Shape Analysis of Single-Parent Heaps

Ittai Balaban, Amir Pnueli2, and Lenore D. Zuck

1 New York University, New York{bal aban, am r }@s. nyu. edu
2 Weizmann Institute of Science,
3 University of lllinois at Chicagol enor e@s. ui c. edu

Abstract. We define the class dingle-parent heap systemshich rely on a
singly-linked heap in order to model destructive updatesrem structures. This
encoding has the advantage of relying on a relatively sittiy@ery of linked lists
in order to support abstraction computation. To facilitdwe application of this
encoding, we provide a program transformation that, givenogram operating
on a multi-linked heap without sharing, transforms it intee@ver a single-parent
heap. Itis then possible to apply shape analysis by predarad ranking abstrac-
tion as in [2]. The technique has been successfully applezkamples with trees
of fixed arity (balancing of and insertion into a binary soeg).

1 Introduction

In [2] we propose a framework for shape analysis of singtikdid graphs based on a
small model property of a restricted class of first order disses with transitive clo-
sure. Extending this framework to allow for heaps with npléilinks per node entails
extending the assertional language and proving a strongat smodel property. At this
point, it is not clear whether such a language extensiondiddble (see [10, 11] for
relevant results).

(@ A Multi-Linked (b) The Corresponding
Heap Single-Parent Heap

Fig. 1. Multi-Linked to Single-Parent Heap Transformation

* This research was supported in part by ONR grant NO0014-9%831, and SRC grant 2004-
TJ-1256.

This paper deals with verification of programs that perfoesttlictive updates of
heaps consisting only of trees of bounded or unbounded #wityhich we refer as
multi-linkedheaps. We bypass the need to handle trees directly by tramsfpheaps
consisting of multiple trees into structures consistingsiofgly-linked lists (possibly
with shared suffixes). This is accomplished by “reversirtg parent-to-child edges
of the trees populating the heap, as well as associatingrsgata with nodes. We re-
fer to the transformed heap asimgle-parenteap. Fig. 1(a) and Fig. 1(b) together
demonstrate the transformation of a multi-linked heap toasists of a binary tree to
its single-parent counterpart. In the latter graph, edgesdaected from children to
parents, and each child is annotated with boolean infoomatenoting whether it is a
left or right child.

Verification of temporal properties of multi-linked heapssms can be performed
as follows: Given a multi-linked system and a temporal prop¢he system and prop-
erty are (automatically) transformed into their singlegua counterparts. Then, a counter-
example-guided predicate- (and possibly ranking-) abstna refinement method (]2,
3]) is applied. If a counter-example (on the transformedesys is produced, it is auto-
matically mapped into a counter-example of the originallzitnked) system.

The rest of this paper is organized as follows: After we disctelated work, we
present the formal model in Section 2 and define predicateaaition thereof. Sec-
tion 3 defines systems over single-parent heaps and Secti@setibes their model
reduction. Section 5 defines systems over multi-linked beapd Section 6 shows how
to transform them to single-parent heap systems. We coadatu8ection 7.

Related Work

Numerous frameworks have been suggested for analyzinlydinged heaps, e.g., [15,
18,6, 9, 7], all assuming that programs access heap ce#tydn} reachability from
variables. This effectively disallows backward traversahecessary feature when re-
ducing trees to singly-linked structures.

The correspondence between tree structures and singlgdlstructures is the basis
of the proof of decidability of first-order logic with one fation symbol in [8]. More
generally, the observation that complex data structur#fs regular properties can be
reduced to simpler structures has been utilized in [14,82,9]. However, it is not
always straightforward to apply, and, to our knowledge, haisbeen applied in the
context of predicate abstraction. Several assumptionstid true in analysis of “con-
ventional” programs over singly-linked heaps (e.g., C- asdal-programs), cannot be
relied upon when reducing trees to lists. For example, tmebar of roots of the heap
is no longer bounded by the number of program variables.

The use of path compression in heaps to prove small modeepies of logics of
linked structures, has been used before, e.g., in [5] an& mearently in [2, 20]. Our
work on parameterized systems relies on a small model threéoe checking induc-
tiveness of assertions. The small model property theramdagi to the one here with
respect tostratified data However, with respect to unstratified data (such as graphs)
the work on parameterized systems suggests using logs@initiation as a heuristic
(see, e.g., [1]), whereas here completeness is achieveg gisiph-theoretic methods.

2 The Formal Framework

In this section we present our computational model, as veatha method of predicate
abstraction.

2.1 Fair Discrete Systems
As our computational model, we takéear discrete syster(FDs) (V, 0, p, J,C), where

e IV — A set of system variablesA stateof D provides a type-consistent interpre-
tation of the variable¥’. For a states and a system variabke € V', we denote by
s[v] the value assigned toby the states. Let X denote the set of all states ovér

e © — Theinitial condition: An assertion (state formula) characterizing the initial
states.

e p(V,V’) — Thetransition relation An assertion, relating the valu&sof the vari-
ablesin state € X to the valued’’ in aD-successor staté € Y. We assume that
every state has gsuccessor.

e J — A set ofjustice (weak fairnesgrequirements (assertions); A computation
must include infinitely many states satisfying each of tletige requirements.

o C — A set ofcompassion (strong fairnes®quirements: Each compassion require-
ment is a pairp, ¢) of state assertions; A computation should include eithér on
finitely manyp-states, or infinitely many-states.

For an assertiogh, we say that € X is ay-state ifs = ¢.
A runof anFDs D is a possibly infinite sequence of states s, s1, . . . satisfying
the requirements:

e Initiality — s¢ is initial, i.e.,sq = 6.

e Consecution— For eacl¥ = 0,1, ..., the states,, ; is aD-successor of,. That
is, (se, se41) E p(V, V') where, for eachy € V, we interpret ass,[v] andv’ as
So4+1[v].

A computatiorof D is an infinite run that satisfies

e Justice— for everyJ € 7, o contains infinitely many occurrences ffstates.
e Compassiorforevery(p, q) € C, eithers contains only finitely many occurrences
of p-states, or contains infinitely many occurrencesgsbtates.

We say that a temporal propertyis valid overD, denoted byD | ¢, if for every
computatiorr of D, o |= . We are interested isafetyproperties, of the fornfi] p, and
progressproperties, of the forni] (p — <> ¢), wherep andg are state assertions. Since
our methodology for verifying safety properties can be lgasitended to verification
of progress properties (along the lines of [3]), we resthiete to the former. Yet, we
include the fairness requirements here for the sake of cetempess, while they are only
necessary when dealing with progress.

2.2 Predicate Abstraction

The material here is a summary of [13] and [2]. We fixrys D = (V,0,p,J,C)
whose set of states i5. We consider a set abstract variabled’y = {u1,...,u,}
that range over finite domains. Aabstract statés an interpretation that assigns to each
variableu; a value in the domain af;. We denote by 4 the (finite) set of all abstract
states. Arabstraction mappings presented by a set of equalities

a,: ur=E(V), ..., up =E,(V),
where eaclf; is an expression ovér ranging over the domain af;. The abstraction
a, induces a semantic mappirg. : X — X4, from the states oD to the set of
abstract states.

Usually, most of the abstract variables are boolean, andttieecorresponding ex-
pressions; are predicates ovér, which is why this type of abstraction is referred to
aspredicate abstractionThe abstraction mapping, can be expressed succinctly by
Va=E(V).

Throughout the rest of the paper, when there is no ambigugyshall refer tax,
simply as«. For an assertiop(V'), we define itsyv-abstraction (with some overloading
of notation) bya(p): IV.(Va =E(V) A p(V)).

The semantics ofv(p) is ||a(p)|| : {a(s) | s € ||p||}. Note that||a(p)]| is, in
general, an over-approximation — an abstract saiein ||a(p)|| iff there existsome
concretep-state that is abstracted info A bi-assertion3(V, V') is abstracted by:

2(p): IV, V. (Va=EV) A Vi=EWV") A BV, V)

See [2] for a discussion justifying the use of over-apprating abstractions in this
setting. The abstraction @ by « is the system

DY = (Va,a(),0%(p), |J (), |J (alp).a(a)))

JeJg (p,q)€C
The soundness of predicate abstraction is derived from [13]

Theorem 1. For a systenD, abstractione, and a temporal formula:

D'EY" = DEWY

3 Single-Parent Heaps

A single-parent heap systeiman extension of the model fifite heap system&HS)
of [2] specialized for representing trees. Such a systemaniameterized by a positive
integerh, which is the heap size. Some auxiliary arrays may be usepeoify more
complex structures (e.g., ordered trees). However, eagénnioas a single link to which
we refer as its “parent,” and denote it pyrent (u).

Example 1 (Tree Insertionfor example, we present in Fig. 2 a program that inserts
a node into a binary sort tree rooted at a nedH the data contained in nodeis not
already contained in the tree, thenis inserted as a new leaf. Otherwise the tree is
not modified. Obviouslyp is to be an isolated node, i.e., to be both a root and a leaf.
To allow for the presentation of a sorted binary tree, we usarsay ct (child-type)
such thatct[u] equalsleft or right if node « is, respectively, the left or right child of

its parent. We also require that any two children of the saamermd must have different
child-types. In Subsection 3.2 we expand on the notion difgjlorder. One may wish

to show, for example, that progranREE-INSERT satisfies the following for every:

no-loss: parent*(x,r) — [parent*(x,r)
no-gain: x #n A —parent*(z,r) — [] —parent*(x,r)

rt : [1..A] init t =r

n : [0..h] init n >0

parent : array [0..h] of [0..h] init parent[n] = parent[r] =0 A parent[0] = 0 A
Vu . parent[u] # n

ct : array [0..h] of {left, right} init Vi # j . parent[i] = parent[j] # 0 — ct[i] # ct[4]

data : array [0..h] of [1..k]

done : bool init done= FALSE

1: while ~donedo
2 :if data[n] = data[t] then
3 : done:= TRUE
4 : elseifdata[n] < data[t] then
5:if Vj.parent[j] #t V ct[j] # leftthen
6 : (parent[n], ct[n]) := (¢, left)
7 : done:= TRUE
else
8:t:=¢€j.parent[j) =t A ct[j] = left
9 : elseif Vj.parent[j] # t V ct[j] # right then
10 : (parent[n], ct[n]) := (¢, right)
11 : done:= TRUE
else
12 : ¢ :=€j . parent[j] =t A ct[j] = right

113 :

Fig. 2. Program REE-INSERTINserts a new node into a binary sort tree rooted at node

The e-expressionss j . cond in lines 8 and 12 denote “choose any node j that
satisfiescond” For both statements in this program, it is easy to see teattis exactly
one nodej that meetond However, this is not always the case, and then such an
assignment is interpreted non-deterministically. We alow for universal tests, as
those in lines 5 and 9, that test for existence of a partiadde’s left or right child. 4

3.1 Unordered Single-Parent Heaps

We now formally define the class of single-parent heap systéeth > 0 be theheap
size We allow the following data types:

bool Variables whose values are boolean. With no loss of gemgrale assume that
all finite domain(unparameterized) values are encodebdass;

error A error’ A presEz(error)
\%
—error A
r m=1A —-doneA 7’ =2 A presEx(m) 1
V m=1 A doneA 7’ =13 A presEz(r)
V 1 =2 A data[t] = data[n] A ©' =3 A presEx(w)
V m =2 A data[t] # data[n] A ' =4 A presEx(m)
V mt=3 A7 =1 A doné A presEz(m,done
V ® =4 A data[n] < datalt] A © =5 A presEz(m)
V m =4 A data[t] < data[n] A ' =9 A presEx(m)
V r=5A7" =6 A (Vjparent[j] #t V ct[j] # left) A presEx(n)
V r=5A 7 =8 A (3j.parent[j] =t A ct[j] = left) A presEx(n)
V m=6 A n=0 A eror’ A presExz(error)
VarT=6A7T =7An#0 A parent'[n] =t A ct'[n] = left A presEx(m, parent[n], ct[n])
V r=7A7" =1A doné A presEz(m,done
Vr=8A7 =1A (3j.parent[j] =t A ct[j] =left A t' = j) A presEx(m,t)
V m=9 A7 =10 A (Vj.parent[j] #t V ct[j] # right) A presEx(r)
V m=9 A7 =12 A (3j.parent[j] =t V ct[j] = right) A presEx(r)
V m=10 A n=0 A eror’ A presEx(error)
V=10 A 7' =11 A n#0 A parent’'[n] =t A ct’[n] =right A presEx(m, parent[n], ct[n])
V mr=11 A 7' =1 A doné A presEx(m,done
V r=12 A 7' =1 A (3. parent[j] =t A ct[j] =right A t' = j) A presEx(m,t)
LV #=13 A «’ =13 A presExz(m) J

Fig. 3. The transition relation of REE-INSERT. The variabler represents the program counter.

index Variables whose value is in the ran@e h/;

index — bool arrays bool arrays) that map heap elements to boolean values (such as
ct above, where the valdeft is mapped to ELSE, andright to TRUE);

index — index arrays (ndex arrays), that describe the heap structure. We allow at
most twoindex arrays, which we usually denote pyrent andparent’.

We assume a signature of variables of all of these types.t@atissare introduced as
variables with reserved names. Thus, we admit the boolesstaats ELSE and TRUE,
and theindex constant). In order to have all functions in the model total, we define
bothbool andindex arrays as having the domairdex. A well-formed program should
never assign a value t8[0] for any (ool or index) arrayZ. On the other hand, unless
stated otherwise, all quantifications are taken over thgefin.h].
We refer toindex elements amodes. If in states, theindex variablex has the value
£, then we say that i, 2 points to the nodé. An index termis the constar, anindex
variable, or an expressidfiy|, whereZ is anindex array andy is anindex variable.
Atomic formulaeare defined as follows:

e If z is a boolean variabld? is abool array, andy is anindex variable, then: and
Bly] are atomic formulae.

e If £; andty areindex terms, thert; = t, is an atomic formula.

e A Transitive closurdormula ¢cf) of the formZ*(x1, z2), denoting that:s is Z-
reachable fromx;, wherex; andx, areindex variables and? is anindex array.

We find it convenient to include “preservation statementsdach transition, that de-
scribe the variables that are not changed by the transifioere are two types of such
statements:

1. Assertions of the formpreq{v1, ..., v;}) = /\f:1 v; = v; where allv;'s are scalar
(bool or index) variables;

2. Assertions of the fornpresy ({a1,...,ax}) = /\f:1 Vh ¢ H . al[h] = a;[h]
where alla;’s are arrays and{ is a (possible empty) set afdex variables. Such
an assertion denotes that all but finitely many (usually sermra single) entries of
arrays indexed by certain nodes remain intact.

Note that preservation formulae are at most universal. Wis@lotation and use the
expressionresEz(v1,. .., vx) to denote the preservation of all variables, excluding the
termsuvy, . . ., vk, Which are either variables or array terms of the fotfr].

Fig. 3 presents the transition relation associated withptlogram of Fig. 2. The
implied encoding introduces an additiortmol variableerror which is set to RUE
whenever there is an attempt to assign a valué[@, for some arrayd. Consequently,
the transitions corresponding to statements 6 and 1€rsmtto TRUE if n = 0, which
is tested before assigning valuetorent|n] and toct[n].

A restricted A-assertions either one of the following formsvy . Z[y] # w,
Vy.Zlyl #u vV Blyl,Vy . Z[y] # u V —Blyl, presy(Z), andpres; (B), where
Z is anindex array andB is abool array, andH is a (possibly empty) set afidex
variables. Arestricted EA-assertiois a formula of the forn¥z . ¢(u, &), whereZ is a
list of index variables, and(, ¥) is a boolean combination of atomic formulae and re-
stricted A-assertions, where restricted A-assertiongeappnder positive polarity. Note
that in restricted EA-assertions, universally quantifiadables mayotoccur in tcf’s.
As the initial condition® we allow restricted EA-assertions, and in the transitida-re
tion p and fairness requirements we only allow restricted EA+disses without tcf’s.
Properties of systems are restricted EA-assertions. adtgtn predicates are boolean
combinations of atomic formulae and non-preservationens& formulae. This last re-
striction ensures that the language of abstraction presiés.closed under negation, an
assumption needed during abstraction computation.

Note that restricted EA-assertions are more expressivertdsricted A-assertions
of [2] in that they allow, by means of existential and uniaguantification, for traver-
sal of trees in both directions.

3.2 Ordered Single-Parent Heaps

We now formalize the notion of order among siblings, as seé&xample 1. Arordered
single-parent heap system is one that includes a distingdis : index — [1..k] array,
for some constanit, that denotes for each heap node its place among its sibliings
allows the subtrees of a given root node to be distinguislyettidir c¢ order. We now
extend the assertional language with a new type of atomindta: For eachi € [1..k],
the formulai-subtreg; (z;, x2) denotes that, is in thei?” subtree ofr,, wherer;
andz, areindex variables and/ is anindex array. This is formally expressed by the
formula

i-subtreg (x1,z2) : Ju. Z[u] = x2 A ctlul =i AN Z*(x1,u)

We support these predicates explicitly rather than as ééffiorms because, due to the
transitive closure over a quantified variable, they wouldeotvise be outside of the

assertional language allowed for abstraction predicdtesoughout the paper, when
theindex arrayZ is apparent from the context, we use the short foigabtredz, x2).

For example, in the context of progranREE-INSERT of Example 1, the predicates
left-subtreeandright-subtreedenote the left and right subtree relations among nodes
of the parent array, whereaeft-subtreé and right-subtreé denote subtree relations
among nodes of thgarent’ array.

4 Computing Symbolic Abstractions of Single-Parent Heaps

We show how to symbolically compute the abstraction of aleipgirent heap system
by extending the methodology of [2]. That methodology isdaben a small model
property establishing that satisfiability of a restrictedextion is checkable on a small
instantiation of a system. The main effort here is dealinthuhe extensions to the
assertional language introduced for single-parent hestess. For simplicity, it is as-
sumed that all scalar values are represented by multiplleaoealues.

Assume a vocabulary of typed variables, as well as thpgimed version of said
variables. Furthermore, assume that there is a singlemegindex array in) as well
as a single primed one. These will be denoted throughoutesteaf this section by
parent andparent’, respectively. AmodelM of sizeh + 1 for V consists of:

e A positive integerh > 0;

e For each boolean variablee V, a boolean valué/[b] € {FALSE, TRUE}. It is
required that\/[FALSE|] = FALSE and M [TRUE| = TRUE;

For eachindex variablex € V, a valueM[z] € [0..h]. Itis required thaf\/[0] = 0;
For eactbool arrayB € V, a functionM [B]: [0..h] — {FALSE, TRUE};

For eachindex arrayZ € {parent, parent’}, a functionM [Z]: [0..h] — [0..h].

Let ¢ be a restricted EA-assertion, which we fix for this sectioe. Mfuire that if a
term of the formparent’ [u] occurs inp whereu is a free or existentially quantified vari-
able ingp, theny also contains the preservation formula associated witlant. Note
that this requirement is satisfied by any reasonable assertions that contain primed
variables occur only in proofs for abstraction computati@ther than in properties of
systems), and are generated automatically by the proaérsydh such cases, the as-
sertion generated includes also the transition relatidrchvincludes all preservation
formulae. We include this requirement explicitly since greof of the small model
theorem depends on it.

Given a modelV/, one can evaluate the formuteover the modelM. The model\/
is asatisfying moddior ¢, if ¢ evaluates to RUEin M, i.e., if M = ¢. Anindexterm
t € {u, Z[u]} in , whereu is an existentially quantified or a free variable, is called a
free term Let 7, denote the minimal set consisting of the following:

e The term0 and all free terms irp;

e Foreveryarray, € V,if Z[u] € T, thenu € 7,;

e For everyboolarrayB € V, if Blu] € ¢, then if B is unprimedparent[u] € T,
and if B is primed,parent’[u] € 7,

o If parent’[u] € T, thenparent[u] € 7, (this is similar tohistory closureof [2]).

Let M be a model that satisfigswith size greater the|¥,,|+1 as follows: LetV be the
set of{0..h] values thail/ assigns to free terms 1,. Assume thafV = {ng, ..., 7}
where0 = ng < -+ < n,,. Obviously,m < |7,|. Define a mapping: N — [0..m]
such thaty(u) = i iff M[u] = n,; (Recall thatM[7,] = N, so thaty is onto).

We now define the model/. We start with its size and the interpretation of the
scalars:M [h] = m+1; For eachbool variableb, M [b] = M [b]; For each termu € 7,
M) = ~(u).

Let Z € {parent, parent’} be anindex array, and lej € [0..m]. Consider theZ-
chaininM «: n; = ug, ... suchthatforevery > 1, M[Z](u;—1) = M[u;]. If thereis
somei > 1 such that; € N, then letk be the minimal such. We then say that;_ 1
is the M representative o for j and defineM[Z](j) = ~(usx). If no suchi exists,
thenM([Z](j) = m+1.

As for the interpretation ofi/ overbool arrays, we distinguish between the case
of unprimed and primed arrays. For an unprimed (resp. prinbed! array B, for
everyj € [0..m], if the M representative oparent (resp.parent’) is defined and
equalsv, then letM[B](j) = M|[B](v). Otherwise,M[B](j) = M|[B](n;). As for
M|B](m+1), letd € [0..h] be the minimal such that/[d] ¢ N. ThenM [B](m+1) is
defined to beV/[B](d).

Example 2 (Model Reduction).

ut—

v 9\’@)
(_b) The reduction
M of M

(a) A single-parent heap model
M

Fig. 4. Model Reduction

Let parent anddata beindex andbool arrays respectively, and letbe the asser-
tion:
w: Ju,v.uFv A Vy. (parently] #u V dataly])

Since there are no free variablesgnand since no array term refers to th@ or v
element, it follows thaf, consists only of théndex termsu andv. Let A/ be a model
of ¢ of size 7, as shown in Fig. 4(a). The interpretations\yof terms in7,, are the
highlighted nodes. Each nogds annotated with the valuk/[data)(y) (e.g., the node
pointed to byu has data value of & SE). M, which is the reduction of/ with respect
to 7, is given in Fig. 4(b). The\/ representative ofarent for M|[v] is given by the
node highlighted by a dashed line in Fig. 4(a). As shown Hbeenode pointed to by
in M takes on the properties of this representative node.

Theorem 2. If M |= ¢ theny is satisfiable by a model of size at m{i&t| + 1.
Before we prove the theorem, we make the following obseraati

Observation 1 For everyn;,n; € N and everyindex array Z, the following all hold:

1. if M(Z)[n;] = nj thenM (Z)[i] = j, and if M (Z)[i] = j thenM = Z*(i, j);

2. M = Z*(ni,ne), foranyn, € N, iff M(Z)[i] = m+1.

3. M & Z*(ni,ny) iff M = Z*(i, 5);

4. If B'[u] occurs ing for someu € 7, and abool array B € V, thenu, parent[u],
andparent’[u] are all in 7.

Proof. (1), (2), and (4) follow immediately from the constructids for (3), in one di-
rection assume that = Z*(n,,n;). Thus, there exists&d-chaina: n; = vo, ..., vy =

n; in M. Remove all the noV nodes fromw, and letv;, ..., v;, be the remaining
nodes. From the definition 6/ (2) it follows that forevery = 1,...,n, M(Z)[y(v;,_,)] =
Y(vi;). Thus,M = Z*(v(vo),v(vk) = Z*(i,j). In the other direction assume that
M = Z*(i,j). Sincen; € N, i # m+1. Therefore, there exists 4 chaina: i =

ug, U1, ...,ur = j in M such that for every = 1,....¢, M(Z)(u¢_1) = ug. From
part(1) it now follows that\f = Z*(n;, n;). O

We now return to the proof of Theorem 2

Proof. Assume thab is satisfiable. Recall that is a restricted EA-assertion, i.e,is
for the formy: 3Z.4)(d, &), whereZ andi are disjoint lists ofndex variables, and is
a boolean combination of atomic formulae and restricteéggedions. A model satisfies
pis it model can be augmented by an interpretatiofi sfich that the augmented model
satisfies)(Z, @). Let M be such an augmented model, andiiebe its reduction with
respect taZ,, = 7,. To prove the theorem, we need to show that= v if M = .
Assume therefore that/ |= . To show thatM = 1, it suffices to show that
(1) every atomic formula is true in M iff it is true in M, and (2) every restricted
A-assertionp that is satisfied in\/ is also satisfied in\/. (Recall that restricted A-
assertions only may appeardnonly under positive polarity.)
For the first case, let be an atomic sub-formula af. We distinguish between the
following cases:

pis a tcf formula. The claim follows immediately from Observation 1 (part 3).

p is of the form i-subtree 7 (x1,22). Z, x1, andx, are assumed to be andex ar-
ray andindex variables, respectively. In this case, we are dealing withoe
dered heap as defined in Subsection 3.2, and assume the qgexfean array
ct : index — [1..k], with ¢ € [1..k]. In one direction, assume th&f |= p. Expand-
ing the definition ofp to Ju .Z[u] = z2 A ctlu] =i A Z*(x1,u), we conclude
that M): Z*(.I'l,l'g).

We first identify theZ-chain fromz; to 2 in M, i.e. the node sequendé|z;] =
UL, ... Ug, g1 = M[xa] such thatM [Z](u;) = wujtq, for everyj = 1,..., 4.
Letn; be the node,, for the maximak € [1..4], such thatn; € N. Thenuy is
the M representative of for n;. SinceM[Z](ug) = uer1 = M|[z2], it must be
the case that/|[ct](u;) = i. By constructionM|ct](j) = M]|ct](ue) = 4, and

10

M|[Z)(j) = v(M[Z](u¢)) = v(M][xz3]). Furthermore, from Observation 1 (part 3)
we conclude that nodgis Z-reachable from nod&/[z;] in M. Thus,z; is in the
ith subtree ofcy in M, i.e., M |= Ju .Z[u] = x2 A ctlu] =i A Z*(x1,u), and
the claim holds.

In the other direction, assume thet |= p. Let M[z;] = j < m+1 andM[zs] =

¢ < m+1. The claim is proven by considering ti#&chain in M from j to ¢ and,
based on the definition ¥/, constructing a correspondirig-chain in M from

M |x1] = n; to M[x2] = n, in whichn; is in thei® subtree ofu,.

p is a bool variable. The claim follows trivially from the construction a¥/.

p is of the form BJu] for an index variable « and a bool array B. Itthen follows that
parent|u] or parent’[u] is in 7,, according to whetheB is unprimed or primed,
and then it follows from the construction thaf[B)(u) = M [B](u).

pis of the form ¢; = t, for index terms ¢, and ¢5. Sincetq,t, € 7, it follows from
the construction thal/ |=t = t, iff M =t = ts.

For the second case, lebe a universal formula. We distinguish between two cases.

The first is wherp is in one of the formsYy.Z[y] # u, Yy.Z[y] # u V Bly], or
Vy.Z[y] # u vV -~ B[y]. We show here the second case; The other two are similarllReca
thatw must be in7,, and assume that/ (v) = n;. Assume, by way of contradiction,
thatM = vy.Z[y] # v V B[y] and for some € [0..m+1], M = Z[i] = j A —BlJi].
If i = m~+1, then obviouslyM (Z2)[i] = m+1, and thusM (= Z[i] = u. Hence,
i # m+1. From Observation 1 it follows thaf[n;] # n;. Thus, there exists -
representativer # n; for i in M. From the construction it follows that/(Z)[i] =
v(M(Z)[v]) and thatM (B)[i] = M(B)[v]. From the assumption that = —B]i],
it follows that—M (B)[v], and from the assumption thaf |= p it then follows that
M (Z)[v] # nj, contradicting the assumption thak(Z)[i] = ;.

It remains to show the claim for the case thas a preservation formula. We distin-
guish between the following cases:

p is a preservation formula of a index array. Hencep is of the formvy.Z'[y] = Z[y] Vv
\/?:j (y = v:), wherey,, ..., y, areindexvariables irZ,, andZ isindex array. De-
note byY the sef{y, ..., y,} and byy(Y") the sef{y(y1),...,v(yx)}. Thusp can
be re-written a¥y.Z'[y] = Z[y] V y € Y. Assume thafl/ |= p. We have to show
thatM = p, i.e., thatM | Vi € [0.m+1].Z'[i] = Z[i] V i € v(Y). Assume,
by way of contradiction, that for somec [0..m+1], M = Z'[i] # Z[i] A i &
(Y. We show thatM (Z)[i] = M(Z')[i], contradicting the assumption. Since
M(Z)m+1] = M(Z")[m+1] = m+1, it follows thati # m+1. Consider the
Z-chainn; = ug, u1, ... and theZ’-chainn; = v, v1,...in M. Sincei # v(Y),
it follows, from the assumption that/ = p, thatM = Z[ug] = Z]wo], hence
v = uy. Proceeding like this, we obtain that either

1. Forallj > 0, u; = v;, or

2. Forsomen > 1, u,, = vy, € Y,andforallj =0,....m—1,u; =v; €Y.

In the first case we obtain that/(Z’)[i] = M(Z)[i]. In the second case,since
Um = vm € Y € 7, we obtain that has the samé&-representative i/, and
thus M (Z)[i] = M(Z')[i]. (Note that thisZ-representative is either; = v; for
somej < m, Ofr u,, = j,. The claim follows in either case.)

11

1 is a preservation formula of a bool array. Following the notation of the previous
part, assume is of the formvy.B’[y] = Bly] V y € Y whereY is a set ofindex
variables inZ,. Assume thafi/ = p, and thatM |~ p, i.e., for some € [0..m+1],
M = B'[i] # Bli] A i & 4(Y). SinceM(B)[m+1] = M(B)[d], M(B')[d] =
M(B’)[d], andd ¢ Y, it follows thati # m+1.

This case is handled similarly to the previous case, corisigl¢he Z-chainn; =
up, . .. andZ’-chainn; = vy, ... in M, and conclude that/ (B’)[i] = M (B)[i].
The only difference is in the inductive step: Let> 0, and assume that for afl <
k,u; =v;andu; € Y. If M(Z')[vi] = M(Z)[vk], then obviouslyy11 = uky1.
Otherwise M (Z')[vx] # M (Z)[v]. From Observation 1, part (4), it follows that
Uk, Uk+1, Vk+1 € To. It thus follows thati has the same and Z representative
in M (which is eithervo, v; for somej < k, or v;) and thereforeM (B)[i] =
M (B)][i]. O

The discussion below is similar to the one in [2]; see dethitse. For a restricted
EA-assertiony and a positive integety > 0, define thehy-boundedversion of o,
denoted by |, , to be the conjunctiop A Vy .y < hg. Theorem 2 can be interpreted
as stating thap is satisfiable iff ¢ | 7| is satisfiable.

We next extend the small model theorem to the computatiobstiaction of sys-
tems. Consider an abstractionwhere the set of (finitely many combinations of) val-
ues of the abstract system variablésis {Uy,...,Us}. Let saf(p) be the subset of
indicesi € [1..k], such thaty; = £,(V) A (V) is satisfiable. Them(y)(V,) =
Viesaty) (Vi = Us)-

Consider the assertiofyy : U; = E.(V) A p(V). Let hg = |Ty,|. Our reinter-
pretation of Theorem 2 states thag is satisfiable iff[¢ |, is satisfiable. Therefore,
sat(|¢]n,) = sat(p). Thus,a(p)(V,) < a(l¢]r,)(V,). This can be extended to ab-
straction of assertions that refer to primed variablesalRétat the abstraction of such
an assertion involves a double application of the abstractiapping, an unprimed ver-
sion and a primed version. Assume thaf/, V') is such an assertion, and consider
(U =E,V)ANU; =E,(V)) N oV, V). Lethy = |Ty,|. By the same
reasoning, we have(o)(V,, V) < a(le]n, (V,,V))).

Next we generalize these results to entire systems. Ferars = (V, 0, p, J,C)
and positive integehg, we define theho-bounded version of, denoted|S|,, as
(VULHY, [plhys [T Iho, [Clng)s Where [T |n, = {[J]n, | J € T} and|[Cln, =
{(lp]ho> Lq1o) | (p,q) € C}. Let ho be the maximum size of the seTg, for every
abstraction formula necessary for computing the abstraction of all the compisran
S. Then we have the following theorem:

Theorem 3. Let S be a single-parent heap systembe an abstraction mapping, and
ho the maximal size of the relevant sets of free terms as destabove. Then the
abstract systens is equivalent to the abstract systesi| .

As a consequence, in order to compute the abstract systemwe can instantiate
the systens to a heap of siz&,, and use propositional methods, espp-technique$
to compute the abstract systeifi|j; . Note thath, is linear in the number of system

4 In our experiments we use.v ([17]).

12

variables. This process is fully automatic once the pradibase is given. The exact
manner by which predicates themselves are derived (e.gisé@yinput or as part of a
refinement loop) is orthogonal to the method presented here.

5 Multi-Linked Heap Systems

In this section we definmulti-linked heap systemgth a bounded out-degree on nodes.
A multi-linked heap is represented similar to a single-pareap, only, instead of hav-
ing a singleindex array, we allow for somé > 1 index arrays, each describing one of
the links a node may have. We denote these arraygby, . . ., linkj. Thus, eactink;

is an array{0..h] — [0..h]. We are mainly interested imon-sharing heapgefined as
follows:

Definition 1. A non-sharing heajs one that satisfies the following requirements:

1. Foreveryi=1,...,k, link;[0] = 0.

2. For evenybool array B, —BJ0].

3. No two distinct positive nodes may share a common posttile This requirement
can be formalized as

Vi, 0 € [L.h],i,r € [L.K]. (G # €) A (link,[j] = link,[€]) — link;[j] =0

4. No two distinct links of a positive node may point to the sawsitive child. This
can be formalized as

Vi€ [1..h],s,t € [1..k]. (s # t) A (links[j] = link,[j]) — links[j] =0
o1

We refer to the conjunction of the requirements in Definitibioy the formula
no_sharing A state violating one of these three requirements is callgthring state

A multi-linked system is calledharing-fredf none of its computations ever reaches
a sharing state, nor does a computation ever attempt tonassiglue taA[0] for some
arrayA.

LetD: (V,0,p,J,C) be ak-bounded multi-linked heap system. Fig. 5 describes
a BNF-like syntax of the assertions used in descrilingThere,l var denotes an
unprimedindex variable,l ar r denotes an unprimeiddex array,Bvar denotes an
unprimedbool variable, andBar r denotes an unprimeblool array. The expression
reach(z,y) abbreviategz,y) € (Uf:1 link;)*, and the expressiotyclez) abbrevi-
ates(z,z) € (Uf:1 link;)*. ThePreservationassertion is just like in the single-parent
case and we require thatAssi gn appears inr, then thePreservationassertion that
is conjoined with it includes preservation of all variabtieat don't appear in the left-
hand-side of any clause 8&si gn.

For example, consider a binary tree, which is a multi-linkedp with bound 2 and
no sharing. Each ofeft andright is a link. Program REE-INSERT in Fig. 6 is the
standard algorithm for inserting a new nodegijnto a sorted binary tree rootedrat

13

MCondl ::= TRUE | Bvar | Barr[lvar] | lvar =lvar | lvar =0 |
larr[lvar]=1lvar | larr[lvar]=0 |
mCondl v MCondl | —mCondl

MCond2 ::= mCondl | reachl var, var) | cyclglvar) |
—-MCond2 | MCond2 Vv MCond2

Assign:=¢ | Bvar’ | —-Bvar’ | Barr’[lvar] | —Barr’[lvar] |
Bvar’=Bvar | lvar'=0 | Ivar’'=lvar |
larr’[lvar]=1lvar | larr’[lvar]=0 | AssignAAssign

© ::= MCond2 A no.sharing

p = TRUE | MCondl A Assign A Preservation | p V p
J =0 | Ju{mCondl}

C:=0 | CU{(mCondl, mCondl)}

Fig. 5. Grammar for Assertions for Multi-Linked Systems

6 Reducing Multi-Linked into Single-Parent Heaps

We now show how to transform multi-linked heap systems inmtieced single-parent
heap systems.

6.1 The Transformation

LetD,.: Vi, Om, Py Tm, Crn) be ak-bounded multi-linked heap system. Thig,
includes thendex arrayslink1, . . ., link;. We transformD,,, into a single-parent heap
systemD;: (Vs, Os, ps, Ts, Cs) as follows:

The set of variable¥; consists of the following:

=

o Vi \ {link, ..., link}, i.e., we remove fronV,, all the link arrays;

. Anindex arrayparent: [0..h] — [0..h] that does not appear iA,,;

3. Aboolarrayct: [0..h] — [0..k] that does not appear i,, (recall our convention
that “bool” can be any finite-domain type);

4. A newbool variableerror; error is set wherD,,, contains an erroneous transition

such as one that introduces sharing in the heap, or atteassign values td [0]

for some arrayA.

N

Intuitively, we replace théndex link arrays with a singléndex parent array that re-
verses the direction of the links, and assigrtp] (child typd the “birth order” ofi in
the heap. The variabkaror is boolean and is set whé&n,, cannot be transformed into a
singe-parent system. This is caused by either an assigrimafii] or by a violation of
the non-sharing requirements. When such an error ocetrs, is raised, and remains
S0, i.e.,ps implieserror — error’.

Definition 2. A single-parent state is said to beell formedif the parent of 0 is itself,
all the bool arrays B C V, associate 0 with the valuaLsE, and no parent has two

14

left, right : array [0..h] of [0..h] init no_sharing

data : array [0..h] of bool

r,n : [1..h] init =reach(r,n) A —cyclgr) A
leftin] = 0 A right[n] = 0

t : [0..h] int ¢t =r

done : bool init done= FALSE

1: while —~donedo
[2:if data[n] = data[t]then 7]
3 : done:= TRUE
4 : elseifdata[n] < data[t] then
5 : if left[t] = O then
6 : leftlt] :=n
7 : done:= TRUE
else
8 : t := left[t]
9 : elseifright[¢t] = 0 then
10 : right[t] :=n
11 : done:= TRUE
else
12 : ¢ := right[¢]

L 13 :

Fig. 6. Program REE-INSERTOf Fig. 2, adapted to the encoding of trees as multi-linkeaple

distinct children with the same birth order, i.e.,

wi: parent[0] =0 A Apcp(=B[0]) A
Vi # j . (parent[i] = parent[j] #0 — ctli] # ct[j])

-

To transformp,,,, Jm, andC,, into their D counterparts, it suffices to transform
M-assertions ovey,, U V!, into restricted EA-assertions ovet U V.. To transform
Om, Which is of the formno_sharingA ¢, wherey is anmCond2, into &4, we take
the conjunction ofaf and the transformation ap. It thus remains to transforma-
assertions. Recall that,, is a disjunction of clauses (see Section 5), each one of the
form

© AT A presEx(V,, —{V})

whereV C V,,, ¢ is anmCond overV,,, andr is anAssi gn statement of the form
Npev V' = E,(Vi) (whereE, is some expression). When we transform sugh,a
disjunct, we sometimes obtain several disjuncts. We asshateeach has its obvious
presEz assertions ovey. At times, for simplicity of representation, we do not exgse
the transformation directly in DNF. Yet, in those caseshg- form is straightforward.

It thus remains to show how to transformassertions into restricted EA-assertions.
This is done by induction on the-assertions, where we ignore the preservation part
(which, as discussed above, is defined by the transitiotioalfor bothD,,, andD;.)

Lety be anm-assertion. In the following caseg,remains unchanged in the trans-
formation:

1. ¢ contains no reference tndex variables and arrays;

15

2. ¢ is of the formz; = x5 wherex; andzs are both primed, or both unprimed,
index variables;

3. ¢ is of the formx; = x5 wherez; is a primed, andc, is an unprimedindex
variable;

4. 1 is of the formz = 0 wherex is a (either primed or unprimed)dex variable;

5. ¢ is of the formB[z], whereB is an unprimedool array.

The other cases are treated below. We now denote primedlesiaxplicitly, e.g.;x1
refers to an unprimed variable, anfl refers to a primed variable:

1. An assertion of the forriink ;[x2] = 1 is transformed into

(.CCQ =0 A I = O)

V (22 Z0 A 1 =0 A Vz. (parent|z] # x2 V ct[z] # 7))

V (22 20 A 21 #0 A parent[z1] = x2 A ct[z1] = j)
In the case that, # 0 andz; = 0, z» should have ng*" child. If 2, # 0 and
x1 # 0, thenz; should haver; as a parent and the child typemof should bej.

2. Atransitive closure formuleeach(z1, z2) is transformed into

(1 #0 A 2 £0 A parent*(x9,21)) V (2 =0)

The first disjunct deals with the case whereandz. are both non-0 nodes, and
then the reachability direction is reversed, reflectingeresl of heap edges in the
transformation to a single-parent heap. The second disfleats with the case that
2 = 0, and then, sincé > 0, there is a path from any node into 0.

3. Atransitive closure formulayclgz), wherez is anindex variable, is transformed
into parent™*(parent|x], x).

4. An assertion of the form = link ;[z-] is transformed into:

(o =0A27=0) V(xza £Z0 A 2} =0AVy . (parently] # x2 V ctly] # 7))
V (z2 #0AJy. (parently] = x2 Actlyl =j Az =)

In casexy = 0, this transition sets:; to 0 since we assume that in non-sharing
stateslink;[0] = 0 for everyj = 1,..., k. Otherwise, ifzs has nojt" child, then
x1 is set to0. Otherwise, there existsiawhich is thej*” child of x5, and then:;
is set toy.

5. An assertion of the forn®’[z], whereB is an unprimedbool array, is transformed
differently based on its polarity. If it appears undmgsitive polarity, it is trans-
formed into:

(x=0 A eror') vV (x #0 A B'[z])

The error condition reflects an attempt to assiggUE to BJ0]. If the assertion
B'[z] appears undemegativepolarity, then no erroneous assignment is possible,
and the assertion remains unchanged by the transformation.

16

6. An assertion of the forrhnkfj [x1] = 9 is transformed into:

Err A error’ v

—Err
A (2 =0V (22 # 0 A parent’[xs] = x1 A ct'[z2] = j))
A (Vz . (parent|z] # x1 V ct[z] # 7) >
V 3z (parent[z] =z A ctlz] =j N (2 =x2 V parent'[z] = 0))

WherekErr is defined by:

(x1 =0Ax2 #0)V (z2 # 0 A parentlxs] # 0 A (parent|zs] # x1 V ct[za] # 7))

l.e., the assignment may cause an error by either attemfatiagsign a nonzero
value tolink ;[0], or by introducing sharing (wher, either has a parent that is not
x1, Orisz’s it" child for somei # j).

When there is no errog;; should become thg" child of z; unless it is 0, which

is expressed by the first conjunct of the non-error case; ditiad, any node that
was thej*" child of z; before the transition should become “orphaned,” which is
expressed by the second conjunct of the non-error case.

The following observation follows trivially from the comattion above:
Observation 2 The transformation of an-assertion is a restricted EA-assertion.

Having defined the system transformation, we can now demaiaghe complete
verification process of the tree insertion program.

Example 3 (Verification of REE-INSERT).
We wish to verify that the multi-linked tree insertion pragr given in Fig. 6 satis-
fies the following specification:

no-loss: Vz . reach(r,) — [J reach(r, x)
no-gain: Vo . x #n A —reach(r,z) — [—reach(r,)
insertion: (Vu . reach(r,u) — datalu] # data[n]) — []at-13 — reach(r,n)

We begin by eliminating the universal quantifiers in tteelossandno-gainproperties
by introducing askolem constant. This is done by augmenting the program with a
variable with an undetermined initial value that stays tamisthroughout a computa-
tion. This is a purely syntactic transformation.

As for theinsertionproperty, unfortunately the abstraction computation metbf
Section 4 disallows any occurrencertich predicates under universal quantification.
Therefore, we heuristicallinstantiatethe universal variable to derive the following
(stronger) property:

insertion: (/\ue{r,n,t} reach(r,u) — datalu] # data[n]) — [Jat_13 — reach(r,n)

We proceed by applying the system transformation, regultirthe single-parent
heap systefmshown in Fig. 7. We now apply predicate abstraction. We usetadicate

5 Note that this automatically-derived version is less optithan the manually-constructed
single-parent system given in Fig. 2.

17

O: parent[0] =0 A Vi # j . (parent[i] = parent[j] # 0 — ct[i] # ct[j]) A
—parent™(n,r) A Vi.(parent[i] #n) A t =r A —parent™(parent[r],r) A —done
p: error A error’ A presEz(error)

Y
—error A
[mw=1A —doneA ' =2 A presEx(m)
V m=1 A done A 7’ =13 A presEx(m)
V m =2 A data[t] = data[n] A © =3 A presEx(w)
V m =2 A data[t] # data[n] A ©' =4 A presEx(m)
V 7=3 A7 =1 A doné A presEx(m,done
V m=4 A t#0 A data[n] < data[t] A ©' =5 A presEz(m)
V m=4 A (t=0 V data[t] < data[n]) A ©’ =9 A presEz(m)
Vv try(5, left) Vv try(9, right)
LV n=13 A 7’ =13 A presEz(w)
try(link, mo): B T=m AT =m+1A presEz(mw) A 1
(t=0V (t#0 A Vj.parent[j] #t V ct[j] # left))
Va=mg A7 =7m90+3 A t#0 A presEx(m)
(37 . parent[j] =t A ct[j] = left)
V m=mo+1 A eror’ A presEx(error) A

e
(t=0V (t#0 A parent[n] #0 A (parent[n] #t V ct[n] # left))) A
Va=m+1lAn =m+2At#0A
(parent[n] =0 V (parent[n] =t A ct[n] = left)) A
parent’[n] =t A ct’'[n] = left A presEz(w, parent[n], ct[n]) A
Vi (parent[j] £t v ctlj] # left
Vv 3j. (parentlj] =t A ct[j] =left A (j =n V parent’[j] = 0)) A
Vr=m+2An =1A doné A presEz(m,done
Vr=m+3 A7 =1A presBx(m,t) A

t=0At =0
V t#£0 ANt =0 A Vj.(parent[j] #t V ct[j] # left)
V t#0 A 3j. (parentj] =t A ct[j] =left A t' = j)

Fig. 7. The single-parent program resulting from transformatibthe tree insertion program of
Fig. 6

base given by the following set of assertions:

p1: Vj . parent[j] # n,
po : left-subtreén, r),
ps : right-subtreg¢n, r),
P : < pa: parent*(t,r),

ps : 35 . parent[j] = t,
pe : datalt] = data[n],
pr : parent*(x, 1)

Note that the predicatg, is in fact an inductive invariant, a fact that can be decided
(without the use of abstraction) by directly applying Thexar2 to check validity of the
verification conditions

1.9 — P1

12.p1 A p—p}
Having decided the invariance pf, it is possible to optimize the abstraction compu-

tation by removingy; from the predicate base, and by constraining the concrate st
space tg; -states only. J

In the following section we establish the soundness of #esfiormation.

18

6.2 Correctness of Transformation

In order for the above transformation to fit into the verificatprocess proposed in
Section 1, we have to show that the result of the verificat&ancarried out on the
transformed system and property, holds with respect tottransformed counterparts.
Such aresultis provided by Theorem 4 below. To show thatlteaction computation
method of Section 4 is sound with respect to a transformegdrpro and property, we
use Observation 2 and Theorem 5 below. For simplicity ofgmestion, in this section
we do not take into account fairness requirements. Howisistraightforward to ex-
tend the results, i.e., show that the heap transformatiesgpves satisfiability of justice
requirements, and that the computation transformatiosgoves compassion.

LetD,, : Vi, Oms P, T, Cs) be ak-bounded multi-linked heap system over the
set of variabled/,,,, with k > 1, and letD; : (Vs, Os, ps, Js,Cs) be its transformation
into a single-parent heap system. The transformation irsiogle-parent heap system
induces a mapping: X, — X,. The mappings is formally defined below.

Definition 3. LetS be a mapping fron¥,,, into X, such that for every,, € X,,, if
ss = S(sm), then the following all hold:

. For everybool variablev € V,,,, ss[v] = s [v];

For evenybool array B € V,,, andx € [0..h], s5[B](x) = s,,[B](x);

. For everyindex variablex € V,,, ss[z] = sm[2]

. Ss[parent](0) = 0 ands,[ct](0) = 1.

. Lety € [1..p]. If for all z € [1.h] andi € [1..k], sy[link;](z) # y, then
ss[parent](y) = 0 ands;[ct](y) = 1. Otherwises,[parent](y) = x ands;|[ct](y) =
j where(z, 7) is the lexicographically minimal pair id(z,4) : z € [1..h], @ €
[1..k], ands,,[link;](z) = y}.

6. s, [error] {FALSE, if 5, |: no_sharing

TRUE, otherwise

AWM P

We first make the following observation regardifig

Observation 3 The inverseS—! is well defined for any well formed non-error state
ss € Xs. Thatis, ifss | wf A —error then there exists a statg, € X such that
S(Sm) = Ss.

Lemmal. Lets,, € X, and lets, = S(sy,). Thens,, = nosharing < s; =
wf A —error.

Proof. The reverse direction holds trivially. We now assume that= no_sharing
and show that, satisfiesst, i.e.,

—error A parent[0] =0 A Apcp(=B[0]) A
Vi # j . (parent[i] = parent[j] #0 — ct[i] # ct[j])

whereB C V; is the set obool arrays ofD;. s,[error] = FALSE, ss[parent](0) = 0,
ands;[B](0) = FALSE, for all B € B, all follow from the definition ofS. The universal
condition follows from two properties:

19

— The links in a multi-linked heap are functional, i.e., foeeyi € [1..k], every node
has at most oné&nk;-child.

— From Item 5 of the definition of, we have that for any nodesandv, andi €
[1..k], we haves;[parent](u) = v ands[ct](u) = i iff s, [link;](v) = . O

Lemma 2. Lets,, € X, be a state that satisfies the ;sbaring constraint, and let
ss = S(sm). Lety,, be a boolean combination ef-atomic formulae oveb,,,, and let
s be its transformation into an assertion ovBg. Then:s,, E ¢, <= ss = ¢s

Proof. The claim follows immediately from Lemma 1 for the case that is an M-
atomic nonreach and noneycleformula. For the other cases, we distinguish between:

©m is of the form reach(x1, x2). Then,p, is of the from
(x1 #0 A 2 #0 A parent™(x2,21)) V (z2 =0)

From the definition ofS it follows thatss[z1] = s [z1] andss[xz] = spm[z2]. In
one direction, assume that, = ¢m. If s,[x2] = 0, then obviouslys; E ¢s.
Otherwise, assume that,[z2] # 0. Hence, for some: > 1 there exist nodes

Smlx1] = u1,. .., u, = s;m[z2] such that for every = 1, ..., n, there exists some
Ji € [1..k] such thats,, = linkj,[u;] = w41, andsy,[u;] # 0. SinceD,, |=
no_sharing it follows that for everyi = 1,...,n — 1, ss[parent](uit1) = u;.

Thus,ss = parent™(un, u1). Thusss = ¢s.
In the other direction, assume that = ¢,. If s;[z1] = 0, thens,[z2] = 0, and
thens,, E ¢, trivially follows. Assume therefore that,[x1] # 0. If ss[z2] # 0,
an argument, similar to the one used for this case in the dihection, shows that
Sm E @m. If ss[z2] = 0, then letu # 0 be such that there is &[parent]-path
from u to s[z1], and for some € [1..k], and for everyy eithers,[parent](y) #
u or Mglet)(y) # i. Thus, s, [link;](u) # y for everyy. It thus follows that
Sm[link;](v) = 0. Similar arguments to the previous direction show thateher
is a(Uf:1 link;)-path froms,,[z1] to w. We can therefore conclude thgt, =
reach” (z1,x2).

©m is of the form cyclgx). This case is similar to the previous case. O

Since the initial condition oD,,, is not a restricted A-assertion, it needs to be dealt
with separately:

Lemma 3. Lets,, € X, such thats,,, = no_sharing. Lets; = S(s,,). Then:s,, &=
O = ss = 6O

Proof. As a consequence of the grammar in Figo5, is of the formy) A no_sharing
wherey is a boolean combination of-atomic formulae. Section 6 definés asy, A
wf, where, is the transformation of) by the rules of Section 6 andf is given
in Definition 2. From Lemma 2 we have thatdf, = no_sharing thens,, E v
iff s E v,. From Definition 3 we have; = —error, and from Lemma 1 we have
$m = no_sharingiff s; = —error A wf. Thuss,, E 6, iff s, | O,. ad

We now extend Lemma 2 to show that transformation of the iiangelation preserves
the mappingS:

20

Lemma4. Lets,, € X, andss, = S(s.,), such thats,, = no_sharing. Then for
any states!, € X, S(s,,) is a ps-successor 0f; if s/, is a p,,-successor 0f,,.
Furthermore, ifs’, = no_sharing, then the reverse direction holds as well.

Proof. Let s/, € X, be a state such thaf, = no_sharing Sincep,, is a disjunc-
tion of clauses, Lep(V,,,) A 7(Vm, V),) A preservéV,,, V.) be one such arbitrary
clause. Then the transformed clause is giverobVs) A 75(Vs, V%), wherep,(Vs)

is the transformation ap(V,,,) andr,(Vs, V.) is the transformation of (V,,,, V;,) (re-
call that the preservation conjunct, present in the origiteuse, is discarded by the
transformation, and that encapsulates variable preservation clauses).

From Lemma 2 and Lemma 3 we havg = ¢(Vy,) iff ss = ps(Vs). Lets), =
S(sh,)- Itisleftto showthats,,, s,,) = 7(Vm, V,,) A preservéV,,, V.) iff (ss,s,) =
7:(Vs, V%). Sincer is a conjunction ofAssi gn formulas, we show that for each type
of atomicAssi gn formulay(V,,, V/,) and its transformatioths (Vs, V2), (Sm, Sh,) =
YV, Vi) = (ss,8h) E ¥s(Vs,V)), and if s, = no_sharingthen the reverse
direction holds as well.

1 has the form z| = to wheret, is either arindex variable or 0. In this case the claim
holds trivially for both directions.

¥ has the form B’[z] or =B’[z], whereB is abool array andz is anindex variable.
In the case of-B’|[x], the claim follows trivially. In the case dB’[z], ¢; is the formula
(x=0 A error') V (z #0 A B'[z]).

1. s}, = nosharing Thens!, = —B[0], ands’, = —error. If (s;,,s},) = B'[z],
thenx cannot bé) in s,,, nor ins;. FromS we have(s,, s,) =« # 0 A B'[x].
Otherwise, if(ss, s,) = 15, then the claim follows from the definition fand the
fact thaterror is FALSE in s..

2. s, = nosharing Thens’, = error. If s,,[x] = 0, then from the definition of
we have(s,, %) =2 =0 A error’. Thus(sm, s,,) E ¥ = (ss,55) E ¥s.
Otherwise s, [x] = ss[z] # 0. Since, by definition oF, s/, [B](sm[z]) = s4[B](ss[x]),
then(sp,, s,,) Ex #0 A B'[z]iff (ss,s)) Fx#0 A B'[x].

¥ has the form z} = link;[z2]. We focus on the nontrivial case that[z2] # 0
ands),[x}] # 0. First assume that, is a leaf, i.e.,s,,[link;](sm[z2]) = 0. In this
cases!,[z1] = 0, and by definition ofS, s.[x;] = 0. From the assumption, we have
$m [link;[z1] = 0. Then by Lemma 25, = Yy . (parently] # z2 V ctly] # 7).
Otherwise, assume that is not a leaf, i.e.s,, [link ;] (s [z2]) # 0. Then by definition
of S, there exists a node # 0 such thats),[x1] = w ands),[link;](sm[z2]) = w.
Then by definition ofS, ss[parent](u) = ss[x2], ss[ct](u) = j, ands,[z1] = u. Thus
(ss,8%) =y . (parently] = 22 A ctly] = j A) = y). Inthe reverse direction, if
sm ands’ both satisfy theno_sharingconstraint, then the claim follows trivially from
the definition ofS.

21

1 has the form linkg [21] = x2. Themy, is the formula

Err A error’ (1)
V
—Err
A (x2=0V (22 £0 A parent'[xa] =21 A ct'[xz2] = 7))
Vz . (parent[z] # x1 V ct[z] # J) (2)

A |V Tz (parent[z] = x1 A ct[z] =5 A
(z =z V parent’[z] = 0))

First assumés,,,s.,) = . Letu; = s,,[z1] anduy = s,,[z2]. We consider two
cases:

1. Nodeus has multiple parents igf,,, one of which must be;. In this case, we have
sl = nosharing Furthermore, by definition af, we haves’[error] = TRUE and
ss = Err. Thus(ss, s,) = ¢s.

2. Nodeu; has a single parent igl,,, which must beu;. In this case it must be the
case that; = —Err. We now show thafs;, s,) satisfies the other two conjuncts
in disjunct (2) of ¢s. The conjunct(zs = 0 V (z2 # 0 A parent'[zs] =
x1 N ct'[z2] = 7)) follows from the definition ofS. As for the third conjunct,
consider first the case that has noj-child in s,,. Then by definition ofS, s =
Vz . parent(z] # x1 V ct[z] # j. Otherwise, there exists a nodehat is the
j-child of u; in s,,. If z is notuy, then it is no longer thg-child of uy in s/ ,. It
follows from the definition ofS that(ss, s,) = 1.

Itis left to show the reverse direction, under the assumgtiats/, = no_sharing
It follows that s/ [error] = FALSE. Thus, it must be the case that, s’,) satisfies dis-
junct (2) of 1. Letuy = sg[z1] andug = ss[z2]. From the definition ofS and the
conjunct(ze =0 V (22 # 0 A parent’[ze] = x1 A ct’'[z2] = 7)) we conclude that
if ue # 0, thenuy is aj-child of u; in s/, If ug = 0, then from the third conjunct we

conclude that;; has no child ins),,. Therefore(s,,, s,,,) = ¥. 0
Corollary 1. Letu: s%,, sk ... be a(finite or infinite) sequence of states that consists

only of non-sharing states. Thenis a run of D,,, iff S(u) : S(s9,),S(sl,)...isarun
of D, without error states.

Proof. The proof is by induction on the run length. At the base casenfLemma 3
we have thatS(s?)) = O iff s°, = ©,,. Sinced,, is defined to include the conjunct
no_sharing thens?, satisfies the non-sharing constraint, and by definitiof ofe have
8(s%) = —error.

For the inductive step, le,, ..., s" be arun ofD,, that is without sharing, and
letS(sY,),...,S(s?,) be arun ofD; that is without error states. By Lemma 4 and the
definition of S, aD,,-states” ! without sharing is @,,-successor of” iff S(s+!)
is aps-successor of; such thatS(s™1)[error] = FALSE. O

From Lemma 2, Corollary 1, and Observation 3 we can now prove:

22

Theorem 4 (Soundness)Assume that for every reachalilg, -states,, € X, s E
no_sharing. Lety,, be a temporal property ovew-restricted A-assertions over,,,
and lety, be ¢,,, where every assertion ovét,, is replaced with its transformation
into a restricted EA-assertion ovét,. Then:D, E ¢s <= D, E vm

While Theorem 4 shows that validity of temporal formulaeries from multi-linked
systems into single-parent ones only when the former gatish-sharing, we prove
that if the latter never reaches an error state, then thedionever violates non-sharing:

Theorem 5 (Non-sharing).If D, = [—error thenD,,, = [] no_sharing.

Proof. Assume tha®D,, has a computation with a prefif,, ..., s”,, where for any
0 < i < n, s, = nosharingands”, [~ nosharing Following Corollary 1, the
sequences(s?),...,S(s% 1) is an error-free run oD,. From Lemma 4S(s?) is a

successor i, of S(s~1). From the definition of we haveS(s?,) |= error. O

Thus, to verifyD,,, = .., one would initially perform a “sanity check” by verifying
D, = [—error. If this is successful, then the process outlined in Sectiman be
carried out. Theorem 4 guarantees not only that correcofeBs implies correctness
of D,,,, but also that a counterexample o2y is mappable back int®,,, .

7 Conclusion

We describe a transformation from programs that perforntrdetive updates over
multi-linked heaps without sharing into single-parentpeethat is based on the idea of
simulating a tree (or forest) by a set of converging lists.tén apply an abstraction-
based verification framework to automatically verify prdjes of systems over multi-
linked heaps.

We applied our technique to verify properties of insertiotoiAVL trees. We are
currently implementing more benchmarks, including an enpéntation of 2-3 trees.
We are also extending the transformation to allow for unlg®ahout-degrees in the
multi-linked heap, and to heaps whose “backbone” is sipgleent, which would allow
us to model algorithms that “flip” heap edges (a surprisingggful feature). In the
longer term, we would like to investigate how to use muhikkd heap systems as the
basis for further structure simulation (e.g., as in [19)12]

Acknowledgement: We would like to thank Viktor Kuncak and Greta Yorsh for their
insight regarding structure simulation. We also would li@ghank the anonymous re-
viewers for their constructive comments.

References

1. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Paramegeriverification with automat-
ically computed inductive assertions. Rroc. 13" Intl. Conference on Computer Aided
Verification pages 221-234. LNCS 2102, 2001.

2. |.Balaban, A. Pnueli, and L. D. Zuck. Shape analysis bylipege abstraction. In R. Cousot,
editor,Proc. of the6*” Int. Conference on Verification, Model Checking, and Alsthater-
pretation volume 3385 ot ect. Notes in Comp. Scpages 164—-180. Springer, 2005.

23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

|. Balaban, A. Pnueli, and L. D. Zuck. Modular ranking ahstion. To appear
in International Journal of Foundations of Computer ScaertJFCS), 2007. See
http://www.cs.nyu.edu/acsys/pubs/permanent/rankorgpanion-pre.pdf

. T.Balland R. B. Jones, editoiGomputer Aided Verification, 18th International Conferenc

CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedingsne 4144 ofLecture
Notes in Computer Scienc8pringer, 2006.

. M. Benedikt, T. W. Reps, and S. Sagiv. A decidable logicdescribing linked data struc-

tures. In S. D. Swierstra, editdSOP volume 1576 of.ecture Notes in Computer Science
pages 2—19. Springer, 1999.

. J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Autimtermination proofs for

programs with shape-shifting heaps. In Ball and Jones ptjep 386—400.

. J. D. Bingham and Z. Rakamaric. A logic and decision pracedor predicate abstraction

of heap-manipulating programs. In E. A. Emerson and K. S. jusii, editors,VMCA|,
volume 3855 oL ecture Notes in Computer Scienpgages 207—221. Springer, 2006.

. E. Borger, E. Gradel, and Y. Gurevicihe Classical Decision ProblemPerspectives of

Mathematical Logic. Springer-Verlag, 1997. Second pnipijUniversitext) 2001.

. A. Bouajjani, M. Bozga, P. Habermehl, R. losif, P. Morogdn Vojnar. Programs with lists

are counter automata. In Ball and Jones [4], pages 517-531.

E. Gradel, M. Otto, and E. Rosen. Undecidability resait two-variable logics. In R. Reis-
chuk and M. Morvan, editor§STACSvolume 1200 ol ecture Notes in Computer Science
pages 249-260. Springer, 1997.

N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, andf@sh. The boundary between
decidability and undecidability for transitive-closumgics. In J. Marcinkowski and A. Tar-
lecki, editors,CSL, volume 3210 ofLecture Notes in Computer Sciengages 160-174.
Springer, 2004.

N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, andY@sh. Verification via
structure simulation. IfProc. 16" Intl. Conference on Computer Aided Verificatidrect.
Notes in Comp. Sci., pages 281-294. Springer-Verlag, 2004.

Y. Kesten and A. Pnueli. Verification by augmented fiitabstraction. Information and
Computation163(1):203—-243, 2000.

N. Klarlund and M. I. Schwartzbach. Graph typesPtoc. 20" ACM Symp. Princ. of Prog.
Lang, pages 196-205, New York, NY, USA, 1993. ACM Press.

R. Manevich, E. Yahav, G. Ramalingam, and S. Sagiv. Pagglabstraction and canonical
abstraction for singly-linked lists. In R. Cousot, editBrpc. of the6*” Int. Conference on
Verification, Model Checking, and Abstract Interpretatimolume 3385 ofLect. Notes in
Comp. Sci.pages 181-198. Springer, 2005.

A. Mgller and M. |. Schwartzbach. The Pointer Assertiagic Engine. InProgramming
Language Design and Implementati@®901.

A. Pnueli and E. Shahar. A platform combining deductiveh\algorithmic verification.
In Rajeev Alur and Thomas A. Henzinger, editdPspceedings of the Eighth International
Conference on Computer Aided Verification CAblume 1102, page 184, New Brunswick,
NJ, USA, / 1996. Springer Verlag.

J. C. Reynolds. Separation logic: A logic for shared tlatdata structures. InICS pages
55-74. IEEE Computer Society, 2002.

T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. @idfconstraint analysis. Proc.
of the 7** Int. Conference on Verification, Model Checking, and Altiaterpretation
2006.

G. Yorsh, A. M. Rabinovich, M. Sagiv, A. Meyer, and A. Bgaai. A logic of reachable
patterns in linked data-structures. In L. Aceto and A. Ifegfbttir, editors FoSSaCSvolume
3921 ofLecture Notes in Computer Sciengages 94-110. Springer, 2006.

24

