

shift distance equal to 13. Each row in the �gure represents one routing path, with the

source node at the left and the sink node at the right. Briey speaking, the algorithm

works by reecting smaller and smaller subregions (enclosed in frames) as units in smaller

and smaller whole regions (please refer to De�nition 7.2). The link congestion is avoided

by the careful choice of the subregions and the dimensions to be reected over.

Before describing the algorithm, we need some de�nitions (Please refer to De�nition 7.2

for the notations):

De�nition 7.4 Let S be a region in Gn, we de�ne:

� S is an aligned region if jSj divides either f(S) or nf(S).

� S is a low-aligned region if jSj divides f(S).

� S is a high-aligned region if jSj divides nf(S).

�When S is an aligned region, S is the whole region containing S and with size jSj.

127

node 0: 00000 00100 01100 01000 01001 01011

node 1: 00001 00101 01101 01001

node 2: 00011 00111 01111 01011 01001 01000

node 3: 00010 10010 11010 11000

node 4: 00110 10110 11110 11010 11011 11001

node 5: 00111 10111 11111 11011

node 6: 00101 10101 11101 11001 11011 11010

node 7: 00100 10100 11100 11110

node 8: 01100 11100 11101 11111

node 9: 01101 11101

node 10: 01111 11111 11101 11100

node 11: 01110 11110 10110 10100

node 12: 01010 11010 10010 10110 10111 10101

node 13: 01011 11011 10011 10111

node 14: 01001 11001 10001 10101 10111 10110

node 15: 01000 11000 10000 10010

node 16: 11000 11100 10100 10000 10001 10011

node 17: 11001 11101 10101 10001

node 18: 11011 11111 10111 10011 10001 10000

node 19: 11010 01010 00010 00000

node 20: 11110 01110 00110 00010 00011 00001

node 21: 11111 01111 00111 00011

node 22: 11101 01101 00101 00001 00011 00010

node 23: 11100 01100 00100 00110

node 24: 10100 00100 00101 00111

node 25: 10101 00101

node 26: 10111 00111 00101 00100

node 27: 10110 00110 01110 01100

node 28: 10010 00010 01010 01110 01111 01101

node 29: 10011 00011 01011 01111

node 30: 10001 00001 01001 01101 01111 01110

node 31: 10000 00000 01000 01010

Figure 7.2: Routing paths generated by the Disjoint Link Algorithm for a 5-cube with
shift distance 13.

128

De�nition 7.5 The function r, invf ,movef , adj, and ADJ are de�ned as follows:

� Let S = [Gn(a); . . . ; Gn(b)] be a whole region, then r(Gn(a+ i); S) = Gn(b� i), 8Gn(a+

i) 2 S.

� Let S = [Gn(a); . . . ; Gn(b)] be an aligned region, then invf (Gn(a + i); S) = Gn(b� i),

8Gn(a+ i) 2 S.

� Let S be an aligned region but not a whole region. In addition, let p = jSj� jSj if S is a

low-aligned region; otherwise, let p = jSj�jSj. Then de�nemovef (Gn(i); S) = Gn(i+p),

8Gn(i) 2 S.

� Let S1 be a high-aligned region, S2 be a low-aligned region, jS1j = jS2j, and nf(S1) =

f(S2). Then adj(Gn(l(S1)�i); S1; next) = Gn(f(S2)+i), adj(Gn(f(S2)+i); S2; prev) =

Gn(l(S1) � i), for 0 � i < jS1j. Furthermore, de�ne ADJ(S1; next) = S2 and

ADJ(S2; prev) = S1.

In our algorithm described later, function invf and movef will be implemented by pro-

cedure inv() and move() respectively. (This is why we use subscript f for these two func-

tions.) The implementation of function r, adj, and ADJ is omitted however, since these

functions can be implemented easily by simple mathematical computations, as hinted by

the following lemma:

Lemma 7.9 For an n-dimensional hypercube:

1. If S is a whole region in Gn, then for any node v 2 S, node v and node r(v; S) are

connected by a hypercube link.

2. If S is a low-aligned region in Gn, then for any node v 2 S, node v and node

adj(v; S; prev) are connected by a hypercube link.

129

3. If S is a high-aligned region in Gn, then for any node v 2 S, node v and node

adj(v; S; next) are connected by a hypercube link.

Proof. Let jSj = k. Then Gn can be divided into 2n=k whole regions. Speci�cally,

let S(i) be [Gn(ik); Gn(ik + 1); . . . ; Gn(ik + k � 1)], for 0 � i � 2n=k � 1. From the

construction of BRGC, it can be shown that

� For any node v1 = Gn(ik+ j) and v2 = Gn(ik+ k� 1� j)] in S(i), the least signi�cant

log k � 1 bits of v1 and v2 are the same, and the bits at position log k of v1 and v2 are

complement to each other (the least signi�cant bit is at position zero).

� For any node v1 = Gn(ik + k � 1 � j) in S(i) and v2 = Gn((i+ 1)k + j (mod 2n)) in

S(i+ 1 (mod 2n=k)), the least signi�cant log k bits of v1 and v2 are the same.

� For any two nodes v1 and v2 in S(i), the most signi�cant n � log(k) bits of v1 and v2

are the same. Let's denote these n� log(k) bits by mi.

� [m0; m1; . . . ; m2n=k�1] is equal to Gn�log k.

The lemma follows immediately from these facts.

To make the algorithm described below clear, we further de�ne some subregions de-

rived from an aligned region S.

De�nition 7.6 Let S be an aligned region5 and jSj � 4. We de�ne:

� Gn(a); Gn(b)� =

8><
>:

[Gn(a); Gn(a+ 1); . . . ; Gn(b)] if a � b

[Gn(b); Gn(b+ 1); . . . ; Gn(a)] if a > b

g =

8><
>:

f(S) if S is a low-aligned region

l(S) if S is a high-aligned region

5When S is also a whole region, S can be regarded as a region, either low-aligned or high-aligned. It

does not a�ect the correctness of our algorithm.

130

Figure 7.3: The subregion names for an aligned region S, which consists of Sa, Sb, and
Sc here.

4 =

8><
>:

+ if S is a low-aligned region

� if S is a high-aligned region

Furthermore, let jSj = 2k, p = jSj � jSj and q = 2k�1 � p. Then a set of subregions is

de�ned as follows (please see Figure 7.3 for clarity):

Sa = � Gn(g); Gn(g4(q� 1))�

Sb = � Gn(g4q); Gn(g4(2k�1� 1))�

Sc = � Gn(g42k�1); Gn(g4(2k�1 + q � 1))�

Sd = � Gn(g4(2k�1+ q); Gn(g4(2k � 1))�

Sar = � Gn(g); Gn(g4(p� 1))�

131

Sbr = � Gn(g4p); Gn(g4(2
k�1� 1))�

Scr = � Gn(g42
k�1); Gn(g4(2

k�1 + p� 1))�

Sdr = � Gn(g4(2
k�1+ p); Gn(g4(2

k � 1))�

Saq = � Gn(g); Gn(g4(2k�2� 1))�

Sbq = � Gn(g42
k�2); Gn(g4(2

k�1 � 1))�

Scq = � Gn(g42
k�1); Gn(g4(3 � 2

k�2 � 1))�

Sdq = � Gn(g4(3 � 2
k�1)); Gn(g4(2

k � 1))�

Sab = � Gn(g); Gn(g4(2
k�1� 1))�

Scd = � Gn(g42
k�1); Gn(g4(2

k � 1))�

In addition, when jSj � 8 and 1
2 jSj < jSj <

5
8 jSj, we de�ne:

Saa = � Gn(g4(2
k�2� q)); Gn(g4(2

k�2� 1))�

Sbb = � Gn(g42
k�2); Gn(g4(2

k�2+ q � 1))�

Scc = � Gn(g4(3�2
k�2�q)); Gn(g4(3�2

k�2�1))�

Sdd = � Gn(g4(3�2
k�2)); Gn(g4(3�2

k�2+q�1))�

We are ready to describe the Disjoint Link Algorithm now:

Algorithm 7.2 Given a hypercube of dimension n, a node Gn(i), and a shift distance

d, where 0 < d < N = 2n, procedure route(Gn(i); d; n) will generate the path from node

Gn(i) to node Gn(i+ d (mod N)) by using a contiguous sequence of hypercube links.

132

procedure route(v; d; n)

f

if (d � N=2)

d0 = d; dir = next;

else f = � d > N=2 � =

d0 = N � d; dir = prev;

Divide Gn into whole regions

of size d0 each;

Let the whole region containing v

be S0;

if (d � N=2)

S = the high-aligned region in S0

with size d0;

else

S = the low-aligned region in S0

with size d0;

path = v;

if (12 jSj < jSj �
3
4 jSj) f

if (v 2 Sd) f

v = r(v; S); path = path v;

=� is a concatenation operator.�=

path = path inv(v; Sar);

g else f = � v 2 S � =

v = adj(v; S; dir); path = path v;

path = path inv(v; ADJ(S; dir));

g

g else f = � 3
4 jSj < jSj � jSj � =

if (v 2 Sd) f

v = r(v; Scd); path = path v;

v = r(v; S); path = path v;

v = r(v; Sab); path = path v;

path = path inv(v; Sar);

g else f = � v 2 S � =

v = adj(v; S; dir); path = path v;

path = path inv(v; ADJ(S; dir));

g

g

g

133

procedure inv(v; S)

f

path = null;

if (S is a whole region and jSj > 1) f

v = r(v; S); path = path v;

g else if (12 jSj < jSj <
5
8 jSj) f

if (v 2 Sa) f

v = r(v; Sab); path = path v;

v = r(v; S); path = path v;

path = path inv(v; Sc);

g else if (v 2 Sb) f

path = path inv(v; Sb);

g else if (v 2 Sc) f

v = r(v; S); path = path v;

v = r(v; Sbq); path = path v;

v = r(v; Sab); path = path v;

v = r(v; Saq); path = path v;

path = path inv(v; Sa);

g

g else if (58 jSj � jSj �
3
4 jSj) f

if (v 2 Sa) f

v = r(v; Sab); path = path v;

v = r(v; S); path = path v;

path = path inv(v; Sc);

g else if (v 2 Sb) f

path = path inv(v; Sb);

g else if (v 2 Sc) f

v = r(v; S); path = path v;

v = r(v; Sab); path = path v;

path = path inv(v; Sa);

g

g else if (34 jSj < jSj < jSj) f

if (v 2 Sa) f

v = r(v; S); path = path v;

path = path move(v; Sdr);

g else if (v 2 Sb) f

path = path inv(v; Sb);

g else if (v 2 Sc) f

v = r(v; S); path = path v;

path = path move(v; Sbr);

g

g

return(path);

g

134

procedure move(v; S)

f

path = null;

if (12 jSj < jSj <
5
8 jSj) f

if (v 2 Sa) f

v = r(v; Saq); path = path v;

v = r(v; Sab); path = path v;

v = r(v; Sbq); path = path v;

path = path inv(v; Sbr);

g else if (v 2 Sb) f

v = r(v; S); path = path v;

path = path inv(v; Scr);

g else if (v 2 Sc) f

v = r(v; Scq); path = path v;

v = r(v; Scd); path = path v;

v = r(v; Sdq); path = path v;

path = path inv(v; Sdr);

g

g else if (58 jSj � jSj �
3
4 jSj) f

if (v 2 Sa) f

v = r(v; Sab); path = path v;

path = path inv(v; Sbr);

g else if (v 2 Sb) f

v = r(v; S); path = path v;

path = path inv(v; Scr);

g else if (v 2 Sc) f

v = r(v; Scd); path = path v;

path = path inv(v; Sdr);

g

g else if (34 jSj < jSj < jSj) f

if (v 2 Sa) f

path = path move(v; Sa);

g else if (v 2 Sb) f

v = r(v; S); path = path v;

path = path inv(v; Scr);

g else if (v 2 Sc) f

path = path move(v; Sc);

g

g

return(path);

g

7.4.2 Correctness

In this section, we prove that the Disjoint Link Algorithm routes a message from any

node to its cyclic-shifted sink node by using only hypercube links. We �rst prove the

correctness of procedure inv and move:

Lemma 7.10 For an aligned region S, we have:

1. When jSj � 1, procedure inv(v; S) routes a message from any node v 2 S to node

invf (v; S) by using a contiguous sequence of hypercube links.

2. When jSj � 3 and S is not a whole region, procedure move(v; S) routes a message from

any node v 2 S to node movef(v; S) by using a contiguous sequence of hypercube links.

135

Proof. Note that when procedure inv(v; S) or move(v; S) recursively call a procedure,

the region parameter (Sa, Sb, Sc, Sbr, Scr , or Sdr) passed to the called procedure is also

an aligned region, and the size of the subregion is smaller than jSj. From this observation

and Lemma 7.9, this lemma can be proved by induction on the size of S.

The correctness of the Disjoint Link Algorithm can be proved now:

Theorem 7.11 For any node Gn(i) in an n-dimensional hypercube, the Disjoint Link

Algorithm routes a message from node Gn(i) to node Gn(i + d (mod 2n)) by using a

contiguous sequence of hypercube links.

Proof. Note that when d > N=2, Gn(i + d (mod 2n)) = Gn(i � (N � d) (mod 2n)).

The theorem follows immediately from Lemmas 7.9 and 7.10.

7.4.3 Disjoint Link Property

In this section, we prove that all of the routing paths generated by the Disjoint Link

Algorithm are link disjoint. We need three more de�nitions:

De�nition 7.7 Let S1 be a whole region and S2 be a subregion of S1. Then de�ne

links(S2; S1) = fv ! r(v; S1) j 8v 2 S2g.

De�nition 7.8 Given a region S, a link v1 ! v2 is called inside S if both v1 and v2 are

in S. Otherwise, the link is called outside S.

De�nition 7.9 A link v1 ! v2 is used by procedure inv(v; S) (or move(v; S)) if v1 and

v2 are two consecutive nodes in v path, where path is the value returned by inv(v; S) (or

move(v; S)).

The proof of the disjoint link property (Theorem 7.17) relies on the sequence of Lem-

mas (Lemma 7.12 to 7.16), sketched below. We will �rst prove these lemmas:

136

Lemma 7.12 For an aligned region S, we have:

1. No link outside S is used by inv(v; S), for any node v 2 S.

2. When S is not a whole region, no link outside S is used by move(v; S) for any node

v 2 S.

Proof. This lemma can be proved by induction on the size of S, the region parameter

passed to the procedure inv ormove. When jSj = 1, the lemma is obviously true. Suppose

this lemma (i.e., part 1 and 2) is true for all S with jSj < k. We prove that part 1 is true

when jSj = k by considering the following cases in the procedure inv(v; S):

Case 1:When S is a whole region, part 1 is obviously true from Lemma 7.9.

Case 2:When jSj 2 (12 jSj;
5
8 jSj), consider the following subcases:

�When node v 2 Sa, statement v = r(v; Sab) and v = r(v; S) route a message from

node v in Sa to a node in Sbr, and then to a node in Sc by Lemma 7.9. It is clear

that these links are not outside region S by De�nition 7.6. In addition, the recursively

called procedure inv(v; Sc) does not use any link outside Sc by induction hypothesis

on part 1 of the lemma. Since any link outside S is also outside Sc, part 1 holds for

this subcase.

�When node v 2 Sb, the recursively called procedure inv(v; Sb) does not use any link

outside Sb by induction hypothesis on part 1. Since any link outside S is also outside

Sb, part 1 holds for this subcase.

�When node v 2 Sc, statement v = r(v; S), v = r(v; Sbq), v = r(v; Sab), and v =

r(v; Saq) route a message from node v in Sc to a node in Sbr, then to a node in Sbb,

then to a node in Saa, and �nally to a node in Sa by Lemma 7.9. It is clear that

these links are not outside region S by De�nition 7.6. In addition, the recursively

called procedure inv(v; Sa) does not use any link outside Sa by induction hypothesis

on part 1 of the lemma. Since any link outside S is also outside Sa, part 1 holds for

137

this subcase.

Case 3:When jSj 2 [58 jSj;
3
4 jSj], it can be shown that part 1 is true by the discussion

similar to Case 2.

Case 4:When jSj 2 (34 jSj; jSj), consider the following subcases:

�When node v 2 Sa, statement v = r(v; S) routes a message from node v in Sa to a

node in Sdr by Lemma 7.9. It is clear that these links are not outside region S by

De�nition 7.6. In addition, the recursively called procedure move(v; Sdr) does not use

any link outside Sdr by induction hypothesis on part 2 of the lemma. Since any link

outside S is also outside Sdr, part 1 holds for this subcase.

�When node v 2 Sb, the recursively called procedure inv(v; Sb) does not use any link

outside Sb by induction hypothesis on part 1 of the lemma. Since any link outside S

is also outside Sb, part 1 holds for this subcase.

�When node v 2 Sc, it can be proved that part 1 is true by similar discussion to the

above subcase when v 2 Sa.

From these four cases, it is clear that part 1 is true when jSj = k. Part 2 can be

proved similarly and hence we omit its proof here.

The following four lemmas are all based on the previous lemma and can be proved by

case discussions as that in the previous lemma.

Lemma 7.13 Let S be an aligned region but not a whole region, then no link in

links(Sd; S) is used by move(v; S) for any node v 2 S.

Proof. This lemma is true based on Lemma 7.9, Lemma 7.12 and De�nition 7.6.

Based on previous two lemmas, we have the following lemma:

Lemma 7.14 Let S be an aligned region, then we have:

138

1. When jSj 2 (12 jSj;
3
4 jSj], any link in links(Sd; S) or links(Sar; S) is not used by

inv(v; S) for any node v 2 S.

2. When jSj 2 (34 jSj; jSj), any link in links(Sar; Sab), links(Sb; S), links(Scr; Scd), or

links(Sd; S) is not used by inv(v; S) for any node v 2 S.

Proof. Part 1 of the lemma is true based on Lemma 7.9, part 1 of Lemma 7.12, and

De�nition 7.6. Part 2 of the lemma is true based on Lemma 7.9, Lemma 7.12, Lemma 7.13,

and De�nition 7.6.

Based on previous three lemmas, we have the following lemma:

Lemma 7.15 Let S be an aligned region but not a whole region, we have:

1. No link is used by both inv(v; S) and inv(vd; Sd) for any node v 2 S and vd 2 Sd.

2. No link is used by both move(v; S) and inv(var; Sar) for any node v 2 S and var 2 Sar.

Proof. By Lemma 7.9, 7.12, 7.14, and De�nition 7.6, this lemma can be proved by

induction on the size of S. The proof in an induction step involves case by case discussions

as that in Lemma 7.12, hence we omit it here.

Based on previous four lemmas, we have the following lemma:

Lemma 7.16 Let S be an aligned region, then we have:

1. No link is used more than once by inv(v1; S) and inv(v2; S) for any node v1 and v2 in

S.

2. When S is not a whole region, no link is used more than once by move(v1; S) and

move(v2; S) for any node v1 and v2 in S.

Proof. By Lemma 7.9, 7.12, 7.14, 7.15, and De�nition 7.6, this lemma can be proved

by induction on the size of S.

Now we are ready to prove the disjoint link property:

139

Theorem 7.17 The Disjoint Link Algorithm routes messages from all of the nodes in a

hypercube to their cyclic-shifted sink nodes by using link-disjoint paths.

Proof. This theorem is true based on Lemma 7.9, 7.12, 7.14, 7.15, 7.16, and De�ni-

tion 7.6.

7.4.4 Communication Complexity

In this section, we show the upper bound on the number of links used to route a message

when using the Disjoint Link Algorithm:

Theorem 7.18 On an n-dimensional hypercube, a message sent from source node Gn(i)

to sink node Gn(i+ d (mod 2n)) needs less than 1 + 4
3 log d

0 communication steps, where

d0 = d if 0 < d � 2n�1 and d0 = 2n � d if 2n�1 < d < 2n, provided the Disjoint Link

Algorithm is used.

Proof. Since the Disjoint Link Algorithm yields no link congestion by Theorem 7.17,

the number of communication steps needed to route a message is equal to the number of

links in the routing path.

In procedure route() of the Disjoint Link Algorithm, routing a message is achieved �rst

by traversing through several links, say k links, and then calling the procedure inv(v; S00),

where S00 is the region parameter passed to procedure inv(). Table 7.1 summarizes the

values of k and the sizes of S00 for various cases. Hence the total number of links used to

route a message is k plus the number of links used by procedure inv(v; S00).

We compute the number of links used by the called procedure inv() as follows. Note

that routing a message by procedure inv() involves a sequence of recursive procedure calls,

with the sizes of the region parameters passed to recursively-called procedures getting

smaller and smaller. Let rs1 be the size of the region parameter of the calling procedure,

140

rs2 be the size of the region parameter of the recursively-called procedure. Then de�ne

the size shrinkage ratio sh to be log(rs1=rs2). Note that sh is always greater than or

equal to one in the Disjoint Link Algorithm. In addition, let l be the number of links

used by the calling procedure, excluding the number of links used by the recursively-called

procedure. Then de�ne av to be the average number of links used by such a recursive

call, i.e., av = l=sh. Hence the total number of links used by procedure inv(v; S00) cannot

exceed log jS00j times the maximum value of av over all of the procedure calls.

The values of l, sh, av, and the recursively-called procedures for procedures inv()

and move() are summarized in Table 7.1. As an example, in procedure inv(v; S), if

v 2 Sc and 1
2 jSj < jSj <

5
8 jSj, four links are used in the calling procedure and then

procedure inv(v; Sa) is called recursively. Since sh = log(jSj=jSaj) > log 23 = 3, we have

av = l=sh < 4=3, that is, less than 4
3 links are used per dimension in this case. The value

4
3 happens to be the upper bound on all of the possible values of av, as can be observed

from Table 7.1.

By referring to procedure route(), we have the upper bound on the total number of

links in a routing path, i.e., u = k + av log jS00j, as follows:

� When 1
2 jSj < jSj �

3
4 jSj and v 2 S, we have u � 1 + 4

3 log d.

� When 1
2 jSj < jSj �

3
4 jSj and v 2 Sd, we have u � 1 + 4

3 log
d
2 < 1 + 4

3 log d.

� When 3
4 jSj < jSj � jSj and v 2 S, we have u � 1 + 4

3 log d.

� When 3
4 jSj < jSj � jSj and v 2 Sd, we have u � 3 + 4

3 log
d
4 < 1 + 4

3 log d.

It can be veri�ed that the largest value of d0 is 2n�1. Hence on an n-dimensional

hypercube, the number of routing steps needed by any routing path cannot exceed 1 +

4
3(n� 1) < 4

3n, for any shift distance d.

141

Table 7.1: Summary of link usage by procedures.

Summary of links usage by procedure route(v; d; n)

1
2 jSj < jSj �

3
4 jSj

3
4 jSj < jSj � jSj

v 2 S v 2 Sd v 2 S v 2 Sd

k 1 1 1 3

py i(v; ADJ(S; dir)) i(v; Sar) i(v; ADJ(S; dir)) i(v; Sar)

remark jADJ(S; dir)j � d0 jSarj � d0=2 jADJ(S; dir)j � d0 jSarj � d0=4

Summary of links usage by procedure inv(v; S)

1

2
jSj < jSj < 5

8
jSj 5

8
jSj � jSj � 3

4
jSj 3

4
jSj < jSj < jSj jSj = jSj jSj = 1

v 2 Sa v 2 Sb v 2 Sc v 2 Sa v 2 Sb v 2 Sc v 2 Sa v 2 Sb v 2 Sc jSj > 1

l 2 0 4 2 0 2 1 0 1 1 0

py i(v; Sc) i(v; Sb) i(v; Sa) i(v; Sc) i(v; Sb) i(v; Sa) m(v; Sdr) i(v; Sb) m(v; Sbr)

sh > 3 > 1 > 3 � 2 � 1 � 2 > 1 > 2 > 1

av < 2

3
= 0 < 4

3
� 1 = 0 � 1 < 1 = 0 < 1 < 1z = 0

Summary of links usage by procedure move(v; S)

1
2 jSj < jSj <

5
8 jSj

5
8 jSj � jSj �

3
4 jSj

3
4 jSj < jSj < jSj

v 2 Sa v 2 Sb v 2 Sc v 2 Sa v 2 Sb v 2 Sc v 2 Sa v 2 Sb v 2 Sc

l 3 1 3 1 1 1 0 1 0

py i(v; Sbr) i(v; Scr) i(v; Sdr) i(v; Sbr) i(v; Scr) i(v; Sdr) m(v; Sa) i(v; Scr) m(v; Sc)

sh > 3 > 1 > 3 � 2 > 1 � 2 > 1 > 2 > 1

av < 1 < 1 < 1 � 1
2 < 1 � 1

2 = 0 < 1
2 = 0

y P denotes the recursively called procedure. i() stands for inv() and m() stands for

move().
z Since the size of the whole region is greater than 1, the value of av is no more than 1.

142

7.5 The Comparison

In this section, we will compare the performance of various cyclic shift algorithms, as well

as shows the e�ects of these algorithms on the performance of a matrix multiplication

algorithm which uses cyclic shifts as intrinsic operations. In our following discussion, the

multiple-ports model will be used. That is, it is assumed that all links incident on a

hypercube node can send/receive messages at the same time step.

The following cyclic shift algorithms will be considered in our comparison:

Algorithm J1: the �rst cyclic shift algorithm mentioned in Johnsson [68].

Algorithm SP: the Shortest Path Algorithm mentioned in Section 7.3.

Algorithm DL: the Disjoint Link Algorithm mentioned in Section 7.4.

Algorithm NA: the cyclic shift algorithm for natural order embedding mentioned in

Ranka and Sahni [108].

For all of these algorithms on synchronous and asynchronous hypercubes, whether or

not the link disjoint properties hold are summarized below:

Algorithm J1 Algorithm SP Algorithm DL Algorithm NA

synchronous hypercube yes yes yes yes

asynchronous hypercube no no yes yes

Note that when the link disjoint property does not hold, routing a message from

a source node to a sink node may encounter additional delay due to link congestion.

That is,the communication times for Algorithm J1 and Algorithm SP on asynchronous

hypercubes will be larger than the corresponding times on synchronous hypercubes.

143

Mathematically, let dxi;s denote the number of links needed to route a message from

node S(i) to node S(i+ s) by Algorithm x, where S(y) = y (mod 2n) for Algorithm NA,

and S(y) = Gn(y (mod 2n)) for Algorithm J1, SP, and DL. Furthermore, let sxi;s (axi;s

respectively) denote the number of communication steps (i.e., including delays due to link

congestion) needed to route a message from node S(i) to node S(i+ s) by Algorithm x

on a synchronous (an asynchronous, respectively) hypercube. Then we have:

� sJ1i;s = dJ1i;s and aJ1i;s > dJ1i;s .

� sSPi;s = dSPi;s and aSPi;s > dSPi;s .

� sDL
i;s = aDL

i;s = dDL
i;s .

� sNA
i;s = aNA

i;s = dNA
i;s .

Since Algorithm J1 has less competitive performance even on synchronous hypercubes,

we will not consider its performance on asynchronous hypercubes. For Algorithm SP on

asynchronous n-cubes, we compute its worst-case behavior aSPi;s as follows. Let p0p1 � � �pk

be the routing path starting from node Gn(i) = p0 with shift distance s. De�ne cj ,

0 � j < k, to be the total number of paths passing through link pj ! pj+1 for the cyclic

shift operation. (Recall that a cyclic shift operation on an n-cube has 2n routing paths.)

Then we have aSPi;s =
Pk�1

j=0 cj .

In addition, since a cyclic shift operation involves 2n routing paths, we are interested

in the longest communication time over all of these 2n routing paths. That is, we are

concerned with the value of pxs = maxfti;s j 0 � i � 2n � 1g, where

� for Algorithm J1 on synchronous hypercubes, x is J1S and ti;s is sJ1i;s ;

� for Algorithm SP on synchronous hypercubes, x is SPS and ti;s is s
SP
i;s ;

� for Algorithm SP on asynchronous hypercubes, x is SPA and ti;s is aSPi;s ;

144

� for Algorithm DL on synchronous and asynchronous hypercubes, x is DL and ti;s is

dDL
i;s ;

� for Algorithm NA on synchronous and asynchronous hypercubes, x is NA and ti;s

is dNA
i;s .

For convenience, we will say Algorithm J1S to stand for Algorithm J1 on synchronous

hypercubes. The same convention will be used for Algorithm SPS and SPA.

7.5.1 Average and Worst Case Comparison

To gain the average performance of these cyclic shift algorithms, we �rst compare the

average routing steps needed by Algorithm x over all possible shift distances, lxa =

1
2n�1

P2n�1
s=1 pxs . Table 7.2 shows the values of lxa for hypercubes from dimension 4 to

dimension 14. On synchronous hypercubes, it can be seen that Algorithm SPS yields

the best performance. In fact, Algorithm SPS is optimal as it always uses the shortest

paths for routing and guarantees no link congestion in this setting. On asynchronous

hypercubes, it can be seen that Algorithm DL yields the best performance. This is not

surprising, as in our design of the Disjoint Link Algorithm, only a small number of extra

links are used to avoid link congestion.

Furthermore, the values of lJ1Sa and lNA
a on an n-dimensional hypercubes can be

expressed by simple functions of n as follows:

� lJ1Sa = (2n� 1)2n�1=(2n � 1), because:

{ For a shift distance s = 2s1 + � � �2sk , where s1 > s2 > � � � > sk, we have dJ1i;s = 2k

if sk 6= 0, and dJ1i;s = 2k � 1 if sk = 0, for all 0 � i � 2n � 1 [68]. That is, for

a given shift distance s whose binary representation contains k 1's, 2 units will be

145

Table 7.2: Average routing steps of cyclic shift algorithms over all shift distances.

hypercube dimension

4 5 6 7 8 9 10 11 12 13 14

lSPSa 2.533 3.161 3.778 4.425 5.075 5.734 6.395 7.059 7.724 8.390 9.056

lDL
a 2.533 3.290 4.032 4.835 5.639 6.462 7.286 8.116 8.947 9.779 10.612

lNA
a 3.267 4.161 5.095 6.055 7.031 8.018 9.010 10.005 11.003 12.002 13.001

lSPAa 3.200 4.194 5.206 6.252 7.310 8.376 9.445 10.516 11.588 12.660 13.732

lJ1Sa 3.733 4.645 5.587 6.551 7.529 8.517 9.509 10.505 11.503 12.502 13.501

\charged" to every non-rightmost 1-component and 1 unit will be \charged" to the

rightmost 1-component.

{ For all shift distances 1 � i � 2n � 1, there are (n � 1)2n�1 non-rightmost 1-

components and 2n�1 rightmost 1-components.

{ Therefore, lJ1Sa = ((n� 1)2n�1 � 2 + 2n�1 � 1)=(2n � 1) = (2n� 1)2n�1=(2n � 1).

� lNA
a = (n�1)2n+1

2n�1 , because:

{ According to [108], pNA
s = n � f(s), where f(s) is a function which returns the

position of the rightmost bit of s that is 1.

{ There are 2n�1�i s's between 1 and 2n � 1 (inclusively) so that f(s) = i.

{ Therefore, lNA
a =

Pn�1
i=0 (n� i)2n�1�i=(2n � 1) =

Pn
j=1 j2

j�1=(2n � 1) = (n�1)2n+1
2n�1

It is still open how to express other lxa 's by simple functions of n.

Besides the average routing steps lxa, let us also consider the maximal routing steps

needed by Algorithm x over all possible shift distances, lxm = max1�s�2n�1 p
x
s . Table 7.3

shows the values of lxm for hypercubes from dimension 4 to dimension 14. On synchronous

146

Table 7.3: Maximum routing steps of cyclic shift algorithms over all shift distances.

hypercube dimension

n 4 5 6 7 8 9 10 11 12 13 14

lSPSm = n 4 5 6 7 8 9 10 11 12 13 14

lDL
m < 4

3n 4 5 7 8 9 11 12 13 15 16 17

lNA
m = n 4 5 6 7 8 9 10 11 12 13 14

lSPAm � 2n � 2 5 8 9 12 13 16 17 20 21 24 25

lJ1Sm = 2n � 1 7 9 11 13 15 17 19 21 23 25 27

hypercubes, it can be seen that Algorithm SPS and Algorithm NA yield the best per-

formance. On asynchronous hypercubes, it can be seen that Algorithm NA yields the

best performance. In addition, if we are con�ned to the BRGC order embedding, then

Algorithm DL yields the best performance on asynchronous hypercubes.

Table 7.3 also shows the upper bound, expressed as a function of n, of lxm on an n-cube.

The upper bounds for lSPSm , lSPAm , and lDLm are from Section 7.3 and 7.4; the upper bounds

for lJ1Sm and lNAm are due to Johnsson [68] and Ranka and Sahni [108] respectively.

Finally, we consider the maximal routing steps needed by Algorithm x for shift distance

equal to 1, lx1 = px1 . This value is interesting because many parallel algorithms contain

neighboring communications. The matrix multiplication algorithm that will be discussed

in the next section is one of such algorithms. From Section 7.3, Section 7.4, Johnsson[68],

and Ranka and Sahni [108], the values of lx1 for an n-dimensional hypercube are as follows:

� lJ1S1 = lSPS1 = lSPA1 = lDL
1 = 1

� lNA
1 = n

It can be seen that except Algorithm NA, all other algorithms are perfect for neighboring

147

communications. In fact, this is the reason why BRGC order embedding is used by many

application algorithms. However, to be fair, Algorithm NA has the property that for

all shift distances, a cyclic shift can be completed in n steps, and at each step, all of

the routing paths can send messages out through hypercube links at the same dimension

[108]. This property does not exist in other cyclic shift algorithms.

7.5.2 Matrix Multiplication Algorithm

Now let us study a matrix multiplication algorithm [68] to see how di�erent cyclic shift

algorithms a�ect the overall performance. Let A, B, and C be N by N matrices, and

N = 2n. The algorithm will compute C = A � B by using an N � N processor mesh.

Each of these N �N processors is labeled by [i; j], where 0 � i; j � N � 1. Furthermore,

processor [i; j] will be allocated to hypercube node iN + j if the natural order embedding

is used, or to hypercube node Gn(i)N +Gn(j) if the BRGC order embedding is used. An

example of these two allocations for N = 8 is shown in Figure 7.4. Note that each row of

the mesh is an n-cube, and so is each column.

The algorithm works as follows. On each processor [i; j], registers Ri;j
A , Ri;j

B , and Ri;j
C

are used to store one element of matrices A, B, and C respectively. Initially, A[i; j] and

B[i; j] are allocated to Ri;j
A and Ri;j

B respectively, and Ri;j
C is initialized to zero, for every

0 � i; j < N . After this initialization, the following program is executed:

1. forall (0 < i < N)

2. forall (0 � j < N) Ri;j
A R

i;j+i (mod N)
A ;

3. forall (0 < j < N)

4. forall (0 � i < N) Ri;j
B R

i+j (mod N);j
B ;

5. for (k = 0 to N � 1) f

6. forall (0 � i; j < N) Ri;j
C = Ri;j

C +Ri;j
A �R

i;j
B ;

148

[7,0]

111 000

[7,1]

111 001

[7,2]

111 010

[7,3]

111 011

[7,4]

111 100

[7,5]

111 101

[7,6]

111 110

[7,7]

111 111

[6,0]

110 000

[6,1]

110 001

[6,2]

110 010

[6,3]

110 011

[6,4]

110 100

[6,5]

110 101

[6,6]

110 110

[6,7]

110 111

[5,0]

101 000

[5,1]

101 001

[5,2]

101 010

[5,3]

101 011

[5,4]

101 100

[5,5]

101 101

[5,6]

101 110

[5,7]

101 111

[4,0]

100 000

[4,1]

100 001

[4,2]

100 010

[4,3]

100 011

[4,4]

100 100

[4,5]

100 101

[4,6]

100 110

[4,7]

100 111

[3,0]

011 000

[3,1]

011 001

[3,2]

011 010

[3,3]

011 011

[3,4]

011 100

[3,5]

011 101

[3,6]

011 110

[3,7]

011 111

[2,0]

010 000

[2,1]

010 001

[2,2]

010 010

[2,3]

010 011

[2,4]

010 100

[2,5]

010 101

[2,6]

010 110

[2,7]

010 111

[1,0]

001 000

[1,1]

001 001

[1,2]

001 010

[1,3]

001 011

[1,4]

001 100

[1,5]

001 101

[1,6]

001 110

[1,7]

001 111

[0,0]

000 000

[0,1]

000 001

[0,2]

000 010

[0,3]

000 011

[0,4]

000 100

[0,5]

000 101

[0,6]

000 110

[0,7]

000 111

(a) Natural order embedding.

[7,0]

100 000

[7,1]

100 001

[7,2]

100 011

[7,3]

100 010

[7,4]

100 110

[7,5]

100 111

[7,6]

100 101

[7,7]

100 100

[6,0]

101 000

[6,1]

101 001

[6,2]

101 011

[6,3]

101 010

[6,4]

101 110

[6,5]

101 111

[6,6]

101 101

[6,7]

101 100

[5,0]

111 000

[5,1]

111 001

[5,2]

111 011

[5,3]

111 010

[5,4]

111 110

[5,5]

111 111

[5,6]

111 101

[5,7]

111 100

[4,0]

110 000

[4,1]

110 001

[4,2]

110 011

[4,3]

110 010

[4,4]

110 110

[4,5]

110 111

[4,6]

110 101

[4,7]

110 100

[3,0]

010 000

[3,1]

010 001

[3,2]

010 011

[3,3]

010 010

[3,4]

010 110

[3,5]

010 111

[3,6]

010 101

[3,7]

010 100

[2,0]

011 000

[2,1]

011 001

[2,2]

011 011

[2,3]

011 010

[2,4]

011 110

[2,5]

011 111

[2,6]

011 101

[2,7]

011 100

[1,0]

001 000

[1,1]

001 001

[1,2]

001 011

[1,3]

001 010

[1,4]

001 110

[1,5]

001 111

[1,6]

001 101

[1,7]

001 100

[0,0]

000 000

[0,1]

000 001

[0,2]

000 011

[0,3]

000 010

[0,4]

000 110

[0,5]

000 111

[0,6]

000 101

[0,7]

000 100

(b) BRGC order embedding.

Figure 7.4: Mapping a processor mesh onto hypercube nodes.

149

7. forall (0 � i < N)

8. forall (0 � j < N) Ri;j
A R

i;j+1 (mod N)
A ;

9. forall (0 � j < N)

10. forall (0 � i < N) Ri;j
B R

i+1 (mod N);j
B ;

g

Note that Line 2, 4, 8, and 10 are actually cyclic shift operations. Furthermore,

� Line 1 and Line 2 together perform 2n�1 row cyclic shifts simultaneously with shift

distances from 1 to 2n � 1,

� Line 3 and Line 4 together perform 2n � 1 column cyclic shifts simultaneously with

shift distances from 1 to 2n � 1,

� Line 7 and Line 8 together perform 2n row cyclic shifts simultaneously with shift

distances equal to 1,

� Line 9 and Line 10 together perform 2n column cyclic shifts simultaneously with

shift distances equal to 1.

Let us assume that the cyclic shifts around rows and around columns can be done

simultaneously. Therefore, the time spent by the cyclic shifts in Line 1 to 4 is lxm, and

the time spent by the cyclic shifts in Line 5 to 8 is Nlx1 (note that the loop is iterated N

times). From the formulae given for lxm and lx1 , where x is J1S, SPS, SPA, DL, or NA, we

have the upper bounds on the communication times needed by the matrix multiplication

as follows:

J1S SPS SPA DL NA

2n� 1 + 2n n+ 2n 2n� 2 + 2n 4
3n + 2n n + n2n

150

From the above table, we conclude that:

� On synchronous hypercubes, the Shortest Path Algorithm (Section 7.3) yields the

best performance.

� On asynchronous hypercubes, the Disjoint Link Algorithm (Section 7.4) yields the

best performance.

151

Chapter 8

Conclusion

This thesis studied issues concerning the execution of regular loops on multiprocessor com-

puters. The model of our problem was de�ned in Chapter 2. Chapter 3 identi�ed a set of

important properties of executing regular loops. By using these properties, we analyzed

a greedy scheduling scheme for shared-memory multiprocessors in Chapter 4. In Chap-

ter 5, the mapping problem for distributed-memory multiprocessors was formulated and

its complexity was investigated. An e�cient scheduling scheme for distributed-memory

multiprocessors was proposed Chapter 6. Finally, in Chapter 7, two cyclic shift algorithms

for hypercubes were explored.

The primary contributions of this work are as follows:

Properties of Regular Loop Execution:

Several important properties of executing regular loops in parallel were identi�ed

(Theorem 3.1, 3.2, 3.3, 3.8, 3.9, 3.10, 3.11). These properties reveal the inherent lim-

itations of parallelizing regular loop execution, which were never ascertained before.

Based on these properties, the design and analysis of parallelizing loop execution

was substantially facilitated (Chapter 4). For example, one of these properties deter-

mined the number of processors needed, beyond which no speedup can be obtained

152

(Theorem 3.2).

Formulation of Mapping Problem:

The problem of mapping regular loops onto distributed-memory MIMD machines

was formally formulated (Section 5.1). The formulation of the free mapping problem

(Section 5.1.1) can be applied to general task graphs as well (instead of regular loops

only). It considered not only the task graph topology, but also the processor graph

topology. That is, the paths used for message routings and the avoidance of message

congestion can be expressed explicitly. Previous work formulated mapping problems

without expressing these explicitly [52,132].

Computational Complexity:

Several NP-hard results, related to the execution of regular loops on multiprocessors,

were shown (Theorem 3.5, 3.7, 5.1, 5.2, and 5.6). In particular, we showed that

�nding an optimal time mapping vector is NP-hard (Theorem 5.6). Note that many

previous algorithms used exponential time to �nd the optimal time mapping vector

[84,91], but the problem complexity was never determined. Our result explains why

the exponential time algorithms were used, because no polynomial time algorithm

for such a problem exists in practice.

Parallelizing Compiler:

An e�cient algorithm for mapping regular loops onto (distributed-memory) MIMD

machines was proposed (Chapter 6). This algorithm involves �nding a time mapping

function (Section 6.1) and a processor mapping function (Section 6.2). Although

the method for �nding a time mapping function (Algorithm 6.3) has the same com-

putational complexity as that in [84, page71], yet it always gives better parallel

execution time (Theorem 6.3). In addition, the parallelized loop produced by our

153

processor mapping function uses less processing elements than does that produced

by the method in [124] (Lemma 6.6). Furthermore, because of di�erent choices

of projection vectors, the parallelized loop can be generated much easier by our

algorithm compared to the algorithm in [124] (Section 6.2.5). Another important

property of our mapping strategy is that it is interconnection network independent.

This is because the parallel execution of a regular loop is reduced to the execution of

cyclic shift operations. Hence for di�erent interconnection networks, only the cyclic

shift algorithm needs to be re-implemented.

Parallel Algorithm:

Two all-node cyclic shifts algorithms for hypercubes were explored (Chapter 7).

The Shortest Path Algorithm (Section 7.3) was originally proposed by Johnsson

[68] but was not analyzed in detail. In order to avoid link congestion so that better

performance can be achieved, Johnsson also proposed another algorithm (we call

it J1). On the contrary to Johnsson's arguments, we proved that the Shortest

Path Algorithm is always better than Algorithm J1 (Theorem 7.3, 7.5, 7.6, 7.8,

Corollary 7.4, 7.7). Although the Shortest Path Algorithm always uses the shortest

paths for routing messages, it cannot avoid link congestion totally. To overcome this,

we devised the Disjoint Link Algorithm (Section 7.4), with only a small number of

extra links being used (Theorem 7.18).

154

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley, Reading, Mass., 1986.

[2] Bill Aiello, Tom Leighton, Bruce Maggs, and Mark Newman. Fast algorithms for
bit-serial routing on a hypercube. In Proc. ACM Symposium on Parallel Algorithms

and Architectures, pages 55{64, 1990.

[3] Alexander Aiken and Alexandru Nicolau. Optimal loop parallelization. In Proc.

SIGPLAN Conf. on Programming Language Design and Implementation, pages 308{
317. Atlanta, Georgia, June 1988.

[4] Eugene Albert, Kathleen Knobe, Joan D. Lukas, and Guy L. Steele Jr. Compiling
Fortran 8x array features for the Connection Machine computer system. In ACM

unknown yet, pages 42{56, 1988.

[5] Romas Aleliunas and Arnold L. Rosenberg. On embedding rectangular grids in
square grids. IEEE Transactions on Computers, C-31(9):907{913, September 1982.

[6] Fran Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeanne Ferrante.
An overview of the PTRAN analysis system for multiprocessing. In Proc. First

International Conference on Supercomputing, pages 194{211, Athens, Greece, June
1987.

[7] Frances Allen, Michael Burke, Ron Cytron, Jeanne Ferrante, Wilson Hsieh, and
Vivek Sarkar. A framework for determining useful parallelism. In Proc. Int. Conf.

on Supercomputing, pages 207{215, St. Malo, France, July 4-8 1988.

[8] John R. Allen and Ken Kennedy. PFC: A program to convert Fortran to parallel
form. In Proc. First International Conference on Supercomputing, pages 186{203,
Athens, Greece, June 1987.

[9] Randy Allen and Steve Johnson. Compiling C for vectorization, parallelization,
and inline expansion. In Proc. Conference on Programming Language Design and

Implementation, pages 241{249, Atlanta, Georgia, June 22-24 1988.

155

[10] Randy Allen and Ken Kennedy. Automatic translation of FORTRAN programs to
vector form. ACM Transactions on Programming Languages and Systems, 9(4):491{
542, October 1987.

[11] George S. Almasi and Allan Gottlieb. Highly Parallel Computing. The Ben-
jamin/Cummings Publishing Company, Inc., New York, 1989.

[12] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming lan-
guages for distributed computing systems. ACM Computing Surveys, pages 261{
322, September 1989.

[13] Utpal Banerjee. Data dependence in ordinary programs. Master's thesis, Univ.
Illinois, Urbana, 1976.

[14] Utpal Banerjee. Speedup of Ordinary Programs. PhD thesis, Dep. of Comput. Sci.,
Univ. Illinois, Urbana, October 1979.

[15] Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Pub-
lishers, 1988.

[16] Utpal Banerjee, Shyh-Ching Chen, David J. Kuck, and Ross A. Towle. Time and
parallel processor bounds for Fortran-like loops. IEEE Transactions on Computers,
pages 660{670, September 1979.

[17] Jarle Berntsen. Communication e�cient matrix multiplication on hypercubes. Par-
allel Computing, 12:335{342, 1989.

[18] Sandeep N. Bhatt, Fan R. K. Chung, Jia-Wei Hong, F. Thomason Leighton, and
Arnold L. Rosenberg. Optimal simulations by buttery networks. In Proc. ACM

Symposium on Theory of Computing, pages 192{204, 1988.

[19] Sandeep N. Bhatt and Ilse C. F. Ipsen. How to embed trees in hypercubes. Technical
Report YALEU/DCS/RR-443, Department of Computer Science, Yale University,
December 1985.

[20] Thomas Brandes. The importance of direct dependences for automatic paralleliza-
tion. In Proc. Int. Conf. on Supercomputing, pages 407{417, 1988.

[21] Michael Burke and Ron Cytron. Interprocedural dependence analysis and paral-
lelization. In Proc. ACM Symp. on Compiler Construction, SIGPLAN Notices,21:7,
pages 162{175, July 1986.

[22] David Callahan, Jack Dongarra, and David Levine. Vectorizing compilers: A test
suite and results. Technical Report ANL-88-46, Argonne National Laboratory,
November 1988.

[23] R. M. Chamberlain. Gray codes, fast Fourier transforms and hypercubes. Parallel

Computing, 6:225{233, 1988.

156

[24] M. Y. Chan. Dilation-2 embeddings of grids into hypercubes. In Proc. International

Conference on Parallel Processing, pages 295{298, 1988.

[25] M. Y. Chan. Embedding of d-dimensional grids into optimal hypercubes. In Proc.

ACM Symposium on Parallel Algorithms and Architectures, pages 52{57, 1989.

[26] M. Y. Chan and F. Y. L. Chin. On embedding rectangular grids in hypercubes.
IEEE Transactions on Computers, 37(10):1285{1288, October 1988.

[27] M. Y. Chan and Francis Chin. Parallelized simulation of grids by hypercubes. In
Proceedings of International Computer Symposium 1990, December 17-19, Hsinchu,

Taiwan, R.O.C., pages 535{544, 1990.

[28] Mee Yee Chan and Shiang-Jen Lee. Distributed fault-tolerant embeddings of rings
in hypercubes. Journal of Parallel and Distributed Computing, 11:63{71, 1991.

[29] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.
Addison-Wesley Publishing Company, 1988.

[30] Ming-Syan Chen and Kang G. Shin. Processor allocation in an n-cube multiproces-
sor using gray codes. IEEE Transactions on Computers, pages 1396{1407, December
1987.

[31] Woei-Kae Chen and Edward F. Gehringer. A graph-oriented mapping strategy for
a hypercube. In Proc. The Third Conference on Hypercube Concurrent Computers

and Applications, vol. 1, pages 200{209, 1988.

[32] Woei-Kae Chen, Matthias F. M. Stallmann, and Edward F. Gehringer. Hypercube
embedding heuristics: An evaluation. International Journal of Parallel Program-

ming, 18(6):505{549, 1989.

[33] R. P. Colwell, R. P. Nix, J. J. O'Donnel, D. B. Papworth, and P. K. Rodman. A
VLIW architecture for a Trace scheduling compiler. IEEE Transactions on Com-

puters, pages 967{979, August 1988.

[34] George Cybenko, David W. Krumme, and K. N. Venkataraman. Fixed hypercube
embedding. Information Processing Letters, 25:35{39, April 1987.

[35] Robert Cypher and C. Greg Plaxton. Deterministic sorting in nearly logarithmic
time on the hypercube and related computers. In Proc. ACM Symposium on Theory

of Computing, pages 193{203, 1990.

[36] Ron Cytron. Compile-Time Scheduling and Optimization for Asynchronous Ma-

chines. PhD thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, October 1984.

157

[37] Ron Cytron. Doacross: Beyond vectorization for multiprocessors (extended ab-
stract). In Proc. International Conference on Parallel Processing, pages 836{844,
1986.

[38] William J. Dally and Charles L. Seitz. Deadlock-free message routing in multipro-
cessor interconnection networks. IEEE Transactions on Computers, C-36(5):547{
553, May 1987.

[39] Eliezer Dekel, David Nassimi, and Sartaj Sahni. Parallel matrix and graph algo-
rithms. SIAM Journal on Computing, 10(4):657{675, November 1981.

[40] Sanjay R. Deshpande and Roy M. Jenevein. Scalability of a binary tree on a hy-
percube. In Proc. International Conference on Parallel Processing, pages 661{668,
1986.

[41] Erik H. D'Hollander. Partitioning and labeling of index sets in Do loops with con-
stant dependence vectors. In Proc. International Conference on Parallel Processing,

Vol. II, pages 139{144, 1989.

[42] Henry G. Dietz. Finding large-grain parallelism in loops with serial control depen-
dencies. In Proc. International Conference on Parallel Processing, pages 114{121,
1988.

[43] Kemal Efe. Embedding mesh of trees in the hypercube. Journal of Parallel and

Distributed Computing, 11:222{230, 1991.

[44] Zhixi Fang, Pen-Chung Yew, Peiyi Tang, and Chuan-Qi Zhu. Dynamic processor
self-scheduling for general parallel nested loops. In Proc. International Conference

on Parallel Processing, pages 1{10, 1987.

[45] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages

and Systems, 9(3):319{349, July 1987.

[46] Joseph A. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEE Transactions on Computers, C-30(7):478{490, July 1981.

[47] Michael J. Flynn. Very high-speed computing systems. Proceedings of The IEEE,
54(2):1901{1909, December 1966.

[48] J.A.B. Fortes and F. Parisi-Presicce. Optimal linear schedules for the parallel ex-
ecution of algorithms. In Proc. International Conference on Parallel Processing,
pages 322{329. IEEE Computer Society Press, 1984.

[49] Geo�rey C. Fox and Wojtek Furmanski. Communication algorithms for regular
convolutions and matrix problems on the hypercube. In Hypercube Multiprocessors

1987, pages 223{238. SIAM, 1987.

158

[50] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, San Francisco, California, 1979.

[51] Milind Girkar and Constantine Polychronopoulos. Compiling issues for supercom-
puters. In Proc. Supercomputing'88, pages 164{173, Orlando, Florida, November
1988.

[52] Milind Girkar and Constantine Polychronopoulos. Partitioning programs for par-
allel execution. In Proc. Int. Conf. on Supercomputing, pages 216{229, St. Malo,
France, July 1988.

[53] Allan Gottlieb. An overview of the NYU Ultracomputer project. Technical Report
Ultracomputer Note #100, New York University, April 1987.

[54] David S. Greenberg. Minimum expansion embeddings of meshes in hypercubes.
Technical Report YALEU/DCS/TR-535, Department of Computer Science, Yale
University, August 1987.

[55] David S. Greenberg and Sandeep N. Bhatt. Routing multiple paths in hypercubes.
In Proc. ACM Symposium on Parallel Algorithms and Architectures, pages 45{54,
1990.

[56] Rajiv Gupta. Synchronization and communication costs of loop partitioning on
shared-memory multiprocessor systems. In Proc. International Conference on Par-

allel Processing, Vol. II, pages 23{30, 1989.

[57] Malcolm C. Harrison. Synchronous combining of fetch-and-add operations. Techni-
cal Report Ultracomputer Note #71, Courant Institute of Mathematical Sciences,
1984.

[58] Malcolm C. Harrison. The add-and-lambda operation: An extension of F&A. Tech-
nical Report Ultracomputer Note #104, Courant Institute of Mathematical Sci-
ences, July 1986.

[59] Johan Hastad, Tom Leighton, and Mark Newman. Fast computation using faulty
hypercubes. In Proc. ACM Symposium on Theory of Computing, pages 251{263,
1989.

[60] John P. Hayes, Trevor N. Mudge, Quentin F. Stout, Stephen Colley, and John
Palmer. Architecture of a hypercube supercomputer. In Proc. International Con-

ference on Parallel Processing, pages 653{660, 1986.

[61] Richard W. Heuft and Warren D. Little. Improved time and parallel processor
bounds for Fortran-like loops. IEEE Transactions on Computers, pages 78{81,
January 1982.

159

[62] Ching-Tien Ho. Optimal communication primitives and graph embeddings on hy-
percubes. Technical Report YALEU/DCS/TR-779, Department of Computer Sci-
ence, Yale University, March 1990.

[63] Ching-Tien Ho and S. Lennart Johnsson. On the embedding of arbitrary meshes in
boolean cubes with expansion two dilation two. In Proc. International Conference

on Parallel Processing, pages 188{191, 1987.

[64] Ching-Tien Ho and S. Lennart Johnsson. Embedding meshes into small boolean
cubes. Technical Report YALEU/DCS/TR-791, Department of Computer Science,
Yale University, May 1990.

[65] H. F. Ho, G. H. Chen, S. H. Lin, and J. P. Sheu. Solving linear programming
on �xed-size hypercubes. In Proc. International Conference on Parallel Processing,
pages 112{116, 1988.

[66] Oscar H. Ibarra and Stephen M. Sohn. On mapping systolic algorithms onto the
hypercube. IEEE Transactions on Parallel and Distributed Systems, 1(1):48{63,
January 1990.

[67] Bo Jin and Lan Jin. A new approach to hypercube network analysis. In Proc. The

9th International Conference on Distributed Computing Systems, pages 263{268,
1989.

[68] S. Lennart Johnsson. Communication e�cient basic linear algebra computations on
hypercube architectures. Journal of Parallel and Distributed Computing, 4:133{172,
1987.

[69] Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. Tight bounds for
oblivious routing in the hypercube. In Proc. ACM Symposium on Parallel Algo-

rithms and Architectures, pages 31{36, 1990.

[70] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85{103.
Plenum Press, New York, 1972.

[71] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The organization of
computations for uniform recurrence equations. Journal of the ACM, 14(3), July
1967.

[72] Howard P. Katse�. Initializing hypercubes. In Proc. The 9th International Confer-

ence on Distributed Computing Systems, pages 246{253, 1989.

[73] Zvi M. Kedem. Optimal allocation of area for single-chip computations. SIAM

Journal on Computing, 14(3), August 1985.

160

[74] Chung-Ta King and Lionel M. Ni. Grouping in nested loops for parallel execution on
multicomputers. In Proc. International Conference on Parallel Processing, Vol. II,
pages 31{38, 1989.

[75] Richard Koch, Tom Leighton, Bruce Maggs, Satish Rao, and Arnold Rosenberg.
Work-preserving emulations of �xed-connection networks. In Proc. ACM Sympo-

sium on Theory of Computing, pages 227{240, 1989.

[76] S. Rao Kosaraju and Mikhail J. Atallah. Optimal simulations between mesh-
connected arrays of processors. Journal of the ACM, 35(3):635{650, July 1988.

[77] David W. Krumme, K. N. Venkataraman, and George Cybenko. Hypercube em-
bedding is NP-complete. In Michael T. Heath, editor, Proceedings of the First Con-
ference on Hypercube Multiprocessors, pages 148{157, Philadephia, 1986. SIAM.

[78] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence
graphs and compiler optimizations. In Proc. ACM Symposium on Principles of

Programming Languages, pages 207{218, 1981.

[79] V. K. Prasanna Kumar and Venkatesh Krishnan. E�cient image template matching
on hypercube SIMD arrays. In Proc. International Conference on Parallel Process-

ing, pages 765{771, 1987.

[80] H. T. Kung. Why systolic architectures? IEEE Computer, pages 37{46, January
1982.

[81] Bradley C. Kuszmaul. Fast, deterministic routing, on hypercubes, using small
bu�ers. IEEE Transactions on Computers, 39(11):1390{1393, November 1990.

[82] Leslie Lamport. The parallel execution of DO loops. Communications of the ACM,
pages 83{93, February 1974.

[83] Duncan H. Lawrie. Access and alignment of data in an array processor. IEEE

Transactions on Computers, C-24(12):1145{1155, December 1975.

[84] Peizong Lee and Zvi M. Kedem. Mapping nested loop algorithms into multi-
dimensional systolic arrays. IEEE Transactions on Parallel and Distributed Sys-

tems, 1(1):64{76, January 1990.

[85] Tom Leighton, Mark Newman, Abhiram G. Ranade, and Eric Schwabe. Dynamic
tree embeddings in butteries and hypercubes. In Proc. ACM Symposium on Par-

allel Algorithms and Architectures, pages 224{234, 1989.

[86] Zhiyuan Li, Pen-Chung Yew, and Chuan-Qi Zhu. An e�cient data dependence
analysis for parallelizing compilers. IEEE Transactions on Parallel and Distributed

Systems, pages 26{34, January 1990.

161

[87] Bj�orn Lisper. Preconditioning index set transformations for time-optimal a�ne
scheduling. In Proc. ACM Symposium on Parallel Algorithms and Architectures,
pages 360{366, 1990.

[88] Oliver A. McBryan and Eric F. Van de Velde. Matrix and vector operations on
hypercube parallel processors. Parallel Computing, (5):117{125, 1987.

[89] Rami Melhem and Ghil-Young Hwang. Embedding rectangular grids into square
grids with dilation two. IEEE Transactions on Computers, 29(12):1446{1455, De-
cember 1990.

[90] Samuel P. Midki� and David A. Padua. Compiler generated synchronization for
Do loops. In Proc. International Conference on Parallel Processing, pages 544{551,
1986.

[91] D. I. Moldovan and J. A. B. Fortes. Partitioning and mapping algorithms into �xed
size systolic arrays. IEEE Transactions on Computers, 35(1):1{12, January 1986.

[92] David Nassimi and Sartaj Sahni. Optimal bpc permutations on a cube connected
simd computer. IEEE Transactions on Computers, C-31(4):338{341, April 1982.

[93] David Nassimi and Yuh-Dong Tsai. E�cient implementations of a class of �2b

parallel computations on a SIMD hypercube. Technical Report CIS-91-10, New
Jersey Institute of Technology, 1991.

[94] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Opti-

mization. John Wiley & Sons, Inc., New York, 1988.

[95] Lionel M. Ni and Chung-Ta King. On partitioning and mapping for hypercube
computing. International Journal of Parallel Programming, 17(6):475{495, 1988.

[96] Pei Ouyang. Execution of regular DO loops on asynchronous multiprocessors. In
Proc. International Parallel Processing Symposium, pages 605{610. IEEE Computer
Society Press, 1991.

[97] Pei Ouyang and Krishna V. Palem. Very e�cient cyclic shifts on hypercubes. In
Proc. Symposium on Parallel and Distributed Processing. IEEE Computer Society
Press, 1991.

[98] David A. Padua and Michael J. Wolfe. Advanced compiler optimizations for super-
computers. Communications of the ACM, 29(12):1184{1201, December 1986.

[99] Krishna V. Palem and Barbara B. Simons. Scheduling time-critical instructions
on RISC machines. In Proc. ACM Symposium on Principles of Programming Lan-

guages, pages 270{280, 1990.

162

[100] Jih-Kwon Peir and Ron Cytron. Minimum distance: A method for partitioning
recurrences for multiprocessors. In Proc. International Conference on Parallel Pro-

cessing, pages 217{225, 1987.

[101] C. Greg Plaxton. Load balancing, selection and sorting on the hypercube. In Proc.

ACM Symposium on Parallel Algorithms and Architectures, pages 64{73, 1989.

[102] Constantine D. Polychronopoulos. Compiler optimizations for enhancing paral-
lelism and their impact on architecture design. IEEE Transactions on Computers,
27(8):991{1004, August 1988.

[103] Constantine D. Polychronopoulos and Utpal Banerjee. Processor allocation for hor-
izontal and vertical parallelism and related speedup. IEEE Transactions on Com-

puters, 36(4):410{420, April 1987.

[104] Constantine D. Polychronopoulos, David J. Kuck, and David A. Padua. Execution
of parallel loops on parallel processor systems. In Proc. International Conference

on Parallel Processing, pages 519{527, 1986.

[105] Patrice Quinton. Automatic synthesis of systolic arrays from uniform recurrent
equations. In Proc. The 11th Annual International Symposium on Computer Ar-

chitecture, pages 208{214. IEEE Computer Society Press, 1984.

[106] Michael O. Rabin. E�cient dispersal of information for security, load balancing,
and fault tolerance. Journal of the ACM, 36(2), April 1989.

[107] Abhiram G. Ranade. How to emulate shared memory. In Proc. Symposium on

Foundations of Computer Science, pages 185{194, October 1987.

[108] Sanjay Ranka and Sartaj Sahni. Odd even shifts in SIMD hypercubes. IEEE

Transactions on Parallel and Distributed Systems, 1(1):77{82, January 1990.

[109] Daniel A. Reed and Richard M. Fujimoto. Multicomputer Networks: Message-Based

Parallel Processing. Scienti�c Computation Series. The MIT Press, Cambridge,
Massachusetts, 1987.

[110] John H. Reif and Robert E. Tarjan. Symbolic program analysis in almost-linear
time. SIAM Journal on Computing, pages 81{93, February 1981.

[111] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Prentice-
Hall, Englewood Cli�s, N.J., 1977.

[112] V. P. Roychowdhury and T. Kailath. Study of parallelism in regular iterative algo-
rithms. In Proc. ACM Symposium on Parallel Algorithms and Architectures, pages
367{376, 1990.

[113] Youcef Saad and Martin H. Schultz. Topological properties of hypercubes. IEEE

Transactions on Computers, 37(7):867{872, July 1988.

163

[114] Joel H. Saltz, Ravi Mirchandaney, and Doug Baxter. Run-time parallelization and
scheduling of loops. In Proc. ACM Symposium on Parallel Algorithms and Archi-

tectures, pages 303{312, 1989.

[115] Vijay A. Saraswat. Concurrent constraint programming. In Proc. ACM Symposium

on Principles of Programming Languages, pages 232{245, 1990.

[116] Vivek Sarkar and John Hennessy. Compile-time partitioning and scheduling of
parallel programs. In Proc. ACM Symp. on Compiler Construction, in SIGPLAN

Notices, 21:7, pages 17{26, July 1986.

[117] Eric J. Schwabe. On the computational equivalence of hypercube-derived networks.
In Proc. ACM Symposium on Parallel Algorithms and Architectures, pages 388{397,
1990.

[118] J. T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages

and Systems, pages 484{521, October 1980.

[119] David S. Scott and Joe Brandenburg. Minimal mesh embeddings in binary hyper-
cubes. IEEE Transactions on Computers, 37(10):1284{1285, October 1988.

[120] Charles L. Seitz. The cosmic cube. Communications of the ACM, 28(1):22{33,
January 1985.

[121] Weijia Shang and Jose A. B. Fortes. Independent partitioning of algorithms with
uniform dependencies. In Proc. International Conference on Parallel Processing,
pages 26{33, 1988.

[122] Weijia Shang and Jose A. B. Fortes. Time optimal linear schedules for algorithms
with uniform dependencies. IEEE Transactions on Computers, 40(6):723{742, June
1991.

[123] Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew. An empirical study on array sub-
scripts and data dependencies. In Proc. International Conference on Parallel Pro-

cessing, Vol. II, pages 145{152, 1989.

[124] J.-P. Sheu and T.-H. Tai. Partitioning and mapping nested loops on multiprocessor
systems. IEEE Transactions on Parallel and Distributed Systems, 2(4):430{439,
October 1991.

[125] Robert Shostak. Deciding linear inequalities by computing loop residues. Journal

of the ACM, 28(4):769{779, October 1981.

[126] Harold S. Stone. Multiprocessor scheduling with the aid of network ow algorithms.
IEEE Transactions on Software Engineering, pages 85{93, January 1977.

[127] Harold S. Stone. High-Performance Computer Architecture. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1987.

164

[128] Ted Szymanski. On the permutation capability of a circuit-switched hypercube. In
Proc. International Conference on Parallel Processing, Vol. I, pages 103{110, 1989.

[129] Y. Tanaka, K. Iwasawa, S. Gotoo, and Y. Umetani. Compiling techniques for �rst-
order linear recurrences on a vector computer. In Proc. Supercomputing'88, pages
174{181, Orlando, Florida, November 1988.

[130] Don Towsley. Allocating programs containing branches and loops within a multiple
processor system. IEEE Transactions on Software Engineering, pages 1018{1024,
October 1986.

[131] Akao Tsuda and Yoshitoshi Kunieda. V-Pascal: an automatic vectorizing compiler
for Pascal with no language extensions. In Proc. Supercomputing'88, pages 182{189,
Orlando, Florida, November 1988.

[132] Je�rey D. Ullman. Chapter 4: Complexity of sequencing problems. In E. G. Co�-
man, Jr., editor, Computer and Job-Shop Scheduling Theory, pages 139{164. John
Wiley & Sons, 1975.

[133] Je�rey D. Ullman. Computational Aspects of VLSI. Computer Science Press, 1984.

[134] Eli Upfal. An O(logN) deterministic packet routing scheme. In Proc. ACM Sym-

posium on Theory of Computing, pages 241{250, 1988.

[135] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In
Proc. ACM Symposium on Theory of Computing, pages 263{277, 1981.

[136] Ravi Varadarajan. Embedding shu�e networks in hypercubes. Journal of Parallel
and Distributed Computing, 11:252{256, 1991.

[137] Jean Vuilemin. A combinatorial limit to the computing power of VLSI circuits.
IEEE Transactions on Computers, C-32(3), March 1983.

[138] Alan Shelton Wagner. Embedding Trees in the Hypercube. PhD thesis, Department
of Computer Science, University of Toronto, October 1987.

[139] David R. Wallace. Dependence of multi-dimensional array references. In Proc. Int.

Conf. on Supercomputing, pages 418{428, St. Malo, France, July 4-8 1988.

[140] Michael Weiss, C. Robert Morgan, and Zhixi Fang. Dynamic scheduling and mem-
ory management for parallel programs. In Proc. International Conference on Par-

allel Processing, pages 161{165, 1988.

[141] Michael Wolfe. Advanced loop interchanging. In Proc. International Conference on

Parallel Processing, pages 536{543, 1986.

[142] Michael Wolfe. Vector optimization vs. vectorization. In Proc. First International

Conference on Supercomputing, pages 309{315, Athens, Greece, June 1987.

165

[143] Amr Zaky and P. Sadayappan. Optimal static scheduling of sequential loops on
multiprocessors. In Proc. International Conference on Parallel Processing, Vol. III,
pages 130{136, 1989.

[144] Stavros A. Zenios and Robert A. Lasken. The Connection Machines CM-1 and
CM-2: Solving nonlinear network problems. In Proc. Int. Conf. on Supercomputing,
pages 648{658, St. Malo, France, July 4-8 1988.

166

