A FETI PRECONDITIONER FOR TWO DIMENSIONAL EDGE
ELEMENT APPROXIMATIONS OF MAXWELL’S EQUATIONS
ON NON-MATCHING GRIDS
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Abstract. A class of FETI methods for the mortar approximation of a vector field problem in
two dimensions is introduced and analyzed. Edge element discretizations of lowest degree are con-
sidered. The method proposed can be employed with geometrically conforming and non—conforming
partitions. Our numerical results show that its condition number increases only with the number of
unknowns in each subdomains, and is independent of the number of subdomains and the size of the
problem.
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1. Introduction. In this paper, we consider the boundary value problem

(1) Lu:=curl(acurlu)+ Au = f in Q,
u-t = 0 on 09,

with ©Q a bounded polygonal domain in R?. Here

ov
curlv := 0z curlu := % — %
ov ’ 6$1 (9.1'2 '
"o,

see, e.g., [17]. The coefficient matrix A is a symmetric, uniformly positive definite
matrix-valued function with entries A;; € L*(Q2), 1 <4,j < 2, and a € L*(Q) is a
positive function bounded away from zero. The domain 2 has unit diameter and t is
the unit tangent to its boundary.

The weak formulation of problem (1) requires the introduction of the Hilbert
space H (curl; (), defined by

H(curl; Q) := {v € (L*(R))?| cwlv e L*(Q)}.

The space H(curl; ) is equipped with the following inner product and graph norm,

(U, V)eurl = /u -vdx + /curlucurlv dx, |u)|?,; = (0, 0)cum-
Q Q

The tangential component u - t, of a vector u € H(curl; ) on the boundary 9f,
belongs to the space H 2 (9€); see [17, 8. The subspace of vectors in H(curl; Q)
with vanishing tangential component on 9 is denoted by Hg(curl; Q).
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For any D C (2, we define the bilinear form

(2) ap(u,v) := /(a curlucurlv + Au-v) dx, u,v e H(curl;Q).
D

The variational formulation of equation (1) is:
Find u € Hy(curl; ) such that

(3) ag(u,v) = /f -vdx, v € Hy(curl;Q).
Q

We discretize this problem using edge elements, also known as Nédélec elements; see
[24]. These are vector—valued finite elements that only ensure the continuity of the
tangential component across the common side of adjacent mesh triangles, as is phys-
ically required for the electric and magnetic fields, which are solutions of Maxwell’s
equations.

In this paper, we consider a mortar approximation of this problem. The com-
putational domain is partitioned into a family of non—overlapping subdomains and
independent triangulations are introduced in each subdomain. The weak continuity
of the tangential component of the solution is then enforced by using suitable inte-
gral conditions that require that the jumps across the subdomain inner boundaries
are perpendicular to suitable finite element spaces defined on the edges of the par-
tition. We note that the mortar method was originally introduced in [10] for finite
element approximations in H'. Mortar approximations for edge element approxima-
tions in two and three dimensions have been studied in [3] and [4], respectively. There
has also been additional recent work for the case of sliding meshes for the study of
electromagnetic fields in electrical engines; see, e.g., [25].

The applications that we have in mind are mainly problems arising from static
and quasi-static Maxwell’s equations (eddy current problems); see, e.g., [6, 5]. In this
paper, we only consider the model problem (3), where the dependency on the time
variable or on the frequency has been eliminated, and we generically refer to it as
Maxwell’s equations. A good preconditioner for this model problem is the first step
for the efficient solution of linear systems arising from the edge element approximation
of static problems, and of time— or frequency—dependent problems arising from the
quasi-static approximation of Maxwell’s equations.

The aim of this paper is to build an iterative method of Finite Element Tear-
ing and Interconnecting (FETI) type for a mortar edge element approximation of
problem (1). FETI methods were first introduced for the solution of conforming ap-
proximations of elasticity problems in [15]. In this approach, the original domain 2
is decomposed into non-overlapping subdomains €2;, ¢ = 1,..., N. On each subdo-
main €2; a local stiffness matrix is obtained from the finite element discretization of
ag, (+,+). Analogously, a set of right hand sides is built. The continuity of the solution
corresponding to the primal variables is then enforced, by using Lagrange multipliers,
across the interface defined by the subdomain inner boundaries. In the original FETI
algorithm, the primal variables are then eliminated by solving local Neumann prob-
lems, and an equation in the Lagrange multipliers is obtained. Several preconditioners
have been proposed and studied for its solution; see, e.g., [14, 16, 23, 13, 29, 26, 19, 32].

Many iterative methods for the solution of linear systems arising from mortar
approximations have been proposed. We cite, in particular, [22, 1, 20, 2, 9, 11, 7, 12,
21, 33] and refer to the references therein for a more detailed discussion.
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To our knowledge, the application of FETI preconditioners to mortar approxi-
mations was first explored in [18] and then tested more systematically in [28]. The
idea is fairly simple and relies on the observation that mortar approximations with
Lagrange multipliers and FETI formulations, where the pointwise continuity across
the substructures is enforced by using Lagrange multipliers, give rise to indefinite
linear systems that have the same form. FETI preconditioners can then be devised
for mortar approximations in a straightforward way; see [28]. In this paper, we apply
the FETI preconditioner introduced in [19] for the case of non—redundant Lagrange
multipliers, to the mortar approximation originally studied in [3]. Our work gener-
alizes that for FETI preconditioners for two—dimensional conforming edge—element
approximations in [32]. As opposed to the H! case, the generalization of FETI pre-
conditioners to mortar approximations requires some modifications in H (curl ). More
precisely, the coarse components of the preconditioners need to be modified here in
order to obtain a scalable method, and a suitable scaling matrix @ has to be intro-
duced; see section 5. As shown in [28], no modification appears to be necessary for
nodal finite elements in H!. Finally, we note that in this paper we only consider
problems without jumps of the coefficients. For conforming approximations, FETI
methods that are robust with respect to large variations of jumps of the coefficients
have been developed and studied, see [26, 19], but the case of nodal or edge element
approximations on non—matching grids still needs to be explored and is left for a
forthcoming paper.

The outline of the remainder of this paper is as follows. In section 2, we intro-
duce a partition of the domain Q and local finite element spaces. In section 3, we
consider the mortar condition and in section 4, we present our FETI method, in terms
of a projection onto a low—dimensional subspace and a local preconditioner. The ex-
pressions for the projection and the preconditioner are then given in section 5 and
some numerical results for geometrically conforming and non—conforming partitions
are presented in section 6.

2. Finite element spaces. We first consider a non—overlapping partition of the
domain €,

]—"H_{Qi,i_l,---,N UQ_Z:Q; QN =0, 1§k<l§N},

such that each subdomain €); is a connected polygonal open set in R?. We remark
that Fg does not need to be geometrically conforming. We denote the diameter of
Q; by H; and the maximum of the diameters of the subdomains by H:

H = H;}.
max {H;}
The elements of Fg are also called substructures. Let t; be the unit tangent to 9€;,

chosen so that following the direction of t;, €2; is on the left.

For every subdomain €2;, we define the set of its open edges that do not lie on
0Q by {T'%J| j € Z;}. We then define the interface I, also called the “skeleton” of the
decomposition, as the union of the edges of Fy that do not lie on 9€:

N N
r:= L_JlaQi\GQ: U U IS

i=1j€T;
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We also define the local spaces of restrictions of vectors in Hg(curl; Q) to Q;:
H,(curl; ;) := {u; € H(curl; ;)| u; -t =0 on 9Q N OQ;}.

For every substructure 2;, we consider a triangulation 7; 5, made of triangles or
rectangles. Let & j be the set of edges of 7; ;. For every edge e € &5, we fix a
direction, given by a unit vector t.. The length of the edge e is denoted by |e|. The
local triangulations are assumed shape-regular and quasi—uniform, and they do not
need to match across the inner boundaries of the subdomains. We define h as the
maximum of the mesh—sizes of the triangulations.

We next consider the lowest—order Nédélec finite element (FE) spaces, originally
introduced in [24], defined on each subdomain 2; as

Xn () = X := {u; € Hy(curl; Q)| vy, € R(t), t € Tin},

where, in the case of triangular meshes, we have

R(1) :H 1+ 03 } |akeR}.

Q2 — Q3T]

We recall that the tangential component of a vector u; € X; is constant on the edges
of the triangulation 7; j,, and that the degrees of freedom can be chosen as the values
of the tangential component on the edges

(4) Aep(w) = ui) = te o ex € Eip

We next introduce the product space

N N
Xn(Q) = X =[] Xi  [] Hu(curl; ),

the spaces of tangential vectors
Wi (09;) = W; := {(u; - t;) t; restricted to 9Q; \ 90 | u; € X,},

and the product space

We note that we have chosen a different definition of the trace spaces than that
employed in [32]. Here, the spaces W; consist of piecewise constant tangential vectors
on 8(21 \ o0.

Throughout this paper, we will use the following conventions. We will use the
same notation for the vectors in X; and tangential vectors in W;. We denote a
generic vector function in X; using a bold letter with the subscript i, e.g., u;, and the
column vector of its degrees of freedom, defined in (4), using the same letter with the
superscript (i), e.g., u. Its k-th degree of freedom corresponding to the edge ey,
defined in (4), is u,(;) . A generic vector in the product space X (or W) is also denoted
by a bold letter, e.g., u, and the corresponding vector of degrees of freedom by the
same letter, e.g., u. We will use the same notation for the spaces of functions X; and
W; and the corresponding spaces of degrees of freedom.
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Fic. 1. Ezample of partition of the domain 2. We show the directions of the subdomain
boundaries, given by the unit vectors {t;}, those of the fine edges on the interface T, and the
corresponding values of the degrees of freedom t(9) .

Given the unit vectors t;, the column vectors ¢ are defined by
t](:) =t te,, er C O \ O, e€ Ein-

We will need these tangential vectors in the definition of our FETT method; see section
5. We remark that, in case that all the edges e on 0f); have the same direction of
the boundary 9%, the entries of the vector t) are equal to one. Figure 1 shows an
example of a partition, with the directions of the subdomain boundaries and of the
fine edges on the interface T', and the corresponding degrees of freedom t(%).

Finally, for i = 1,---, N, we define the discrete harmonic extensions with respect
to the bilinear forms agq, (-, -) into the interior of ;

Hi : W,' —>X¢.

We recall that H;u; minimizes the energy aq, (H;u;, H;u;) among all the vectors of
X, with tangential component equal to u; on 9€; \ 9Q.

3. A mortar condition. The mortar method presented in this section was
originally developed and studied in [3]. We consider the skeleton I' and choose a

splitting of " as the disjoint union of some edges {fk’J}, that we call mortars. We
note that this partition is not in general unique; see Figure 2 (left) for an example of
decomposition.

A unique set of indices corresponds to this choice and we denote it by

TIns = {m = (k,j) such that I'*/ is a mortar }.

To simplify the notation, we denote the mortars by {I'™| m € Zp;}. We have
M
f::UFm, I'"nNIr” =0, ifm#nandn,mey.
i=1

For any m in Zy;, we denote by W™ the space W7 (m = (k, j) € Zys) given by
Wk .= {(ug - tp) tp restricted to T57 | uy, € Xy }.

We note that the vectors in W57 are also the restrictions of vectors in Wj, to T'*.
Before introducing the mortar space, we need to fix a last point. Let I be a mortar
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Fic. 2. An example where the domain is decomposed into three (rectangular) non-overlapping
subdomains. The skeleton has two partitions (figure on the left): one in terms of mortars (solid
dark line) and the other in terms of non—mortars (long dashed lines). On the right, an example of
discretization of the subdomains by means of triangular grids that do not match at the interfaces
between adjacent subdomains.

edge with m = (k,j) and u € Xj,: for almost every x € I'"™, there exists an index
Il (1 <1< N),1#ksuch that x € " N J€;. At this point x we have two fields,
namely uy and u;. Since the domain decomposition is in general non—conforming, the
value of | depends on x and we denote by J; the set of indices [ (1 < I < N) such
that I'"™ N 99 # B. We then define

u_g(x):=w(x) , xel'™noQy, led.

The function u_g is defined for almost all x € I'™. In general, it is not the tangential
component at '™ of a field u € H,(curl;€);): it can indeed correspond to tangential
components from different subdomains which share a subset of '™ and live on different
grids.

The equality between u_j -t and ug -t; at '™ becomes a too stringent condition
since the two fields are in general defined on different and non—matching grids. As is
usually done in non—conforming mortar domain decomposition methods, we impose
these constraints in a weak form by means of suitable Lagrange multipliers. Here, the
Lagrange multiplier space consists of the tangential components of the shape functions
at the mortar edges; see [3].

REMARK 3.1. The definition of the mortar space for the edge elements is simpler
than for nodal finite elements. In the nodal case, the space of Lagrange multipliers
cannot be chosen as a space of traces on the mortar edges, but only as a suitable
subspace of it. In the edge case, it is not necessary to decrease the dimension of the
multiplier space since the information is associated to edges and not to nodes; see [10]
for more details.

The Lagrange multiplier (mortar) space is now defined by

{ve L*(D) | vrm € W™, m € Iy}

We remark that this is a space of tangential vectors on I'. The transmission conditions
at the interface between adjacent subdomains are then weakly imposed by means of
these Lagrange multipliers. A solution u € W is required to satisfy the constraints

(5) /(uk-tk—u,k-tk)v-tdeZO, veW™ m=(kj)eTun.

The set of transmission conditions can be expressed in matrix form in the following
way:
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Let w¥ be the basis function associated to the k-th mesh edge of 9; \ 9. We
introduce two matrices C' and D by

Cy = / (WiC . tz)(Wi . ti) ds = Oy |€k|, ek, e C I',

Dy, = / (WE o t) (Wi -ti)ds, e CT™, e, CONy 7€ Tpm,

where ['™ = I'»J. Then the matching conditions (5) have the form
Bu=0 where B=C-D.

We remark that the entries of C' and D depend on the particular choice of degrees of
freedom defined in (4).
The matrix B can also be written as

B=[p® g® ... B<N>],

where the local matrices B act on vectors in W;. The entries of B do not belong
in general to {0,1, —1} as in the conforming case described in [32] but, since we are
working with non—matching grids, they take into account the edge intersections at
the interfaces.

4. A FETI method. In this section, we introduce a FETI method for the
solution of the linear system arising from the mortar edge element approximation of
problem (3).

We first assemble the local stiffness matrices, relative to the bilinear forms ag, (-, -),
and the local load vectors. The degrees of freedom that are not on the interface I"
only belong to one substructure and can be eliminated in parallel by block Gaussian
elimination. Let f(®) be the resulting right hand sides and let S() be the Schur
complement matrices

S(Z) : Wi — Wi,

relative to the degrees of freedom on 99Q; \ 9.
We recall that the local Schur complements satisfy the following property

(6) uD'SDu = ag (Mg, Houy);

see, e.g., [27, 31].
Following [19, 32], we can then write our mortar problem as

Su + BA = f
(7) i -/
where
u® 0
ui= 3 eW, §:=diag{SW,.-.,sM}, f:= :
) Fa)

The vector X\ is a Lagrange multiplier relative to the weak continuity constraint
Bu = 0.
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We remark that the S) are always invertible and, consequently, there is no
natural coarse space associated to the substructures; we are in a similar case as the
one considered in [13]. We first find u from the first equation in (7), and substitute
its value in the second equation. We obtain the system

(8) F)=d,
where
F:=BS'B' d:=BS'f}.

Following [19, 32, 28], we now define a preconditioner. Since we assume that
the coefficients do not have any jump, we do not need to introduce a set of scaling
matrices as is required for problems with coefficient jumps; see, e.g., [30, 31, 19, 32].

We introduce the matrices,

©) Ri= [RM R ... R[], G:=QBR,

where R are vectors in W, related to the substructures {€;} and @ is a suitable
invertible matrix that we will specify in the next section. More precisely, we suppose
that R is obtained from a local vector r; € W; on 9 \ 99, by extending it by zero
on the boundaries of the other substructures. We will make a particular choice of R
for problem (3), in section 5, and specify the dimension M.

Following [13, 32], we define the projection

P:=1-G(G'FG) 'G'F,

onto the complement of Range(G). This projection is orthogonal with respect to the
scalar product induced by F. Following [19, 32], we next define the preconditioner

M~':=(BB")"' BSB" (BB')"".

It can be easily seen that BB? is invertible and is block—diagonal only if the partition
Frr is geometrically conforming.
Now, we consider a projected conjugate gradient method, as in [13, 32].

1. Initialize
M =G(GTFG) G
@ =d—F\
2. Iterate k = 1,2, - - - until convergence
Project: w*~! = Ptgh-!
Precondition: zF~1 = M lyk?
Project: y*=1 = PzF-!
ﬁk — <yk—17 wk—1>/<yk—27 wk—2> [61 _ O]
o= T =y
o = (R (0, FpY)
)\k — )\k,1 +akpk
& = Lok Rp
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The first projection can be omitted; because of the choice of the initial vector
X0, we have w1 = ¢*~1 after the first projection step. Here, we have denoted the
residual at the k-th step by ¢*. In practice, partial or full re-orthogonalization may
be required; cf. [16].

The method presented here is equivalent to using the conjugate gradient method
for solving the following preconditioned system

(10) PM™'P'FA = PM~'Pld, A€ X4V,
with
(11) V := Range(P).

We remark that the matrices S and S~™! do not need to be calculated in practice.
The action of S on a vector requires the solution of a Dirichlet problem on each
substructure, while the action of S™! requires the solution of a Neumann problem on
each substructure; see [27, Ch. 4].

5. A particular choice of the matrices R and ). In this section, we consider
a particular choice of the matrices R and @) in the definition of the FETT algorithm
for problem (3).

We proceed in a similar way as in [32, Sect. 5], but we will need to introduce a
suitable matrix @), different from the identity.

The definition of R is the same as in the conforming case, see [32, Sect. 5], and is
given in terms of local vectors.

DEFINITION 5.1. The local vectors {r;, i = 1,---, N}, with the corresponding
vectors of degrees of freedom {r)}, are the unique vectors that satisfy

A0 = 300 / Vi tids, vi€ W,

e}, CO9;\0Q

A 92\00

The global vectors R are obtained by extending the local vectors r'") by zero outside
09);.
We can easily find that

7“,(:) = ek tgj), e C 08\ 0N.

The vectors r; have then the same direction as the t; and are scaled using the lengths
of the edges of the triangulations 7; .
We then define the matrix () as

(12) Q:= (BBYH)™.

We remark that in the case of a conforming triangulation the matrix @ is a multiple
of the identity; see [32]. For matching grids, we then obtain the same preconditioner
as introduced in [32] for conforming approximations. Here, our choice of () does not
require any additional calculation, since (BB?)™! is also needed for the application of
the preconditioner M .

It remains to decide how many of the local vectors R®) need to be considered in
the definition of the matrix R. We introduce Gy as the dual graph of the partition
Fy. Thus, Gy has a vertex for each substructure of 7z and there is an edge in
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Gm between two vertices if the intersection of the boundaries of the corresponding
substructures has positive measure. As in [32], we define the matrix R by

(3) " { [RY) R® ... RWN=D] = if Gy is twocolorable,
13 =

[RY) R® ... RN otherwise .

The following result can be proven using [32, Lem. 5.2 and Th. 5.1].
LEMMA 5.1. Let R be defined in (13). Then the matrix G has full rank.
REMARK 5.1. An analogous FETI method can also be devised for problems in-
volving the bilinear form

/(adivudivv—l—Au-v) dx, u,ve H(div;Q),
Q

discretized with the lowest-order Raviart—Thomas spaces. Here, H(div ;) is the space
of vectors in (L?)?, with divergence in L?. Since, in two dimensions, vectors in the
Raviart—Thomas spaces can be obtained from those in the Nédélec spaces by a rotation
of minety degrees, the unit outward normal vectors n; to the boundaries 0§2;, instead
of the unit tangent vectors t;, have to be employed in the construction of the local
functions r;. All the definitions in this paper remain valid in this case. For Raviart-
Thomas discretizations in three dimensions, an analogous method can also be defined
and all our definitions remain valid.

6. Numerical results. The purpose of this section is to show that, for problems
without jumps, the FETI method proposed here performs similarly to the correspond-
ing method for conforming approximations; see [32, Sect. 6]. In particular, our method
appears to be scalable, its condition number only depends on the number of degrees
of freedom per subdomain, and it is quite insensitive to variations of the ratios of
the coefficients. In addition, it appears to be robust when the meshes of adjacent
subdomains are very different.

In many iterative substructuring methods, an important role is played by the ratio
H/h that measures the number of degrees of freedom per subdomain. In particular,
the condition number of these methods grows only quadratically with the logarithm of
H/h; see, e.g., [27]. This ratio is regarded as a local quantity and can vary greatly from
one subdomain to another. In our numerical results, we always report the maximum
value of this ratio taken over the subdomains.

We consider the domain Q = (0,1)? and assume that the coefficient matrix A is

diagonal and equal to
b 0
=00

In our first set of results, we consider a family of geometrically conforming par-
titions of €, into 2¢ x 2¢ substructures of equal size, with d = 1,2,3,4. For a fixed
partition, we consider two kinds of uniform triangulations for the substructures, in
such a way that on the interface between two adjacent substructures the meshes do
not match. The ratio between the mesh—sizes of the two triangulations is hq/ha = 4/3.
Figure 3 shows an example of this checkerboard—-type discretization for d = 2.

In Table 1, we show the estimated condition number and the number of iterations
to obtain a relative residual ||gx||/||f]| less than 1076, as a function of the diameter
of the finer mesh and the partition. Here, g is the k—th residual as defined in the
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0 0.2 04 0.6 08 1

Fia. 3. A conforming partition and a checkerboard—type discretization.

TABLE 1
The FETI method for conforming partitions with hy/ha = 4/3. Estimated condition number
and number of CG iterations necessary to obtain a relative residual ||qr||/||f|| less than 10~6 (in
parentheses), versus H/h and h. Case of a =1, b=1. The asterisks denote the cases for which we
have not enough memory to run the corresponding algorithm.

| H/h | 32 | 16 ] 8 I
1/h =32 (1600 el.) - 1.805 (5) | 2.941 (9) [ 2.179 (8)
1/h = 64 (6400 el.) 2.151 (6) | 4.045 (11) | 3.035 (10) | 2.165 (7)
1/h =128 (25600 el.) | 5.314 (12) | 4.175 (12) | 3.013 (9) *

algorithmic description given in section 4. For a fixed ratio H/h, the condition number
and the number of iterations are quite insensitive to the dimension of the fine meshes.
In addition, even for non matching grids, the ratio H/h appears to play an important
role.

TABLE 2
The FETI method for conforming partitions with hi/ha = 4/3. Estimated condition number
and number of CG iterations necessary to obtain relative preconditioned residual (||qxl||/||f]]) less
than 1076 (in parentheses), versus H/h and b. Case of 1/h =128 and a = 1.

[H/h [ 8 [ 16 | 32 |
b=0.0001 | 3.091 (16) | 4.216 (20) | 5.364 (18)
b=0.001 | 3.078 (14) | 4.21 (18) | 5.358 (16)
b=0.01 | 3.069 (13) | 4.203 (16) | 5.353 (15)
b= 0.1 | 3.044 (11) | 4.192 (14) | 5.346 (14)
b= 1 3.013 (9) | 4.175 (12) | 5.314 (12)
b= 10 2.992 (8) | 4.114 (11) | 5.154 (11)
b= 100 | 2.939 (9) | 3.829 (11) | 4.379 (11)
b= 1000 | 2.501 (7) | 2.746 (8) | 2.486 (7)
b=let04 | 1.418 (4) | 1.493 (4) | 1.533 (4)
b=1e+05 | 1.037 (2) | 1.042 (2) | 1.044 (2)
b=1c+06 | 1.06 (2) | 1.046 (2) | 1.044 (2)

In Table 2, we show some results when the ratio of the coefficients b and a changes.
For a fixed value of 1/h = 128 and a = 1, and for the partitions into 2¢ by 2¢
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Fic. 5. A non—conforming partition consisting of four blocks.

substructures, with d = 2, 3,4, the estimated condition number and the number of
iterations are shown as a function of H/h and b. The number of iterations and the
condition number appear to be bounded independently of the ratio of the coefficients.

We then consider some test cases relative to geometrically non—conforming parti-
tions of the domain (0, 1)2. We consider partitions consisting of 2¢ % 24 equal blocks,
d =0,1,2,3. A block is made of five non-conforming subdomains and is shown in
Figure 4 together with a possible triangulation. Figure 5 shows a partition for the
case d = 1 (four blocks and twenty subdomains). The number of subdomains is thus
five times the number of blocks. We then consider uniform triangulations for the
subdomains in each block. The rectangular subdomains have the same mesh.

We first consider a case where the ratio between the mesh sizes of the rectangular
and square subdomains is hi/hs = 7/5; see Figures 4 and 5 for two examples. In
Table 3, we show the estimated condition number and the number of iterations to
obtain a relative residual ||gx||/|/f| less than 1075, as a function of the diameter of
the finer mesh and the ratio H/h. The condition number appears to increase slowly
with H/h and to be quite insensitive to the size of the fine meshes.

In Table 4, we show some results when the ratio of the coefficients b and a changes.
For a fixed value of 1/h = 84 (29312 elements) and a = 1, and for the partitions into
2¢ by 2¢ blocks, with d = 1,2, 3, the estimated condition number and the number of
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The FETI method for non—conforming partitions with hi/ha = 7/5. Estimated condition num-
ber and number of CG iterations necessary to obtain a relative residual ||qg||/||f|| less than 1076 (in
parentheses), versus H/h and h. Case of a=1, b=1.

| H/h | 20 | 10 | 5 |
1/h =21 (1832 el.) - 2.728 (8) | 2.63 (10)
1/h = 42 (7328 el.) 3.459 (8) | 3.23 (11) | 2.876 (10)
1/h = 84 (29312 el.) 4.034 (13) | 3.619 (12) | 2.901 (10)
1/h =168 (117248 el.) | 4.552 (14) | 3.619 (12) *

iterations are shown as a function of H/h and b.

TABLE 4
The FETI method for non—conforming partitions with h1/ha = 7/5. Estimated condition num-
ber and number of CG iterations necessary to obtain relative preconditioned residual (||qr||/||f]|) less
than 1075 (in parentheses), versus H/h and b. Case of 1/h =84 and a = 1.

| H/h | 5 | 10 | 20 |

b—=0.0001 | 2.966 (17) | 3.667 (20) | 4.068 (21)
b=0.001 | 2.955 (15) | 3.663 (18) | 4.064 (19)
b=0.01 | 2.951 (14) | 3.658 (16) | 4.06 (17

b= 0.1 | 2.933 (12) | 3.651 (14) | 4.054 (15)
b= 1 2.901 (10) | 3.619 (12) | 4.034 (13)
b= 10 2.882 (9) | 3.561 (11) | 3.93 (12)
b= 100 | 2.769 (9) | 3.214 (10) | 3.284 (10)
b= 1000 | 2.305 (7) | 2.197 (7) | 2.229 (7)
b=1e+04 | 1.656 () | 1.523 (4) | 1.54 (4)

b=1c+05 | 1.173 (3) | 1.178 (3) | 1.086 (2)
b=1e+06 | 1.135 (2) | 1.115 (2) | 1.089 (2)

For the same non—conforming partitions, we finally consider a case where the
ratio between the diameters of the meshes of the rectangular and square subdomains
is larger. We choose hy/hs = 2.8. In Table 5, we show some results when the ratio
of the coefficients b and a changes. For a fixed value of 1/h = 168 (48128 elements)
and a = 1, and for the partitions into 2¢ by 2¢ blocks, with d = 1,2, 3, the estimated
condition number and the number of iterations are shown as a function of H/h and b.
In this case, the meshes of adjacent substructures are very different but the condition
numbers and the number of iterations are still quite satisfactory.
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