
-- --

Counting Embeddings of Planar Graphs Using DFS Trees 1

Jiazhen Cai

Courant Institute, NYU
New York, NY 10012

ABSTRACT

Previously counting embeddings of planar graphs [5] used P-Q trees and was

restricted to biconnected graphs. Although the P-Q tree approach is conceptually

simple, its implementation is complicated. In this paper we solve this problem

using DFS trees, which are easy to implement. We also give formulas that count

the number of embeddings of general planar graphs (not necessarily connected or

biconnected) in O (n) arithmetic steps, where n is the number of vertices of the

input graph. Finally, our algorithm can be extended to generate all embeddings of

a planar graph in linear time with respect to the output.

Key words. graph, depth first search, embedding, planar graph, articulation point, connected

component

AMS(MOS) subject classifications. 68R10, 68Q35, 94C15

1. Introduction

In [14], Wu stated four basic planar graph problems:

1. Decide whether a connected graph G is planar.

2. Find a minimal set of edges the removal of which will render the remaining part of G

planar.

3. Give a method of embedding G in the plane in case G is planar.

4. Enumerate and count all possible planar embeddings of G in the plane in case G is planar.

�����������������������������������
1. Part of this work was done while the author was visiting the University of Wisconsin - Madison. The research of this
author was partially supported by National Science Foundation grant CCR-9002428.

-- --

- 2 -

Wu solved all these problems using systems of algebraic equations. His solutions are elegant,

but his implementations are not so efficient. Other solutions to these problems basically follow

two different approaches. One uses DFS trees [4, 8]; and the other uses P-Q trees [3, 5, 9-11].

The P-Q tree approach is considered to be conceptually simpler, but its implementation is

much more complicated. Efficient P-Q tree solutions have been discovered for all the four prob-

lems. Lempel, Even and Cederbaum [10] solved problem 1. Chiba et al solved problems 3 and 4

[5]. These solutions are all linear-time. Recently, Di Battista and Tamassia [6] have claimed an

O (logn)-time-per-operation solution to the problem of maintaining a planar graph under edge addi-

tions, which implies an O (mlogn)-time solution to problem 2. Here m is the number of edges and n

is the number of vertices of the input graph. On the other hand, the DFS tree approach was used

only for problems 1 and 2: a linear-time DFS tree algorithm (the HT algorithm) for problem 1 was

given by Hopcroft and Tarjan [8] in 1974, and an O (mlogn)-time algorithm for problem 2 was

given by Cai, Han, and Tarjan [4] recently. The HT algorithm can also be extended to solve Prob-

lem 3, but the modification is complicated.

The previous solutions for the four planar graph problems all consider biconnected graphs

only. The extension from biconnected graphs to general graphs is straightforward for problems 1,

2, and 3, but not for problem 4. For connected graphs, Stallmann [12] solved the enumeration ver-

sion of problem 4 in time linear to the size of the output, but his solution for the counting problem

is complicated and cannot be accomplished in polynomial time. For unconnected graphs, we know

no published solution for problem 4.

In this paper, we give an O (n)-time DFS tree solution for the counting version of problem 4.

While the P-Q tree solution in [5] only counts the embeddings of biconnected graphs, we also

solve the interesting combinatorial problem of counting embeddings of general graphs. Our algo-

rithms extend easily to generate one embedding or all embeddings of a planar graph in time linear

to the input and output, hence solve problems 3 and 4. Thus, we complete the DFS tree solutions

for the four planar graph problems.

The rest of the paper is organized as follows. Section 2 is preliminaries. We solve the count-

ing problem for biconnected graphs in Section 3 and then show how to count embeddings for more

general planar graphs in Sections 4 and 5.

2. Preliminaries

Consider an undirected graph G = (V, E) with vertex set V and edge set E. Denote |V| by n

and |E| by m. We assume that G has no self loops and has no multiple edges. We can draw a pic-

ture H on a surface, which can be either a plane or a sphere, as follows: for each vertex v ∈ V, we

draw a distinct node v′; for each edge (v, w) ∈ E, we draw a simple arc connecting the two nodes v′

and w′. We call this arc an embedding of the edge (v, w). If arcs of H do not cross each other, we

-- --

- 3 -

say that H is an embedding of G. An embedding on the plane is called a planar embedding, and an

embedding on the sphere is called a sphere embedding. It is easy to see that G has a planar embed-

ding iff it has a sphere embedding. If G has an embedding, then we say that G is planar. Since we

are interested only in graphs with no isolated vertices, we will frequently identify graphs with their

edge sets.

o

b

b′
a′

a

Fig. 1 Sphere projection

One easy transformation between planar embeddings and sphere embeddings is the sphere

projection shown in Fig. 1. Under the sphere projection, each point on the sphere, except the pro-

jection center o, has a distinct image on the plane, and each point on the plane is the image of some

point on the sphere. Let H be a sphere embedding of a graph G with f faces. According to Euler’s

formula [2], if G has m edges, n vertices and c connected components, then f = m - n + c + 1.

Using the sphere projection, we can get f topologically different planar embeddings of G from a

given sphere embedding of G by selecting the center of projection in different faces. Thus, if G has

N sphere embeddings, then it has Nf planar embeddings.

We will represent embeddings by their planar maps and adjacency relations. A planar map

M for a given embedding H of G is a mapping from V to lists of E such that for each v ∈ V, M (v)

gives the clockwise circular ordering of the edges around v in H. In this case, we say that H and M

match each other. For connected graphs, sphere embeddings with the same planar map are topo-

logically equivalent. Therefore we need only count planar maps in this case. However, for graphs

with more than one connected components, planar maps do not specify the relative positions of the

embeddings of different connected components.

-- --

- 4 -

Let H be a sphere embedding of G. We define an adjacency relation R on the set of faces of

the embeddings of different components in H as follows. Let C 1 , ..., Ck be the connected com-

ponents of G, and H1 , ..., Hk be the embeddings of C 1 , ..., Ck in H respectively. We say that two

embeddings Hi and Hj are neighbors of each other in H if there is a face in H whose boundary con-

tains edges from both Ci and Cj . If Ci and Cj are neighbors in H, then there is a face Fi of Hi that

contains Hj , and a face Fj of Hj that contains Hi . In this case, we say the two faces Fi and Fj are

adjacent to each other, and the unordered pair (Fi , Fj) is in R. Thus, in general, a sphere embed-

ding can be specified by a planar map plus an adjacency relation.

The following facts are important to our discussion:

b
CC a

a

b

P

Fig. 3Fig. 2

Observation 1. Let C be a simple closed curve on the plane as in Fig. 2; let a be a point

inside C and b be a point outside C. Then any curve that joins a and b will cross C.

Observation 2. Let G1 be the undirected graph represented by Fig. 3, where P is a path join-

ing the two vertices a and b on cycle C. Then in any embedding of G1 , all the edges of path P are

on the same side of the cycle C.

o 2
o 1

P 2

P 1
C

b

c 1

c 2

a

Fig. 5

C

a 1

a 2

P 1

b 1

P 2

b 2

Fig. 4

Observation 3. Let G2 be the undirected graph represented by Fig. 4, where a 1 , a 2 , b 1 and

b 2 are four distinct vertices that appear in order on C. Then in any embedding of G2 , the two paths

P 1 and P 2 are on opposite sides of the cycle C.

Observation 4. Let G3 be the undirected graph represented by Fig. 5, where a, c 1 , c 2 and b

are vertices that appear in order on C, and c 1 and c 2 may be the same. Then in any embedding of

-- --

- 5 -

G3 , the two subgraphs P 1 (containing paths from o 1 to a, b and c 1) and P 2 (containing paths from

o 2 to a, b and c 2) are on opposite sides of the cycle C.

All four observations above are intuitively obvious and can be proved by the Jordan Curve

Theorem [7, 13].

3. Number of embeddings for biconnected graphs

We first discuss how to count planar maps of biconnected graphs. We will reduce this prob-

lem into a sequence of successively simpler problems before we eventually solve it.

In this section we assume that G = (V, E) is given in its DFS representations [1], where V =

{1, ..., n} is the set of DFS numbers of the vertices in G, and E is partitioned into a set of tree edges

T and a set of back edges B. If [v, w] is a tree edge, then v < w. If [v, w] is a back edge, then

w < v, and there is a tree path in T from w to v. In either case, we say that [v, w] leaves v and enters

w, and is connected to v and w.

We define successors for both vertices and edges. If [v, w] is a tree edge, then w is a succes-

sor of v. If [v, w] is a tree edge, and [w, x] is any edge, then [w, x] is a successor of [v, w]. Back

edges have no successors. We also define descendants and ancestors for both vertices and edges. A

descendant of vertex (resp. edge) x is defined recursively as either x itself or a successor of a des-

cendant of x. If y is a descendant of x, then x is an ancestor of y. If y is a successor of x, then x is a

predecessor of y.

In this section, we also assume that G is a biconnected graph with at least two edges. Then

each tree edge has at least one successor, and T forms a tree with only one edge leaving the root.

Let e = [v , w] ∈ E. Let Y be the set of vertices y such that there exists a back edge [x, y]

that is a descendant of e. Then Y is not empty. We define low 1(e) to be the smallest integer in Y,

and low 2(e) to be the second smallest integer in Y ∪ {n +1}. The two mappings low 1 and low 2

can be computed in O (m) time during the depth-first-search on G [8]. Since G is biconnected, it

has no articulation points. Thus, if v is not the root of T, then low 1(e) < v. [1]

As in [8], we define the function φ on E as follows.

φ(e) =

����
2 low 1(e) + 1

2 low 1(e)

otherwise

if low 2(e) ≥ v, where e = [v, w]

For each vertex v ∈ V, we arrange all the edges leaving v into a list Φ(v) in increasing order

by their φ values. The ordering Φ can be computed in O (m) time using a bucket sort. The first

edge in Φ(v) is called the reference edge of v, denoted by ev,ref . We use E 0 to represent the set of

all non-reference edges in E.

-- --

- 6 -

For e = [v, w] ∈ E, we define S (e), the segment of e, to be the subgraph of G that consists of

all the descendants of e. We use ATT (e) to denote the set of back edges [x, y] in S (e) such that y

is an ancestor of v. Each back edge in ATT (e) is called an attachment of e. Thus, if [x, y] is an

attachment of e, then low 1(e) ≤ y ≤ v. If low 1(e) < y < v, then we say that [x, y] is normal. Other-

wise we say that [x, y] is special.

For each edge e = [v, w] ∈ E, we define cycle (e) as follows: if e is a back edge, then

cycle (e) = {e} ∪ {e′: e′ belongs to the tree path from w to v}; if e is a tree edge, then cycle (e) =

cycle (ew,ref). Since we assume that G is a biconnected graph with more than one edge, then for

any edge e = [v, w] ∈ E, cycle (e) is defined. The only edge on cycle (e) that enters v is denoted by

ev,in . If v is not the root, then ev,in is the only tree edge entering v. Each embedding Ce of cycle (e)

is a simple closed curve, which divides the plane (or sphere) into two regions. When we travel on

Ce along the direction of its edges, we see one region on the left hand side and the other region on

the right hand side. We use sub (e) to denote the subgraph S (e) ∪ cycle (e). It is easy to see that

the vertex low 1(e) is always on cycle (e), and sub (e) − S (e) = {e′: e′ belongs to the tree path from

low 1(e) to v}. If e is the only tree edge leaving the root, then sub (e) is the whole graph.

Fig. 6

tree edge

back edge

7

6

9
8

e

5

4

3

2

1

10

11

12
13

14

Fig. 6 illustrates some of these definitions, where e = [4, 5]; low 1(e) = 1; low 2(e) = 2;

cycle (e) = { [4, 5], [5, 6], [6, 7], [7, 8], [8, 1], [1, 2], [2, 3], [3, 4] }; S (e) contains all the edges in

the graph except [1, 2], [2, 3], [3, 4]; sub (e) is the whole graph; ATT (e) = {[8, 1], [9, 3], [12, 1],

[14, 2], [13, 4]}.

-- --

- 7 -

3.1. Partial maps

Let H be an embedding of G. Let M be the planar map of H. For each v ∈ V, we assume that

the list M (v) starts from the edge ev,in . For any vertex v in V and any two edges ei and ej con-

nected to v, if ei appears before ej in M (v), then we say that ei is embedded on the left of ej , and ej

is embedded on the right of ei in H.

A mapping M′ from V to lists of edges in E is call a partial map of G if there is a planar map

M of G such that for each v ∈ V, M′(v) can be obtained from M (v) by deleting all the edges enter-

ing v. In this case, we say that M is an extension of M′. If H is an embedding that matches M, we

also say that H and M′ match each other. The following lemma establishes the one-to-one

correspondence between planar maps and partial maps.

LEMMA 1. If M′ is a partial map of G, then there is a unique planar map M of G that is an

extension of M′.

Proof Let H be an embedding of G that matches M′. Let M be the planar map of H. We

show that M is uniquely determined by M′.

Let label be a numbering of back edges from 1 to | B | such that for any v ∈ V, for any two

edges ei and ej leaving v, and for any two back edges ti ∈ S (ei) and t j ∈ S (ej), if M′(v) = [..., ei , ...,

ej , ...], then label (ti) < label (t j). It is clear that label is uniquely determined by M′.

Let v ∈ V. Let e be an edge leaving v. Let in (e) be the set of back edges in S (e) entering v,

not including ev,in . Let back (e) be the unique back edge on cycle (e). Consider an edge t ∈ in (e).

By the definition of label, we know that t is embedded on the left of e in H iff label (t) <

label (back (e)). Thus, the position of t in M (v) relative to e is uniquely determined by M′.

Then consider two edges t 1 and t 2 in in (e) such that either label (t 1) < label (t 2) <

label (back (e)) or label (back (e)) < label (t 1) < label (t 2). Again by the definition of label, we

know that t 1 is embedded on the right of t 2 . Thus, for any two edges in in (e) ∪ {e}, their relative

positions in M (v) are uniquely determined by the mapping label.

Now consider any two edges ei and ej in M′(v) such that ei appears before ej in M′(v). Since

G is biconnected, then all edges in in (ei) ∪ {ei} are embedded on the left of all the edges in in (ej)

∪ {ej} in H. Thus M (v) is uniquely determined by label. �
Therefore, to count planar maps, we need only to count partial maps.

The above proof also suggests a simple linear-time algorithm that builds a planar map M

from a partial map M′. First we compute the mappings label, back, and in in a depth-first-search

on G, which takes O (n) time (recall that for a planar graph, m = O (n).) Then for each edge e =

[v, w] ∈ E, we split in (e) into two lists Le = [l 1 , ..., li] and Re = [r 1 , ..., rj] such that label (r 1) > ...

> label (rj) > label (back (e)) > label (l 1) > ... > label (li). This can be done again in O (n) time

using a bucket sort. For each v in V, let M′(v) = [e 1 , ..., ek]. Then M (v) = [ev,in] + Le 1 + [e 1] + Re 1

+ ... + Lek + [ek] + Rek , where + is the list concatenation.

-- --

- 8 -

3.2. Singular edges

We call an edge e = [v, w] in E 0 singular if low 2(e) ≥ v. A set of all singular edges leaving

the same vertex and having the same low 1 value is called a singular set. We have,

LEMMA 2. Let M′ be a partial map of G. Let ei = [v, wi] and ej = [v, wj] be two edges on the

same side of ev,ref in M′(v). If φ(ei) = φ(ej) then both ei and ej are singular.

Proof We prove this lemma by contradiction. Suppose one of ei and ej , say ei , is not

singular. Then low 2(ei) < v. Since φ(ei) = φ(ej), then low 2(ej) < v also. By Observation 4, S (ei)

and S (ej) cannot be embedded on the same side of cycle (ev,ref). Therefore ei and ej cannot be

embedded on the same side of ev,ref , a contradiction. �
LEMMA 3. Let ei = [v, wi] and ej = [v, wj] be two edges in a singular set. Let M′ be any par-

tial map of G. Let M′1 be a mapping obtained from M′ by switching the positions of the two edges

ei and ej in M′(v). Then M′1 is also a partial map of G.

Proof Let H be an embedding of G that matches M′. Since ei and ej are in the same singu-

lar set, then low 1(ei) = low 1(ej). Also, v and low 1(ei) are the only two vertices that are shared by

S (ei), S (ej) and the rest of G. Therefore, either one of S (ei) and S (ej) can be re-embedded into any

face in H whose boundary contains the the two vertices v and low 1(ei). In particular, we can obtain

another embedding H′ of G from H by switching the positions of the embeddings of S (ei) and

S (ej). Then M′1 is the partial map that matches H′. �
3.3. Feasible maps and valid partitions

If U is a set, and X, Y are two disjoint sets such that X ∪ Y = U, then we call [X, Y] an ordered

partition of U. Let Q = [LL, RR] be an ordered partition of E 0 . We say that Q is a valid partition

of E 0 if there exists an embedding H of G such that in H, each edge [v, w] ∈ LL is embedded on

the left of ev,ref , and each edge [v, w] ∈ RR is embedded on the right of ev,ref . In this case we say

that Q is derived from H. If M is a planar map or partial map of G that matches H, we also say that

Q is derived from M.

Let M′ be a mapping from V to lists of edges in E such that for each v ∈ V, M′(v) is a permu-

tation of the edges leaving v. We call M′ a feasible map of G if there exists a valid partition Q =

[LL, RR] of E 0 so that for all v ∈ V, if M′(v) = [l 1 , ..., ls , ev,ref , r 1 , ..., rt], then

(1) l 1 , ..., ls ∈ LL, and r 1 , ..., rt ∈ RR.

(2) φ(l 1) ≥ ... ≥ φ(ls) and φ(r 1) ≤ ... ≤ φ(rt).

LEMMA 4. A mapping M′ from V to lists of edges in E is a partial map of G iff M′ is a feasi-

ble map of G.

Proof

-- --

- 9 -

⇒ Suppose M′ is a partial map. Let H be an embedding of G that matches M′, and Q = [LL,

RR] be the unique valid partition derived from H. Let v ∈ V. Let M′(v) = [l 1 , ..., ls , ev,ref , r 1 , ...,

rt]. Then condition (1) in the definition of feasible map is trivially true. To see condition (2) is

also true, consider two edges ei and ej in M′(v) with φ(ei) > φ(ej). We need to show that (i) if both

ei and ej belong to LL, then ei appears before ej in M′(v); and (ii) if both of them belong to RR,

then ei appears after ej in M′(v). Assume that both ei and ej are in LL. Then ei , therefore the whole

S (ei), is embedded on the left of cycle (ev,ref). The condition φ(ei) > φ(ej) implies that there is a

back edge [x, y] in S (ei) such that low 1(ej) < y < v. Since the tree path from low 1(ej) to v is shared

by cycle (ev,ref) and cycle (ej), then [x, y], therefore S (ei), is embedded on the left of cycle (ej). Thus

ei appears before ej in the list M′(v). The discussion for the situation (ii) is similar.

⇐ Suppose M′ is a feasible map. Then there exists a valid partition Q = [LL, RR] such that for

all v ∈ V, if M′(v) = [l 1 , ..., ls , ev,ref , r 1 , ..., rt], then conditions (1) and (2) are satisfied. Let M be

the partial map of G from which Q is derived. By the only if part of Lemma 4, M is also a feasible

map of G with respect to Q. The conditions (1) and (2) in the definition of feasible map implies that

for each v ∈ V, M′(v) can be obtained from M (v) by permuting edges with the same φ values

within { l 1 , ..., ls} and { r 1 , ..., rt}. By Lemma 2 and 3, M′ is also a partial map. 	
By Lemma 4, we need only to count feasible maps, which can be constructed easily from

valid partitions.

3.4. SAMESAME and DIFFDIFF

Let H be an embedding of G. For convenience, we say that an edge e = [v, w] ∈ E 0 is red in

H if e is embedded on the left of ev,ref , and blue otherwise. We partition E 0 into equivalence

classes called groups. Two edges in E 0 are in the same group iff they have the same color in each

embedding of G. We call the set of such groups SAME. We further organize these groups into

pairs. Two groups W and Z in SAME are put into one (unordered) pair (W, Z) iff the color of the

edges in W is always different than the color of the edges in Z. We call the set of such pairs DIFF.

We will show in Section 3.6 that the two sets SAME and DIFF can be computed in O (n) time dur-

ing planarity testing.

Let Q = [LL, RR] be an ordered partition of E 0 . We say that Q is consistent with SAME if

each group in SAME is totally contained in either LL or RR. We say that Q is consistent with DIFF

if for each pair (W, Z) ∈ DIFF, one of the two groups W and Z is contained in LL and the other is

contained in RR.

By the definition of DIFF and SAME, any valid partition of E 0 is consistent with SAME and

DIFF. We will further prove that any ordered partition of E 0 consistent with SAME and DIFF is

valid. For this we need some more definitions and lemmas.

Let e = [v, w] be a tree edge. Let Φ(w) = [e 1 , ..., ek]. Let Q = [LL, RR] be an ordered parti-

tion of E 0 . For i = 1, ..., k, let Gi = sub (e 1) ∪ ... ∪ sub (ei). Let Hi be an embedding of Gi . We

-- --

- 10 -

say that Hi is conformable to Q (w.r.t. e) if around each vertex u ≥ w in Hi , all the edges embedded

on the left of eu,ref belong to LL and all the edges embedded on the right of eu,ref belong to RR. By

convention, any embedding of sub (e) is conformable to Q (w.r.t. e) if e is a back edge.

Let [x, y] be an attachment of e not on cycle (e). Let [a, b] be the nearest ancestor of [x, y]

such that a is on cycle (e). We call [a, b] the root of [x, y] (w.r.t. e), denoted by root([x, y]). We

prove the following lemma.

LEMMA 5. If [x, y] is an attachments of e in Gi −1 not on cycle (e), and low 1(ei) < y, then

there is a pair (W, Z) in DIFF such that ei ∈ W and root([x, y]) ∈ Z, where 1 < i ≤ k.

Proof Let [a, b] = root([x, y]). Let W be the group in SAME containing ei , and Z be the

group in SAME containing [a, b]. Let P 1 be the simple directed path in sub (e) whose first edge is

[a, b] and whose last edge is [x, y]. Let P 2 be a simple directed path in sub (e) whose first edge is ei

and whose last vertex is low 1(ei). Consider two cases.

xP 2

Fig. 7

low 1(ei)

ejej

P 1

cycle (e)
cycle (e)

low 1(ei) = low 1(ej)

v

y

a = w and

b yx

a > w

cycle (e)

x y

low 1(ei) > low 1(ej)

a

P 2

ei

w

v

ei

low 1(ei)

P 3

low 1(ej)

v

w w

low 1(ei)

ei

low 2(ei)

a = w and

Case 1. a > w. By Observation 3, P 1 and P 2 cannot be embedded on the same side of

cycle (e) in any embedding of G (see Fig. 7). Therefore (W, Z) ∈ DIFF.

Case 2. a = w. In this case, [a, b] = ej for some 1 < j < i, and low 1(ej) ≤ low 1(ei) < y. Then

there must be an undirected simple path P 3 in sub (ej) between low 1(ej) and y that contains x. If

low 1(ej) < low 1(ei) < y, then P 3 and P 2 cannot be embedded on the same side of cycle (e) by

Observation 3. If low 1(ej) = low 1(ei), then low 2(ej) ≤ y < w. Therefore low 2(ei) < w (recall that

φ(ei) ≥ φ(ej)). Thus S (ei) and S (ej) cannot be embedded on the same side of cycle (e) by Observa-

tion 4. In either case, ei and ej cannot be embedded on the same side of cycle (e), and therefor

(W, Z) ∈ DIFF.

LEMMA 6. Let Q = [LL, RR] be an ordered partition of E 0 consistent with SAME. Let He be

an embedding of sub (e) conformable to Q. If e ∈ LL (RR), then all the normal attachments of e

are embedded on the left (right) hand side of cycle (e) in He.

-- --

- 11 -

Proof Assume wlog that e ∈ LL. Let [x, y] be a normal attachment of e. Let [a, b] =

root ([a, b]). Let P 1 be the simple directed path whose first edge is [a, b] and whose last edge is

[x, y]. Let e′ be the predecessor of e. Note that the tree path from low 1(e) to v is shared by

cycle (e) and cycle (e′). By Observation 2, P 1 and e are always on the same side of cycle (e′) in any

embedding of G. Thus, if e is embedded on the left (right) of cycle (e′), then [a, b] must be embed-

ded on the left (right) of cycle (e). This means that e and [a, b] are in the same group of SAME.

Since Q is consistant with SAME, and e ∈ LL, then [a, b] ∈ LL. Since He is conformable to Q, then

[a, b], and therefore [x, y], are embedded on the left hand side of cycle (e). �
Now we prove the main lemma of this subsection.

LEMMA 7. An ordered partition Q = [LL, RR] of E 0 is valid if it is consistent with SAME

and DIFF.

Proof Assume Q is consistent with SAME and DIFF. To see that Q is valid, we show that

there exists a planar embedding of G from which Q can be derived. For this purpose, we show by

induction that for all e = [v, w] ∈ E, we can construct an embedding He of sub (e) that is conform-

able to Q.

If e is a back edge, then any embedding of sub (e) is conformable to Q by convention.

Next we assume that e = [v, w] is a tree edge with Φ(w) = [e 1 , ..., ek], and for each i = 1, ...,

k, there is a planar embedding Hei of sub (ei) that is conformable to Q (w.r.t. ei).

To construct He, we first let H1 = He 1 . Then for i = 2, ..., k, we add Hei into Hi −1 to get Hi .

As a result, we will have He = Hk.

Consider adding Hei to Hi −1 , where 1 < i ≤ k. Assume inductively that Hi −1 is conformable

to Q (w.r.t. e). Also assume wlog that ei ∈ LL. By Lemma 6, all the normal attachments of ei are

embedded on the left of cycle (ei) in Hei . Thus, with the sphere projection, we can transform Hei

into a planar embedding of sub (ei) in which the tree path from low 1(ei) to w borders the outer face.

If there is no attachment of e embedded on the left of cycle (e) in Hi −1 , we can embed Hei to

the left of cycle (e) in the face whose boundary contains the tree path from low 1(e) to w. Other-

wise, let [x, y] be one of the highest attachments of e embedded on the left of cycle (e) in Hi −1 (We

say an attachment [x, y] is higher than another attachment [x′, y′] if y > y′.) Let [a, b] = root([x, y]).

By induction hypothesis, Hi −1 is conformable to Q. Therefore [a, b] ∈ LL. Since ei ∈ LL also,

there can be no pair (W, Z) in DIFF such that ei ∈ W and [a, b] ∈ Z. By Lemma 5, low 1(ei) ≥ y.

Then we can embed Hei into Hi −1 on the left side of cycle (e) in the face whose boundary contains

the tree path from y to w. In this way, ei is embedded on the left of e 1 , ..., ei −1 , and Hi is conform-

able to Q. �
According to Lemmas 1 , 4, and 7, all planar maps of G can be easily generated from the

function φ and the two sets SAME and DIFF as follows:

1. Generate valid partitions using Lemma 7;

-- --

- 12 -

2. For each valid partition generated in 1, generate partial maps using Lemma 4;

3. For each partial map generated in 2, construct a planar map using the method described at

the end of Section 3.1.

3.5. Counting planar maps

To count the number of planar maps, we further simplifier the problem as follows. We arbi-

trarily select a representative from each singular set. If M′ is a feasible map, and M′′ is obtained

from M′ by deleting all non-representative singular edges, then we say M′′ is a reduced map from

M′, and M′ is generated from M′′. Similarly, if Q is a valid partition, and Q′ is obtained from Q by

deleting all non-representative singular edges, then Q′ is called a reduced partition. If M′′ is a

reduced map from M′, Q′ is a reduced partition from Q, and Q is derived from M′, then we also say

that Q′ is derived from M′′, and M′′ is constructed from Q′. It is not difficult to see that from each

reduced map, we can derive a unique reduced partition, and from each reduced partition, we can

construct a unique reduced map. Thus, to count feasible maps, we can first count reduced parti-

tions, then count the feasible maps that can be generated from each reduced map.

To count reduced partitions, let SAME′ and DIFF′ be obtained from SAME and DIFF respec-

tively by deleting all the non-representative singular edges. A pair [W, Z] in DIFF′ is trivial if

either W or Z is empty. By Lemma 7, it is easy to see that if [L, R] is an ordered partition of SAME′

such that neither L nor R contains groups from the same nontrivial pair in DIFF′, then

[
W ∈L
∪ W,

W ∈R
∪ W] is a reduced partition. Let d be the number of nontrivial pairs in DIFF′, and s be

the number of nonempty sets in SAME′ that are not contained in any of the nontrivial pairs in

DIFF′. Then there are 2d +s reduced partitions and therefore 2d +s reduced maps.

Next we consider the number of feasible maps that can be generated from each reduced map.

Let singular (e) be the singular set containing e, and same (e) be the group in SAME containing e.

Immediately from Lemma 3 and its proof we have,

LEMMA 8.

(i) Let e be a singular edge. If |same (e)| > 1, then singular (e) ⊆ same (e).

(ii) Let e 1 and e 2 be two edges in the same singular set. Then the unordered pair

(same (e 1), same (e 2)) is not in DIFF.

We say that a singular edge e is bound if singular (e) ⊆ same (e), and free otherwise. We can

construct a feasible map M′ from a reduced map M′′ by inserting non-representative singular edges

as follows. Let e = [v, w] be a representative singular edge, and let g (e) = | singular (e) | . If e is

bound, then all the edges in singular (e) must be inserted consecutively in the same side of ev,ref in

M′(v). Therefore we replace e in M′′(v) by any of the g (e)! permutations of singular (e). If e is

-- --

- 13 -

free, then the edges in singular (e) can appear in different sides of ev,ref in M′(v) by Lemma 8.

Therefore we divide singular (e) into two parts S 1 and S 2 , assuming S 1 contains e. Then we

replace e by a permutation of S 1 , and insert a permutation of S 2 into the other side of ev,ref in

M′′(v) in the position determined by the condition (2) in the definition of feasible maps. In this

case, we have
2

(g (e)+1)!� ��������������� different choices.

Now let RS be the set of representative singular edges. For all x ∈ RS, define h (x) = g (x)! if

x is bound, and
2

(g (x)+1)!� ��������������� otherwise. Then from each reduced map, we can generate
x ∈ RS
Π h (x)

different partial maps. By Lemma 1, we have

THEOREM 1. The total number of planar maps of G is

2d +s

x ∈ RS
Π h (x) �

The remaining question is how to compute the two sets SAME and DIFF efficiently.

3.6. Compute the sets SAMESAME and DIFFDIFF

Now we show how to compute the two sets SAME and DIFF in linear time during planarity

testing. The planarity testing algorithm we will use in this section is a variant of the HT algorithm

reported in [4] and is summarized in the next section for the reader’s convenience.

3.6.1. Planarity testing

As before, we assume that G is a biconnected graph with more than one edge. Then the tree

edges in T form a single tree with only one tree edge leaving the root. Denote this tree edge by e 0 .

Since sub (e 0) is the whole graph, then we can determine the planarity of G with a procedure that

can determine the planarity of sub (e) for all e ∈ E.

We say that an edge e is planar if sub (e) is planar. To determine the planarity of an edge e,

we consider two cases. If e is a back edge, then sub (e) = cycle (e), which is always planar. Other-

wise, e is a tree edge having at least one successor. In this case we first determine the planarity of

each of its successors. If all these successors are planar, then we determine the planarity of e based

on the structure of its attachments. Following are the details.

3.6.1.1. Structure of attachments

The planarity of an edge e = [v, w] directly depends on the structure of its attachments. If e

is planar, we partition the edges of ATT (e) into blocks as follows. We put two back edges of

ATT (e) in the same block if they are on the same side of cycle (e) in every embedding of sub (e).

Two blocks interlace each other if they are on opposite sides of cycle (e) in every embedding of

-- --

- 14 -

sub (e). By this definition, each block of ATT (e) can interlace at most one other block.

The back edge on cycle (e) is the only attachment of e that will not be embedded on either

side of cycle (e). By convention, this back edge forms a block by itself, called the neutral block of

e, which does not interlace other blocks of ATT (e).

In Fig. 6, ATT (e) can be divided into four blocks: B 1 = {[8, 1]}, B 2 = {[12, 1], [14, 2]}, B 3

={[9, 3]}, and B 4 = {[13, 4]}. B 1 is neutral. B 2 and B 3 are interlacing.

A block of attachments of e is normal if it contains some normal attachment of e. Otherwise

we say that it is special. We say that sub (e) is strongly planar w.r.t. e if e is planar and if all the

normal blocks of ATT (e) can be embedded on the same side of cycle (e). If sub (e) is strongly

planar (w.r.t. e), then we say that e is strongly planar. We have,

LEMMA 9. Let e = [v, w] ∈ T, and ei be a successor of e such that ei ≠ ew,ref . Then ei is

strongly planar iff the subgraph S (ei) ∪ cycle (e) is planar. �
Note that in an embedding of S (ei) ∪ cycle (e), the special blocks of ei do not have to be on

the same side of cycle (ei), see Fig. 8.

Fig. 8

ei

sides of cycle (ei), although they are on the same side of cycle (e).

d′

cycle (ei) e

d′′
low 1(ei)

cycle (e)

The two special attachments d′ and d′′ of ei can be on different

We represent a block of back edges K = {[v 1 , w 1], [v 2 , w 2], ..., [vt , wt]} by a list L = [w 1 ,

w 2 , ..., wt], where w 1 ≤ w 2 ≤ ... ≤ wt . Frequently, we will identify blocks with their list representa-

tions. Define first (K) = first (L) = w 1 , and last (K) = last (L) = wt . If L is empty, we define

first (K) = first (L) = n + 1, and last (K) = last (L) = 0. We can further organize the blocks of

ATT (e) as follows: if two blocks X and Y interlace, we put them into a pair [X, Y], assuming

last (X) ≥ last (Y); if a nonempty block X does not interlace any other block, we form a pair [X, []].

Let [X 1 , Y 1] and [X 2 , Y 2] be two pairs of interlacing blocks. We say [X 1 , Y 1] ≤ [X 2 , Y 2] iff

last (X 1) ≤ min (first (X 2), first (Y 2)). We say a list of interlacing pairs [q 1 , ...,qs] is well-ordered

if q 1 ≤ . . . ≤ qs . Empty lists or lists of one pair are well-ordered by convention. In [4] we proved

-- --

- 15 -

that all the interlacing pairs of ATT (e) can be organized into a well-ordered list [p 1 , ..., pt]. We

call this list att (e).

In Fig. 6, att (e) = [p 1, p 2 ,p 3], where p 1 = [[1], []], p 2 = [[3], [1, 2]], and p 3 = [[4], []].

3.6.1.2. Compute att (e)att (e)

Now we are ready to compute att (e). The planarity of e will be decided at the same time.

Consider an edge e = [v, w] ∈ E. If e is a back edge, then its only attachment is e itself.

Therefore att (e) = [[[w], []]]. Otherwise, let Φ(w) = [e 1 , ..., ek]. We first recursively compute

att (ei) for each ei in Φ(w), then compute att (e) in four steps:

Algorithm A

Step 1 For i = 1, ..., k, delete all occurrences of w appearing in blocks within att (ei). Because

these occurrences appear together at the end of the blocks that are contained in the last pairs of

att (ei) only, a simple list traversal suffices to delete all these occurrences in time

O (1 + number of deletions). After this, initialize att (e) to be att (e 1).

w

v

w

v

Fig. 9

e 1

e

cycle (e)

ei

cycle (e)

e 1

ei

Step 2. For i = 2, ..., k, merge all the blocks of att (ei) into one intermediate block Bi . See

Fig. 9.

According to Lemma 9, this step can be done only if the normal blocks of att (ei) do not inter-

lace. (If they interlace, the graph is not planar, and the computation fails.) To merge a series of

blocks, simply concatenate their ordered list representations (such concatenation is order preserv-

ing).

Step 3. Merge blocks in att (e). See Fig. 10.

By Observation 3, all blocks D in att (e) with last (D) > low 1(e 2) must be merged into one

block B 1 . (If any two of these blocks interlace, the graph is not planar, and the computation fails.)

-- --

- 16 -

w

v

w

v

Fig. 10

e 2
e 1e 1

cycle (e)

e

low 1(e 2)

e

cycle (e)low 1(e 2)
B 1

e 2

This is achieved by merging from the high end of att (e). This step turns att (e) into a list of pairs

p 1 ≤ . . . ≤ ph with only ph possibly having a block D with last (D) > low 1(e 2).

Step 4. For i = 2, ..., k, add blocks Bi into att (e).

To process Bi , consider the last pair P : [X, Y] of att (e). Consider three cases:

Fig. 11

Y

neither X nor Y

X
XX

Y
Y

BiBiBi

eee
eieiei

Bi interlaces X only
Bi cannot be embedded in

cycle (e) cycle (e) cycle (e)

either side of cycle (e)
Bi interlaces

i. If Bi cannot be embedded on either side of cycle (e), then G is not planar, and the computa-

tion of att (e) fails.

ii. If Bi interlaces X only, then merge Bi into Y. Next, switch X and Y if last (X) < last (Y).

iii. If Bi interlaces neither X nor Y, then add [Bi ,[]] to the high end of att (e); P := [Bi ,[]].

By the following lemma, testing whether Bi interlaces X or Y takes O (1) time. Also by that

lemma, it is not possible that Bi interlaces Y only, since last (X) ≥ last (Y) (see Fig. 11).

LEMMA 10. Bi and D can be embedded on the same side of cycle (e) iff low 1(ei) ≥ last (D),

where D = X or D = Y. �

-- --

- 17 -

In [4] we proved that

THEOREM 2.

1. Algorithm A computes att (e) successfully iff e is planar.

2. If e is planar, then Algorithm A computes att (e) correctly. �
3.6.2. Compute the sets SAMESAME and DIFFDIFF

Next we augment Algorithm A so as to compute the two sets SAME and DIFF during the

planarity testing.

Let e ∈ E be an edge of G. Let ea an attachment of e not on cycle (e). Then root(ea) and ea

are embedded on the same side of cycle (e) in any embedding of G. Thus, for each non-neutral

block X of e, there is a unique group in SAME that contains the roots of the attachments in X. We

call this group buddy (X). It is easy to see that if [X, Y] is a pair of nonempty interlacing blocks of

ATT (e), then (buddy (X), buddy (Y)) is a pair in DIFF. Furthermore, in the proof of Lemma 6, we

notice that if ea is normal, and if e ∈ E 0 , then root(ea) and e belong to the same group in SAME.

Thus, if X is a normal block of e, and e ∈ E 0 , then buddy (X) also contains e. For convenience, we

further extend the definition of buddy as follows. If [X, Y] is a pair in ATT (e) such that Y = [], and

(buddy (X), U) ∈ DIFF, then define buddy (Y) = U. According to these observations , we can com-

pute the two sets SAME and DIFF with the following enhancement to Algorithm A.

Enhancement B

1. Initialization. For all e ∈ B, let buddy ([e]) = ∅. Let SAME = { {e}: e ∈ E 0} and DIFF =

{({e}, ∅): e ∈ E 0};

2. In step 2 of Algorithm A, for i = 2, ..., k, before we merge att (ei), we initialize buddy (Bi)

to be {ei}. For each pair [X, Y] or [Y, X] in att (ei) such that X is normal w.r.t. ei , let U be the set

such that (buddy (Bi), U) ∈ DIFF; in SAME, merge buddy(X) into buddy (Bi) and merge buddy(Y)

into U; in DIFF, merge the two pairs (buddy (Bi), U) and (buddy (X), buddy (Y)) into one pair

(buddy (Bi) ∪ buddy (X), U ∪ buddy (Y)).

3. In step 3, let [X, Y] be the last pair in the list att (e 1) before merging. For each pair [X 1 , Y 1]

in att (e 1) merged into [X, Y], do the following: in SAME, merge buddy (X 1) into buddy (X) and

merge buddy (Y 1) into buddy (Y); in DIFF, merge the two pairs (buddy (X), buddy (Y)) and

(buddy (X 1), buddy (Y 1)) into one pair (buddy (X) ∪ buddy (X 1), buddy (Y) ∪ buddy (Y 1)).

4. In step 4, for i = 2, ..., k, let U be the set such that (buddy (Bi), U) ∈ DIFF. If [Bi , Z]

becomes the top pair of att (e), where Z = [], then let buddy (Z) = U. If Bi is merged into Y, then in

SAME, merge buddy(Bi) into buddy (Y), and merge U into buddy (X); in DIFF, merge the two pairs

(buddy (Bi), U) and (buddy (X), buddy (Y)) into one pair (U ∪ buddy (X), buddy (Bi) ∪ buddy (Y)).

-- --

- 18 -

�
One way to prove the correctness of Enhancement B is to prove that,

(i) if an ordered partition P = [LL, RR] of E 0 is valid, then it is consistent with the two sets

SAME and DIFF computed by Enhancement B; and

(ii) if an ordered partition P = [LL, RR] of E 0 is consistent with the two sets SAME and

DIFF computed by Enhancement B, then it is valid.

We see that (i) is true because in the enhancement code, two edges are put in the same group

of SAME only if they have the same color in each embedding of G, and two groups form a pair in

DIFF only if they always have different colors. The assertion (ii) is basically the same as Lemma

7, except that the two sets SAME and DIFF here are computed by Enhancement B, not given by

their definitions. Since the proof of Lemma 7 is based on Lemma 5 and Lemma 6, then we need

only to prove these two lemmas under the new condition.

LEMMA 11. Lemma 5 remains true if the two sets SAME and DIFF are computed by

Enhancement B.

Proof Consider the attachment [x, y] given in Lemma 5. Let [a, b] = root([x, y]). Let

[X, Y] be the top pair of blocks in att (e) in Step 4 of the planarity testing. Since att (e) is well-

ordered, then [x, y] is contained in either X or Y. If [x, y] ∈ Y, then low 1(ei) < last (Y), and G is not

planar. Thus [x, y] ∈ X, and low 1(ei) < last (X). Therefore Bi is merged into Y in Step 4. Then

root([x, y]) ∈ buddy (X), ei ∈ buddy (Y), and (buddy (X), buddy (Y)) ∈ DIFF. �
LEMMA 12. Lemma 6 remains true if the two sets SAME and DIFF are computed by the

Enhancement B.

Proof Consider the edge e, the embedding He and the partition Q given in Lemma 6.

Assume wlog that e ∈ LL. Let [x, y] be a normal attachment of e. We need to show that [x, y] is

embedded on the left hand side of cycle (e) in He. Let [a, b] = root([x, y]). Let e′ be the predeces-

sor of e. Let X be the block of attachment in ATT (e′) that contains [x, y]. Then Enhancement B

will put both e and [a, b] into buddy (X). This means that e and [a, b] are in the same group of

SAME. Since we assume e ∈ LL, then [a, b] ∈ LL. Since He is conformable to Q, then [a, b], and

therefore [x, y], are embedded on the left hand side of cycle (e) in He. �
As a result of Lemma 11 and Lemma 12, Lemma 7 remains true for the two sets SAME and

DIFF computed by our Enhancement B. Therefore we have,

THEOREM 3. If G is planar, then Algorithm A with Enhancement B computes the sets SAME

and DIFF correctly. �

-- --

- 19 -

4. Number of embeddings for connected components

Next consider a connected graph G with several biconnected components. Suppose we know

the number of embeddings of each biconnected component. We discuss how to find the total

number of embeddings of G. This problem was previously considered by Stallmann [12], but his

solution is complicated and not efficient. In this section we will give a simple closed formula for

this problem that is computable in O (n) arithmetic steps.

We start with the simple situation that G has two biconnected components G1 and G2 shar-

ing an articulation point a. Suppose there are m1 edges connected to a in G1 and m2 such edges in

G2 . Let H1 be an embedding of G1 on a sphere S 1 , and H2 be an embedding of G2 on another

sphere S 2 . Imagine that S 1 and S 2 are balloons. To combine H1 and H2 into a sphere embedding

of G, we choose a face F 1 of H1 and a face F 2 of H2 such that their boundaries contain a. Make a

hole on F 1 so that a is the only point shared by the boundaries of the hole and F 1 . Do the same

thing with F 2 . Glue these two holes on their boundaries, making sure that the two embeddings of

a are put together. Blowing the combined balloon into a sphere gives an embedding of G. There

are m1 faces in H1 whose boundaries contain a, and there are m2 such faces in H2 . Thus we can

get m1m2 different sphere embeddings of G by combining H1 and H2 .

The above method of combining sphere embeddings can be generalized to get sphere embed-

dings of graphs with more biconnected components and more articulation points. But counting the

number of embeddings becomes more complicated in the general case. For graphs with one articu-

lation point, we have the following result:

LEMMA 13. Let G be a planar graph consisting of j biconnected components G1 , ...,Gj shar-

ing an articulation point a. For each i = 1, ..., j, let mi be the number of edges connected to a in Gi ,

and ki be the number of different sphere embeddings of Gi . Then for j > 2, the total number of dif-

ferent sphere embeddings of G is:

k 1k 2
. . . kjm1m2

. . . mj(A −1)(A −2) . . . (A −j +2)

where A = m1+ . . . +mj .

Proof We need only to prove the following assertion: for a fixed group of embeddings H1 ,

..., Hj of G1, ...,Gj , we can obtain m1m2
. . . mj(A −1)(A −2) . . . (A −j +2) different embeddings of

G by gluing balloons. We call this set of embeddings of G an Em 1 , ...,mj set.

We prove the assertion by induction on A. The basis is trivial, when m1 = ... = mj = 1. Now

we assume that the assertion is true for any A < k, where k > j. Consider the case when A = k.

Then there exists some i = 1, ..., j such that mi > 1. We assume wlog that m1 > 1. For each i = 1,

..., j, let ei, 1 , ...,ei,mj be the clockwise sequence of edges around a in Hi . We divide an Em 1 , ...,mj set

into j groups:

-- --

- 20 -

Group 1 contains all the embeddings such that e 1,1 is followed by e 1,2;

Group 2 contains all the embeddings such that e 1,1 is followed by e 2,l , where l = 1, ...,m2;

. . .

Group j contains all the embeddings such that e 1,1 is followed by ej,l , where l = 1, ...,mj .

In Group 1, if we glue the two edges e 1,1 and e 1,2 together in each embedding, we get an

Em 1−1,m 2 , ...,mj set. By the induction hypothesis, the size of Group 1 is

(m1−1)m2
. . . mj(A −2) . . . (A −j +1)

For each i = 2, ..., j, we divide Group i into mi subgroups, so that in every embedding of the l-th

subgroup, e 1,1 is followed by ei,l . By gluing the two edges e 1,1 and ei,l together in each of the

embedding in the l-th subgroup, we get an Em 1+mi−1,m 2 , ...,mi −1 ,mi +1, ...,mj set, which has the size

(m1+mi−1)m2
. . . mi −1mi +1

. . . mj(A −2) . . . (A −j +2)

Therefore the size of Group i is

mi[(m1+mi−1)m2
. . . mi −1mi +1

. . . mj(A −2) . . . (A −j +2)]

= (m1+mi−1)m2
. . . mj(A −2) . . . (A −j +2)

Adding the sizes of Group 1, ..., Group j, we see that the size of Em 1 ,m 2 , ...,mj is

m1m2
. . . mj(A −1) . . . (A −j +2) �

Now consider a connected graph G with more than one articulation point. To count the

number of embeddings, we first choose one articulation point a. Let Ga be the subgraph of G that

consists of all the biconnected components sharing a. Using Lemma 13, we can count the number

of embeddings of the subgraph Ga . Then we treat Ga as one biconnected component, and solve the

remaining problem recursively. The result is summarized in the following theorem:

THEOREM 4. Let G be a planar graph. Let Γ be the set of biconnected components of G, let Θ

be the set of articulation points of G. For each biconnected component C in Γ, let kC be the

number of sphere embeddings of C. For each a ∈ Θ, let Γa be the set of biconnected components

of G sharing a, and let Aa be the number of edges connected to a. For each a ∈ Θ and each com-

ponent C ∈ Γa , let mC,a be the number of edges in C connected to a. Then the total number of

sphere embeddings of G is

C∈Γ
Π kC

a∈Θ
Π (

C∈Γa
Π mC,a

i=1
Π

| Γa | −2

(Aa−i)) �
The analysis in this section also suggests a recursive procedure that generates all planar maps

of G without repetition from the planar maps of the biconnected components of G.

-- --

- 21 -

5. Counting Embeddings for Unconnected Graphs

Finally, we consider how to count the embeddings of graphs having several connected com-

ponents, given the number of embedding of each of the connected components.

THEOREM 5. Let G be a planar graph consists of c connected components C 1 , ..., Cc, where

c > 1. If for i = 1, ..., c, Ci has ni sphere embeddings each having fi faces, then the number of

sphere embeddings of G is

(1+
i=1
Σ
c

(fi−1))c −2

i=1
Π

c
ni fi

Proof For each i = 1, ..., c, we choose a fixed embedding Hi of Ci . We denote the set of

these embeddings by ∆. We call the embeddings in ∆ subembeddings in order to distinguish them

from the embeddings of G. Very similarly to the description in Section 4, we can combine the

subembeddings in ∆ into an embedding of G by gluing balloons. The main difference is that in this

case the holes made should not touch the boundary of any face. Let Ψ be the set of all embeddings

of G that can be obtained from ∆ this way. We need to prove that

| Ψ | = (1 +
i=1
Σ
c

(fi−1))c −2

i=1
Π

c
fi (*)

We prove the claim by induction on c, the total number of connected components of G. For c

= 2, the claim is obviously true. Then we assume that the claim is true for all c < k, where k > 2.

We want to show that the claim is also true for c = k. We partition Ψ into c-1 groups Ψ1 , ..., Ψc −1 ,

such that for i = 1, ..., c −1, group Ψi contains the embeddings H of G in which H1 is the neighbor

of exactly i other subembeddings in ∆ (recall that two subembeddings Hs and Ht are neighbors of

each other in H if there is a face in H whose boundary contains edges from both Hs and Ht .) We

further divide Ψi into
��

i
c −1�� subgroups such that in all embeddings of each subgroup, H1 has the

same set of neighbors. Consider one such subgroup Ψi,P in which H1 has the set of neighbors P =

{Ht 1 , ...,Hti }. Let Q = {H2 , ...,Hc} − P. An embedding in Ψi,P can be obtained in two stages.

First we combine H1 and all the subembeddings in P into one embedding X. Since for each j = t 1 ,

..., ti , each of the f j faces of Hj can be adjacent to each of the f 1 faces of H1 , then we have the

number c 1 of different choices in the first stage is (f 1 ft 1)...(f 1 fti). Next we combine X and the

subembeddings in Q into an embedding Y in Ψi,P . Since subembeddings in Q are not neighbors of

H1 , then we can treat X as a component with
Hs∈P
Σ (fs−1) faces. Applying (*) inductively, we find

that the number c 2 of different choices in the second stage is

(1 + (
Hs∈P
Σ (fs−1) − 1) +

Hs∈Q
Σ (fs−1))c −i −2

Hs∈P
Σ (fs−1)

Hs∈Q
Π fs

= (
j=2
Σ
c

(fs−1))c −i −2

Hs∈P
Σ (fs−1)

Hs∈Q
Π fs

Thus the size of subgroup Ψi,P is

-- --

- 22 -

c 1c 2

= (
j=2
Σ
c

(fs−1))c −i −2

Hs∈P
Σ (fs−1)

Hs∈Q
Π fs

Hs∈P
Π (f 1 fs)

=
Hs∈P
Σ (fs−1) (

j=2
Σ
c

(f j−1))c −i −2 f1
i −1

j=1
Π

c
f j

Therefor the size of Ψi is

| P | =i
P⊆{H 2, ...,Hc}

Σ | Ψi,P |

=

| P | =i
P⊆{H 2, ...,Hc}

Σ (
Hs∈P
Σ (fs−1) (

j=2
Σ
c

(f j−1))c −i −2 f1
i −1

j=1
Π

c
f j)

= (

| P | =i
P⊆{H 2, ...,Hc}

Σ
Hs∈P
Σ (fs−1)) (

j=2
Σ
c

(f j−1))c −i −2 f1
i −1

j=1
Π

c
f j

=
�

i −1
c −2!"

j=2
Σ
c

(f j−1) (
j=2
Σ
c

(f j−1))c −i −2 f1
i −1

j=1
Π

c
f j

=
#$

i −1
c −2%& (

j=2
Σ
c

(f j−1))c −i −1 f1
i −1

j=1
Π

c
f j

Finally, the size of C is

i=1
Σ
c −1

| Ψi |

=
i=1
Σ
c −1

(
'(

i −1
c −2)* (

j=2
Σ
c

(f j−1))c −i −1 f1
i −1

j=1
Π

c
f j)

=
i=0
Σ
c −2

(
+,

i
c −2-. (

j=2
Σ
c

(f j−1))c −i −2 f1
i)

j=1
Π

c
f j

= (1 +
j=1
Σ
c

(f j−1))c −2

j=1
Π

c
f j /

From the above discussion, it is not difficult to give a recursive procedure that generates all

the adjacency relations on the set of faces of the subembeddings in ∆.

Acknowledgment I thank Tarjan for introducing me to the counting problems solved in this

paper. I also thank Matthias Stallmann for pointing out that my previous formula for counting

embeddings of connected graphs with two biconnected components does not easily extend to the

general case. That comment inspired my discovery of Lemma 13.

-- --

- 23 -

References

1. Aho, A., Hopcroft, J., and Ullman, J., Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.

2. Berge, C., The Theory of Graphs and its Applications, Methuem, London, 1964. trans. by Alision Doig

3. Booth, K. S. and Lueker, G. S., ‘‘Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity

Using PQ-tree Algorithms,’’ Journal of Computer and System Science, vol. 13, no. 3, pp. 335-379, 1976.

4. Cai, J., Han, X., and Tarjan, R. E., An m logn Algorithm for the Maximal Planar Subgraph Problem, Department

of Computer Science, Princeton University. Technical Report

5. Chiba, N., Nishizeki, T., Abe, S., and Ozawa, T., ‘‘A Linear Algorithm for Embedding Planar Graphs Using PQ-

trees,’’ Journal of Computer and System Sciences, vol. 30, no. 1, pp. 54-76, 1985.

6. Di Battista, G. and Tamassia, R., ‘‘Incremental Planarity Testing (Extended Abstract),’’ in Proc. 30th Anual

I.E.E.E. Symposium on Foundations of Computer Science, pp. 436-441, 1989.

7. Hall, D. and Spencer, G., Elementary Topology, Wiley, New York, 1955.

8. Hopcroft, J. and Tarjan, R., ‘‘Efficient Planarity Testing,’’ JACM, vol. 21, no. 4, pp. 549-568, October, 1974.

9. Jayakumar, R., Thulasiraman, K., and Swamy, M. N. S., ‘‘O (n 2) Algorithms for Graph Planarization,’’ IEEE

Transactions on CAD, vol. 8, no. 3, pp. 257-267, March, 1989.

10. Lempel, A., Even, S, and Cederbaun, I., ‘‘An Algorithm for Planarity Testing of Graphs,’’ in Theory of Graphs,

International Symposium, pp. 215-232, Rome, July, 1966.

11. Stallman, M., Using PQ-trees for Planar Embedding Problems, North Carolina State University, December 1985.

Technical Report

12. Stallman, M., Enumerating the Embeddings of a PLanar Graph, North Carolina State University, March, 1989.

Preliminary Draft

13. Thron, W.T., Introduction to the Theory of Functions of a Complex Variable., Wiley, New York, 1953.

14. Wu, W., ‘‘On the Planar Imbedding of Linear Graphs,’’ J. Sys. Sci. & Math. Scis., vol. 5, no. 4, pp. 290-302, Insti-

tute of Systems Science, Academia Sinica, Beijing, 1985.

-- --

