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Abstract

A promising approach for providing seamless service access to portable and mobile end-devices is to augment
the network path between client applications and services using “bridging” components that are capable of caching,
protocol conversion, transcoding, etc. While several such path-based approaches have been proposed, current ap-
proaches lack mechanisms for (1) automatically creating effective network paths whose performance is optimized for
encountered network conditions, and (2) dynamically reconfiguring such paths when these conditions change. This
paper describes our work on addressing these shortcomings. Our approach, which is built into an application-level
programmable network infrastructure called CANS (Composable Adaptive Network Services), relies on modeling
enhancements and algorithms to construct augmented network paths that not only improve application performance
by coping with the resource gap between network services and clients, but can also dynamically adapt to changes in
the network environment.

We evaluate our approach over a range of network and end-device characteristics using two application scenarios:
web access and image streaming. Our results validate the effectiveness of our approach for enabling network-aware
service access to mobile clients, verifying that (1) data paths automatically created with our path creation algorithm
do bring applications with considerable performance advantages; (2) fine tuned, desirable adaptation can be achieved
using our flexible component model and reconfiguration strategy; and that (3) despite their flexibility, the run-time
overhead of generated data paths is negligible, and the cost of path reconfiguration is small enough for most applica-
tions to continually adapt to dynamic changes.

Key words: Adaptive middleware, Middleware for ubiquitous and mobile computing, Communication adaptation,
Programmable networks.

1 Introduction

Advances in wireless networking and communication-enabled portable devices such as lightweight laptop computers,
PDAs, and cell phones, raise the prospect of a mobile user being able to interact with network-based services in a
seamless, ubiquitous fashion. To consider a scenario, a mobile user who initiates a teleconference using a laptop at
his office desk can continue to participate in it even when he needs to step away from his desk or altogether leave the
building, relying upon a wireless LAN in the first case and a metro-area or cellular wireless network in the second.

However, several challenges need to be addressed before this vision can become reality. First, many services
assume that they will be accessed by relatively powerful clients using high bandwidth, low latency connections. This
assumption is at odds with the low-bandwidth networks and resource-constrained portable devices used by mobile
clients. Furthermore, a mobile user may experience very different connection characteristics over time, arising from
user mobility or dynamic cross-traffic in shared network environments. Ideally, the user’s interactions with the service
should continually adapt to such changes.

Unfortunately, current solutions in widespread use that rely either on differentiated service for different user
groups, or a close coupling between the service and client applications to adapt to changing network conditions,
are incapable of ensuring this. Differentiated services, used in popular news and stock trading services, cannot sat-
isfactorily handle users with connections exhibiting big variations in available bandwidth (which may be caused by
increased load when a large amount of new users join in the shared network or when users move away from the access
point). On the other hand, the approach of encoding adaptation logic into client and server applications, exemplified
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by automatic stream selection mechanisms in most commercial media players, requires considerable programming
effort and detailed knowledge of network state, and usually do not cope well with dynamic network changes. More-
over, adaptation using such end-point mechanisms usually come with high overhead, especially in cases where long
network paths are used. Finally, the fact that adaptation logic is hard coded into the client/server makes it hard for
such approaches to be extended to cope with new problems.

More promising are several recent projects [4, 5, 7, 14, 16, 21–23, 25], which have proposed augmenting the net-
work path between client applications running on diverse end-devices and network services with application-specific
components that can be dynamically inserted and modified as required by the encountered network conditions. The
components in suchpath-based approachescan transparently handle stream degradation, reconnection, and in general
support arbitrary transcoding, caching, and protocol conversion operations, serving to “impedance match” an end-
device with the network service. Although there have been a large number of proposals, most path-based systems
have focused primarily on providing system support to allow dynamic insertion and deletion of components, with little
attention paid to determining, without user involvement, which components should be present along the path and how
they should be mapped to the intermediate nodes. The few projects that have addressed this latter issue have focused
only on coping with the heterogeneous nature of the last-hop link and end device. Thus, current path-based approaches
suffer from two limitations that limits their wider applicability. First, the approaches lack an effective mechanism for
optimizingdata communication performance to the encountered network conditions (which requires more than just
satisfaction of heterogeneity constraints). Second, no current approach addresses the challenge of continuouslyadapt-
ing the path, as network conditions change. Addressing this challenge requires both coping with data in transit along
a prior path as well as the run-time overheads of path reconfiguration.

This paper describes our work on these two problems. Our approach, which is built within a programmable net-
work infrastructure called CANS (Composable Adaptive Network Services), focuses onapplication-neutralmecha-
nisms for automatic path creation and reconfiguration that provides applications with augmented network paths whose
performance is optimized for the underlying network conditions and which can dynamically adapt as these conditions
change. These mechanisms rely on both an enhanced modeling of component behaviors than encountered in current
path-based approaches, as well as algorithms that take advantage of these models.

To evaluate our approach, we have conducted a series of experiments with a Java-based CANS prototype imple-
mentation, using two representative applications: web access and image streaming in environments with different
network and end-device characteristics. The results validate our approach, verifying that (1) automatic path creation
and reconfiguration are achievable and do in fact yield substantial performance benefits; (2) our approach is effective
for providing applications that have different performance preferences with fine tuned, desirable adaptation behaviors;
and that (3) despite the flexibility, the overhead incurred in augmented data paths is negligible; the cost to recon-
figure data paths is acceptable for most applications, and can be further reduced by employing local version of our
mechanisms.

Specifically, the contributions of this paper include:

• A model for abstracting component behaviors and an algorithm using this model to construct data paths with
optimized performance for general path based approaches. The creation of such paths requires only a high level
specification of the application’s performance preferences and underlying network conditions.

• System support forlow-overhead dynamic path reconfiguration, providing applications with semantic continuity
on data transmissions. Moreover, the paper describes a local reconfiguration mechanism, permitting each portion
of the network path to adapt independently and concurrently to network changes while maintaining overall
performance requirements for the whole path.

• Evaluation of the path creation and reconfiguration strategies using representative applications. This evaluation
has been critical in helping us first identify and then fix shortcomings with our approach.

The rest of this paper is organized as follows. Section 2 briefly reviews related approaches that have investigated
augmentation of network paths and introduces the overall CANS architecture and the underlying system assumptions.
Sections 3 and 4 describe in turn the modeling enhancements and algorithms for automatic path creation and recon-
figuration. Section 5 evaluates these mechanisms using the two applications. Section 6 summarizes the differences
between our automatic path creation approach and that adopted by other path-based systems, identifies avenues for
future work, and discusses limitations of CANS-like approaches. We conclude in Section 7.



2 Background

2.1 Related Work

Our work is related to a large body of previous work that has proposed augmentation of the network path between
client applications and network services with “bridging” components.

Odyssey [17], Rover [10], and InfoPyramid [15] are examples of systems that support end point adaptation. Each
system provides only minimal support for composing adaptation activities across multiple nodes, and consequently
may not be flexible enough to cope with weak devices or changes in intermediate links.

Systems such as transformer tunnels [21], protocol boosters [14] are examples of application-transparent adapta-
tion efforts that work at the network level. Such systems can cope with localized changes in network conditions but
cannot adapt to behaviors that differ widely from the norm. Moreover, their transparency hinders composability of
multiple adaptations. More general are programmable network infrastructures, such as COMET [4], which supports
flow-based adaptation, and Active Networks [22,23], which permit special code to be executed for each packet at each
visited network element. While these approaches provide an extremely general adaptation mechanism, significant
change to existing infrastructure is required for their deployment.

General path based approaches such as Active Proxies [5], CANS [7], Ninja [8], Scout [16], and Conductor [19] are
more flexible in that they can dynamically insert, map, and modify application-specific components along the network
path between services and client applications, while building on existing network-level infrastructures. However, as
stated earlier, the state-of-the-art of such approaches includes only limited mechanisms for optimizing performance of
constructed paths for different network conditions, and does not at all address the reconfiguration of paths as network
conditions change.

Our objective in this work is to address these limitations, which we believe hamper the wider applicability of
path-based approaches. We have additionally required that these mechanisms beapplication-neutralin an effort to
achieve maximum flexibility without overly burdening the application developer. Our approach is built within the
CANS infrastructure, but should be applicable to all general path based approaches including the systems mentioned
above. In the rest of this section, we briefly review the CANS architecture and make explicit our system assumptions.

2.2 Overview of the CANS Architecture

The ComposableAdaptiveNetwork Services (CANS) infrastructure [7] views network environments as consisting
of client applicationsandservices, connected bydata paths. CANS extends the notion of a data path, traditionally
limited to data transmission between end points, to include dynamically injected application-specific components,
calleddrivers. Serving as the basic building block for CANS paths, drivers are standalonemobilecode modules that
can be connected via a standarddata portinterface.

As shown in Figure 1, the CANS network is realized by partitioning service and driver components belonging to
data paths onto physical hosts, connected using existing communication mechanisms. Data processing code in a driver
is executed in CANS Execution Environments (EE) that run on hosts along the network route.

To ensure that components are connected together in a valid fashion, CANS relies on a notion of type compatibility
similar to some other path-based approaches [8]. Data types used in CANS are augmented with additional attribute
information and custom compatibility operators. E.g. a MPEG type, with a frame size attribute, is defined as being
compatible with MPEG types with the same or smaller frame size. Each CANS component is modeled as an entity that
transforms the types on its input ports into types on its output ports. Compatibility constraints arise from components
requiring that their input types satisfy certain requirements: two components can be composed if and only if the type
produced by one is compatible to that required by the other.

2.3 System Assumptions

The CANS infrastructure was designed with a shared wireless network environment in mind, of the kind encountered
in an office, airport, hotel, or shopping mall setting. Thus, CANS currently makes some assumptions that hold for
such closed environments.
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Figure 1: Logical view of a CANS network showing data paths constructed from typed components.

• First, we assume that the hosts underlying the CANS network either belong to the same network administration
domain or that there is an implicit trust relationship between the various domains, hence security concerns are
not explicitly addressed in the current CANS implementation.

• Second, meta-information (type information) about possible driver components is assumed available in local
directory services, and to involve a closed set of semantically unambiguous types.

• Finally, we rely upon the presence of modules external to the CANS infrastructure to dynamically monitor re-
source availability, to allocate available resources among existing augmented paths (and enforce this allocation),
and to inform a path about changes in its resource allocation as appropriate. While we realize that current-
day, best-effort networks do not satisfy these assumptions, we believe that they are a prerequisite to supporting
guaranteed or differentiated service. In this work, our focus has been on how a path should be constructed or
be adapted given a particular resource allocation for it. We note that other research projects are looking into
estimation of network resource availability over different timescales [11,13] and that there are industry-led stan-
dardization efforts such as IEEE 802.11e for bandwidth allocation and enforcement in wireless networks [18,20].

We will revisit these assumptions in Section 6.

3 Automatic Path Creation Strategy

In general, creation of an augmented data path consists of two steps:route selectionwhere a graph of nodes and
links is selected for deploying the path, andcomponent selection and mappingwhere appropriate components are
selected and mapped to the selected route. Route selection is typically driven by external factors (such as connectivity
considerations of the wireless hop, ISP-level agreements, etc.) and so we focus only on the component selection
problem here.

At a high level, the component selection and mapping problem requires that given a specification of application
preferences and network conditions, we should be able toautomaticallyidentify which components ought to make
up the augmented path and where they should be mapped. Given our objective of optimizing the path performance
in accordance with the underlying network conditions, we need ways of characterizing the impact of a particular
component on the resource utilization along a path as well as for associating a performance metric with the overall
path. Additionally, driven by efficiency considerations, we would like to support creation and reconfiguration of
sub-portions of the path at a time, without requiring complete knowledge of the whole path.

Unfortunately, it is not simple to satisfy these requirements if one were to restrict oneself to just the type com-
patibility notions of the base CANS infrastructure (and other state-of-the-art path-based approaches). While type
compatibility can capture heterogeneity constraints on component deployment (e.g., that a component cannot be de-
ployed on a node unless it satisfies certain restrictions, or that a certain component is required to bridge a certain
kind of link), coming up with an combined selection and mapping strategy that optimizes performance requires both



enhancements to the base component model as well as algorithms that leverage this model. We describe these two
aspects of our path creation strategy below.

3.1 Modeling Enhancements

The base CANS component model needs to be extended in several ways to support both automatic selection of compo-
nents according to the various network constraints as well as to characterize the resource utilization and performance
of a path. We describe these extensions in additional detail below:

Stream types The notion of data type compatibility in the base CANS model is unable to capture the situation where
a component that produces a generic type is required to connect to a component that requires a more specific type. To
see how such situations can arise, consider the behavior of a path that links up a service to a client application using
a compression and a decompression component pair to overcome network bandwidth limitations. The component
pair can operate on arbitrary data types at the input but must produce a specific type on the output to permit valid
connections. The information about this specific type is available if one looks at the entire path, but then this precludes
independent adaptation of sub-portions of the path.

Our approach copes with this problem by defining the notion of astreamtype, which captures the aggregate effect
of multiple CANS drivers operating upon a data stream, and is represented as astackof data types. Components are
modeled as transforming the stream type at their input into stream types at their output. In our example above, the
stream type at each point in the path would contain information about the original (specific) type available at the input
to the compression-decompression pair. Keeping this information explicitly in the type stack enables each part of the
data path to adapt independently.

Data type ranks To express application-specific constraints on how components can be composed together (e.g., that
for data paths requiring both encryption and compression that encryption happens after compression to ensure better
bandwidth reductions), we rank each data type and require that only types of monotonically increasing ranks can be
stacked into a stream type. To capture the above constraint, it suffices to give the encryption data type a higher rank
than the compressed data type. Note that data type ranks also reduce the size of the search space that must be explored
in the component selection and mapping algorithm described below.

Modeling of network resources Although the notion of type compatibility defines the space of possible CANS
paths (each type-compatible sequence that transforms the service-provided type into a type required by the client
application), sometimes certain components may need to be present on valid data paths to satisfy constraints imposed
by network environments. For example, encryption/decryption components are needed for data transmission across
insecure wireless links if privacy is required by the application. Our approach expresses such constraints by introducing
the notion ofaugmented types, which extends data types with environment properties. Network resources are modeled
as entities that transform the environment properties of augmented types in a type-specific fashion. For example, an
insecure link changes the “privacy” property of a data type, while an encryption component is capable of insulating the
“privacy” property of types from being affected by the environment. Modeling both application data type and resource
constraints using a unified framework has the advantage that valid paths are simply captured using the notion of type
compatibility on the augmented types. Our automatic path creation strategy exploits this fact.

Component resource utilization model To characterize the resource utilization and performance of a path, we need
to capture the behavior of each component without requiring an explicit enumeration of all possible situations in which
the component can be mapped. To facilitate this, eachdriver d is modeled in terms of itscomputation load factor
(load(d)), the average per-input byte cost of running the component, and itsbandwidth impact factor(bwf(d)), the
average ratio between input and output data volume. For example, a compression component that reduces stream
bandwidth by a factor of two has abwf = 0.5 and the corresponding decompressor hasbwf = 2.0.

This simple model can be extended to allow components to have multiple configurations. Further, for each config-
uration, the values of computation cost and compression ratio are determined by the actual stream type of incoming
data. For example, when an image resizing driver is placed after an image filtering driver, itsload andbwf factors
are determined by the image quality attributes contained in the type object generated by the filtering component. Such
values can be obtained by an approach we callclass profiling, which basically groups possible value of these data
properties (for our example, the image quality) into several classes, and profiles components with representative data
in each class. Values between different classes are estimated using linear interpolation.



3.2 Component Selection and Mapping Algorithm

Our path creation strategy leverages the above modeling enhancements to automatically select and map a type-
compatible component sequence to underlying network resources. In addition to satisfying type requirements, the
strategy respects constraints imposed by node and link capacities and optimize network path performance accord-
ing to application requirements. In general, selecting a set of components and mapping them to a network route to
obtain strictly optimal performance metrics (such as highest throughput or shortest latency) is a NP-hard problem.
Fortunately, with a few reasonable simplification assumptions, the problem becomes more tractable.

We restrict our attention to single input, single output components; i.e., all selected plans consist of a sequence
of components. Most of the application scenarios we have experimented with fall into this category. The heart of
our strategy is a dynamic programming algorithm. We first describe a base version of the algorithm in which a
single performance metric, in particular, data throughput, needs to be optimized. After that we discuss its extension
to handlingvalue ranges(i.e., that the path performance metric lie within a range of values), which is the typical
performance preference for most streaming applications. Finally, we describe the local planning mechanism, which
allows disjoint segments of a data path to be configured independently and concurrently while maintaining the overall
performance guarantee for the whole path.

3.2.1 Base Algorithm

To describe the dynamic programming algorithm, we first need to introduce some terminology.

A data path, D = {d1, . . . , dn}, is a sequence of type-compatible components. Type compatibility is defined in
a type graph Gt: a vertex (t ∈ V (Gt)) in the graph represents a type, and an edgee = (t1, t2) ∈ E(Gt) represents a
driver that can transform data from typet1 to typet2.

A route, R = {n1, n2, . . . , np}, is a sequence of nodes. Each nodeni is modeled in terms of its computation
capacity, and a link between two adjacent nodes is modeled in terms of its bandwidth capacity. Both capacities are
defined in terms of route resources available for a particular path.

A mapping, M : D → R, associates components on data pathD with nodes in routeR. We are only interested in
mappings that satisfy the following restriction:M(di) = nu,M(di+1) = nq ⇒ u ≤ q, i.e., components are mapped
to nodes in path sequence order.

The component selection process takes as its input a routeR, a type graphGt, a source data typets, a destination
data typetd, and attempts to find a data pathD that transformsts to td and can be mapped toR to yield maximum
throughput.

As we mentioned before, the problem as stated above is NP-hard. To make the problem tractable, we take the
view that the computation capacity can be partitioned into a fixed number ofdiscreteload intervals; i.e., capacity is
allocated to components only at interval granularity. This practical assumption allows us to define, for a routeR, the
notion of anavailable computation resource vector, ~A(R) = (r1, r2, . . . , rp), whereri reflects the available capacity
intervals on nodeni (normalized to the interval [0,1]).

In the description that follows, we usep for the number of hosts in routeR (i.e. p = |R|); m for the total number
of types (i.e.m = |V (Gt)|); andn for the total number of components. It is safe to assume thatm < n.

Dynamic Programming Strategy
The intuition behind the algorithm is to incrementally construct, for different amounts of route resources, optimal
solutions withi+1 (or fewer) components, using as input optimal partial solutions involvingi (or fewer) components.
Because of our mapping definition, if the(i+1)th componentdi+1 is assigned to a nodenk in the route, drivers before
di+1 can only make use of resources on the nodesnj with j ≤ k. Consequently, only resource vectors of the form
(1, ..., 1, rj ∈ [0, 1], 0, ..., 0) need to be considered in this step. These set of resource vectors is designatedRA.

Formally, the algorithm fills up a table of partial optimal solutions (s[ts, t, ~A, i]) in the orderi = 0, 1, 2, . . .. The
solutions[ts, t, ~A, i] is the data path that yields maximum throughput for transforming the source typets to typet,
usingi components or fewer and requiring no more resources than~A( ~A ∈ RA). The algorithm is shown in Figure 2.
Line 3 of the algorithm handles the base case: only the caset = ts achieves non-zero throughput. Lines 8–13 represent
the induction step, examining different drivers to extend the current partial solution for each specific intermediate type
t and resource vector~A. Lines 12 and 13 ensure that the driver achieving the maximum throughput defines the next-
level partial solution.



Algorithm Plan
Input: ts,td, Gt, R
Output: The data path that yields maximal throughput from typets to td on routeR
1. (∗ Step 1: Initialization for partial plans with zero components∗)
2. for all t, ~A ∈ RA
3. do calculates[ts, t, ~A, 0]
4. (∗ Step 2: Incrementally building partial solutions∗)
5. for i←1 to p× n
6. do for all t ∈ V (Gt), ~A ∈ RA
7. do s[ts, t, ~A, i]←s[ts, t, ~A, i− 1]
8. for all d = (t′, t) ∈ E(Gt)
9. do for all nj that ~A[nj ] > 0
10. do M(d)←nj

11. ~A′ ←( ~A[0], . . . , ~A[nj − 1], ~A[nj ]− load(d), 0, . . .)
12. if throughput(append(s[ts, t′, ~A′, i− 1], d, ~A)) > s[ts, t, ~A, i]
13. then s[ts, t, ~A, i]←throughput(append(s[ts, t′, ~A′, i− 1], d, ~A))
14. return s[ts, td, ~A = [1, 1, ..., 1], p× n]

Figure 2: Base Path Creation Algorithm

The throughput for a particular mapping can be computed given the node throughput and link bandwidth properties.
Nodeni’s throughput itself is decided by the incoming bandwidth, its computation capacitycomp(ni), and theload
andbwf properties of components mapped to the node.

The algorithm terminates at Stepp×n. This follows from the observation that there is no performance benefit from
mapping multiple copies of the same component to a node. The complexity of this algorithm is0(n2 ×m × p3) =
0(n3 × p3) as opposed toO(pn) for an exhaustive enumeration strategy. As stated earlier, in most mobile access
scenarios,p is expected to be a small constant, with overall complexity determined by the number of components.

Two implementation issues need additional attention here. First, reducing the size of type graph is important.
When calculating paths, only types that can be reached from both source and destination types are considered. In
addition, type ranks (described in Section 3.1) can be used to further reduce the size of type graph. These mechanisms
help because of the observation that the total number of possible composable operations involving a specific type is
limited. Second, when a type object needs to be made available across a network link, the augmented part of the type
object needs to be calculated on the other side of the link as described in Section 3.1.

3.2.2 Extension 1: Planning for Value Ranges.

Instead of seeking the minimal/maximal value on a single performance metric, many applications require the value
of a performance metric to be in anacceptable range. Only after that range has been met does the application worry
about other preferences. For example, most media streaming applications usually demand a suitable data transmission
rate (in some range) so that media data can be rendered appropriately at display devices; once the transmission rate is
kept in that range, other factors such as data quality become the concern for the application. We use the termsrange
metricsandperformance metricsto refer to the two types of preferences.

Given that our planning algorithm constructs data paths by incrementally filling in a solution table ofs[ts, t, ~A, i], it
is natural to extend this to check that retained solutions satisfy two conditions: (1) values of range metrics achieved on
the current solution will lie within the desired range, and (2) the value of any performance metrics is in fact optimized.

Although this is the basic idea of the extension, for some range metrics, such as path latency, additional work is
needed. For such range metrics, even if the current value of the range metrics is not in the range for a partial solution,
this does not exclude the possibility that this partial path may actually become a part of the final solution. For example,
appending compression components to the partial path can bring down overall path latency by reducing packet size.
So such candidates cannot be pruned. Toestimatewhether the desired range can in fact achieved by appending
additional components, we employ a procedure calledcomplementary planning, which just runs the planning algorithm
in reverse, providing information about whether or not the range metrics can reach the desired range using residual



resources along a data path that transforms typet to td. Note that complementary planning needs to be run just once.
Heuristic functions are used for choosing among candidate paths that can all meet the required range.

3.2.3 Extension 2: Local Planning for Segments of the Network Route.

For CANS-like mechanisms to be used in large scale networks, the key is to allow local decisions, which can not only
enable agile adaptation to changes in the network, but also make such systems be easily used/deployed in the situation
where the path spans multiple network domains(we will revisit this point in section 6). This necessitates a distributed
mechanism in which each individual node or a partial segment of the path can independently and concurrently make
local decisions on how to adapt. To support this, a selection and mapping algorithm for a segment of an existing
network path is needed. The challenge here is doing so while still being able to maintain some overall performance
guarantee: for example, that the range metrics for the entire path will still fall within their desired range. Note that
local mechanisms, though they enhance responsiveness of data paths, may compromise optimality of performance
metrics, but we look at this as a reasonable tradeoff.

Our local planning strategy is a straightforward extension of the range planning mechanism described earlier. To
create a partial path forR′, which is a segment of the original routeR, all we need to do is to run the range planning
algorithm onR′ with localized parameters. Since the type before and afterR′ is fixed by the type entering and leaving
R′, the only thing left is to adjust the range metrics forR′. Adjustment for throughput and latency is shown below:

• For applications that require an overall throughput range[thlow, thhigh], the adjusted throughput range forR′

stays the same but we assume a throughput ofthhigh at the input point ofR′. The intuition is that planning with
thhigh will ensure thatR′ remains capable of achieving the desired throughput range for any input throughput
in the range of[thlow, thhigh].

• For applications that require a latency range[llow, lhigh], the localized latency range will be[l(low,R′), l(high,R′)],
wherel(V,R′) is the divided portion of latencyV over segmentR′.

4 System Support for Efficient Path Reconfiguration

As we mentioned before, data paths may need to be reconfigured to cope with dynamic changes in available resources.
We assume as stated earlier that an external module informs the path about appropriate changes in resource availability
over the timescale of interest.

The main problem that needs to be resolved by the reconfiguration mechanism is how to deal with any internal
state that might be present in components making up the affected segment. The presence of such state raises several
challenges. First, since each component can change the content of the data packets passing through it, traditional
transport-layer mechanisms which focus only on providing an in-order byte stream are not adequate. Instead, the
requirement is for continuity at the semantic level. For example, if a user is browsing a set of web pages, the recon-
figuration mechanism should ideally guarantee that the browser application receives complete web pages, maybe in a
different format (for example, a page can be distilled to overcome low bandwidth links), but in the same sequence, with
each page appearing exactly once. Second, to satisfy our objective of independent and concurrent reconfiguration in
different portions of the network path, the reconfiguration mechanism must achieve this semantic continuity without
relying upon complete knowledge of the whole path because doing so is likely to incur considerable overhead and
increase reconfiguration time. Ideally, we would like to achieve as small a reconfiguration cost as possible so as to
permit agile adaptation to network resource changes.

Our path reconfiguration protocol provides the semantic continuity guarantee for data transmission when data
paths are modified. It does not required complete knowledge of the whole path, instead, only information about the
reconfigured part is needed. The local reconfiguration mechanisms, which leverage the local planning mechanism
described earlier, can further bring down the reconfiguration overhead. However, as with the path creation strategy,
the reconfiguration strategy also requires enhancements to the component model, which we describe below.

4.1 Driver Interface Restrictions

To support dynamic path reconfiguration on portions of the overall path, we adopt the same high-level strategy that is
used in transport layer solutions, namely buffering and retransmission. However, respecting application-specific data
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Figure 3: An example of data path reconfiguration using semantics segments.

continuity semantics requires a means for associating semantics with component stream interactions and mechanisms
for recreating a stream with the appropriate semantics.

To facilitate the above, our approach places two natural restrictions on the component interface. CANS drivers are
required to demarcatesemantic segmentsof data they produce and satisfy asoft stateproperty.

Semantic segments refer to application-specific units of data transmission, e.g., an HTML page or an MPEG frame.
CANS drivers are required to (logically) consume and produce data at the granularity of an integral number of semantic
segments. Note that this demarcation can be either implicit (each message unit identifying a separate semantic unit)
or explicit (with marker messages identifying the boundary between two semantic units).

Soft state refers to the fact that any internal state in a driver can be reconstructed simply by restarting the driver and
injecting an appropriate sequence of segments. Stated differently, given a semantically equivalent sequence of input
segments, a soft-state driver always produces a semantically equivalent sequence of output segments. Components that
perform transcoding, caching, or library-based compression are examples of drivers that satisfy the soft-state property.

Together, the semantic segment and soft-state properties help to

• track which output segments depend on which input segments; and

• identify the data that needs to retransmitted to ensure semantic continuity.

4.2 Reconfiguration Protocol

Reconfiguration of a portion of the data path works as follows. Upon receiving an event that triggers reconfiguration,
the upstream point startsbufferingsegments while continuing to transmit them, in effect flushing out the contents of
intermediate drivers.1 The downstream point monitors the output segments arriving there, waiting until it completely
receives an output segment from upstream satisfying the property thatall subsequent segments correspond only to
input segments at the upstream point that are either buffered or not yet transmitted. At this time, the system can be
stopped and the data path portion replaced by a semantically equivalent set of drivers. To restart, the upstream point
retransmitsstarting from the first segment whose corresponding output segment was not delivered.

Figure 3 shows an example of reconfiguration on a path, in whichd1 produces three frames upon each incoming
frame whiled2 combines every four incoming frames into one. Figure 3[a] shows a situation when the path can not be
reconfigured due to the internal state ind2. The reconfiguration should be delayed to the time depicted in Figure 3[b],
when the segments buffered atd0 allow the recreation of any possible internal state ind1 andd2.

4.3 Local Reconfiguration

To cope with dynamic changes in networks, instead of relying on a centralized mechanism to reconfigure the path
globally, it is usually much faster to allow each individual node or a partial segment of the path to independently
and concurrently makelocal decisions on how to adapt. To provide such support, in Section 3.2.3 we described the
algorithm for calculating new partial data paths. In this part, we will describe how to choose the reconfiguration
segment (R′).

The mechanism to choose a reconfiguration segmentR′ should consider the tradeoff between the length of the
segment selected for reconfiguration (which affects reconfiguration cost), and the likelihood that the reconfiguration
can handle the change (otherwise, further actions are needed where more hosts are involved ). We adopt the following
heuristic to make this choice. A first-level reconfiguration action happens in a local node when its load changes or

1Upstreamanddownstreampoints refer to the components immediately upstream and downstream of the portion being reconfigured.



the load on its direct downstream link changes. A second-level reconfiguration action includes network segments
comprising nodes connected with relatively fast links. If both these fail, we fall back to global reconfiguration.

In summary, from the performance perspective, local reconfiguration can be viewed as a mechanism to balance the
tradeoff between agility of adaptation and the optimality of data transmission. In network environments where change
is frequent and modification of the whole data path may cause big overhead, such a mechanism can result in better
user experience. From a non-performance perspective, comparing with global ones, local mechanisms can make it
easier for such systems to be used in situations where multiple administrative network domains are involved. We will
revisit this point in section 6 when we discuss our future work.

5 Performance Evaluation

To evaluate the effectiveness of our approach, we built the automatic path creation and reconfiguration support into
the CANS infrastructure (a Java-based prototype is available for download at http://www.cs.nyu.edu/pdsg/cans), and
conducted a series of experiments in the context of a web access application and an image streaming application under
typical mobile usage scenarios.

First, using the web access application, we measured the performance of automatically generated paths under a
wide range of network conditions.

Second, we examined the adaptation behaviors achieved with automatically generated paths, using the image
application in a shared wireless environment, where available bandwidth changes frequently.

Last, we measured reconfiguration overhead of data paths, for both the global and local mechanisms.

5.1 Experimental Platform

Edge Server Proxy ServerInternet Service Mobile Client

wired link

L1 L2

N0 N1 N2IBM Compatible

Figure 4: A typical network path between a mobile client and an internet services.

We consider a typical network path between a mobile client and an Internet server as shown in Figure 4. This
platform models a mobile user using a portable device (N2) such as a laptop or a pocket PC to access network services
in a shared wireless environment. The communication path from the device to the service typically spans three hops: a
wireless link (L2) connecting the user’s device to an access point, a wired link (L1) between the wireless access point
and a gateway to the general Internet, and finally a WAN link between the gateway and the host running the service.
We assume that CANS components can be deployed on three sites, the mobile device (N2), a proxy server located
close to the access point (N1), or an edge server located near the gateway (N0).2

Theweb access applicationis a browser client, which downloads web pages (both HTML page and images) from
a standard web server. For this application, short response time is preferred.

The image streaming applicationis a simple Java-based application that continuously fetches JPEG frames from
an image server and display them3. To perform appropriately, this application requires a certain frame rate, and prefers
high data quality.

2Our use of the term “edge server” differs from its usage in content distribution networks. We use the term to refer to a host on the frontier of
the network administrative domain within which CANS components can be deployed.

3Although we would have ideally liked to use a more sophisticated video stream encoding, e.g., MPEG, the difficulty in obtaining a suitable
codec motivated the use of streaming JPEG. Note however, that the conclusions of our experiment, which focuses on measuring adaptation agility,
are themselves unaffected by the specific stream encoding



5.2 Effectiveness of Automatic Path Creation

To evaluate the effective of our path creation strategy, we experimented with it using the web access application,
running under a wide range of network conditions.

CANS components used in the automatically generated access paths included:ImageFilter andImageResizer ,
which are used to degrade image quality or resize JPEG images (to a factor of 0.2) respectively;Zip andUnzip ,
which work together to compress/decompress text. Together these components help the application overcome weak
network links, albeit at a cost in node resources. The load and bandwidth factor values were obtained by profiling
component execution on representative data inputs: a web page containing 14 KB text and six 25 KB JPEG images. In
this experiment we used the same data inputs that the components were profiled on. This is a simplifying assumption,
but reasonable given our primary focus here was to evaluate whether our approach could effectively adapt to multiple
network conditions. Evaluating the effectiveness of the approach when component characteristics may be imprecise is
deferred to Section 5.3.

To model different network conditions likely to be encountered along a mobile access path, we defined twelve
different configurations listed in Table 1. These configurations represent the network bandwidth and node capacity
available to a single client, and reflect different loading of shared resources and different mobile connectivity options.4

These configurations are grouped into three categories, based on whether the mobile linkL2 exhibits cellular, infrared,
or wireless LAN-like characteristics. Five of the configurations correspond to real hardware setups (tagged with a *),
the remainder were emulated by restricting (via system call interception) CPU and network resources available to the
application [3]. The computation power of different nodes is normalized to a 1 GHz Pentium III node.

Table 1 also identifies, for each platform configuration, the automatically generated plan for the web access appli-
cation. The plans themselves are shown in Table 2, identifying the components that were automatically placed along
the text and image paths. For example, planA, automatically generated using the algorithm described in Section 3.2.1,
places aImageFilter and aImageResizer on nodeN1 along the image path, and aZip andUnzip driver
combination on nodesN0 andN2 along the text path.

Platform Edge Server(N0) L1 Proxy Server(N1) L2 Client (N2) Plan

1 Medium Ethernet High 19.2 Kbps Cell Phone A
2 Medium Ethernet High 19.2 Kbps Pocket PC A

3∗ High Fast Ethernet Medium 57.6 Kbps Laptop B
4∗ High Fast Ethernet Medium 115.2 Kbps Laptop B
5 Medium Ethernet High 384 Kbps Pocket PC A
6∗ High Fast Ethernet Medium 576 Kbps Laptop B

7∗ Medium Fast Ethernet High 1 Mbps Laptop C
8 Medium Ethernet High 3.84 Mbps Pocket PC D
9 Medium Ethernet High 3.84 Mbps Laptop D
10 Medium DSL High 3.84 Mbps Laptop B
11 Medium DSL Low 3.84 Mbps Laptop B
12∗ Medium Fast Ethernet High 5.5 Mbps Laptop E

Relative computation power of different node types(normalized to a 1 GHz Pentium III node):
High = 1.0, Medium =0.5, Laptop =0.5, Low = 0.25, Pocket PC =0.1, Cell Phone =0.05
Link bandwidths:
Fast Ethernet =100 Mbps, Ethernet =10 Mbps, DSL = 384 Kbps

Table 1:Twelve configurations representing different loads and mobile network connectivity scenarios, identifying the
CANS plan automatically generated in each case.

Figure 5 shows the performance advantages of the automatically generated plans when compared to the response
times incurred for direct interaction between the browser client and the server (denotedDirect in the figure). The
bars in Figure 5 are normalized with respect to the best response time achieved on each platform. In all twelve
configurations, the generated plans improve the response time metric, by up to a factor of seven. Note that part of the

4The bandwidth between the internet server and edge server available to a single client is assumed to be 10 Mbps.



Plan N0 (Img/Txt) N1 (Img/Txt) N2 (Img/Txt)
A -/Zip (Filter, Resizer)/- -/Unzip
B (Filter, Resizer)/Zip -/- -/Unzip
C -/- Filter/Zip -/Unzip
D -/Zip -/- -/Unzip
E -/- -/Zip -/Unzip

Table 2: Component placement for the five automatically generated plans.
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Figure 5: Response times achieved by different plans for each of the twelve platform configurations compared to that
achieved by direct interaction. All times are normalized to the best performing plan for each configuration.

lower response times come at the cost of degraded image quality, but this is to be expected. The point here is that our
approachautomatesthe decisions of when such degradation is necessary.

Figure 5 also shows that different platforms require a different “optimal” plan, stressing the importance of au-
tomating the component selection and mapping procedure. In each case, the plan generated by our path creation
strategy is the one that yields the best performance, also improving performance by up to a factor of seven over the
worst-performing transcoding path. Note that while similar behavior can in principle be obtained by other strategies,
such as using hard coded rules to deploy components. Unlike our application-neutral approach, such strategies require
significant domain knowledge, and usually can not find the best path for network conditions that change continually.

Runtime Overhead To understand the run-time overheads incurred by flexible path-based approaches such as CANS,
we profiled the application to construct a detailed timeline of operations. Our results, details of which are omitted here
for space reasons, show that CANS incurs an average cost of 25µs per driver invocation, which is negligible for most
applications.

5.3 Effectiveness of Automatic Path Reconfiguration

To investigate the adaptation behavior of our approach in dynamic environments, we ran a set of experiments with the
image streaming application. We began with the base planning mechanism, then applied the extension mechanisms
(described in Section 3.2.2 and 3.2.3) one after another and quantified the improvement on the adaptation behavior



exhibited. This set of experiments are used primarily to verify how fast CANS paths can respond to dynamic changes in
network environments, and assume as stated earlier that an external module informs the path about resource availability
changes. In practice, due to the unstable nature of shared wireless networks, this module must include a filtering
mechanisms to determine whether a reconfiguration is required when a change is detected. We defer the construction
of appropriate filters to our future work, noting only that other researchers have looked at similar issues [11].

The experiment modeled the following scenario: initially a user receives a bandwidth allocation of 150 KBps on
the wireless link (L2), which then goes down to 10 KBps in increments of 10 KBps every 40 seconds (modeling new
user arrivals or movement away from the access point) before rising back to 150 KBps at the same rate (modeling user
departures or movement towards the access point). The data path is allocated a (fixed) computation capacity of 1.0
(normalized to a 1 GHz Pentium III node) on nodesN1 andN2 respectively and a bandwidth of 500 KBps onL1. N1,
N2, andL1 are wired resources and consequently more capable of maintaining a certain minimum allocation (e.g., by
employing additional geographically distributed resources) than the wireless linkL2. The experiments were run on a
wired-network with the wireless link behavior emulated as described earlier.

The components used in the image streaming example include theImageFilter and ImageResizer in-
troduced previously. To display incoming images appropriately, incoming throughput (frame rate) is required to be
between 8 to 15 frames/sec. Within that range, better image quality is preferred.

Base Mechanism We started with the base planning strategy described in Section 3.2.1. Since it can only optimize
one metric at a time, we chose to optimize throughput. The component parameters were obtained by profiling their
behavior on a 25 KB JPEG image, one of a set of images ranging in size from 20–30 KB repeatedly transmitted by the
server.
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Figure 6: Performance of CANS base mechanisms on the image streaming application.

Figure 6 shows the throughput and image quality achieved by the data path over the 20 minute run of the ex-
periment; the plans are shown in the table to the right. The plot needs some explanation. The light-gray staircase
pattern near the bottom of the graph shows the bandwidth of linkL2 normalized to the throughput of a 25 KB image
transmitted over the link; so, a link bandwidth of 150 KBps corresponds to a throughput of 6 frames/sec. The dashed
black line corresponds to the quality achieved by the path. The jagged curve shows the number of frames received
every second; because of border effects (a frame may arrive just after the measurement), this number fluctuates around
the mean. The plateaus in the quality curve are labelled with the plan that is deployed during the corresponding time
interval.

The results in Figure 6 show that the plans automatically created with our base mechanism do improve application
throughput over what a static configuration would have been able to achieve. However, it also points out several
deficiencies:



• Always trying to maximizing the throughput may sacrifice image quality unnecessarily, failing to meet applica-
tion performance preferences.

• Inaccurate component parameters can cause unexpected throughput dropping (e.g., from plan A to B). The
reason for this inaccuracy is that theImageResizer in the data path processes filtered images while its
behavior was profiled using original (unfiltered) images.

These two deficiencies are what motivated the extension of our planning algorithm to allow satisfaction of value
ranges (Section 3.2.2), and the class-based profiling approach for more accurately modeling component behaviors.
We describe the incremental benefits achieved by these extensions below.

Planning for Value Ranges. After applying the range planning algorithm (Section 3.2.2), we obtained the result
shown in Figure 7. Comparing with Figure 6, we can see two improvements. First, the range planning system retains
Plan A for much longer than before (till 280 seconds into the experiment), choosing not to reconfigure while the
throughput is still within the desired range. Second, the system employs an additional plan that falls between Plan
A and B chosen in Figure 6 and represents a tradeoff that compromises on achieved throughput (while still ensuring
that it is within the desired range) to improve quality. Such gradual decrease/increase in image quality is a desirable
adaptation behavior expected by end users.
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Figure 7: Performance with Range Planning Support

Refined Components Model. Observing the undesirable adaptations caused by inaccurate component parameters,
we exploited theclass profiling technique described in Section 3.1. In addition, we also allowed both components
in our image streaming application to support multiple configurations: nine configurations forImageFilter with
quality value ranging from 0.1 to 0.9, four configurations forImageResizer with scale factors ranging from 0.2 to
0.8. The components were profiled for three different image classes (high, medium, low). Figure 8 shows the resulting
performance and associated plans. There are three obvious improvements over Figure 7. First, the throughput is kept
in the required range for the whole duration of the experiment (except for transition points caused by reconfigurations).
Second, the image quality changes more smoothly than in Figure 7. Instead of 3 configurations (quality levels), there
are 7 different plans, resulting in smoother variations in path quality. Finally, the low costs of switching configurations
is reflected in transitions from plans A to B, and B to C, which hardly disrupt the achieved throughput unlike the
associated cost for introducing a new component (e.g. transition between plans C and D). The large number of
automatically selected plans, which are required for satisfying the application preferences are yet another indication of
the benefits of an automatic approach: accomplishing similar behaviors using a hard-coded approach would necessitate
detailed domain knowledge and comprehensive involvement of application developers.
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Figure 9: Performance of Global Reconfiguration

5.4 Overhead of Path Reconfiguration

To understand the cost of path reconfiguration, and to investigate the difference in adaptation behavior using global
and local reconfiguration mechanisms, we revisited the experiments using the image streaming application, focusing
on the segment when bandwidth dropped from 50KBps to 10KBps. We ran the experiment in two ways: with local
reconfiguration turned off (i.e., only global reconfiguration was enabled) and with it turned on.

Throughput measured for the global and local cases are shown in Figure 9 and Figure 10 respectively. Unlike
global reconfiguration, which partitions theImageResizer andImageFilter portions of the data paths in plans
B, C, and D, so that they run on both nodesN0 andN1 to obtain a slightly higher value of throughput, local recon-
figuration strategy chooses to both calculate the plan and deploy the components on the same node, thereby avoiding
the coordination cost across two nodes. As a result, local reconfigurations produce more stable throughput during
reconfiguration (look at the reconfiguration that happens at the80th second). The cost however is that the local recon-
figuration does not quite achieve the same throughput as the global case, achieving 10 frames/sec instead of 12. Note
that this is still within the desired range, otherwise global reconfiguration would have been triggered.

A cost breakdown of the reconfigurations at the80th second point for the two cases is shown in Figure 11. The cost
is broken down into five stages corresponding to the steps described in Section 4.2: planning, shipping the computed
plan to relevant nodes, flushing any data in the reconfigured segment, inserting the components for the new plan, and
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resuming data transmission. Global reconfiguration requires 1.08 seconds to complete as compared to 0.35 seconds
for the local case. The major portion of this difference, which stems from additional network communication required
in the global case, is restricted to the first three stages, verifying our claim that local reconfiguration can substantially
improve responsiveness. Note that in both the local and global cases, data transmission is only suspended during the
last two stages (0.18 seconds and 0.12 seconds in the global and local cases), so most applications can continually
adapt to dynamic changes.

5.5 Summary of Results

The experiments described in this section verify that (1) network-aware data paths can be automatically created and
dynamically configured; (2) these automatically created paths outperform others and provide considerable perfor-
mance advantage for applications by matching underlying network conditions, while incurring negligible runtime
overhead;(3) our mechanisms can provide applications with fine tuned, desirable adaptation behaviors; and that (4)
path reconfiguration cost is small for most applications, which can be further substantially reduced with supported
local operations.



6 Discussion

6.1 Comparison with other automatic path creation approaches

Automatic path creation approaches have also been proposed in the context of other general path-based frameworks,
such as Ninja [8], Scout [16], and Conductor/Panda [19].

The Ninja project’s Automatic Path Creation (APC) service [8] deploys components at proxy sites (active proxies)
to distill/transform data to suitable formats for different types of end devices. Though both APC and CANS formulate
the component selection problem in terms of type compatibility, the perspectives of Ninja and our approach are very
different. The primary focus of Ninja APC is to address the diversity in capacity of end devices and last hop links. Our
approach takes a more general view that network resource conditions at each part of network paths can be different,
and that more importantly, these conditions can change dynamically because of client load or other reasons. As
a result, paths created with Ninja APC are basically function-oriented without further optimization for performance,
essentially offering differentiated service access according to a small number of classes. Paths built using our approach
are performance-oriented and have built-in support for reconfiguration, two features that are not supported in Ninja
APC.

Recent work in the Scout project [16] has looked at a template based path construction algorithm for delivering
media objects that takes into consideration resource requirements, user preferences, and node capabilities. Unlike our
approach, the Scout algorithm requires a database of predefined path templates, simply instantiating an appropriate
template based on other programmer-provided rules that decide whether or not a component can be created on a
resource. As our experimental results show, such template-based approaches rely on a significant amount of domain
knowledge that may or may not be appropriate for network resources that can change continually. Reconfiguration is
not supported in this work.

The Panda project [19] also proposes a planning scheme for placing network-level components to modify an ap-
plication’s data stream in response to unfavorable network conditions. Two schemes are discussed, one based upon
selection from a reusable plan set and the other based on exhaustive constraint space-based search. The reusable
plan set approach, similar to the template database used in Scout, cannot guarantee the optimality of generated paths,
especially for continually changing resources. The latter approach does not scale well when the total number of com-
ponents increase to a large amount (for example, there may exist many different components to do similar operations
such as compression or encryption). To the best of our knowledge these schemes have not yet been implemented or
evaluated with real applications. Panda also provides error recovery mechanisms for reliable data transmission, but
does not provide support for dynamic reconfiguration. Besides, unlike our approach, the error recover mechanisms in
Panda require complete knowledge of the whole path, which may result in long recovery/transition times.

Some projects investigating multimedia content delivery have also proposed the processing or customization of
stream content along network paths. In [24], an approach is proposed to find a safest path (by mapping a sequence
of processing operators) on media service proxy network to minimize the possibility of failing to deliver the con-
tent. Though resource availability is considered in this work, such paths do not provide optimized performance, and
dynamic adaptation is not supported. Furthermore, since the approach is designed for multimedia content delivery,
the selection of components benefits from more domain knowledge than general application-neutral path-based ap-
proaches.

The primary differences of our approach as compared to these infrastructures is its emphasis on application-neutral
mechanisms for path creation and reconfiguration, which are capable both of optimizing the performance of data paths
to encountered network conditions, and dynamically adapting these paths as conditions change. Although much work
remains, to the best of our knowledge, CANS is the first path-based approach to exhibit both of these properties.

6.2 Plan for future work

Our research using the CANS infrastructure has currently focused on only a core set of concerns, specifically the
feasibility and performance of automatic path creation and reconfiguration strategies.

A complete solution to automatically building network-aware access paths from application-level components
requires addressing several other equally important issues, which we are investigating in current work.

• In general, paths generated by CANS-like approaches may need to span multiple network administrative do-
mains, which introduces two challenges. First, there is a need for mechanisms such as dRBAC [6] that make



explicit the trust relationships between domains, and thereby influence which components can be deployed
where in the network. Second, the component and type model in CANS needs to be extended to cope with
the fact that not all components are available for deployment outside a particular domain, and that the same
semantic type may be referred to differently across the domains. The good news for the latter issue is that
our dynamic programming planning algorithm can be easily extended to allow each domain to do planning for
the path segment within it. But there is still a need for agreement on the types that are used across domain
boundaries.

• Our current work has assumed the presence of external modules responsible for resource monitoring and al-
location of available resources among multiple paths. While these problems are being investigated by other
researchers, more work is needed before a robust solution to these problems is available. Allowing paths to span
multiple domains in particular introduces the problem that resource monitoring information needs to integrated
from multiple distributed sources (e.g., [2, 12, 13]). Additionally, protocols that efficiently divide up available
resources among multiple concurrently active paths must tradeoff fairness issues against increased utilization.

6.3 Limitation(s) of CANS-like approaches

CANS components are specified in terms of their input and output data types, and hence CANS is most suitable for
deploying components that transform the format of data presentation while retaining the same underlying semantic
for transmitted data. For example, a transcoded web page still represents the original. While this is a limitation, many
current-day mobile service access applications can benefit from components that do fall into this category: filtering,
caching, protocol conversion, and transcoding etc.

Automatic deployment of semantics-transforming components would require going beyond our type model, pos-
sibly leveraging standard ontologies such as being developed by the Semantic Web [1] and IEEE’s Standard Upper
Ontology [9] efforts. Note that our approaches can also be used with these enhanced mechanisms, which can be
thought of as generalizing the notion of type compatibility.

7 Conclusions

This paper has presented and evaluated an automatic approach for the dynamic construction and reconfiguration of
network-aware paths across networks. In contrast to other path base approaches, our work proposed a model and
corresponding algorithms to build network paths whose performance is optimized for matching underlying network
conditions, and efficient reconfiguration mechanisms for these paths to be dynamically and continually reconfigured to
satisfy user preferences and network resource constraints. The creation and reconfiguration of paths are accomplished
automaticallywith minimal input from applications. Although much work remains, to the best of our knowledge, these
results are among the first to demonstrate the viability of using fully automatic path-based adaptation approaches.
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