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Abstract

Hind et al. ([5]) use a standard data flow framework [15, 16] to formulate an intra-procedural may-alias
computation. The intra-procedural aliasing information is computed by applying well-known iterative
techniques to the Sparse Evaluation Graph (SEG) ([3]). The computation requires a transfer function
for each node that causes a potential pointer assignment (relating the data flow information flowing into
and out of the node), and a set of aliases holding at the entry node of the SEG. The intra-procedural
analysis assumes that precomputed information in the form of summary functions is available for all
function-call sites in the procedure being analyzed. The time complexity of the intra-procedural may-
alias computation for the algorithm presented by Hind et al. ([5]) is O(N®) in the worst case (where N is
the size of the SEG). In this paper we present a worst case O(N?) time algorithm to compute the same
may-alias information.

1 Preliminaries

Consider the C assignment statement
a = &b; 1)

The effect of the assignment is to assign the address of b to a. Therefore, after execution of Statement (1),
expressions *a, and b refer to the same storage location. Consequently, any modification to the value
stored at the location corresponding to *a will result in the modification of the value stored at the location
corresponding to b, and vice-versa. In this case, *a and b are said to be aliased. We call expressions such as
xa, and b, access-paths ([10]). More precisely, an access-path is the l-value of an expression constructed from
variables, pointer dereferences, and structure field selection operators. The aliasing of *a and b is represented
by the alias-pair (xa, b).

An alias relation R at statement S is a set of alias-pairs (z,y). Such a relation R is the must-alias relation
at statement S, if, an alias-pair {z,y) belongs to R, iff access-paths x and y refer to the same storage location
in all execution instances of statement S. The absence of an alias-pair {u,v) from R implies that access-paths
u and v refer to different locations in at least one execution instance of statement S. An alias-relation R is
the may-alias relation at statement S, if, an alias-pair {z,y) belongs to R, iff access-paths z and y refer to
the same storage location in some execution instance of statement S. Thus, the absence of an alias pair (u,v)
from R implies that v and v must refer to different storage locations in all execution instances of statement
S.

The computation of the actual must-alias and may-alias relations at all program points is undecidable
([9, 14]). Therefore, we must be satisfied with computing safe approximations to these relations. In order
to understand what it means for an alias relation to be a safe approrimation to the must-alias relation
(respectively, the may-alias relation), we must understand how the information contained in the must-alias
relation (repectively the may-alias relation) is used. For each alias pair (z,y) in the computed must-alias
relation, we want to be sure that z and y refer to the same storage location in all execution instances.
Therefore, any under-approximation (subset) of the actual must-alias relation is a safe approximation e.g.
the empty set {}. For each alias pair (u,v) not in the computed may-alias relation, we want to be sure that



Figure 1: An example alias graph

u and v refer to different storage locations in all execution instances. Therefore, any over-approximation
(i.e. superset) of the actual may-alias relation is a safe approximation e.g. the complete relation. It is
fairly obvious that the actual must-alias relation is reflexive, symmetric, and transitive, and that the actual
may-alias relation is reflexive, and symmetric (though not necessarily transitive). It is not difficult to prove
that if relation R is a safe approximation to the actual must-alias relation, then the reflexive, symmetric
and transitive closure of R is also safe. Correspondingly, it is not difficult to see that if relation R is a safe
approximation to the actual may-alias relation, then the largest reflexive and symmetric subset of R is also
safe.

In this paper, we will be concerned with computing a safe approximation to the may-alias relation at every
program point, and from now on whenever we refer to an alias relation, we will mean a may-alias relation.
May-alias relations, in addition to being reflexive and symmetric, also satisfy a congruence property, viz. the
existence of a may-alias pair {(z,y) € R implies the existence of another may-alias pair (xz,*y) in R, if z and
y are non-null, pointer-valued access paths. It is again not difficult to see that if R is a safe approximation
to the actual may-alias relation, then the largest subset of R that satisfies the congruence property is also
safe.

Since the may-alias analysis requires the computation of a may-alias relation at every program point, it
is beneficial to have a compact representation for may-alias relations. The goal is to minimize space usage
for alias information by not explicitly storing alias pairs that are inferable from the reflexivity, symmetry, or
congruence properties of may-alias relations. The next sub-section gives a brief description of the compact
representation used in [5].

1.1 Compact Representation of Alias Information

Hind et al. ([5]) use a compact representation of alias information in which the memory locations are associ-
ated with names, and are referred to as named objects ([6, 2]). The names are either user variable names or
new names created by the analysis. The compact representation of an alias relation requires that for each
alias-pair:

1. at least one access path component is a named object i.e., does not contain a dereference, and
2. the other access path component has no more than one level of dereferencing.

Thus, all alias-pairs are of the form (xa,b) (respectively (b, *a)), or {a,b), where a and b are named objects.
It is important to note that alias pairs of the form (a,b), where both a and b are named objects can arise
only because of structural aliasing, i.e. because of program constructs such as C’s union or FORTRAN’s
EQUIVALENCE statement. These may-alias pairs are in-fact must-alias pairs at all program points. Such
pairs of named objects are therefore closed under transitivity!, i.e. if {a,b) € R, and (b,c) € R, then
(a,c) € R. However, other alias pairs of the form (xa,b) are not closed under transitivity.

The compact representation of the alias relation, can be mapped to and from a directed-graph-based
representation. Each node in the directed graph corresponds to a distinct location. Thus, each equivalence
class of named objects is mapped to a node in the graph. Furthermore, every alias-pair of the form (xa, b)
contributes a directed edge from the node corresponding to a to the node corresponding to b. Such a
graph is called an alias-graph. For example, look at the alias-graph in Figure 1 (taken from [5]). The
corresponding compact representation for this alias graph is {({xa, b}, (¥b,c)}. The explicit representation
of the alias information may be extracted from the compact representation (or the alias graph) by using
Definition 2. If relation R is a compact representation of an alias relation, we define the corresponding

lremember that must alias relations are transitively closed.



Figure 2: Another alias graph

. . . . d
explicit aliases of a;, where a is a named object and 7 is the number of dereferences (e.g. as 'k a) by

A ~ | {a} ifi=0
EaplicitAliases(a, i) = { {r: (xs,r) € R|s € ExplicitAliases(a,i — 1)} otherwise

(2)
In terms of the alias graph, we can think of ExplicitAliases(a,i) as returning the set of vertices reachable
by paths of length i from vertex a. It is easy to verify that the explicit alias information of the alias graph in
Figure 1 includes the alias-pairs (xa,b), (xb, c), (x x a, c), {a,a), (b, b}, (¢, c), and all other alias-pairs that can
further be inferred by reflexivity and congruence. Note that in this example, none of the named objects are
aliased to each other, and hence each equivalence class of named-objects is a singleton set.

It is however, important to realize that the compact representation comes at the cost of a possible loss
in precision. For example, consider the explicit alias relation

R = {(xa,b), (xb, ), (x x a, xb), (a, a), (b, b), (¢, ) }- 3)

Note, that relation R contains the alias pairs (xa, b), and (xb, ¢), but does not contain the alias pair (x * a, c).
This implies that although it is possible for xa to be aliased to b, and *b to be aliased to ¢, it is never
possible for x x a to be aliased to ¢. This information, unfortunately, cannot be captured by the compact
representation. The best compact representation of relation R will still be the alias-graph in Figure 1, and
it is easily verified that ExplicitAliases(a,2) = {c}, i.e. the explicit alias representation constructed from
relation R contains the alias pair (x x a,c). This is a consequence of the fact that a certain amount of
transitivity is built into the way we extract explicit alias information from the compact representation using
Definition 2. However, extraction of explicit alias pairs from the compact representation does not involve
taking a full transitive closure. For example, looking at the alias graph in Figure 2, we see that the presence
of alias pairs (xd, e) and {xf,e)(= (e, *f)) in the compact representation does not imply the existence of the
pair {(xd,*f) in the corresponding explicit representation. An interesting discussion on the relative merits
and precision of both the compact and explicit representations may be found in [11] and the appendix of [5].
Definition 2 is a modified form of the definition given in [5], where an explicit recursive procedure
ComputeAliases(a,i) is given to compute the explicit aliases of named object a with i levels of derefer-
ence. The set of explicit aliases computed by Defintion 2 is the same as those computed by the procedure
ComputeAliases in [5]. In the rest of the paper, we always use the compact representation of may-alias
relations, and use Definition 2 to extract explicit alias information from the compact representations.

2 May-Alias Analysis

The intra-procedural may-alias analysis is performed on the sparse evaluation graph (SEG) ([3]). The SEG
is a sparse representation of the control flow graph (CFG) comprising of gen nodes, i.e. nodes that may
potentially modify the alias information, and join nodes, i.e. nodes where alias information is merged at join
points. The SEG also contains a special entry node Ngp4ry, and an exit node Ngy;, such that every node is
on some path from Ngp¢ry t0 Nggi. The computation of the may-alias information at each program point
(i.e. on entry to, and, on exit from each SEG node n) is done by an iterative dataflow analysis ([15, 16]).
Equations 4 and 5 (taken from the definitions in [5]) define the relationship between the alias information
flowing into and out of an SEG node n.



Let In,, and Out,, be the alias relations holding immediately before and immediately after SEG node n.
For a node n, In,, is the union of the Out sets of its predecessor nodes:

In, = U Outp,. (4)

pEPreds(n)

The intuition behind Equation 4 is as follows. If an alias pair (z,y) € Out, for some predecessor (in the
SEG) node p of node n, then, it may be the case that x and y are aliased in some execution instances in
which control reaches node n from node p. Therefore, all such alias pairs (x,y) must be in the alias relation
In,, holding at entry to node n.

The alias relation Out,, holding on exit from node n is defined as a function f, of the alias relation In,,
holding on entry to node n by Equation 5. Let the SEG node n correspond to the assignment p; = g;, where
p; is a pointer expression with 4 levels of indirection from variable p, and g¢; is a pointer expression with j
levels of indirection from variable q.2 Out,, is defined as

Outn = fn(Inn) d;f Inn — MUSt(EA(p,l)) U ( U {(*G’J b>})7 (5)
a€EA(p,i),beEA(q,j+1)

where EA(p,1) stands for ExplicitAliases(p,i). The functions EA and Must are defined below by Equa-
tions 6 and 7 respectively.

_ iti=0
EA(p,i) = { ?T)} (xs,r) € Inyp|s € EA(p,i—1)} ot;erwise (©)

Ing if S ={}
Must(S) =< {{(xp,q) € In,|p€ S} if |S|=1and S = {p} for some p (7
{} if |S|>1

Notice that the alias set In, is implicitly used in the computation of both EA(p,i) and Must(S) (for any
set of named-objects S). It would in fact be better to use EApy,, (p,i) and Mustr,, (S) instead of EA(p,1)
and Must(S) respectively. However, we will continue to use EA(p,i) and Must(S) whenever In,, is clear
from the context.

Equation 5 may be intuitively understood as follows. In a typical dataflow analysis framework ([1]), Out,,
is defined by an equation of the form

Outy, = (Iny, — Kill,) U Geny,

where Kill,, and Gen,, denote the dataflow information killed and generated at node n respectively. Let us
look at the Gen set for the assignment p; = g; given by the expression

{(xa,b)}. (8)

a€EA(p,i),bEEA(q,j+1)

The objects in EA(p,i)® and EA(q,j) are respectively the possible left hand sides and the possible right
hand sides of the assignment. The effect of the assignment p; = g; is to assign the value of some member
of EA(q,j) to some member of EA(p,i). Thus, the corresponding effect of the assignment on the may-alias
graph must be to add edges from every object in EA(p, 1) to every object that can be pointed to by a member
of EA(q,j), i.e. to every object in EA(q,j + 1). In Figure 3, the situation is described pictorially, and the
dashed edges correspond to the Gen set of the assignment p; = g;.

The Kill set is given by the expression Must(EA(p,i)) which corresponds to those alias pairs that
must necessarily be killed by the assignment. If the set EA(p,4) is a singleton set, say {a}, then a must
necessarily get modified by the assignment, and hence all alias pairs of the form (xa,z) must be killed. If,
however, EA(p,i) is a set with more than one object, say {a,b, ...}, then at most one of these objects will

28&q is treated as g_1.
3Recall that EA(p,i) is the set of nodes reachable by a path of length 4 from node p.



EA(q,j+1)

EA(q,j)

Figure 3: Dashed edges correspond to the alias pairs generated by the assignment p; = g;

get modified by the assignment, and the others will remain unchanged. Since it is not possible to know
which object gets modified, therefore, it is not possible to determine which alias-pairs get killed. Hence,
Must(S) is conservatively defined to be the empty set {}, whenever |S| > 1. An interesting problem arises
when EA(p,1) itself evaluates to the empty set. In this case, we define the Kill set to be the input alias
set Iny,, so that Out, evaluates to the empty set. This stops the flow of alias information through node n,
until some more alias information reaches node n, such that EA(p, ) becomes non-empty. If, on termination
of the iterative analysis, there are one or more SEG nodes for which the corresponding sets EA(p,) are
empty, then it can be proven that if an execution path ever reaches any of these nodes, then a null pointer
dereference error will occur.

In the next section, we describe three successively more efficient algorithms to compute may-alias infor-
mation. The termination of each of these algorithms relies on the function f,, (given by Equation 5) being
monotonic (increasing) with respect to the addition of alias pairs to In. It is easily verified that function
Must, as defined by Equation 7, is anti-monotonic (decreasing), and function ExplicitAliases, as defined
by Equation 6, is monotonic with respect to the addition of alias pairs to In. Then, it is easily verified from
Equation 5 that function f, is monotonic.

3 Computing May-Alias Information

This section describes three algorithms to compute the may-alias information at each SEG node n. The first
sub-section describes a very simple iterative algorithm used by [5] that computes a safe approximation to
the may-alias relation at entry to every SEG node n, which runs in O(N®) time where N is the size of the
SEG. The next sub-section explains how the simple iterative algorithm can be improved by using a worklist
based strategy to run in O(N®) time. Finally, we present a much more efficient algorithm based on the ideas
of dominated convergence and finite differencing ([7]), that runs in worst case O(N?3) time.

3.1 Simple Iterative Algorithm

From the previous section, it is clear that the may-alias relations to be computed at the entry and exit to
each SEG node n, i.e. In,, and Out, must satisfy Equations 4 and 5. In fact, Equations 4 and 5 may be



Input: In(0)
Output: In(i) foralli=0,...,N

Init: Vi=1,...N In(i)={}
Vi=0,...N Out(i) = fi(In(3))
Loop : repeat
Vi=1,...,N loop
In(z) = UpEPred(z’)OUt(p)
Out(i) = fi(In(i))
endV
until all the Out(i)’s converge.

Figure 4: Simple iterative algorithm for computing may-aliases

combined into the single equation

Ing, = U fo(Inp), 9)

pEPred(n)

for each SEG node n, where f, is the transfer function for node p. In other words, the computed may-alias
information must be a fixed-point of the following system of equations:

Iny = UpePTed(l) fP(InP)
Iny = pEPred(2) fP(InIJ) (10)
Iny = UpEPred(N) fP(InP)

It is not difficult to see that the may-alias information that we seek to compute, is in fact, the least fixed
point of the system of equations 10. All other fixed points of the system of equations 10 are also safe
approximations of the may-alias relations at every node n, although they are not as accurate (precise) as
the least fixed point.

Let the nodes of the SEG be numbered from 0,..., N, where node 0 denotes the entry node Ngpiry
of the SEG. Then, if each of the transfer functions f, is monotonic, the least fixed point of the system of
equations 10 can be computed by Kildall’s iterative algorithm ([8]) shown in Figure 4.

Before we are ready to calculate the run-time complexity of the algorithm in Figure 4, we need to
understand a few details about the low level implementation. Since an alias relation is implemented as a
set of alias pairs, the efficient computation of Out, from In, using Equation 5 requires that the primitive
operations such as set membership test and insertion into a set, be performed efficiently. The implementation
of Hind et al. ([5]) relies on hashing to perform the set-based operations efficiently. Thus, the complexity
of their algorithm is average-case O(N®) time, under the assumption that hashing takes O(1) time on the
average. However, it is possible to use a more sophisticated data-structure for implementing sets that allows
primitive operations such as set membership test and insertion into a set to be implemented in worst case
O(1) time without the use of hashing. We do not present the details of these data structures in this paper
but refer the interested reader to [12, 4] which describe data-structres that can be used to perform all set
membership tests and set insertions in our algorithm in worst case O(1) time.

Let us make the simplifying assumption that the SEG has been pre-processed so that the maximum
number of predecessors of any node is no more than two. This can easily be done by adding a series of
dummy join nodes to the SEG. The resulting number of nodes in the new SEG is still linear in the number
of edges in the old SEG. We will let N denote the number of vertices in the processed SEG. Note, however,
that both the number of vertices and the number of edges in the original SEG are linear in the size of the
procedure. Let A,,,, denote the maximum number of aliases holding at any program point, and let L be a
bound on ¢ and j, i.e. the maximum number of dereferences to any of the named objects appearing in the
assignment p; = g;.

Lemma 3.1 EA(p,i) can be computed in O(i X Apqz) time.



Proof: We compute EA(p,i) by successively computing EA(p,0), EA(p,1),EA(p,2),...,EA(p,i). The
computation of EA(p,k + 1) from EA(p,k) can be done by just computing the neighbors of all nodes in
EA(p, k), and can take at most A,,,, time. Thus, the successive computations of EA(p,0),...,EA(p,1)
take O(i X Apgz) time. O

Lemma 3.2 The function f,(In,) given by Equation 5 can be computed in O(L X Apqe) time.

Proof: The computation of f,(In,) is done by first computing EA(p,i) and EA(g,j + 1). Since L is
an upper bound on i and j, we see from Lemma 3.1 that EA(p,¢) and EA(g,j + 1) can be computed in
O(L x Apaz) time. Next, it is easy to see that the computation of Must(EA(p,i)) takes at most O(Anaz)
time. Finally, since the size of Expression (8) is bounded by A,,.., we see that the entire computation of
fn(Iny,) takes at most O(L X Apqg) time. 0O

Corollary 3.3 Each iteration of the algorithm in Figure 4 takes O(N X L X Ayqz) time.
Lemma 3.4 The number of iterations in the algorithm in Figure 4 is bounded by (N X Apee) + 1.

Proof: Each iteration of the algorithm, except for the last one, results in the addition of at least one new
edge to the Out set of some node i. The total number of such edges for each node is bounded by A,,,.-
Thus, the total number of iterations is bounded by (N x A;q,)+1. O

Corollary 3.5 The time complezity of the algorithm in Figure 4 is O(L x A2 x N?) time.

mazx

It is quite reasonable to assume that L is actually a small constant. Also, in the worst case, A4,,,,, may be
as large as N2. Thus, a coarser estimate of the time complexity of the simple algorithm is O(N%). Next, we
show how a simple worklist based strategy can improve the worst case time complexity of the algorithm to
O(N?). Finally, we present a much more efficient algorithm for computing the same may-alias information
in worst case O(N?) time.

3.2 A Worklist Based Strategy

One of the main sources of inefficiency in the simple iterative algorithm is the repetitive computation of
fr(In(k)) for all SEG nodes k in each iteration, including even all those nodes for which there is no change
in the value of their In sets in the previous iteration. A simple optimization that eliminates needless repeated
computations of Out(k) = fr(In(k)), is the use of a worklist based strategy. A worklist of nodes, for which
the In sets changed in the previous iteration is maintained. In each iteration, the computation of Out is
performed only for the nodes in the worklist, and another worklist comprising of those nodes for which the I'n
sets change in this iteration, is created for use in the next iteration. A careful implementation of the worklist
strategy can improve the worst case time complexity of the may-alias computation to O(L x A2, x N)
time. This is because, for each SEG node k, the re-computation of Out(k) is done only whenever at least
one new alias pair is added to In(k). Using the fact that the size of In(k) is bounded by A,,4s, and that the
computation of Out(k) takes O(L X A,,q2) time, we get the worst case time complexity O(L x A2 .. x N) for

the worklist strategy based algorithm. Again, assuming that L is a small constant, and that A4,,,, = O(N?),
we see that the complexity of the worklist based algorithm is O(N®) time.

3.3 Going Beyond the Worklist Strategy

The goal of using worklists is to eliminate needless re-computation of Out(k), whenever In(k) does not
change for an SEG node k. The same idea can be extended to further improve the algorithm by using
finite differencing ([13]) to compute Out(k) incrementally for small changes to In(k). The benefit of this
strategy stems from the fact that although the computation of Out(k) = fr(In(k)) from scratch may be
quite expensive, the incremental computation of Qut(k) for a small incremental change in the value of In(k)
may involve relatively inexpensive computations. Figure 5 describes the outline of an algorithm based on
this idea. Assuming that the new value of Out(k) can be computed incrementally from the old values of
Out(k), In(k), and the new edge x being added to In(k), we first prove the correctness of the algorithm in
Figure 5.



Input: In(0)
Output: In(i) foralli=0,...,N

Init: Vi=1,...N In(i)={}
Vi=0,...N Out(i) = fi(In(7))
Loop : while 3k : In(k) C Upepred(r) Out(p) loop
x = arbitrary element from (Upepreq(r)Out(p) — In(k))
Add z to In(k)
Incrementally compute Out(k) = fr,(In(k))
end loop

Figure 5: Outline of the improved algorithm using Dominated Convergence

Lemma 3.6 The algorithm in Figure 5 correctly computes the same may-alias information that is computed
by the simple iterative algorithm in Figure 4.

Before we sketch a proof of Lemma 3.6, we first make the following assertions:

Assertion 3.7 Inside the while loop of Figure 5, the condition

I’I’L(k‘) Cc UpEPred(k)Out(p) (11)
always holds for allk=1,...,N.

Proof: Assertion 3.7 is true initially on entry to the loop for the first time since for all k = 1,..., N, the
In(k)’s are equal to {}. The addition of 2 € U,c preqr)Out(p) —In(k) to In(k) does not violate Condition 11.
Since each function f} is monotonic, the new value for Out(k) must be a superset of its previous value, and
hence cannot result in the violation of Condition 11. O

Assertion 3.8 The condition
Out(k) = fr(In(k)) (12)

is always true on entry to the while loop, for all k =0,...,N.

Proof: Condition 12 is clearly true on entry to the loop for the first time. The (incremental) re-computation
of Out(k) following the addition of = to In(k) ensures that Condition 12 is also always satisfied on re-entry
to the loop. O

We are now ready to see a proof sketch of Lemma 3.6.

Proof Sketch of Lemma 3.6: The algorithm in Figure 5 always terminates. Each iteration results in the
addition of a new edge z to In(k). Since the maximal size of each In(k) is finitely bounded (by A;;qz), the
termination of the algorithm is guaranteed. The termination condition of the algorithm ensures that for all
k=1,...,N,

UpEPred(k)OUtp C In(k) (13)
Condition 13, together with Assertions 3.7 and 3.8, implies that on termination, the values of In(k) are
actually a fixed point of the system of equations 10. An argument based on the Dominated Convergence

Theorem ([7]) can be used to prove that this solution is in fact the least fixed point and hence, the same as
the solution computed by the simple iterative algorithm. O

Let us try to see how the repeated operations in the loop of the algorithm in Figure 5 can be performed
efficiently. For each iteration of the loop, we first need to find an SEG node k for which

In(k) C Upepred(k)O'utp, (14)

and extract an arbitrary element x from Upepreqr)Outy — In(k). Next, we add this edge to In(k) and try
to compute the new value for Out(k) incrementally. Before we go into a detailed explanation of how to



compute the new value of Out(k) efficiently in an incremental fashion, let us see how we can efficiently find
an SEG node k satisfying Condition 14, and extract an edge = from Upe preqr)Out, — In(k). We do this by
maintaining a worklist of pairs [k, z] of SEG node k, and edge x, such that x € Uy preq(r) Outp — In(k). We
initialize this list before the entry to the loop for the first time. In each iteration, we extract a pair [k, z]
from this list and add edge = to In(k). After computing the new value of Out(k), for each edge y that is
newly added to Out(k), we go through every successor p of node k (in the SEG), and add the pair [p,y] to
the worklist, if y & In(p), and the pair [p,y] is not in the worklist already.

It is clear that each edge x that appears in the final value of In(k) for some SEG node k, is inserted into
the worklist at most once. Thus, the total cumulative cost of maintaining the worklist inside the loop for all
the iterations is O(IN X Apqez). Also, the worklist is initialized once before the entry to the loop for the first
time. This initialization cost is also O(N X Anuaz)-

3.3.1 Incremental Computation of Qut

Let us see how to recompute Out(k) incrementally as a result of the addition of a new edge = to In(k), for
a fixed, but arbitrary SEG node k. Let In and In' denote the values of In(k) before and after the addition
of edge z, i.e. In' = InU{z}, and let Out = fi(In), and Out’' = fr(In'). Let the statement corresponding
to SEG node k be p; = ¢;. From now on, let us abbreviate EA(p,l) to S;, and EA(g,m) to Ty,. Also, since
Expression (8) resembles a cross-product, we will use S; x Tj41 to denote Uaes; per; i {(*a,b)}. Then the
transfer function f; may be rewritten more compactly as

FreIn(k)) € (In(k) = Must(S:)) U (i x Tj41)- (15)

Let us also define a function Neighbors(S) (Equation 16) to be the set of nodes reachable from the nodes
in set S by a path of length 1 in the graph In*.

Neighbors(S) def {v: (xu,v) € In|u € S} (16)

From Equation 6 it is obvious that for [ > 0, EA(p,l) = Neighbors(EA(p,l —1)).

The incremental computation of Out’ requires some extra storage costs. We will need to compute and
store the auxiliary expressions S; (or EA(p,!)) and T, (or EA(q,m)) for I =0,...,45,and m =0,...,5 + 1.
Let Sy and S}, denote the values of EA(p, k) computed relative the relations In and In' respectively. Initially,
when In = {}, we have So = {p}, and S; = {}, for [ > 0. Similarly, To = {¢}, and T);, = {} for m > 0.

Let AOut denote Out' —Out. Similarly, let ASy, denote S}, — Sk, and ATy, denote T}, —Tp,. Figure 6 gives
the details of an efficient algorithm for computing AOut, ASy, ..., AS;, ATy, ..., ATj4, efficiently from the
values of In,Out,z,So,...,Si, To, ..., Tj+1. (Note, that ASy and ATy are always equal to {}).

The algorithm described in Figure 6 is correct though it omits some details about how to perform Step
1 efficiently, which shall be explained shortly. Let us first try to understand why the algorithm in Figure 6
computes AQut correctly. Let the edge = being added to In be the alias pair (xa,b). It is easy to prove that
if S; = {r} for some named object r, and AS; = {}, then

sout= iy - i = { UG x )0 agr

Similarly, if |S;| > 1, then
AOut = fi, (ITLI) - fk(In) = ({(*CL, b)} @] (AS, X Tj+1) @] (Sz X ATj+1) @] (ASZ X ATj+1)) — QOut (18)

The correctness of the algorithm in Figure 6 can be understood by looking at how the algorithm proceeds
as edges are successively added to In. Initially, when In is empty, either S; is empty or contains exactly
one element. If S; is empty, then the condition for either the first if or the second if in Step 2 must evaluate
to true, and it is obvious that AQut is computed correctly. If the condition for the second if evaluates to
true, then for all subsequent insertions of edges to In, the conditions for the first and second if’s can never

4Recall that each alias relation can be thought of as an alias graph.



Let  be the edge (xa, b)
Inputs: In,Qut,z,So,--.,S:,To,- .-, Tj+1
Outputs: AQut, AS,...,AS;, ATy, ..., ATjq

Step 1:

Step 2:

for 1 =1,...,7) use S;_1,S;, AS;_1,and x to compute AS;
for I=1,...,5+ 1) use T;_1,T;, AT;_1,and x to compute AT;
AOut = {};

if S; = {} and AS; = {} then
return; (because Out and Out’' are both empty)
else
if S; = {} and AS; # {} then
compute Out' from In' directly from the definition and let AOut = Out' — Out;
else
if S; = {r} (for some r) and AS; = {} then
Add (z = (xa,b)) to AOut if a # r and z & Out;
Add {(xc,d) : ¢ € S;,d € ATj1|(xc,d) ¢ Out} to AOut
else
if S; = {r} (for some r) and AS; # {} then
compute Out’ from In' directly from the definition and let AOut = Out’ — Out;
else
if | S;| > 1 then
Add (z = (xa,b)) to AOut if z & Out
Add {(x¢,d) : c € AS;,d € Tjq1|(xc,d) & Out} to AOut
Add {(xc,d) : c € S;,d € ATj11|(xc,d) & Out} to AOut
Add {(x¢,d) : c € AS;,d € ATjq1|(xc,d)y & Out} to AOut
endif

Figure 6: Incremental computation of Out’
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evaluate to true again. Equation 17 explains how AQut is correctly computed in the case for the third if.
The correctness for the fourth if is obvious. If the condition for the fourth if evaluates to true, then for all
subsequent insertions of edges to In, only the condition for the fifth if can evaluate to true. Equation 18
explains how AQut is correctly computed in the case for the fifth if.

Before we describe how to perform Step 1 efficiently, let us look at the cost of Step 2.

Lemma 3.9 Let Ingina and Outfing be the final values of In(k) and Out(k) on termination of the algo-
rithm. The cumulative cost of Step 2 in the algorithm in Figure 6 over the addition of all the edges x to
In(k) (starting from In(k) = {}, and ending when In(k) = Ingina ), for some arbitrary but fixzed SEG node
k, is O((|Infmal| + |O'U,tfi,ml|) X L) .

Proof Sketch: The conditions in the second and fourth if s (in Figure 6) are true at most once each during
all the additions of edges to In(k), and therefore the expensive computation of AQut from In' using the
definition directly is done at most twice. The cost of each of these two computations are O((Infina +
Outfinar) X L) (or O(Amaz % L) from Lemma 3.2). The rest of the work is done whenever the condition of
either the third or fifth if is true. Suppose an edge (xc¢,d) is added to AOut inside the fifth if statement.
The at least one of the following cases must be true:

1. the edge z is (xc,d)

2. ce AS;,d € Tj4q, or
3. ce S;,de ATj44, or
4. ce AS;,d € ATjy,.

The last three conditions can never be true for the same edge (xc, d) twice. Consider the case when ¢ € AS;.
For each of the subsequent iterations, the condition ¢ € S; is true, and hence, the condition ¢ € AS; can never
be true again. Thus, all the edges considered for addition into AQut in the third or fifth if statements, are
different from each other. Furthermore, each of these edges are members of Outfinqi. Thus, the cumulative
cost of all operations performed in the third and fifth if statements is O(|Infina| + |Out finail)-
Putting all the costs together, we see that the cumulative cost of Step 2 is O((|In finat| + |Out finat]) x L).
O

Now, let us see how to perform Step 1 efficiently. Let the edge x being added to In be (xa,b). It is fairly
obvious that
Neighbors(AU B) = Neighbors(A) U Neighbors(B).

Using the fact that Sy = Neighbors(Sg—1), it is not difficult to prove that
ASk = {y € Neighbors(ASk—1)|y € Sk} U{y:y € {b}|la € S}_,}
Lemma 3.10 The cumulative cost of computing all AS;’s (for an arbitrary but fized 1) is O(|Infinail)-

Proof: Any node v appears in AS;_; at most once during the execution. Only at this time, we look at
all the edges going out of node v (in the computation of Neighbors(ASk—_1)). Since each edge in Ingine is
looked at, at most once, the total cost is O(|Infina|). O

Thus the total cumulative cost of performing Step 1 is bounded by O(L x |Inginal). Since |[Infinq| and
|Out finai| are both bounded by A4y, we see that the total work done for any fixed but arbitrary SEG node
k is O(L x Apge). Thus, the total cost of the algorithm is O(L X Ay, X N). The coarse estimate for
the complexity of our algorithm is O(NN?), where N is the size of the SEG. Another interesting fact worth
mentioning is that except for the factor L (which in practice should be a small constant), the algorithm
presented here is asymptotically optimal since its worst case time complexity is linear in the size of its
output.
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