
Effective Synthesis of Asynchronous Systems
from GR(1) Specifications

Courant Institute of Mathematical Sciences, NYU - Technical Report
TR2011-944 (an extended version of a VMCAI’12 paper)?

Uri Klein1, Nir Piterman2, and Amir Pnueli1

1 Courant Institute of Mathematical Sciences, New York University
uriklein@courant.nyu.edu

2 Department of Computer Science, University of Leicester
nir.piterman@leicester.ac.uk

Abstract. We consider automatic synthesis from linear temporal logic
specifications for asynchronous systems. We aim the produced reactive
systems to be used as software in a multi-threaded environment. We ex-
tend previous reduction of asynchronous synthesis to synchronous syn-
thesis to the setting of multiple input and multiple output variables.
Much like synthesis for synchronous designs, this solution is not practical
as it requires determinization of automata on infinite words and solution
of complicated games. We follow advances in synthesis of synchronous
designs, which restrict the handled specifications but achieve scalabil-
ity and efficiency. We propose a heuristic that, in some cases, maintains
scalability for asynchronous synthesis. Our heuristic can prove that spec-
ifications are realizable and extract designs. This is done by a reduction
to synchronous synthesis that is inspired by the theoretical reduction.

1 Introduction

One of the most ambitious and challenging problems in reactive systems design is
the automatic synthesis of programs from logical specifications. It was suggested
by Church [4] and subsequently solved by two techniques [3, 22]. In [18] the
problem was set in a modern context of synthesis of reactive systems from Linear
Temporal Logic (ltl) specifications. The synthesis algorithm converts a ltl
specification to a Büchi automaton, which is then determinized [18]. This double
translation may be doubly exponential in the size of ϕ. Once the deterministic
automaton is obtained, it is converted to a Rabin game that can be solved in time
nO(k), where n is the number of states of the automaton (double exponential in ϕ)
and k is a measure of topological complexity (exponential in ϕ). This algorithm
is tight as the problem is 2EXPTIME-hard [18].

This unfortunate situation led to extensive research on ways to bypass the
complexity of synthesis (e.g., [15, 9, 16]). The work in [16] is of particular interest
to us. It achieves scalability by restricting the type of handled specifications. This

? Supported in part by National Science Foundation grant CNS-0720581

led to many applications of synthesis in various fields [1, 2, 6, 12, 27, 29, 28, 13, 14,
7, 8]. So, in some cases, synthesis of designs from their temporal specifications is
feasible.

These results relate to the case of synchronous synthesis, where the synthe-
sized system is synchronized with its environment. At every step, the environ-
ment generates new inputs and the system senses all of them and computes a
response. This is the standard computational model for hardware designs.

Here, we are interested in synthesis of asynchronous systems. Namely, the
system may not sense all the changes in its inputs, and its responses may become
visible to the external world (including the environment) with an arbitrary delay.
Furthermore, the system accesses one variable at a time while in the synchronous
model all inputs are observed and all outputs are changed in a single step. The
asynchronous model is the most appropriate for representing reactive software
systems that communicate via shared variables on a multi-threaded platform.

We illustrate the difference between the two types of synthesis (synchronous
and asynchronous) by the following trivial example. Consider a system with a
single input x and a single output y, both Booleans. The behavioral specification
is given by the temporal formula

ϕ1 :0(x↔ y)

stating that, at all computation steps, it is required that the output should equal
the input. Obviously, this specification calls for an implementation of a module
that will consistently ‘copy’ the input to the output. As usual, the synthesis prob-
lem is to find a module such that, for all possible sequences of values appearing
on input x, will maintain the specification ϕ1.

It is not difficult to see that specification ϕ1 is synchronously realizable.
That is, there exists a synchronous module that maintains the specification ϕ1.
Such a module can be defined by having the initial condition θ : y ↔ x and the
transition relation ρ : y′ ↔ x′. This presentation is based on the notion of a Fair
Discrete System (fds) as presented, for example, in [16]. (A hardware module
implementing this specification would eventually amount to a wire connecting
the input to the output.)

On the other hand, the specification ϕ1 is not asynchronously realizable.
That is, there does not exist an asynchronous module such that, for all possible
sequences of x-values, it will maintain the relation x↔ y. The reason is that if
x changes too rapidly, the system cannot observe all these changes and respond
quickly enough. In particular, since in an asynchronous setting steps of the envi-
ronment and of the system interleave, there is no way (unlike in the synchronous
model) that x and y can both change in the same step.

In [19], Pnueli and Rosner reduce asynchronous synthesis to synchronous syn-
thesis. Their technique, which we call the Rosner reduction, converts a specifica-
tion ϕ(x; y) with single input x and single output y to a specification X (x, r; y).
The new specification relates to an additional input r. They show that ϕ is asyn-
chronously realizable iff X is synchronously realizable and how to translate a
synchronous implementation of X to an asynchronous implementation of ϕ.

2

Our first result is an extension of the Rosner reduction to specifications with
multiple input and output variables. Pnueli and Rosner assumed that the system
alternates between reading its input and writing its output. For multiple vari-
ables, we assume cyclic access to variables: first reading all inputs, then writing
all outputs (each in a fixed order). We show that this interaction mode is not
restrictive as it is equivalent (w.r.t. synthesis) to the model in which the system
chooses its next action (whether to read or to write and which variable).

Combined with [18], the reduction from asynchronous to synchronous synthe-
sis presents a complete solution to the multiple-variables asynchronous synthesis
problem. Unfortunately, much like in the synchronous case, it is not ‘effective’.
Furthermore, even if ϕ is relatively simple (for example, belongs to the class of
GR(1) formulae that is handled in [16]), the formula X is considerably more
complex and requires the full treatment of [18].

Consequently, we propose a method to bypass this full reduction. In the
invited paper [17] we outlined the principles of an approach to bypass the com-
plexity of asynchronous synthesis. Our approach applied to specifications that
relate to one input and one output, both Boolean. We presented heuristics that
can be used to prove unrealizability and to prove realizability. The approxi-
mation of unrealizability called for the construction of a weakening that could
prove unrealizability through a simpler reduction to synchronous synthesis. In
this paper we show how to extend this result to multiple variables. Our re-
sults are based on an extension of the Rosner reduciton, which we present. In
[17] we also outlined an approach to approximate realizability. We suggested to
strengthen specifications and an alternative reduction to synchronous synthe-
sis for such strengthened specifications. Here we substantiate these conjectured
ideas by completing and correcting the details of that approach and extending
it to multiple value variables and multiple outputs. We show that the ideas por-
trayed in [17] require to even further restrict the type of specifications and a
more elaborate reduction to synchronous synthesis (even for the Boolean one-
input one-output case of [17]). We show that when the system has access to the
‘entire state’ of the environment (this is like the environment having one multiple
value variable) there are cases where a simpler reduction to synchronous synthe-
sis can be applied. We give a conversion from the synchronous implementation
to an asynchronous implementation realizing the original specification.

To our knowledge, this is the first ‘easy’ case of asynchronous synthesis iden-
tified. With connections to partial-information games and synthesis with nonde-
terministic environments, we find this to be a very important research direction.

This technical report is an extended version of [10].

2 Preliminaries

2.1 Temporal Logic

We describe an extension of Quantified Propositional Temporal Logic (QPTL)
[24] with stuttering quantification. We refer to this extended logic as QPTL. Let

3

X be a set of variables ranging over the same finite domain D. The syntax of
QPTL is defined according to the following grammar.

τ ::= x = d, where x ∈ X and d ∈ D
ϕ ::= τ ‖ ¬ϕ ‖ ϕ ∨ ϕ ‖2ϕ ‖�ϕ ‖ ϕUϕ ‖ ϕ S ϕ ‖ (∃x).ϕ ‖ (∃≈x).ϕ

where τ are atomic formulae and ϕ are QPTL formulae (formulae, for short).
We use the abbreviations (here, d ∈ D, x, y ∈ X, and ψ,ψ1, ψ2 are formulae):

x 6= d for ¬(x = d), t for x = d ∨ x 6= d, f for ¬t, ψ1 ∧ ψ2 for ¬(¬ψ1 ∨ ¬ψ2),
ψ1 → ψ2 for ¬ψ1 ∨ ψ2, ψ1 ↔ ψ2 for (ψ1 → ψ2) ∧ (ψ2 → ψ1), (∀x).ψ for
¬(∃x).(¬ψ), (∀≈x).ψ for ¬(∃≈x).(¬ψ), 1ψ for tUψ, 0 ψ for ¬1¬ψ, Qψ
for t S ψ, ` ψ for ¬Q¬ψ, ψ1Wψ2 for ψ1 Uψ2 ∨0 ψ1, ψ1 B ψ2 for ψ1 S ψ2 ∨
` ψ1, x = y for

∨
d∈D(x = d ∧ y = d), x 6= y for ¬(x = y), x = � y for∨

d∈D(x = d ∧� y = d), 2∼ ψ for ¬�¬ψ, and ψ1 =�ψ2 for 0(ψ1 → ψ2).

For a set X̂ = {x1, . . . , xk} of variables, where X̂ ⊆ X, we write (∃X̂).ψ for
(∃x1) · · · (∃xk).ψ and similarly for (∀X̂).ψ. We sometimes list variables and sets,
e.g., (∃X̂, y).ψ instead of (∃X̂ ∪ {y}).ψ. Also, for a Boolean variable r we write
r for r = 1 and r for r = 0.

ltl does not allow the ∃ and ∃≈ operators. We stress that a formula ϕ is
written over the variables in a set X by writing ϕ(X). If variables are parti-
tioned to inputs X and outputs Y , we write ϕ(X;Y). We call such formulae
specifications. We sometimes list the variables in X and Y , e.g., ϕ(x1, x2; y).

The semantics of QPTL is given with respect to computations and locations
in them. A computation σ is an infinite sequence a0, a1, . . ., where for every i ≥ 0
we have ai ∈ DX . That is, a computation is an infinite sequence of value as-
signments to the variables in X. We denote by σ[i, j] the subsequence ai, . . . , aj ,
where j could be ∞. For an assignment a ∈ DX and a variable x ∈ X we write
a[x] for the value assigned to x by a. If X = {x1, . . . , xn}, we freely use the
notation (ai1 [x1], . . . , ain [xn]) for the assignment a such that a[xj] = aij [xj]. A
computation σ′ = a′0, a

′
1, . . . is an x-variant of computation σ = a0, a1, . . . if for

every i ≥ 0 and every y 6= x we have ai[y] = a′i[y]. The computation squeeze(σ) is
obtained from σ as follows. If for all i ≥ 0 we have ai = a0, then squeeze(σ) = σ.
Otherwise, if a0 6= a1 then squeeze(σ) = a0, squeeze(a1, a2, . . .). Finally, if a0 =
a1 then squeeze(σ) = squeeze(a1, a2, . . .). That is, by removing repeating assign-
ments, squeeze returns a computation in which every two adjacent assignments
are different unless the computation ends in an infinite suffix of one assignment.
A computation σ′ is a stuttering variant of σ if squeeze(σ) = squeeze(σ′). This
is generalized to finite computations in the natural way.

Satisfaction of a QPTL formula ϕ over computation σ = a0, a1, . . . in location
i ≥ 0, denoted σ, i |= ϕ, is defined as follows:

1. For an atomic formula x = d, we have σ, i |= x = d iff ai[x] = d.
2. σ, i |= ¬ϕ iff σ, i 6|= ϕ.
3. σ, i |= ϕ ∨ ψ iff 〈σ, i |= ϕ or σ, i |= ψ.
4. σ, i |=2ϕ iff σ, i+ 1 |= ϕ.
5. σ, i |=�ϕ iff i > 0 and σ, i− 1 |= ϕ.
6. σ, i |= ϕUψ iff for some j ≥ i, σ, j |= ψ, and for all k, i ≤ k < j, σ, k |= ϕ.

4

7. σ, i |= ϕ S ψ iff for some j ≤ i, σ, j |= ψ, and for all k, i ≥ k > j, σ, k |= ϕ.
8. We have σ, i |= (∃x).ϕ iff there exists an x-variant σ′ of σ such that σ′, i |= ϕ.
9. We have σ, i |= (∃≈x).ϕ iff there exist σ′, σ′′ and σ′′′ such that σ′ is a

stuttering variant of σ[0, i − 1], σ′′ is a stuttering variant of σ[i,∞], σ′′′ is
an x-variant of σ′ · σ′′, and σ′′′, |σ′| |= ϕ.

We say that the computation σ satisfies the formula ϕ, iff σ, 0 |= ϕ.

2.2 Realizability of Temporal Specifications

We define synchronous and asynchronous programs. While the programs them-
selves are not very different the definition of interaction of a program makes the
distinction clear.

Let X and Y be the sets of inputs and outputs. We stress the different roles
of the system and the environment by specializing computations to interactions.
In an interaction we treat each assignment to X ∪ Y as different assignments to
X and Y . Thus, instead of using c ∈ DX∪Y , we use a pair (a, b), where a ∈ DX

and b ∈ DY . Formally, an interaction is σ = (a0, b0), (a1, b1), . . . ∈ (DX ×DY)ω.
A synchronous program Ps from X to Y is a function Ps : (DX)+ 7→ DY . In

every step of the computation (including the initial one) the program reads its
inputs and updates the values of all outputs (based on the entire history). An
interaction σ is called synchronous interaction of P if, at each step of the interac-
tion i = 0, 1, . . ., the program outputs (assigns to Y) the value Ps(a0, a1, . . . , ai),
i.e., bi = Ps(a0, . . . , ai). In such interactions both the environment, which up-
dates input values, and the system, which updates output values, ‘act’ at each
step (where the system responds in each step to an environment action).

A synchronous program is finite state if it can be induced by a Labeled Tran-
sition System (LTS). A LTS is T = 〈S, I,R,X, Y, L〉, where S is a finite set of
states, I ⊆ S is a set of initial states, R ⊆ S×S is a transition relation, X and Y
are disjoint sets of input and output variables, respectively, and L : S 7→ DX∪Y

is a labeling function. For a state s ∈ S and for Z ⊆ X ∪ Y , we define L(s)|Z
to be the restriction of L(s) to the variables of Z. The LTS has to be recep-
tive, i.e., be able to accept all inputs. Formally, for every a ∈ DX there is
some s0 ∈ I such that L(s0)|X = a. For every s ∈ S and a ∈ DX there is
some sa ∈ S such that R(s, sa) and L(sa)|X = a. The LTS T is determin-
istic if for every a ∈ DX there is a unique s0 ∈ I such that L(s0)|X = a
and for every s ∈ S and every a ∈ DX there is a unique sa ∈ S such that
R(s, sa) and L(sa)|X = a. Otherwise, it is nondeterministic. A deterministic
LTS T induces the synchronous program PT : (DX)+ 7→ DY as follows. For
every a ∈ DX let T (a) be the unique state s0 ∈ I such that L(s0)|X = a. For
every n > 1 and a1 . . . an ∈ (DX)+ let T (a1, . . . , an) be the unique s ∈ S such
that R(T (a1, . . . , an−1), s) and L(s)|X = an. For every a1 . . . an ∈ (DX)+ let
PT (a1, . . . , an) be the unique b ∈ DY such that b = L(T (a1, . . . , an))|Y . We note
that nondeterministic LTS do not induce programs. As nondeterministic LTS
can always be pruned to deterministic LTS, we find it acceptable to produce
nondeterministic LTS as a representation of a set of possible programs.

5

An asynchronous program Pa from X to Y is a function Pa : (DX)∗ 7→ DY .
Note that the first value to outputs is set before seeing inputs. As before, the
program receives all inputs and updates all outputs. However, the definition of
an interaction takes into account that this may not happen instantaneously.

A schedule is a pair (R,W) of sequences R = r11, . . . , r
n
1 , r

1
2, . . . , r

n
2 , . . . and

W = w1
1, . . . , w

m
1 , w

1
2, . . . , w

m
2 , . . . of reading points and writing points such that

r11 > 0 and for every i > 0 we have r1i < r2i < · · · < rni < w1
i and w1

i <
w2
i < · · · < wmi < r1i+1. It identifies the points where each of the input variables

is read and the points where each of the output variables is written. The order
establishes that reading and writing points occur cyclically. When the distinction
is not important, we call reading points and writing points I\O-points.

An interaction is called asynchronous interaction of Pa for (R,W) if b0 =
Pa(ε), and for every i > 0, every j ∈ {1, . . . ,m}, and every wji ≤ k < wji+1:

bk[j] = Pa((ar11 [1], . . . , arn1 [n]), (ar12 [1], . . . , arn2 [n]), . . . , (ar1i [1], . . . , arni [n]))[j].

Also, for every j ∈ {1, . . . ,m} and every 0 < k < wj1, we have that bk[j] = b0[j].
In asynchronous interactions, the environment may update the input values

at each step. However, the system is only aware of the values of inputs at reading
points and responds by outputting the appropriate variables at writing points.
In particular, the system is not even aware of the amount of time that passes
between the two adjacent time points (read-read, read-write, or write-read). That
is, output values depend only on the values of inputs in earlier reading points.

An asynchronous program is finite state if it can be asynchronously in-
duced by an Initialized LTS (ILTS). An ILTS is T = 〈Ts, i〉, where Ts =
〈S, I,R,X, Y, L〉 is a LTS, and i ∈ DY is an initial assignment. We sometimes
abuse notations and write T = 〈S, I,R,X, Y, L, i〉. Determinism is defined just as
for LTS. Similarly, given a1, . . . , an ∈ (DX)+ we define T (a1, . . . , an) as before.
A deterministic ILTS T asynchronously induces the program PT : (DX)∗ 7→ DY

as follows. Let PT (ε) = i and for every a1 . . . an ∈ (DX)+ we have PT (a1, . . . , an)
as before. As i is a unique initial assignment, we force ILTS to induce only asyn-
chronous programs that deterministically assign a single initial value to outputs.
All our results work also with a definition that allows nondeterministic choice of
initial output values (that do not depend on the unavailable inputs).

Definition 1 (synchronous realizability). A ltl specification ϕ(X;Y) is
synchronously realizable if there exists a synchronous program Ps such that
all synchronous interactions of Ps satisfy ϕ(X;Y). Such a program Ps is said to
synchronously realize ϕ(X;Y). Synchronous realizability is often simply short-
ened to realizability. Asynchronous realizability is defined similarly with
asynchronous programs and all asynchronous interactions for all schedules.

Synthesis is the process of automatically constructing a program P that
(synchronously/asynchronously) realizes a specification ϕ(X;Y). We freely write
that a LTS realizes a specification in case that the induced program satisfies it.

The following theorem is proven in [18].

6

Theorem 1 ([18]). Deciding whether a specification ϕ(X;Y) is synchronously
realizable is 2EXPTIME-complete. Furthermore, if ϕ(X;Y) is synchronously re-
alizable the same decision procedure can extract a LTS that realizes ϕ(X;Y).

2.3 Normal Form of Specifications

We give a normal form of specifications describing an interplay between a system
s and an environment e. Let X and Y be disjoint sets of input and output
variables, respectively. For α ∈ {e, s}, the formula ϕα(X;Y), which defines the
allowed actions of α, is a conjunction of:

1. Iα (initial condition) – a Boolean formula (equally, an assertion) over X∪Y ,
describing the initial state of α. The formula Is may refer to all variables
and Ie may refer only to the variables X.

2. 0 Sα (safety component) – a formula describing the transition relation of
α, where Sα describes the update of the locally controlled state variables
(identified by being primed , e.g., x′ for x ∈ X) as related to the current
state (unprimed, e.g., x), except that s can observe X’s next values.

3. Lα (liveness component) – each Lα is a conjunction of 01 p formulae
where p is a Boolean formula.

In the case that a specification includes temporal past formulae instead of the
Boolean formulae in any of the three conjuncts mentioned above, we assume
that a pre-processing of the specification was done to translate it into another
one that has the same structure but without the use of past formulae. This
can be always achieved through the introduction of fresh Boolean variables that
implement temporal testers for past formulae [21]. Therefore, without loss of
generality, we discuss in this work only such past-formulae-free specifications.

We abuse notations and write ϕα also as a triplet 〈Iα, Sα, Lα〉.
Consider a pair of formulae ϕα(X;Y), for α ∈ {e, s} as above. We define

the specification Imp(ϕe, ϕs) to be (Ie ∧ 0 Se ∧ Le) → (Is ∧ 0 Ss ∧ Ls). For
such specifications, the winning condition is the formula Le → Ls, which we call
GR(1). Synchronous synthesis of such specifications was considered in [16].

2.4 The Rosner Reduction

In [19], Pnueli and Rosner show how to use synchronous realizability to solve
asynchronous realizability. They define, what we call, the Rosner reduction. It
translates a specification ϕ(X;Y), where X = {x} and Y = {y} are single-
tons, into a specification X (x, r; y) that has an additional Boolean input vari-
able r. The new variable r is called the Boolean scheduling variable. Intuitively,
the Boolean scheduling variable defines all possible schedules for one-input one-
output systems . When it changes from zero to one it signals a reading point and
when it changes from one to zero it signals a writing point. Given specification
ϕ(X;Y), we define the kernel formula X (x, r; y):

7

r ∧01 r ∧01 r︸ ︷︷ ︸
α(r)

→

ϕ(x; y) ∧
(r ∨� r) =�(y =� y) ∧
(∀≈x̃).[(r ∧� r) =�(x = x̃)]→ ϕ(x̃; y)


︸ ︷︷ ︸

β(x,r;y)

According to α(r), the first I\O-point, where r changes from zero to one, is a
reading point and there are infinitely many reading and writing points. Then,
β(x, r; y) includes three parts: (a) the original formula ϕ(x; y) must hold, (b)
outputs obey the scheduling variable, i.e., in all points that are not writing
points the value of y does not change, and (c) if we replace all the inputs except
in reading points, then the same output still satisfies the original formula 1.

The following theorem is proven in [19].

Theorem 2 ([19]). The specification ϕ(x; y) is asynchronously realizable iff the
specification X (x, r; y) is synchronously realizable. Given a program that syn-
chronously realizes X (x, r; y) it can be converted in linear time to a program
asynchronously realizing ϕ(x; y).

Pnueli and Rosner also show how the standard techniques for realizability of
ltl [18] can handle stuttering quantification of the form appearing in X (x, r; y).

3 Expanding the Rosner Reduction to Multiple Variables

In this section we describe an expansion of the Rosner reduction to handle spec-
ifications with multiple input and output variables. The reduction reduces asyn-
chronous synthesis to synchronous synthesis. Without loss of generality, fix a
ltl specification ϕ(X;Y), where X = {x1, . . . , xn} and Y = {y1, . . . , ym}.

We propose the generalized Rosner reduction, which translates ϕ(X;Y) into
Xn,m(X ∪ {r};Y). The specification uses an additional input variable r, called
the scheduling variable, which ranges over {1, . . . , (n+m)} and defines all reading
and writing points. Variable xi may be read by the system whenever r changes
its value to i. Variable yi may be modified whenever r changes to n+ i. Initially,
r = n+m and it is incremented cyclically by 1 (hence, in the first I\O-point x1
is read). Let i⊕k 1 denote (imod k) + 1.

We also denote [r = (n+ i)]∧�[r 6= (n+ i)] by writen(i) to indicate a state
that is a writing point for yi, (r = i) ∧�(r 6= i) by read(i) to indicate a state
that is a reading point for xi,

∧
d∈D[(z = d) ↔ �(z = d)] by unchanged(z) to

indicate a state where z did not change its value, and ¬�t by first to indicate
a state that is the first one in the computation.

The kernel formula Xn,m(X ∪{r};Y) is αn,m(r)→ βn,m(X ∪{r};Y), where

1 The first conjunct of β(x, r; y), ϕ(x; y), is redundant. It is a consequence of the
third conjunct which guarantees that ϕ(x̃; y) is satisfied for a set of sequences of
assignments to x̃ which includes the single sequence of assignments to x. We leave
this conjunct here, as well as in similar reductions later in this paper, for clarity.

8

αn,m(r) =

r = (n+m) ∧
n+m∧
i=1

[
(r = i) =�

[
(r = i)U [r = (i⊕n+m 1)]

]] 

βn,m(X ∪ {r};Y) =


ϕ(X;Y) ∧
m∧
i=1

[
[¬writen(i) ∧ ¬first] =�unchanged(yi)

]
∧

(∀≈X̃).
[n∧
i=1

[read(i) =�(xi = x̃i)]
]
→ ϕ(X̃;Y)

 .

There is a 1-1 correspondence between sequences of assignments to r and
schedules (R,W). As r is an input variable, the program has to handle all possible
assignments to it. This implies that the program handles all possible schedules.

Theorem 3. The specification ϕ(X;Y) (|X| = n, and |Y | = m) is asyn-
chronously realizable iff Xn,m(X ∪ {r};Y) is synchronously realizable. Further-
more, given a program synchronously realizing Xn,m(X ∪ {r};Y) it can be con-
verted in linear time to a program asynchronously realizing ϕ(X;Y).

Proof (Sketch): Suppose we have a synchronous program realizing Xn,m(X∪
{r};Y) and we want an asynchronous program realizing ϕ(X;Y). An input to
the asynchronous program is stretched in order to be fed to the synchronous
program. Essentially, every new input to the asynchronous program is stretched
so that one variable changes at a time and in addition the new valuation of all
input variables is repeated enough times to allow the synchronous program to
update all the output variables. This is forced to happen immediately by in-
creasing the scheduling variable r (cyclically) in every input for the synchronous
program. This forces the synchronous program to update all output variables
and this is the value we use for the asynchronous program. Then, the stutter-
ing quantification over the synchronous interaction shows that an asynchronous
interaction that matches these outputs does in fact satisfy ϕ(X;Y).

In the other direction we have an asynchronous program realizing ϕ(X;Y)
and have to construct a synchronous program realizing Xn,m(X ∪ {r};Y). The
reply of the synchronous program to every input in which the scheduling vari-
ables behaves other than increasing (cyclically) is set to be arbitrary. For inputs
where the scheduling variable behaves properly, we can contract the inputs to
the reading points indicated by r and feed the resulting input sequence to the
asynchronous program. We then change the output variables one by one as indi-
cated by r according to the output of the asynchronous program. In order to see
that the resulting synchronous program satisfies X , we note that the stuttering
quantification relates precisely to all the possible asynchronous interactions.

Proof: For clarity, we define Dr = {1, . . . , (n+m)} (the domain of the schedul-
ing variable r). We also use the notation rinit = n + m for the ‘correct’ initial
value of r. We shall prove both directions constructively, by reducing each type
of program to the other:

9

⇐ Let Xn,m(X∪{r};Y) be synchronously realized by the synchronous program
Ps : (DX×Dr)

+ 7→ DY . We define the asynchronous program Pa : (DX)∗ 7→
DY as shown below.
Pa(ε) = Ps((arand, rinit)), where arand is some arbitrary assignment to the
inputs X. We define the function dupn,m : (DX)+ 7→ (DX)+ inductively:

For all a ∈ DX , dupn,m(a) = a1, . . . , an, an, . . . , an︸ ︷︷ ︸
m times

where for all 0 < i ≤ n,

for all j such that 0 < j ≤ i we have ai[j] = a[j] and for all j such
that i < j ≤ n we have ai[j] = arand[j]. For all k > 1 and a1, . . . , ak ∈
(DX)k, dupn,m(a1, . . . , ak) = dupn,m(a1, . . . , ak−1), a′1, . . . , a′n, a′n, . . . , a′n︸ ︷︷ ︸

m times

where for all 0 < i ≤ n, for all j such that 0 < j ≤ i we have a′i[j] = ak[j]
and for all j such that i < j ≤ n we have a′i[j] = ak−1[j]. For all k > 0
let rk = r1, . . . , rk, where r1 = 1 (r1 = (rinit ⊕n+m 1)), and where for
all k ≥ i > 1, ri = (ri−1 ⊕n+m 1). For all k > 0, if a1, . . . , ak ∈ (DX)k

we define duprn,m(a1, . . . , ak) ∈ (DX × Dr)
(n+m)·k where the projection

of duprn,m(a1, . . . , ak) on the inputs X is dupn,m(a1, . . . , ak), and the pro-

jection of duprn,m(a1, . . . , ak) on the scheduling variable r is r(n+m)·k. Fi-

nally, for all k > 0 such that a1, . . . , ak ∈ (DX)k we define Pa(a1, . . . , ak) =
Ps((arand, rinit), duprn,m(a1, . . . , ak)).
We now show that all asynchronous interactions of Pa, for all schedules,
satisfy ϕ(X;Y), implying that ϕ(X;Y) is asynchronously realized by Pa. Let
(R,W) be a schedule, and let σ = (a0, b0), (a1, b1), . . . be an asynchronous
interaction of Pa for this schedule. Denote R = r11, . . . , r

n
1 , r

1
2, . . . , r

n
2 , . . . and

W = w1
1, . . . , w

m
1 , w

1
2, . . . , w

m
2 ,

We abuse notation and define the function dupn,m : (DX ×DY)+ 7→ (DX ×
DY)+ inductively: For all (a, b) ∈ DX ×DY ,

dupn,m((a, b)) = (a1, b0), . . . , (an, b0), (an, b1), . . . , (an, bm)

where for all 0 < i ≤ n, for all j such that 0 < j ≤ i ai[j] = a[j] and for all
j such that i < j ≤ n ai[j] = arand[j]. Also, for all 0 < i ≤ m, for all j such
that 0 < j ≤ i bi[j] = b[j] and for all j such that i < j ≤ m bi[j] = b0[j]. For
all k > 1 and (c1, d1), . . . , (ck, dk) ∈ (DX ×DY)k,

dupn,m((c1, d1), . . . , (ck, dk)) =

dupn,m

(
(c1, d1), . . . , (ck−1, dk−1)

)
,

(a1, dk−1), . . . , (an, dk−1), (an, b1), . . . , (an, bm)

where for all 0 < i ≤ n, for all j such that 0 < j ≤ i we have ai[j] = ck[j]
and for all j such that i < j ≤ n we have ai[j] = ck−1[j]. Also, for all
0 < i ≤ m, for all j such that 0 < j ≤ i we have bi[j] = dk[j] and for
all j such that i < j ≤ m we have bi[j] = dk−1[j]. We also abuse notation
by defining that for all k > 0, if (c1, d1), . . . , (ck, dk) ∈ (DX × DY)k then
duprn,m((c1, d1), . . . , (ck, dk)) ∈ (DX × Dr × DY)(n+m)·k where the pro-
jection of duprn,m((c1, d1), . . . , (ck, dk)) on the inputs and outputs X ∪ Y is

10

dupn,m((c1, d1), . . . , (ck, dk)), and the projection of duprn,m((c1, d1), . . . , (ck, dk))

on the scheduling variable r is r(n+m)·k. We also apply dup and dupr to in-
finite computations. In that case, the result is the limit of the application of
the function on all prefixes of the infinite computation.
Consider the computation

σ′ =
(

(ar11 [1], . . . , arn1 [n]), (bw1
1
[1], . . . , bwm

1
[m])

)
,(

(ar12 [1], . . . , arn2 [n]), (bw1
2
[1], . . . , bwm

2
[m])

)
, . . .

obtained from σ by restricting attention to the values of variables to the
appropriate reading and writing points. By construction, we know that the
computation σ′′ = (arand, rinit, b0), duprn,m(σ′) is a synchronous interaction
of Ps. Therefore, σ′′, 0 |= Xn,m. Since σ′′, 0 |= αn,m (due to the way duprn,m
modifies the scheduling variable), we also get that

σ′′, 0 |= (∀≈X̃).

n∧
i=1

[read(i) =�(xi = x̃i)]→ ϕ(X̃;Y). (1)

We now define the computation σ′′′, which is obtained from σ′′ by ‘stretching’
it so that all reading points in σ′′′ match exactly with the indices of R, and
all writing points in it match exactly with the indices of W . By ‘matching
exactly’ we mean that there are no I\O points in σ′′′ beyond those indicated
by the schedule (R,W). When we stretch σ′′, the newly added states are
copies of their predecessor. That is, if s, t is part of the sequence that needs
to be stretched then s, s, . . . , s, t is the new sequence. As a result, the first
state in σ′′′ is (arand, rinit, b0), the first state in σ′′, and there are exactly
r11 copies of it at the prefix of σ′′′. The second state of σ′′ is duplicated to
r21 − r11 copies in σ′′′, the n-th state is duplicated to rn1 − rn−11 copies, the
n+1-th state is duplicated to w1

1−rn1 copies, the n+m-th state is duplicated
to wm1 −wm−11 copies, the n+m+1-th state is duplicated to r12−wm1 copies,
and so on.
From Formula 1, every stuttering variant of σ′′ that assigns to X̃ values
that agree with X in all reading points, satisfies ϕ(X̃;Y). This is exactly
the case of σ. Indeed, σ′′′ is a stuttering variant of σ′′ and agrees with σ
on assignments to the outputs Y and to r. It follows that if we consider the
assignment of σ to X as an assignment to X̃ added to σ′′′, we get the required
result that σ, 0 |= ϕ(X,Y) which concludes the proof of this direction.

⇒ Let ϕ(X;Y) be asynchronously realized by the asynchronous program Pa :
(DX)∗ 7→ DY . We define the synchronous program Ps : (DX ×Dr)

+ 7→ DY

as shown below.
Given a sequence a1, . . . , ak ∈ (DX×Dr)

k, we denote ri = ai[r]. For all k > 0
and a1, . . . , ak ∈ (DX×Dr)

k, if r1 6= rinit or there exists some index 1 < j ≤
n such that (rj 6= rj−1) ∧ (rj 6= (rj−1 ⊕n+m 1)), then Ps(a1, . . . , ak, . . .) =
brand (for all prefixes of computations with the prefix a1, . . . , ak), where brand
is some arbitrary assignment to the outputs Y . From this point onwards, we

11

handle only elements of (DX × Dr)
k for which the above condition does

not hold and which are, therefore, ‘compliant’ with the initial condition
and transition relation implied by αn,m(r). It is worthwhile to note that
monitoring this condition could be done ‘on-line’ while Ps gets more and
more inputs, without any increase in complexity.
For all k > 0 and given a1, . . . , ak ∈ (DX × Dr)

k, we define the implied
prefixed schedule for a1, . . . , ak, (Rk,W k), to be a prefix of some sched-
ule. We note that all possible extensions of a1, . . . , ak that satisfy αn,m

agree on the prefix (Rk,W k) of their implied schedules. For (Rk,W k) to
be the (unique) prefixed schedule implied by a1, . . . , ak, we require that
|Rk| + |W k| equals the number of times r changes its value in a1, . . . , ak.
Therefore, (Rk,W k) represents exactly all the I\O points of a1, . . . , ak. For
all k > 1 and a1, . . . , ak ∈ (DX × Dr)

k, if (Rk,W k) is the prefixed sched-
ule implied by a1, . . . , ak, let Rk = r11, . . . , r

n
1 , r

1
2, . . . , r

n
2 , . . . , r

1
t , . . . , r

s
t and

W k = w1
1, . . . , w

m
1 , w

1
2, . . . , w

m
2 , . . . , w

1
p, . . . , w

q
p. Let ci (for all i) be the pro-

jection of ai on the inputs X. We define bprev(s,t) ∈ DY to be the value
assigned by Pa to the outputs at the end of the previous-to-most-recent ‘full
I\O cycle’:

bprev(s,t) = Pa((cr11 [1], . . . , crn1 [n]), (cr12 [1], . . . , crn2 [n]), . . . , (cr1g [1], . . . , crng [n]))

where if s = n then g = t − 1 and otherwise g = t − 2. We also define
blast(s,t) ∈ DY to be the value assigned by Pa to the outputs at the end of
the most recent ‘full I\O cycle’:

blast(s,t) = Pa((cr11 [1], . . . , crn1 [n]), (cr12 [1], . . . , crn2 [n]), . . . , (cr1f [1], . . . , crnf [n]))

where if s = n then f = t and otherwise f = t− 1. Note that in some cases
(when t is ‘too small’), bprev(s,t) = Pa(ε) or blast(s,t) = Pa(ε). The output
of Ps, Ps(a1, . . . , ak), should always be some combination of blast(s,t) and
bprev(s,t), based on the output variables of Y that were already updated in
the most recent ‘writing cycle’ as indicated by wqp. Hence, Ps(a1, . . . , ak) =
breal(s,t,q) where for all 0 < i ≤ m, if i > q then breal(s,t,q)[i] = bprev(s,t)[i],
and otherwise breal(s,t,q)[i] = blast(s,t)[i]. Note that as a result of this defi-
nition of Ps, as long as a1, . . . , ak contains no I\O points, Ps(a1, . . . , ak) =
Pa(ε). Particularly, for all a ∈ DX ×Dr, Ps(a) = Pa(ε).
We now show that all synchronous interactions of Ps satisfy Xn,m(X ∪
{r};Y), implying that Xn,m(X ∪ {r};Y) is synchronously realized by Ps.
Let σ = (a0, b0), (a1, b1), . . . be a synchronous interaction of Ps.
If σ, 0 6|= αn,m(r), then trivially σ, 0 |= Xn,m and we are done. Otherwise,
we observe that all computations σ′ that are X̃- variants of stuttering vari-
ants of σ, in which X and X̃ agree in all reading points, are asynchronous
interactions of Pa for the schedule implied by the values of r in σ′. Hence,
by correctness of Pa, for every such σ′ it holds that σ′, 0 |= ϕ(X̃;Y). It fol-
lows that σ, 0 |= (∀≈X̃).

∧n
i=1[read(i) =�(xi = x̃i)] → ϕ(X̃;Y) and, partic-

ularly, also that σ, 0 |= ϕ(X;Y). By construction, σ, 0 |=
∧m
i=1[¬writen(i) ∧

¬first] =�unchanged(yi) and we finally conclude (given that σ satisfies αn,m(r)

12

as well as all of the three conjuncts on the right-hand-side of Xn,m), that
σ, 0 |= Xn,m(X ∪ {r};Y). This concludes the proof.

In principle, this theorem provides a complete solution to the problem of
asynchronous synthesis (with multiple inputs and outputs). Implementing this
solution, however, requires to construct a deterministic automaton for Xn,m and
then solve complex parity games. In particular, when combining determinization
with the treatment of ∀≈ quantification, even relatively simple specifications may
lead to very complex deterministic automata and (as a result) games that are
complicated to solve.

Since the publication of the original Rosner reduction, several alternative
approaches to asynchronous synthesis have been suggested. Vardi suggests an
automata theoretic solution that shows how to embed the scheduling variable
directly in the tree automaton [25]. Schewe and Finkbeiner extend these ideas to
the case of branching time specifications [23]. Both approaches require the usage
of determinization and the solution of general parity games. Unlike the gener-
alized Rosner reduction they obfuscate the relation between the asynchronous
and synchronous synthesis problems. In particular, the simple cases identified
for asynchronous synthesis in the following sections rely on this relation between
the two types of synthesis. All three approaches do not offer a practical solution
to asynchronous synthesis as they have proven impossible to implement.

4 A More General Asynchronous Interaction Model

The reader may object to the model of asynchronous interaction as over sim-
plified. Here, we justify this model by showing that it is practically equivalent
(from a synthesis point of view) to a model that is more akin to software thread
implementation. Specifically, we introduce a model in which the environment
chooses the times the system can read or write and the system chooses whether
to read or write and which variable to access. We formally define this model
and show that the two asynchronous models are equivalent. We call our original
asynchronous interaction model round robin and this new model by demand.

For this section, without loss of generality, fix a ltl specification ϕ(X;Y),
where X = {x1, . . . , xn} and Y = {y1, . . . , ym}.

4.1 A General (Unrestricted) Model

A by-demand program Pb from X to Y is a function Pb : D∗ 7→ {1, . . . , n} ∪
(D× {n+ 1, . . . , n+m}). That is, for a given history of values read\written by
the program (and the program should know which variables it read\wrote) the
program decides on the next variable to read\write. In case that the decision
is to write in the next I\O point, the program also chooses the value to write.
We also assume that for 0 ≤ i < m and for every d1, . . . , dm−1 ∈ D, we have

13

Pb(d1, . . . , di) = (d, (n+ i+ 1)) for some d ∈ D. That is, the program starts by
writing all the output variables according to their order y1, y2, . . . , ym.

We define when an interaction matches a by-demand program. Recall that
an interaction over X and Y is σ = (a0, b0), (a1, b1), . . . ∈ (DX ×DY). An I\O-
sequence is C = c0, c1, . . . where 0 = c0 < c1 < c2, It identifies the points in
which the program reads or writes. For a sequence d1, . . . , dk ∈ D∗, we denote
by t(Pb(d1, . . . , dk)) the value j such that either Pb(d1, . . . , dk) ∈ {1, . . . , n} and
Pb(d1, . . . , dk) = j or Pb(d1, . . . , dk) ∈ D×{n+1, . . . , n+m} and Pb(d1, . . . , dk) =
(d, j). That is, t(Pb(d1, . . . , dk)) tells us which variable the program Pb is going
to access in the next I\O-point. Given an interaction σ, an I\O sequence C,
and an index i ≥ 0, we define the view of Pb, denoted v(Pb, σ, C, i), as follows.

v(Pb, σ, C, i) =


b0[1], . . . , b0[m] If i = 0
v(Pb, σ, C, i− 1), aci [t(Pb(v(Pb, σ, C, i− 1)))]

If i > 0 and t(Pb(v(Pb, σ, C, i− 1))) ≤ n
v(Pb, σ, C, i− 1), bci [t(Pb(v(Pb, σ, C, i− 1)))]

If i > 0 and t(Pb(v(Pb, σ, c, i− 1))) > n

That is, the view of the program is the part of the interaction that is observable
by the program. The view starts with the values of all outputs at time zero.
Then, the view at ci extends the view at ci−1 by adding the value of the variable
that the program decides to read\write based on its view at point ci−1.

The interaction σ is a by-demand asynchronous interaction of Pb for I\O
sequence C if the following three requirements hold:

(a) for every 1 ≤ j ≤ m we have Pb(b0[1], . . . , b0[j − 1]) = (b0[j], (n+ j)),
(b) for every i > 1 and every k > 0 such that ci ≤ k < ci+1, we have

– If t(Pb(v(Pb, σ, C, i − 1))) ≤ n, forall j ∈ {1, . . . ,m} we have bk[j] =
bk−1[j].

– If t(Pb(v(Pb, σ, C, i− 1))) > n, forall j 6= t(Pb(v(Pb, σ, C, i− 1))) we have
bk[j] = bk−1[j] and for j = t(Pb(v(Pb, σ, C, i−1))) we have Pb(v(Pb, σ, c, i−
1)) = (bk[j], j).

(c) and for every j ∈ {1, . . . ,m} and every 0 < k < c1, we have bk[j] = b0[j].

That is, the interaction matches a by-demand program if (a) the interaction
starts with the right values of all outputs (as the program starts by initializing
them), (b) the outputs do not change in the interaction unless at I\O points
where the program chooses to update a specific output (based on the program’s
view of the intermediate state of the interaction), and (c) the outputs do not
change before the first I\O point.

Definition 2 (by-demand realizability). A ltl specification ϕ(X;Y) is by-
demand asynchronously realizable if there exists a by-demand program Pa
such that all by-demand asynchronous interactions of Pa (for all I\O-sequences)
satisfy ϕ(X;Y).

Theorem 4. A ltl specification ϕ(X;Y) is asynchronously realizable iff it is
by-demand asynchronously realizable. Furthermore, given a program that asyn-
chronously realizes ϕ(X;Y), it can be converted in linear time to a program that
by-demand asynchronously realizes ϕ(X;Y), and vice versa.

14

Proof (Sketch): A round-robin program is trivially a by-demand program.
Showing that if a specification is by-demand realizable then it is also round-

robin realizable is more complicated. Given a by-demand program, a round-robin
program can simulate it by waiting until it has access to the variable required
by the by-demand program. This means that the round-robin program may idle
when it has the opportunity to write outputs and ignore inputs that it has the
option to read. However, the resulting interactions are still interactions of the
by-demand program and as such satisfy the specification.

Although the concept, as explained above, is simple, the proof is quite in-
volved as the structure of round-robin and by-demand programs is quite different.

Proof: We shall prove both directions:

⇐ Let ϕ(X;Y) be by-demand asynchronously realized by the by-demand asyn-
chronous program Pb : D∗ 7→ {1, . . . , n} ∪ (D × {n + 1, . . . , n + m}). We
define the asynchronous program Pa : (DX)∗ 7→ DY as shown below.
For all k ≥ 0, a1, . . . , ak ∈ (DX)k, we define Pa(a1, . . . , ak) inductively, as
follows. We also define inductively vk ∈ D+, which holds the k-th view of
Pb that is used to define Pa. Set Pa(ε) = b0, where for all 0 < i ≤ m
Pb(b0[1], . . . , b0[i−1]) = (b0[i], (n+ i)) (this uniquely defines b0 ∈ DY). Also,
let v0 = b0[1], . . . , b0[m]. For all k > 0, let tk = t(Pb(vk−1)). If tk ≤ n,
define Pa(a1, . . . , ak) = Pa(a1, . . . , ak−1) and let vk = vk−1, ak[tk]. If, on the
other hand, tk > n, then let Pb(vk−1) = (dk, tk) for some dk ∈ D and for
all 1 ≤ i ≤ m, if i = tk then define Pa(a1, . . . , ak)[i] = dk and otherwise
(i 6= tk) define Pa(a1, . . . , ak)[i] = Pa(a1, . . . , ak−1)[i]. Also, if tk > n then
let vk = vk−1, dk.
We now show that all asynchronous interactions of Pa, for all schedules,
satisfy ϕ(X;Y), implying that ϕ(X;Y) is asynchronously realized by Pa. Let
(R,W) be a schedule, and let σ = (a0, b0), (a1, b1), . . . be an asynchronous
interaction of Pa for this schedule. Denote R = r11, . . . , r

n
1 , r

1
2, . . . , r

n
2 , . . . and

W = w1
1, . . . , w

m
1 , w

1
2, . . . , w

m
2 ,

We note that σ is also a by-demand asynchronous interaction of Pb, where
the I\O points are restricted to either one reading point or one writing point
from r1i , . . . , r

n
i , w

1
i , . . . , w

m
i for every i. More formally, let C = c0, c1, . . . be

the I\O sequence that produces σ as a by-demand asynchronous interaction
of Pb. We set c0 = 0 and for all i > 0 let t(Pb(v(Pb, σ, C, i− 1))) = j, and if
j ≤ n then ci = rji and if j > n then ci = wji . Note that t(·) and v(·) above
are well defined as v(Pb, σ, C, i−1) requires only the elements of C up to the
i− 1-th element.
As σ satisfies ϕ(X;Y) (by correctness of Pb), we are done.

⇒ Let ϕ(X;Y) be asynchronously realized by the asynchronous program Pa :
(DX)∗ 7→ DY . We define the by-demand asynchronous program Pb : D∗ 7→
{1, . . . , n}∪(D×{n+1, . . . , n+m}) as shown below. Intuitively, Pb reads and
writes the appropriate variables in a cyclical order, mimicking the behavior
of Pa.

15

For a sequence τ = (a1, b1), . . . , (ak, bk) ∈ (DX × DY)∗ we define the un-
winding q(τ) as the sequence of individual values for individual variables
that appear in the sequence τ . We define concurrently Pa and the func-
tion q : (DX ∪ DY)∗ 7→ D+. Let Pa(ε) = b0. Then, for all 0 ≤ i < m
let di = b0[i] and define Pb(d1, . . . , di) = (di+1, (n + i + 1)). Also define
Pb(d1, . . . , dm) = 1. Define q(ε) = d1, . . . , dm. For all τ ∈ (DX ∪ DY)∗,
a ∈ DX and 0 < i ≤ n let a[i] = di and define q(τ, a) = q(τ), d1, . . . , dn.
In addition, for all τ ∈ (DX ∪ DY)∗, a ∈ DX , b ∈ DY and 0 < i ≤ m let
b[i] = di and define q(τ, a, b) = q(τ, a), d1, . . . , dm. In general, consider k > 0
and let Pa(a1, . . . , ak) = bk, where for all 0 < i ≤ n we have ak[i] = di and
for all n < i ≤ n+m we have bk[i−n] = di. Then, for every 0 < i < n we set

Pb(q
(

(a1, b1), . . . , (ak−1, bk−1)
)
, d1, . . . , di) = i+ 1, for every n ≤ i < n+m

we set Pb(q
(

(a1, b1), . . . , (ak−1, bk−1)
)
, d1, . . . , di) = (di+1, (i + 1)), and we

finally set Pb(q
(

(a1, b1), . . . , (ak−1, bk−1)
)
, d1, . . . , dn+m) = 1.

We now show that all by-demand asynchronous interactions of Pb, for all
I\O-sequences, satisfy ϕ(X;Y), implying that ϕ(X;Y) is by-demand asyn-
chronously realized by Pb. Let C be an I\O sequences, and let σ = (a0, b0), (a1, b1), . . .
be a by-demand asynchronous interaction of Pb for this I\O sequences. De-
note C = c0, c1, c2, . . ., where c0 = 0.
We define a schedule (R,W), where R = r11, . . . , r

n
1 , r

1
2, . . . , r

n
2 , . . . and W =

w1
1, . . . , w

m
1 , w

1
2, . . . , w

m
2 , . . ., as follows. For all i > 0, consider the unique j

and 0 < k ≤ n+m such that ci = cj·(n+m)+k. If k ≤ n then define rkj+1, and

otherwise (if n < k) define wk−nj+1 . This defines (R,W) completely. We note
that σ is also an asynchronous interaction of Pa for (R,W).
As σ satisfies ϕ(X;Y) (by correctness of Pa), we are done.

4.2 A Modified Generalized Rosner Reduction

Although by-demand asynchronous synthesis can be reduced to round-robin
asynchronous synthesis, we believe that techniques for handling by-demand syn-
thesis directly will be more efficient in practice. Hence, inspired by the Rosner
reduction from Subsection 2.4, we propose a family of translations (one transla-
tion for each pair (n,m)) called the by-demand generalized Rosner reduction. We
translate a specification ϕ(X;Y) into a QPTL specification Yn,m(X ∪ {c};Y ∪
{h}) that has an additional Boolean input variable c and an additional output
variable h that ranges over {1, . . . , (n + m)}. The new variable c is called the
Boolean I\O variable, and h is called the I\O-selector variable.

The role of c is similar to the role of r in the previous reduction. A change
in the value of c indicates an I\O-point. The value of h indicates the choice of
which variable to read\write. Values 1, . . . , n indicate reading and values (n +
1), . . . , (n+m) indicate writing. We set a new value for h right after a read\write.
Thus, the system immediately commits to the next variable it is going to access.

16

As h is treated like all other outputs, the system cannot change its value when
c does not change. This corresponds to no new information being gained by the
system as long as c does not change.

In this section, we reuse the notations unchanged(x) to indicate a state where
variable x did not change its value, and first to indicate a state that is the first
one in the computation.

The kernel formula Yn,m(X ∪ {c};Y ∪ {h} is defined as follows.

Yn,m(X ∪ {c};Y ∪ {h}) = γ(c)→ δn,m(X ∪ {c};Y ∪ {h}),

where
γ(c) = c̄ ∧01 c ∧01 c̄

and δn,m(X ∪ {c};Y ∪ {h}) is given by

[(c↔� c) ∧ ¬first] =�unchanged(h) ∧
ϕ(X;Y) ∧
m∧
i=1

{[[
(c↔� c) ∨�[h 6= (i+ n)]

]
∧ ¬first

]
=�unchanged(yi)

}
∧

(∀≈X̃).

n∧
i=1

[[
¬(c↔� c) ∧�(h = i)

]
=�(xi = x̃i)

]
→ ϕ(X̃;Y)


.

The initial value of the I\O-selector variable h is selected nondeterministically.
Similar to the role of the scheduling variable in Xn,m, the variables c and h

in Yn,m make explicit the decisions of the environment when to have an I\O
point for the system (c), and which variable to read\write (h).

Theorem 5. Let ϕ(X;Y) be a ltl specification where |X| = n and |Y | = m,
and let its kernel formulae be Yn,m(X ∪ {c};Y ∪ {h}) and Xn,m(X ∪ {r};Y),
derived by the by-demand generalized Rosner reduction, and by the generalized
Rosner reduction, respectively.

The specification Yn,m(X ∪ {c};Y ∪ {h}) is synchronously realizable iff the
specification Xn,m(X ∪{r};Y) is synchronously realizable. Furthermore, given a
program PY that synchronously realizes Yn,m, it can be converted to a program
PX that synchronously realizes Xn,m in time linear in the number of transitions
of the LTS that induces PX , and vice versa.

Proof: We shall prove both directions:

⇐ Having that Xn,m(X ∪{r};Y) is synchronously realizable, means that there
exists a program PX that synchronously realizes it. We describe the construc-
tion of another program, PY , that synchronously realizes Yn,m(X ∪{c};Y ∪
{h}), effectively proving that it is synchronously realizable.
To do this, we need to provide a function that corresponds to PY , and that
generates assignments to Y ∪ {h}, given finite histories of assignments to
X ∪ {c}. We then need to prove that all synchronous interaction of this
program which we construct, satisfy Yn,m.

17

Let σX,c = σ0, σ1, . . . , σk be a finite history of assignments to X ∪ {c} for
k ≥ 0, such that for 0 ≤ i ≤ k, σi = (Xi, ci) where Xi is an assignment to
X and ci is an assignment to c. We construct the sequence of assignments
to r, ηr = r0, r1, . . . , rk, in the following way: r0 = n + m. For k ≥ i > 0, if
ci ↔� ci−1 then ri = ri−1, otherwise ri = ri−1⊕n+m.
Let an assignment to Y ∪ {h} be a pair (Yi, hi) where Yi is an assignment
to Y and hi is an assignment to h. Similarly, an assignment to X ∪ {r} is a
pair (Xi, ri) where Xi is an assignment to X and ri is an assignment to r.
We define

PY(σX,c) =

(
PX

(
(X0, r0), (X1, r1), . . . , (Xk, rk)

)
︸ ︷︷ ︸

Yk

, rk⊕n+m︸ ︷︷ ︸
hk

)

where Yk is an assignment to Y and hk is an assignment to h.
It is not difficult to see why any computations that would be based on
a synchronous interaction with PY would satisfy Yn,m. If in a particular
computation µX,c the I\O variable c does not change its value infinitely
often, then Yn,m is trivially satisfied. Otherwise, by the way we construct
µr (a computation for {r}), µr, 0 |= αn,m(r), and we know that µX,r,Y
(using the Y values that we output from PX) satisfies all three conjuncts of
βn,m(X ∪{r};Y). The first one, ϕ(X;Y), appears also in Yn,m. The second
one turns out to be essentially identical to the third conjunct in δn,m, since
h is identical to r at all I\O points, and since c and r change their values
always together. The last conjuncts in both βn,m and δn,m are essentially
identical for the same reasons. The remaining conjunct in δn,m, the first one,
is also satisfied by h starting with the value r0⊕n+m = (n + m)⊕n+m = 1,
and by [(c↔� c)∧¬first] =�unchanged(h) holding due to the fact that we
change r iff c changes, and we change h iff r changes.

⇒ In this direction we know that there exists a program PY that synchronously
realizes Yn,m(X ∪ {c};Y ∪ {h}), and we construct a program PX that syn-
chronously realizes Xn,m(X ∪ {r};Y). We use similar notations of assign-
ments and histories as in the other direction.
Let σkX,r = σ0, σ1, . . . , σk be a prefix for k ≥ 0 of a computation over
the variables in X ∪ {r} (we freely use similar notations for other sets of
variables). If r0 6= (n + m), or if there exists some index i > 0 such that
(ri 6= ri−1) ∧ [ri 6= (ri−1⊕n+m)] holds, then for all j ≥ i (for all j ≥ 0 if
r0 6= (n+m)) we define Yj = Yrand for some arbitrary Yrand ∈ DY . From this
point onwards in the construction we assume that this is not the case, and
that r updates as indicated by αn,m(r). We construct the prefixes σkc,Y,h, for
all k, inductively (using the initial value of h, h0, which is deterministically
selected by PY):
• Let i1 be the minimal index such that ri1 changes its value to h0 (so

that ri1 = h0). We know that there exists i1 > 0 since we assume that r
changes cyclically infinitely often. Let σi1c = c0, . . . , ci1 , where c0 holds,
and for 0 < j < i1 cj holds. ci1 holds as well (ci1 = t). For 0 ≤ j ≤ i1
PY((X0, c0), . . . , (Xj , cj)) = (Yj , hj).

18

• Let it be the minimal index that is greater than it−1 such that rit changes
its value to hit−1

(so that rit = hit−1
). We know that there exists

such it. Let σitc = σ
it−1
c , cit−1+1, . . . , cit , where for it−1 + 1 ≤ j < it

cj ↔ cit−1
holds. ¬(cit ↔ cit−1

) holds as well. For it−1 < j ≤ it
PY((X0, c0), . . . , (Xj , cj)) = (Yj , hj).

Using the construction and definitions described above, we define

PX (σkX,r) = Yk

where Yk is an assignment to Y .
It is not difficult to see why any computations that would be based on a
synchronous interaction with PX would satisfy Xn,m. If in a particular com-
putation µX,r µr, 0 6|= αn,m(r) then Xn,m is trivially satisfied with Yrand.
Otherwise, we can definitely construct σkc for all k (since r changes cyclically
infinitely often, and therefore admits all of its domain values infinitely of-
ten). Since in each iteration of σkc construction we have exactly one change
of c value, then µc, 0 |= γ(c). Since we constructed µY,h using PY , we get
that µX,c,Y,h satisfies all four conjuncts of δn,m(X ∪ {c};Y ∪ {h}). The sec-
ond one, ϕ(X;Y), appears also in Xn,m. Noticing that the set of states in
µX,c,r,Y,h that satisfy (c↔� c)∨�[h 6= (i+n)] is a super-set of the states
that satisfy ¬writen(i) (for all i ∈ {1, . . . ,m}), we get that the satisfac-
tion of the third conjunct in δn,m guarantees the satisfaction of the second
conjunct in βn,m. Finally, since the set of states in µX,c,r,Y,h that satisfy
¬(c↔� c)∧�(h = i) is a sub-set of the states that satisfy read(i) (again,
for all i ∈ {1, . . . ,m}), we get that the satisfaction of the last conjunct in
δn,m guarantees the satisfaction of the last conjunct in βn,m (since there
are fewer reading points in Yn,m, then ϕ(X̃;Y) must hold for a large set
of computations X̃, including all of those that are ‘allowed’ by the clause
ϕ(X̃;Y) in Xn,m).

Theorem 6. Given a specification ϕ(X;Y) (|X| = n, and |Y | = m), the fol-
lowing conditions are equivalent:

1. ϕ(X;Y) is by-demand asynchronously realizable.
2. ϕ(X;Y) is asynchronously realizable.
3. The kernel formula Yn,m(X ∪ {c};Y ∪ {h}), which is derived from ϕ(X;Y)

using the by-demand generalized Rosner reduction, is synchronously realiz-
able.

4. The kernel formula Xn,m(X ∪ {r};Y), which is derived from ϕ(X;Y) using
the generalized Rosner reduction, is synchronously realizable.

Furthermore, given a program P that realizes one of these specifications, it can
be converted to a program that realizes any of the other in time linear in the
number of transitions of the LTS/ILTS that induces P .

Proof: This is a direct result of Theorem 3, Theorem 4, and Theorem 5.

19

Theorem 6 finally confirms that both Yn,m and Xn,m may be freely used to
test for any type of asynchronous realizability of ϕ(X;Y), as well as for synthesis.
From this point onward we consider only round-robin asynchronous realizability
and the reduction from ϕ(X;Y) to Xn,m.

5 Proving Unrealizability of a Specification

In this section we show how an over-approximation of Xn,m can effectively prove
that a given specification is asynchronously unrealizable.

5.1 Over-Approximating the Kernel Formula

Fix an ltl specification ϕ(X;Y) = Imp(ϕe, ϕs). Let X = {x1, . . . , xn}, Y =
{y1, . . . , ym}, and let r be a scheduling variable ranging over {1, . . . , (n + m)}.
Let X̃ = {x̃|x ∈ X}. We assume that r /∈ X ∪ Y and that X̃ ∩ (X ∪ Y) = ∅.

In this section, we reuse the notations writen(i) to indicate a state that is
a writing point for the i’th output, read(i) to indicate a state that is a reading
point for the i’th input, unchanged(x) to indicate a state where variable x did
not change its value, and first to indicate a state that is the first one in the
computation.

As explained in Section 3, the generalized Rosner reduction, although offering
a complete solution to the asynchronous synthesis problem, is often prohibitively
costly to use due to the universal quantification in the clause βn,m3 . If we wish
to use ‘effective’ algorithms for synthesis based on this reduction, we must find
a way to avoid the size increase caused by βn,m3 .

Recall the generalized Rosner reduction formula Xn,m(X ∪{r};Y). As noted
in Subsection 2.4, the first conjunct in βn,m – ϕ(X;Y) – is a redundant one
that was left in the Rosner reduction and in its generalizations only for clarity
purposes (this conjunct follows from βn,m3). Therefore, in this section we allow
ourselves to remove ϕ(X;Y) from βn,m, leaving us with

X̃n,m(X ∪ {r};Y) = αn,m(r)→ β̃n,m(X ∪ {r};Y)

where β̃n,m(X ∪ {r};Y) is given by
m∧
i=1

[
[¬writen(i) ∧ ¬first] =�unchanged(yi)

]
∧

(∀≈X̃).
[n∧
i=1

[read(i) =�(xi = x̃i)]
]
→ ϕ(X̃;Y)

 .

We know that X̃n,m ↔ Xn,m, and we may use them interchangeably. We still
use βn,m3 as a name for the last conjunct of βn,m and of β̃n,m

With this in mind, we define an over-approximating formula for Xn,m:

Xn,m
↓

(X ∪ X̃ ∪ {r};Y) = αn,m(r)→ βn,m
↓

(X ∪ X̃ ∪ {r};Y)

20

where βn,m
↓

(X ∪ X̃ ∪ {r};Y) is given by


m∧
i=1

[
[¬writen(i) ∧ ¬first] =�unchanged(yi)

]
∧[n∧

i=1

[read(i) =�(xi = x̃i)]
]
→ ϕ(X̃;Y)

 .

Note that Xn,m
↓

is almost identical to X̃n,m, except that the second clause in

βn,m
↓

has no quantification (over X̃), eliminating the source of trouble in βn,m3 . In

effect, this amounts to adding X̃ to the set of input variables. In fact, if ϕ(X;Y)
has a GR(1) winning condition, then it could be easily shown by propositional
arguments2 that Xn,m

↓
has a GR(1) winning condition as well. The idea is now

to use Xn,m
↓

to deduce unrealizability of Xn,m. As Xn,m
↓

does not include quan-

tification, we could use the effective algorithm of [16] on Xn,m
↓

.

The main observation relating Xn,m to Xn,m
↓

is the following theorem:

Theorem 7. For a specification ϕ(X;Y) where |X| = n and |Y | = m, and
for a scheduling variable r ranging over {1, . . . , (n + m)}, the following holds:
If Xn,m(X ∪ {r};Y) is synchronously realizable, then Xn,m

↓
(X ∪ X̃ ∪ {r};Y) is

synchronously realizable.

Proof: Let Ps be a program that synchronously realizes Xn,m(X∪{r};Y). We
shall prove that Ps also synchronously realizes Xn,m

↓
(X ∪ X̃ ∪ {r};Y).

Let σ be a computation that is induced by Xn,m, so that σ, 0 |= Xn,m. We
would like to show that σ, 0 |= Xn,m

↓
.

If σ, 0 6|= αn,m, then, trivially, σ, 0 |= Xn,m
↓

. Otherwise, we know that σ

satisfies also the first conjunct in β̃n,m which appears in βn,m
↓

. To prove that

σ, 0 |= Xn,m
↓

, we are left with proving that σ satisfies the last (second) conjunct

in βn,m
↓

.

We also know, however, that σ satisfies the last conjunct in βn,m: σ, 0 |=
(∀≈X̃).

∧n
i=1[read(i) =�(xi = x̃i)] → ϕ(X̃;Y). Since this means that the impli-

cation that appears in this conjunct would be satisfied by any X̃-variant σ′′ of
any stuttering variant σ′ of σ, we only weaken this statement by writing that
σ, 0 |=

∧n
i=1[read(i) =�(xi = x̃i)] → ϕ(X̃;Y). Since this is a weakening transi-

tion (claiming satisfiability by σ only), it is correct. This is, however, exactly the
last conjunct in βn,m

↓
, and the proof is complete.

An important result of Theorem 7 is the following:

2 Roughly speaking, all elements of Xn,m↓ could be ‘absorbed’ into ϕ(X̃;Y) without

increasing the formula’s complexity in terms of the temporal hierarchy.

21

Theorem 8. For a specification ϕ(X;Y) where |X| = n and |Y | = m, and
for a scheduling variable r ranging over {1, . . . , (n + m)}, the following holds:
If Xn,m

↓
(X ∪ X̃ ∪ {r};Y) is synchronously unrealizable, then ϕ(X;Y) is asyn-

chronously unrealizable.

Proof: This is a direct result of Theorem 1, Theorem 3 and Theorem 7.

Theorem 8 provides us with the framework for an effective way to test
whether specifications with GR(1) winning conditions are asynchronously un-
realizable, as desired. This is what justifies referring to Xn,m

↓
(X ∪ X̃ ∪ {r};Y)

as an over-approximation (equivalently, weakening) of Xn,m(X ∪ {r};Y). In-
deed, the effective algorithm of [16] could be used with Xn,m

↓
to test whether

its underlying specification ϕ(X;Y) is asynchronously unrealizable. The time
complexity of using this algorithm (for specifications with GR(1) winning con-
ditions) is O(N3 · m · n), where N is the state space of the specification, and
m and n are the number of liveness conjuncts of the environment and system’s
specifications, respectively.

Caveat: We refer the reader to [11], which exposes a flaw in [16]. In general,
the algorithm in [16] may declare a specification synchronously unrealizable,
while they are in fact realizable. The work in [11] shows how to bypass this
problem.

Note that while the methods proposed in this section are sound, they are not
complete, in the sense that a specification ϕ(X;Y) may be asynchronously unre-
alizable but the derived synchronous approximation Xn,m

↓
may be synchronously

realizable.

5.2 Applying the Unrealizability Test

In this subsection we illustrate the application of the effective unrealizability test
based on Theorem 8.

We start with the ‘copy’ specification ϕ1(x; y) :0(x ↔ y) which we consid-
ered in the introduction (both x and y are Booleans, and for clarity, we omit the
initial condition - x ∧ y). We claimed that this specification is asynchronously
unrealizable but stated this fact with no proof. Now, we have an adequate tool
for proving that this specification is indeed asynchronously unrealizable. Deriv-
ing the kernel formula X 1,1

↓
(x, x̃, r; y) for ϕ1(x; y), we obtain the specification

X↓〈ϕ1〉 = α1,1(r)→ β
↓
〈ϕ1〉, where β

↓
〈ϕ1〉(x, x̃, r; y) is given by(

(((r 6= 2) ∨�(r 6= 1)) ∧ ¬first) =�unchanged(y) ∧
(((r = 1) ∧�(r 6= 1)) =�(x↔ x̃))→ 0(x̃↔ y)

)
.

We proceed to show that there can be no synchronous program that satisfies
(by controlling y) X↓〈ϕ1〉(x, x̃, r; y) for all choices of x, x̃, and r. Assume the

opposite, and consider a computation σ = a0, a1, . . ., such that x holds at all
states, and x̃ and r = 2 hold at a state aj iff j is odd. It follows that all even

22

indexed states are reading points, and x = x̃ at all of these states. Consequently,
and since σ, 0 |= α1,1(r), we should have σ, 0 |= 0(y ↔ x) and σ, 0 |= 0(x̃↔ y).
However, this implies that x↔ x̃ should hold at all states, which is false because
x and x̃ differ at all odd-indexed states.

We conclude that the specification ϕ1(x; y) :0(x ↔ y) is asynchronously
unrealizable. Indeed, when checking synchronous realizability of the kernel for-
mula X 1,1

↓
(x, x̃, r; y) for ϕ1(x; y) using the algorithm of [16], we get that it is

unrealizable.
Assume that we are not ready to give up and would like to develop an

asynchronous system that captures some of the essential behavior of a copying
module. An informal description of such a behavior can include the following
requirements:

1. Whenever x rises to 1, then sometimes later y should rise to 1.
2. Whenever x drops to 0, then sometimes later y should drop to 0.
3. Variable y should not rise to 1, unless sometimes before x was 1.
4. Variable y should not drop to 0, unless sometimes before x was 0.

A temporal formula that captures these four requirements may be given by the
following specification:

ϕ2(x; y) :

(x=�1 y) ∧ (x=�1 y)∧
(y=�y S y S x) ∧2(y=�y B y S x)


As before, both x and y are Booleans, and for clarity, we omit the initial condition
- x∧ y. The past formula y=�y S y S x states that if currently y holds then this
state was preceded by an interval in which y continuously held, preceded by an
interval in which y continuously held, preceded by a state at which x held. The
formula 2(y=�y B y S x) states that, starting at the second state, if currently
y holds, then this state is preceded by an interval in which y continuously held,
and which either extends to the beginning of the computation or is preceded by
an interval in which y continuously held and which is preceded by a state at
which x held.

We will now apply the unrealizability test to check whether ϕ2(x; y) is also
asynchronously unrealizable. In order to conclude that this is the case, we have
to find a computation σ = a0, a1, . . . in which x and x̃ agree infinitely often
(on reading points), and where, regardless of y values, one of the following must
hold: σ, 0 6|= ϕ2(x; y) or σ, 0 6|= ϕ2(x̃; y). Assume that x holds at all states, and
let x̃ hold at state aj iff j is odd. Thus, we can take all even-indexed states
to be the reading points, and x = x̃ at all of these states. σ, 0 |= ϕ2(x; y)
implies that y holds at all states. This is since any occurrence of y at some
state implies, by y=�y S y S x, that x holds at some earlier state, which never
is the case. However, in this case, the fact that x̃ holds at state a1 entails that
σ, 0 6|= ϕ2(x̃; y) because it violates the requirement x̃=�1 y, which is part of
ϕ2(x̃; y). We conclude that ϕ2(x; y) is also asynchronously unrealizable. Again,
when checking synchronous realizability of the kernel formula X 1,1

↓
(x, x̃, r; y) for

ϕ2(x; y) using the algorithm of [16], we get that it is unrealizable.

23

How can we weaken ϕ2(x; y) into a specification that stands a better chance
of being asynchronously realizable? Obviously, the weakness of the specification
ϕ2(x; y) is that it allows the environment to modify x too quickly without waiting
for an evidence that the system has noticed the most recent change. We can
correct this drawback by allowing the environment to modify x only at points in
which x↔ y (that is, after the system had enough time to respond to a change
of x). For example, we can suggest the following ‘response’ specification:

ϕ3(x; y) :[¬(x↔ y) =�(x↔2x)]→


x=�1 y ∧
x=�1 y ∧
y=�y S y S x ∧
2(y=�y B y S x)


As before, both x and y are Booleans, and for clarity, we omit the initial condition
x∧y. Applying the unrealizability test to ϕ3(x; y), we find that its corresponding
kernel formula X 1,1

↓
(x, x̃, r; y) is synchronously realizable. However, we cannot

infer any conclusions from this, since Theorem 8 offers only conclusions in the
unrealizable case. In the next section, we consider methods that can lead to
effective realizability and apply them to the specification ϕ3(x; y).

6 Proving Realizability of a Specification, and Synthesis

As mentioned, the formula Xn,m does not lead to a practical solution for asyn-
chronous synthesis. Here we show that in some cases a simpler synchronous re-
alizability test can still imply the realizability of an asynchronous specification.
We show that when a certain strengthening can be found and certain condi-
tions hold with respect to the specification we can apply a simpler realizability
test maintaining the structure of the specification. In particular, this simpler
realizability test does not require stuttering quantification. When the original
formula’s winning condition is a GR(1) formula, the synthesis algorithm in [16]
can be applied, bypassing much of the complexity involved in synthesis3.

We fix a specification ϕ(X;Y) = Imp(ϕe, ϕs) with a GR(1) winning condi-
tion, where X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and ϕe = 〈Iϕe , Sϕe , Lϕe〉. Let

r be a scheduling variable ranging over {1, . . . , (n+m)} and let X̃ = {x̃|x ∈ X}.
We define the set of declared output variables Ỹ = {ỹ|y ∈ Y }. We assume that
r /∈ X, X̃ ∩ Y = ∅, and that Ỹ ∩ X = ∅. We re-use the notations writen(i),
read(i), unchanged(x), and first .

We start with a definition of a strengthening, which is a formula of the type
ψ(X, r;Y). Intuitively, the strengthening refers explicitly to a scheduling variable
r and should imply the truth of the original specification and ignore the input
except in reading points so that the stuttering quantification can be removed.

Definition 3 (asynchronous strengthening). A specification ψ(X, r;Y) =
Imp(ψe, ψs) with a GR(1) winning condition, where ψe = 〈Iψe

, Sψe
, Lψe

〉, is an

3 As before, this algorithm should be ‘corrected’ as described in [11]

24

asynchronous strengthening of ϕ(X;Y) if Iψe
= Iϕe

, Sψe
= Sϕe

, and the
following implication is valid:

αn,m(r) ∧
Iψe
∧0 Sψe

∧
ψ(X, r;Y) ∧
n∧
i=1

[read(i) =�(xi = x̃i)] ∧
m∧
i=1

[
[¬writen(i) ∧ ¬first] =�unchanged(yi)

]


→ ϕ(X̃;Y).

Checking the implication in this definition requires to check identity of propo-
sitional formulae and validity of a ltl formulae, which is supported, e.g., by jtlv
[20].

The formula needs to satisfy two more conditions, which are needed to show
that the simpler synchronous realizability test (introduced below) is sufficient.
Stuttering robustness is very natural for asynchronous specifications as we expect
the system to be completely unaware of the passage of time. Memory-lessness
requires that the system knows the entire ‘state’ of the environment.

Definition 4 (stuttering robustness). A ltl specification ξ(X;Y) is stut-
teringly robust if for all computations σ and σ′ such that σ′ is a stuttering
variant of σ, σ, 0 |= ξ iff σ′, 0 |= ξ.

We can test stuttering robustness by converting a specification to a nondeter-
ministic Büchi automaton [26], adding to it transitions that capture all stuttering
options [19], and then checking that it does not intersect the automaton for the
negation of the specification. In our case, when handling formulae with GR(1)
winning conditions, in many cases, all parts of the specifications are relatively
simple and stuttering robustness can be easily checked.

Definition 5 (memory-lessness). A ltl specification ξ is memory-less if
for all computations C = c0, c1, . . . and C ′ = c′0, c

′
1, . . . such that C, 0 |= ξ

and C ′, 0 |= ξ, if for some i and j we have ci = c′j, then the computation
c0, c1, . . . , ci, c

′
j+1, c

′
j+2, . . . also satisfies ξ.

Specifications of the form ϕe = 〈Ie, Se, Le〉 are always memory-less. The
syntactic structure of Se forces a relation between possible current and next
states that does not depend on the past. Furthermore Le is a conjunction of
properties of the form 01 p, where p is a Boolean formula. If the specification
includes past temporal operators, these are embedded into the variables of the
environment (c.f. [21]), and must be accessible by the system as well.

In the general case, memory-lessness of a specification ϕ(X;Y) can be checked
as follows. We convert both ξ and ¬ξ to nondeterministic Büchi automata N+

and N−. Then, we create a nondeterministic Büchi automaton A that runs two
copies of N+ and one copy of N− simultaneously. The two copies of N+ ‘guess’
two computations that satisfy ϕ(X;Y) and the copy of N− checks that the two

25

computations can be combined in a way that does not satisfy ϕ(X;Y). Thus,
the language of A would be empty iff ϕ(X;Y) is not memory-less.

Note that if ϕ(X;Y) has a memory-less environment then every asynchronous
strengthening of it has a memory-less environment. This follows from the two
sharing the initial and safety parts of the specification.

The following kernel formula under-approximates the original:

Xn,mψ (X ∪ {r};Y ∪ Ỹ) = αn,m(r)→ βn,mψ (X ∪ {r};Y ∪ Ỹ)

where βn,mψ (X ∪ {r};Y ∪ Ỹ) is given by
declaren,m({r};Y ∪ Ỹ) ∧
ψ(X ∪ {r};Y) ∧
m∧
i=1

[
[¬writen(i) ∧ ¬first] =�unchanged(yi)

]


and where declaren,m({r};Y ∪ Ỹ) is given by
m∧
i=1

[writen(i) =�(yi = ỹi)] ∧[[
(r =� r) ∨

m∨
i=1

[r = (n+ i)]

]
=�
[m∧
i=1

(ỹi =� ỹi)

]]
 .

The formula declaren,m ensures that the declared outputs are updated only at
reading points. Indeed, for every i, ỹi is allowed to change only when r changes to
a value in {1, . . . , n}. Furthermore, the outputs themselves copy the value of the
declared outputs (and only when they are allowed to change). Thus, the system
‘ignores’ inputs that are not at reading points in its next update of outputs.

We note that restricting to one input is similar to allowing the system to
read multiple inputs simultaneously.

In the case that ϕ has a GR(1) winning condition then so does X 1,m
ψ . It

follows that in such cases we can use the algorithm of [16] to check whether Xψ
is synchronously realizable and to extract a program that realizes it. We show
how to convert a LTS realizing Xψ to an ILTS realizing ϕ.

For a LTS Ts = 〈Ss, Is, Rs, {x, r}, Y, Ls〉, state stes ∈ Ss is an eventual suc-
cessor of state st ∈ Ss if there exists m ≤ |Ss| and states {s1, . . . , sm} ⊆ Ss such
that the following hold: s1 = st and sn = stes; For all 0 < i < m, (si; si+1) ∈ Rs;
For all 0 < i < m, if L(s1)|{r} = r1 then L(si)|{r} = r1, but L(sm)|{r} 6= r1. If
L(sm)|{r} = 1 we also call stes an eventual read successor, otherwise an eventual
write successor. Note that the way the scheduling variable r updates its values
is uniform across all eventual successors of a given state.

Given a LTS Ts = 〈Ss, Is, Rs, {x, r}, Y, Ls〉 such that Y = {y1, . . . , ym} the
algorithm in Fig. 1 extracts from it an ILTS Ta = 〈Sa, Ia, Ra, {x}, Y, La, ia〉.
In the first part of the algorithm that follows its initialization, between lines 5
and 15, all reading states reachable from Is are found, and used to build Ia (as
part of Sa). In the second part, between lines 16 and 43, the (m+1)-th eventual
successors of each reading state are added to Sa. This second part ensures that
all writing states are ‘skipped’ so that Ra transitions include only transitions
between consecutive reading states.

26

Input: LTS Ts = 〈Ss, Is, Rs, {x, r}, Y, Ls〉 such that |Y | = m, and an initial outputs assignment Yinit.
Output: The elements ia, Ia, La, Sa and Ra of the extracted ILTS Ta = 〈Sa, Ia, Ra, {x}, Y, La, ia〉.
1: ia ← Yinit
2: Ia ← ∅, Sa ← ∅, Ra ← ∅
3: ST ← [EmptyStack] . a new states stack (for reachable unexplored ‘read’ states)
4: touched← ∅ . a new states set (for states that were pushed to ST)
5: for all ini ∈ Is do . find all reachable initial ‘read’ states
6: for all succ ∈ Ss s.t. succ is an eventual (read) successor of ini do
7: if succ 6∈ touched then . add a new state to Ia and Sa
8: push succ to ST
9: touched← touched ∪ {succ}

10: Ia ← Ia ∪ {succ}
11: Sa ← Sa ∪ {succ}
12: La(succ)|{x} ← Ls(succ)|{x}, La(succ)|Y ← Ls(succ)|Ỹ
13: end if
14: end for
15: end for
16: while ST 6= [EmptyStack] do . explore all reachable ‘read’ states
17: st← pop ST
18: gen← {st}
19: for i = 1, . . . ,m do . find all m-th (last ‘write’) eventual successors of st
20: nextgen← ∅ . a new states set
21: for all stgen ∈ gen do . find all i-th eventual successors of st
22: for all succ ∈ Ss s.t. succ is an eventual (write) successor of stgen do
23: nextgen← nextgen ∪ {succ}
24: end for
25: end for
26: gen← nextgen
27: end for
28: nextgen← ∅ . a new states set
29: for all stgen ∈ gen do . find all ’eventual read successors’ of st
30: for all succ ∈ Ss s.t. succ is an eventual (read) successor of stgen do
31: nextgen← nextgen ∪ {succ}
32: end for
33: end for
34: for all stng ∈ nextgen do
35: if stng 6∈ touched then . add a new state to Sa
36: push stng to ST
37: touched← touched ∪ {stng}
38: Sa ← Sa ∪ {stng}
39: La(stng)|{x} ← Ls(stng)|{x}, La(stng)|Y ← Ls(stng)|Ỹ
40: end if
41: Ra ← Ra ∪ {(st, stng)} . add a new transition to Ra
42: end for
43: end while
44: return ia, Ia, La, Sa, Ra

Fig. 1. Algorithm for extracting Ta from Ts

27

In addition, we add to Sa new ‘sink’ states. For every d ∈ D, we add sinkd
such that La(sinkd)|Y is arbitrary and La(sinkd)|{x} = d. For all d1, d2 ∈ D,
Ra(sinkd1 , sinkd2). We then add transitions to these sink states whenever for
some input no transition is defined in Sa, ensuring that Sa is receptive. Formally,
for every d ∈ D, if there exists no s ∈ Ia such that La(s)|{x} = d, we add sinkd to
Ia. For all s ∈ Sa and d ∈ D, if there exists no s′ ∈ Sa such that La(s′)|{x} = d
and Ra(s, s′), then we add Ra(s, sinkd). These additional states guarantee that
Ta is receptive. In the case that Ts was receptive – as it should always be – all of
these additions should be already taken care of simply by following the extraction
algorithm. We describe them here only for the purpose of expressing that the
extracted ILTS handles inputs that violate the environment’s initial condition
or safety component by continuing to a computation that would remain in sink
states.

Constructively, the claim behind the following theorem is that, in some well-
defined cased, the ILTS Ts that is extracted from the LTS Ta produces induced
programs that asynchronously realize ϕ(x;Y), as intended.

Theorem 9. Let ϕ(x;Y) = Imp(ϕe, ϕs), where ϕe = 〈Iϕe
, Sϕe

, Lϕe
〉, be a stut-

teringly robust specification with a GR(1) winning condition and with a memory-
less environment, where |Y | = {y1, . . . , ym} and where there is exactly one input
- x. Let r be a scheduling variable ranging over {1, . . . , (1 + m)}, and let Ỹ be
declared outputs variables.

If ψ(x, r;Y) is a stutteringly robust asynchronous strengthening of ϕ(x;Y)
such that X 1,m

ψ (x, r;Y ∪ Ỹ) is synchronously realizable and where Ts is the (non-
deterministic) LTS synthesized for it by the algorithm in [16], then the ILTS
Ta, that is extracted from Ts, induces (after determinization) a program that
asynchronously realizes ϕ(x;Y).

Proof (Sketch): The algorithm takes a program Ts that realizes ψ and con-
verts it to a program Ta. The program Ta ‘jumps’ from reading point to reading
point in Ts. By using the declared outputs in Ỹ the asynchronous program does
not have to commit on which reading point in Ts it moves to until the next input
is actually read. By ψ being a strengthening of ϕ we get that the computation
on Ts satisfies ϕ. Then, we use the stuttering robustness to make sure that the
time that passes between reading points is not important for the satisfaction
of ϕ. Memoryless-ness and single input are used to justify that prefixes of the
computation on Ts can be extended with suffixes of other computations. Essen-
tially, allowing us to ‘copy-and-paste’ segments of computations of Ts in order
to construct one computation of Ta.

Proof: In this proof we refer to the diagram from Fig. 2. In this diagram, all
states have their variable assignments (labels) written on them, describing the
values of the input x, all outputs y1, . . . , yn, and the scheduler r. Only on some
states we also write the values of the declared outputs Ỹ , and to avoid clutter we
simply write them separated from the rest of the variables (by a vertical line),
as an additional value of outputs (without the ‘∼’ over them).

28

a 0
: x

0,
y1

0
,…

,y
n

0
,s

=
n

+
1

b

r 0
: x

0,
y1

0,
…

,y
n

0
,s

=
n

+
1

a

r 1
: x

1,
y1

0
,…

,y
n

0
,s

=
1

a 1
: x

1,
y1

0,
…

,y
n

0,
s=

1
|Y

1

c

a

a 1
’:

 x
1,

y1
0,

…
,y

n
0
,s

=
1

|Y
1’

r 2
: x

1
’,y

1
1,

y2
0
,…

,y
n

0
,s

=
2

c

a 2
’:

 x
1’,

y1
1,

y2
0,

…
,y

n
0
,s

=
2

d

r 3
: x

1’
’,y

1
1,

y2
1,

y3
0
,…

,y
n

0
,s

=3

d

a 3
’:

 x
1’

’,y
1

1
,y

2
1,

y3
0,

…
,y

n
0,

s=
3

e…
e…

r n
+2

: x
2,

y1
1
,…

,y
n

1,
s=

1
a n

+2
’:

 x
2
,y

1
1,

…
,y

n
1
,s

=
1

|Y
2
’

a n
+2

: x
2
,y

1
1,

…
,y

n
1,

s=
1

|Y
2

r n
+1

: x
1*

,y
1

1
,…

,y
n

1,
s=

n
+

1
a n

+1
’:

 x
1*

,y
1

1
,…

,y
n

1
,s

=
n

+
1

f
f

h
…

a 2
n+

3
: x

3,
y1

2,
…

,y
n

2,
s=

1
|Y

3

k…

m
…

r 2
n+

3
: x

3,
y1

2,
…

,y
n

2
,s

=
1

n
…

R
L

Fig. 2. The ‘real’ (R) and Ts (L) computations

29

We work with the nondeterministic LTS (ILTS) Ts (Ta), and show that any
computation generated by any program that they could induce satisfies ϕ(x;Y).

A path is a segment of a computation. We say that a path π is safe for the
environment, if π, 0 |= Iψe

∧0 Sψe
. (Since ψ is an asynchronous strengthening

of ϕ, this is identical to saying that π, 0 |= Iϕe
∧0 Sϕe

.)

Since ϕ(x;Y) has a memory-less environment, and since this implies that
ψ({x, r};Y) also has a memory-less environment, we allow ourselves to simply
refer to, at times, a ‘memory-less environment’, where specifying the relevant
specification is not critical.

The computation depicted on the right of Fig. 2, named R, with state names
starting with the letter r, depicts the ‘real’ computation in the sense that it
shows all of the transitions of both the system and the environment, guided
by one program Pa induced by Ta (which considers, naturally, only inputs at
reading points). On the left we describe a tree of paths guided by programs
induced by Ts, named L, with state names starting with the letter a. L contains
another computation that is generated by one program induced by Ts, that is also
generated by the corresponding determinized Ta induced program Pa. Through
the construction of the computation in L, we show that R |= ϕ(x; y1, . . . , yn).

Since we identify states in R by their assignment to variables, we freely
‘borrow’ the labeling function Ls to represent their value assignments. We also
compare labeling of states from R and from L despite the fact that L labels
cover Ỹ while R labels do not, referring only to the shared labels. Finally, we
compare labeling of states by Ta and Ts, in the following way: For a state st,
La(st) = Ls(st) iff La(st)|Y = Ls(st)|Ỹ and La(st)|{x} = Ls(st)|{x}.

Let r0, with Ls(r
0) = 〈x0, s0, y01 , . . . , y0n〉, also written as Ls(r

0) = 〈x0, s0, Y 0〉
(s0 = n + 1), be the first state in R. If Ls(r

0) 6|= Ie, then R, 0 |= ϕ(x;Y).
Otherwise, due to the receptiveness of Ts, the state r0 is also some initial state
a0 ∈ Is (Ls(a

0) = Ls(r
0)), and, by construction, Ls(a

0) |= Iψe
∧ Iψs

. Also
by construction, ia = Y 0 (since we assume a single possible initial output, if
Ls(a

0) 6|= Ie then this must be the case), and Ta outputs a ‘good’ initial value.
All paths in R and in L satisfy, therefore, Iψe ∧ Iψs .

If any prefix of R is not safe for the environment then, trivially, R, 0 |=
ϕ(x;Y). In the following, we assume, for completeness, that all prefixes of R are
safe for the environment.

The path of R up until the first reading point, r0 a, exists in Ts - a0 a
(since Ts, by construction, induces programs that provide outputs against any
behavior of the environment). Similarly, a state that agrees with the next state
of R, r1, on its labeling of {x, s} ∪ Y must be reachable (in one transition) from
the last state of a in Ts - a0 a a1

′
(Ls(a

1′) has some labeling for Ỹ -
Ỹ 1′ = 〈y1′1 , . . . , y1

′

n 〉). It is important to note here that both Ta and Ts might be
non-deterministic. Let a1 be some eventual successor of a0 in Ts (through the
path a0 b a1), that is also in Ta and that agrees with r1 (and with a1

′
) on

the labeling of {x, s}∪Y . By construction, both a1
′

and a1 are in Ia, and Ta has
‘good’ initial states. We assume that, in this computation, a1 was ‘chosen’. Say
that a1 has the labeling of Ỹ Ỹ 1 = 〈y11 , . . . , y1n〉. Let c be the path of R from r1

30

up until the first writing point. Since the environment is memory-less (second
assumption), and since r1 and a1 agree on the labeling of all the variable of Sψe

,
the transition from a1 to the first state of c must exist in Ts, and so are the rest
of the transitions of c.

Let r2 be the first writing state in R that immediately follows the last state
of c, where the label of y1 is changed from y01 to y11 (according to Ỹ 1, as con-
trolled by Ta through the selection of the eventual successor a1 of a0). Since
(by assumption) the transition in R from the last state of c to r2 is safe for the
environment (note here that Sψe is independent of Y ′ - the primed version of
Y), than a transition from the last state of c in the path a0 b a1 c in
Ts, to a state that agrees with r2 on its labeling of x, must exist. Moreover, all
eventual successors of a1 in Ts must label the value y11 to y1. Let a2

′
be one such

eventual successor of a1 in Ts, that agrees with r2 on its labeling of x (by the
construction of Ta, that replaces its outputs labeling with the declared outputs
labeling of Ts, it must exist in a path that is driven by Ta).

As R continues with a path that, starting from r1, writes all outputs in
writing points (r1 c r2 d r3 e . . . rn+1), for similar arguments
of memory-lessness of the environment and of agreement with the states of R
on their labeling of {x, s} ∪ Y , a similar path must exist in L - a1 c a2

′

d a3
′
 e . . . a(n+1)′ . Moreover, the following path of R that originates

in rn+1 and that continues up until, and including, the next reading point rn+2

- rn+1 rn+2, must also be duplicated in Ts - a(n+1)′ a(n+2)′ (a(n+2)′ has

some value Ỹ (n+2)′ = 〈y(n+2)′

1 , . . . , y
(n+2)′

n 〉). All states on the path from r1 to

rn+1 agree with all states on the path from a1 to a(n+2)′ , respectively, on their
labels of {x, s} ∪ Y (including the ‘writing’ of the same output values at all
writing points, and ‘reading’ of the same input value at the terminating reading
point).

Since the state a(n+2)′ exists in Ts then, by construction of Ta, at least one
sequence of n + 1 consecutive eventual successors from Ts that originate from
a1 (which is in Ta) would be represented in Ta through the value of La(a1)|Y ,
‘writing’ in all writing points along the way all the values of Ỹ 1 (one-by-one),
and terminating in the state a(n+2) that agrees with r(n+2) on its labeling of

{x, s} ∪ Y . Say that Ls(a
(n+2))|Ỹ is the labeling Ỹ (n+2) = 〈y(n+2)

1 , . . . , y
(n+2)
n 〉.

We showed that a path that corresponds to the writing-then-reading path
c r2 d r3 e . . . rn+1 f r(n+2) of R exists in Ts and, therefore,
represented in Ta. We continue inductively to construct a computation in Ts,
called Sc, that is driven by one program induced by ta - a0 b a1 g . . .
a(n+2) h . . . a(2n+3) k

The key observation about Sc, other than the fact that it must exist (as-
suming that R is safe for the environment), is that it agrees with R on its
interpretations of Y at all corresponding states, and that it agrees with R on
its interpretations of x at all corresponding reading states. We know that the

31

following holds for Sc (using Ls, and as for all Ts computations)

Sc, 0 |=


α1,m(s) ∧
Iψe
∧0 Sψe

∧
ψ(X ∪ {s};Y) ∧
m∧
i=1

[
[¬write1(i) ∧ ¬first] =�unchanged(yi)

]


Since ψ is an asynchronous strengthening of ϕ (specifically, due to the implication
that is in that definition), we conclude that Sc, 0 |= [read(1) =�(x = x̃)] →
ϕ(x̃;Y). Using the observation regarding the connection between R and Sc, we
conclude that R, 0 |= [read(1) =�(x = x̃)] → ϕ(x̃;Y) and, in particular, that
R, 0 |= ϕ(x;Y). (Actually, in the transition from Sc to R we must account for
the fact that the two computations may differ in length between every I\O point.
To overcome that we use the stuttering robustness of ϕ, ψ and the rest of the
clauses from the definitions of asynchronous strengthening.)

7 Applying the Realizability Test

We illustrate the application of the realizability test presented in Section 6. To
come up with an asynchronous strengthening we propose the following heuristic.

Heuristic 1 In order to derive an asynchronous strengthening ψ(X ∪ {r};Y)
for a specification ϕ(X;Y), replace one or more occurrences of atomic formulae
of inputs, e.g., xi = d, by (xi = d)∧�(r 6= i)∧ (r = i), which means that xi = d
at a reading point.

The rationale here is to encode the essence of the stuttering quantification into
the strengthening. Since this quantification requires indifference towards input
values outside reading points, we state this explicitly.

We start with the ‘response’ specification ϕ3(x; y) = Imp(ϕ3,e, ϕ3,s) from
Section 5:

ϕ3(x; y) = [¬(x↔ y) =�(x↔2x)]→


x=�1 y ∧
x=�1 y ∧
y=�y S y S x ∧
2(y=�y B y S x)


This specification has a GR(1) winning condition, it is stutteringly robust with
a memory-less environment, and therefore it is potentially a good candidate to
apply our heuristic. As suggested, we obtain the specification ψ3(x, r; y):

[¬(x↔ y) =�(x↔2x)]→


x=�1 y ∧
x=�1 y ∧
y=�y S y S [x ∧�(r = 2) ∧ (r = 1)] ∧
2{y=�y B y S [x ∧�(r = 2) ∧ (r = 1)]}


32

We establish that ψ satisfies all our requirements. We then apply the syn-
chronous realizability test of [16] to the kernel formula Xψ3

(x, r; y). This formula
is realizable and we get a LTS S3 with 30 states and 90 transitions, which is then
minimized, using a variant of the Myhill-Nerode minimization, to a LTS S′3 with
16 states and 54 transitions. The algorithm in Fig. 1 constructs an ILTS AS′3
with 16 states and 54 transitions. Using model-checking [5] we ensure that all
asynchronous interactions of AS′3 satisfy ϕ3(x; y). A simplified sub-ILTS of AS′3
that provides a complete strategy for ϕ3(x; y) is presented in Fig. 3 as an au-
tomaton. Notice, that this automaton has eight states, which, given that x, y,
and r are Boolean variables, is the minimum possible.

/y

13:(r=2)x;y1 : (r=1)x;y

/y

x

3 : (r=1)x;y9 : (r=1)x;y

5 : (r=2)x;y 7 : (r=1)x;y

6 : (r=1)x;y

8 : (r=2)x;y

x

/y

x /y

x

/y

x

/y

Fig. 3. ILTS (as an automaton)

Note that the automaton of Fig. 3 has a certain degree of nondeterminism
as demonstrated in the exits out of state 7. At this point, it may nondetermin-
istically choose to output y or y. The automaton of Fig. 3 is a simplified version
of the sub-automaton of AS′3 . In particular, we have identified some states that
have been found to have equivalent behavior. This led to the fact that the au-
tomaton does not contain the initial state 0 that has been identified with state
13 which is taken to be the initial state. Also, to avoid clutter, we omitted the
representation of the sink state and all transitions entering it.

We devise similar specifications that copy the value of a Boolean input to
one of several outputs according to the choice of the environment. Thus, we have
a multi-valued input variable encoding the value and the target output variable

33

and several output variables. The specification ϕ4(x; y0, y1) is given below. The
input x in ϕ2(x; y0, y1) ranges over {0, 1, 2, 3}. It’s intended meaning is that x = 0
is interpreted as a ‘request’ to output y1, x = 1 to output y1, x = 2 to output
y0, and x = 3 to output y0. The variable x actually implements a superposition
of two inputs – one which selects an output to updates, and another that assigns
a new value to it.

ϕ4,e(x; y0, y1) =


((x = 0) ∧ y1) ∨
((x = 1) ∧ y1) ∨
((x = 2) ∧ y0) ∨
((x = 3) ∧ y0)

 =�2 unchanged(x)

ϕ4,s(x; y0, y1) =



(x = 0) =�1 y1 ∧
(x = 1) =�1 y1 ∧
(x = 2) =�1 y0 ∧
(x = 3) =�1 y0 ∧
y0 =�y0 S y0 S (x = 3) ∧
y1 =�y1 S y1 S (x = 1) ∧
2[y0 =�y0 B y0 S (x = 2)] ∧
2[y1 =�y1 B y1 S (x = 0)]


Using the same idea, we strengthen ϕ4 to ψ4(x, r; y0, y1), which passes all

the required tests. We then apply the synchronous realizability test in [16] to
Xψ4

(x, r; y0, y1) and get a LTS S4 with 340 states and 1544 transitions, which
is then minimized to 196 states and 1056 transitions. Our algorithm extracts an
ILTS AS′4 , which, as model checking confirms, asynchronously realizes ϕ4.

From ϕ5(x; y0, y1, y2) (similar to ϕ4, with 3 outputs), we get a LTS with 1184
states and 8680 transitions.

8 Conclusions and Future Work

In this paper we extended the reduction of asynchronous synthesis to syn-
chronous synthesis proposed in [19] to multiple input and output variables. We
identify cases in which asynchronous synthesis can be done efficiently by bypass-
ing the well known ‘problematic’ aspects of synthesis.

One of the drawbacks of this synthesis technique is the large size of resulting
designs. However, we note that the size of asynchronous designs is bounded from
above by synchronous designs. Thus, improvements to synchronous synthesis will
result also in smaller asynchronous designs. We did not attempt to minimize or
choose more effective synchronous programs, and we did not attempt to extract
deterministic subsets of the nondeterministic controllers we worked with.

We believe that there is still room to explore additional cases in which asyn-
chronous synthesis can be approximated. In particular, restrictions imposed by
our heuristic (namely, one input environment and memory-less behavior) seem
quite severe. Trying to remove some of these restrictions is left for future work.

Finally, asynchronous synthesis is related to solving games with partial in-
formation. There may be a connection between the cases in which synchronous

34

synthesis offers a solution to asynchronous synthesis and partial information
games that can be solved efficiently.

Acknowledgments

We are very grateful to Lenore Zuck for helping with writing an earlier version
of this manuscript.

References

1. R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer.
Automatic hardware synthesis from specifications: A case study. In Design Au-
tomation and Test in Europe, pages 1188–1193, 2007.

2. R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer.
Specify, compile, run: Hardware from PSL. In 6th International Workshop on Com-
piler Optimization Meets Compiler Verification, volume 190 of Electronic Notes in
Computer Science, pages 3–16, 2007.

3. J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state
strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.

4. A. Church. Logic, arithmetic and automata. In Proc. 1962 Int. Congr. Math.,
pages 23–25, Upsala, 1963.

5. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

6. D.C. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, and G.J. Pappas. Valet parking
without a valet. In Proceedings IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 572–577. IEEE, 2007.

7. N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel. Synthesis of live be-
havior models. In 18th International Symposium on Foundations of Software En-
gineering, Santa Fe, NM, USA, 2010. ACM.

8. N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel. Synthesis of live be-
havior models for fallible domains. In 33rd International Conference on Software
Engineering, Waikiki, HI, USA, May 2011. ACM.

9. T.A. Henzinger and N. Piterman. Solving games without determinization. In
Proc. 15th Annual Conf. of the European Association for Computer Science Logic,
volume 4207 of Lect. Notes in Comp. Sci., pages 394–410. Springer-Verlag, 2006.

10. U. Klein, N. Piterman, and A. Pnueli. Effective Synthesis of Asynchronous Systems
from GR(1) Specifications. In Proc. 13th International Conference on Verification,
Model Checking, and Abstract Interpretation, volume 7148 of Lect. Notes in Comp.
Sci., pages 283–298. Springer-Verlag, 2012.

11. U. Klein and A. Pnueli. Revisiting Synthesis of GR(1) Specifications. In Hardware
and Software: Verification and Testing (Proceedings of HVC’10), volume 6504 of
Lect. Notes in Comp. Sci., pages 161–181. Springer-Verlag, 2011.

12. H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Where’s waldo? sensor-based tem-
poral logic motion planning. In Proc. IEEE International Conference on Robotics
and Automation, pages 3116–3121. IEEE, 2007.

13. H. Kugler, C. Plock, and A. Pnueli. Controller synthesis from lsc requirements. In
Proc. Fundamental Approaches to Software Engineering (FASE’09), volume 5503
of Lect. Notes in Comp. Sci., Springer-Verlag, pages 79–93, 2009.

35

14. H. Kugler and I. Segall. Compositional synthesis of reactive systems from live se-
quence chart specifications. In Proc. 15th Intl. Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’04), volume 5505 of Lect.
Notes in Comp. Sci., Springer-Verlag, pages 77–91, 2009.

15. O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th IEEE
Symp. Found. of Comp. Sci., 2005.

16. N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In Proc. 7th
International Conference on Verification, Model Checking, and Abstract Interpre-
tation, volume 3855 of Lect. Notes in Comp. Sci., pages 364–380. Springer-Verlag,
2006.

17. A. Pnueli and U. Klein. Synthesis of programs from temporal property specifica-
tions. In Proc. 7th ACM/IEEE Intl. Conference on Formal Methods and Models
for Codesign, pages 1–7. IEEE Press, 2009.

18. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th
ACM Symp. Princ. of Prog. Lang., pages 179–190, 1989.

19. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.
In Proc. 16th Int. Colloq. Aut. Lang. Prog., volume 372 of Lect. Notes in Comp.
Sci., pages 652–671. Springer-Verlag, 1989.

20. A. Pnueli, Y. Sa’ar, and L. D. Zuck. JTLV: A framework for developing verifica-
tion algorithms. In T. Touili, B. Cook, and P. Jackson, editors Proc. 22nd Intl.
Conference on Computer Aided Verification (CAV’10), pages 171–174, 2010.

21. A. Pnueli and A. Zaks. On the merits of temporal testers. In 25 Years of Model
Checking, volume 5000 of Lect. Notes in Comp. Sci., pages 172–195. Springer-
Verlag, 2008.

22. M.O. Rabin. Automata on Infinite Objects and Church’s Problem, volume 13 of
Regional Conference Series in Mathematics. Amer. Math. Soc., 1972.

23. Sven Schewe and Bernd Finkbeiner. Synthesis of asynchronous systems. In 16th
International Symposium on Logic-Based Program Synthesis and Transformation,
volume 4407 of Lect. Notes in Comp. Sci., pages 127–142. Springer-Verlag, 2006.

24. A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi
automata with application to temporal logic. Theor. Comp. Sci., 49:217–237, 1987.

25. M.Y. Vardi. An automata-theoretic approach to fair realizability and synthesis.
In P. Wolper, editor, P. Wolper, editor, Proc. 7th Intl. Conference on Computer
Aided Verification (CAV’95), volume 939 of Lect. Notes in Comp. Sci., Springer-
Verlag, pages 267–278, 1995.

26. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. and Cont.,
115(1):1–37, 1994.

27. T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon temporal logic
planning for dynamical systems. In IEEE Conference on Decision and Control,
pages 5997–6004. IEEE press, 2009.

28. T. Wongpiromsarn, U. Topcu, and R. M. Murray. Automatic synthesis of robust
embedded control software. In AAAI Spring Symposium on Embedded Reasoning:
Intelligence in Embedded Systems, 2010.

29. T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon control for
temporal logic specifications. In Hybrid Systems: Computation and Control, Lect.
Notes in Comp. Sci. Springer-Verlag, 2010.

36

