
Shape Analysis of Single-Parent Heaps⋆

Ittai Balaban1, Amir Pnueli12, and Lenore D. Zuck3

1 New York University, New York,{balaban,amir}@cs.nyu.edu
2 Weizmann Institute of Science,

3 University of Illinois at Chicago,lenore@cs.uic.edu

Abstract. We define the class ofsingle-parent heap systems, which rely on a
singly-linked heap in order to model destructive updates ontree structures. This
encoding has the advantage of relying on a relatively simpletheory of linked lists
in order to support abstraction computation. To facilitatethe application of this
encoding, we provide a program transformation that, given aprogram operating
on a multi-linked heap without sharing, transforms it into one over a single-parent
heap. It is then possible to apply shape analysis by predicate and ranking abstrac-
tion as in [2]. The technique has been successfully applied on examples with trees
of fixed arity (balancing of and insertion into a binary sort tree).

1 Introduction

In [2] we propose a framework for shape analysis of singly-linked graphs based on a
small model property of a restricted class of first order assertions with transitive clo-
sure. Extending this framework to allow for heaps with multiple links per node entails
extending the assertional language and proving a stronger small model property. At this
point, it is not clear whether such a language extension is decidable (see [10, 11] for
relevant results).

(a) A Multi-Linked
Heap

(b) The Corresponding
Single-Parent Heap

Fig. 1. Multi-Linked to Single-Parent Heap Transformation

⋆ This research was supported in part by ONR grant N00014-99-1-0131, and SRC grant 2004-
TJ-1256.

This paper deals with verification of programs that perform destructive updates of
heaps consisting only of trees of bounded or unbounded arity, to which we refer as
multi-linkedheaps. We bypass the need to handle trees directly by transforming heaps
consisting of multiple trees into structures consisting ofsingly-linked lists (possibly
with shared suffixes). This is accomplished by “reversing” the parent-to-child edges
of the trees populating the heap, as well as associating scalar data with nodes. We re-
fer to the transformed heap as asingle-parentheap. Fig. 1(a) and Fig. 1(b) together
demonstrate the transformation of a multi-linked heap thatconsists of a binary tree to
its single-parent counterpart. In the latter graph, edges are directed from children to
parents, and each child is annotated with boolean information denoting whether it is a
left or right child.

Verification of temporal properties of multi-linked heap systems can be performed
as follows: Given a multi-linked system and a temporal property, the system and prop-
erty are (automatically) transformed into their single-parent counterparts. Then, a counter-
example-guided predicate- (and possibly ranking-) abstraction refinement method ([2,
3]) is applied. If a counter-example (on the transformed system) is produced, it is auto-
matically mapped into a counter-example of the original (multi-linked) system.

The rest of this paper is organized as follows: After we discuss related work, we
present the formal model in Section 2 and define predicate abstraction thereof. Sec-
tion 3 defines systems over single-parent heaps and Section 4describes their model
reduction. Section 5 defines systems over multi-linked heaps, and Section 6 shows how
to transform them to single-parent heap systems. We conclude in Section 7.

Related Work

Numerous frameworks have been suggested for analyzing singly-linked heaps, e.g., [15,
18, 6, 9, 7], all assuming that programs access heap cells solely by reachability from
variables. This effectively disallows backward traversal, a necessary feature when re-
ducing trees to singly-linked structures.

The correspondence between tree structures and singly-linked structures is the basis
of the proof of decidability of first-order logic with one function symbol in [8]. More
generally, the observation that complex data structures with regular properties can be
reduced to simpler structures has been utilized in [14, 12, 16, 19]. However, it is not
always straightforward to apply, and, to our knowledge, hasnot been applied in the
context of predicate abstraction. Several assumptions that hold true in analysis of “con-
ventional” programs over singly-linked heaps (e.g., C- or Pascal-programs), cannot be
relied upon when reducing trees to lists. For example, the number of roots of the heap
is no longer bounded by the number of program variables.

The use of path compression in heaps to prove small model properties of logics of
linked structures, has been used before, e.g., in [5] and more recently in [2, 20]. Our
work on parameterized systems relies on a small model theorem for checking induc-
tiveness of assertions. The small model property there is similar to the one here with
respect tostratified data. However, with respect to unstratified data (such as graphs),
the work on parameterized systems suggests using logical instantiation as a heuristic
(see, e.g., [1]), whereas here completeness is achieved using graph-theoretic methods.

2

2 The Formal Framework

In this section we present our computational model, as well as the method of predicate
abstraction.

2.1 Fair Discrete Systems

As our computational model, we take afair discrete system(FDS) 〈V,Θ, ρ,J , C〉, where

• V — A set ofsystem variables. A stateof D provides a type-consistent interpre-
tation of the variablesV . For a states and a system variablev ∈ V , we denote by
s[v] the value assigned tov by the states. LetΣ denote the set of all states overV .

• Θ — The initial condition: An assertion (state formula) characterizing the initial
states.

• ρ(V, V ′) — Thetransition relation: An assertion, relating the valuesV of the vari-
ables in states ∈ Σ to the valuesV ′ in aD-successor states′ ∈ Σ. We assume that
every state has aρ-successor.

• J — A set of justice (weak fairness) requirements (assertions); A computation
must include infinitely many states satisfying each of the justice requirements.

• C — A set ofcompassion (strong fairness)requirements: Each compassion require-
ment is a pair〈p, q〉 of state assertions; A computation should include either only
finitely manyp-states, or infinitely manyq-states.

For an assertionψ, we say thats ∈ Σ is aψ-state ifs |= ψ.
A run of anFDSD is a possibly infinite sequence of statesσ : s0, s1, . . . satisfying

the requirements:

• Initiality — s0 is initial, i.e.,s0 |= Θ.
• Consecution— For eachℓ = 0, 1, . . ., the statesℓ+1 is aD-successor ofsℓ. That

is, 〈sℓ, sℓ+1〉 |= ρ(V, V ′) where, for eachv ∈ V , we interpretv assℓ[v] andv′ as
sℓ+1[v].

A computationof D is an infinite run that satisfies

• Justice— for everyJ ∈ J , σ contains infinitely many occurrences ofJ-states.
• Compassion– for every〈p, q〉 ∈ C, eitherσ contains only finitely many occurrences

of p-states, orσ contains infinitely many occurrences ofq-states.

We say that a temporal propertyϕ is valid overD, denoted byD |= ϕ, if for every
computationσ of D, σ |= ϕ. We are interested insafetyproperties, of the form0 p, and
progressproperties, of the form0 (p→ 1 q), wherep andq are state assertions. Since
our methodology for verifying safety properties can be easily extended to verification
of progress properties (along the lines of [3]), we restricthere to the former. Yet, we
include the fairness requirements here for the sake of completeness, while they are only
necessary when dealing with progress.

3

2.2 Predicate Abstraction

The material here is a summary of [13] and [2]. We fix anFDS D = 〈V,Θ, ρ,J , C〉
whose set of states isΣ. We consider a set ofabstract variablesVA = {u1, . . . , un}
that range over finite domains. Anabstract stateis an interpretation that assigns to each
variableui a value in the domain ofui. We denote byΣA the (finite) set of all abstract
states. Anabstraction mappingis presented by a set of equalities

α
E

: u1 = E1(V), . . . , un = En(V),

where eachEi is an expression overV ranging over the domain ofui. The abstraction
α

E
induces a semantic mappingα

E
: Σ 7→ ΣA, from the states ofD to the set of

abstract states.
Usually, most of the abstract variables are boolean, and then the corresponding ex-

pressionsEi are predicates overV , which is why this type of abstraction is referred to
aspredicate abstraction. The abstraction mappingα

E
can be expressed succinctly by

VA = E(V).
Throughout the rest of the paper, when there is no ambiguity,we shall refer toα

E

simply asα. For an assertionp(V), we define itsα-abstraction (with some overloading
of notation) byα(p) : ∃V.(VA = E(V) ∧ p(V)).

The semantics ofα(p) is ‖α(p)‖ : {α(s) | s ∈ ‖p‖}. Note that‖α(p)‖ is, in
general, an over-approximation – an abstract stateS is in ‖α(p)‖ iff there existssome
concretep-state that is abstracted intoS. A bi-assertionβ(V, V ′) is abstracted by:

α2(p) : ∃V, V ′.(VA = E(V) ∧ V ′
A = E(V ′) ∧ β(V, V ′))

See [2] for a discussion justifying the use of over-approximating abstractions in this
setting. The abstraction ofD byα is the system

Dα = 〈VA, α(Θ), α2(ρ),
⋃

J∈J

α(J),
⋃

(p,q)∈C

〈α(p), α(q)〉 〉

The soundness of predicate abstraction is derived from [13]:

Theorem 1. For a systemD, abstractionα, and a temporal formulaψ:

Dα |= ψα =⇒ D |= ψ

3 Single-Parent Heaps

A single-parent heap systemis an extension of the model offinite heap systems(FHS)
of [2] specialized for representing trees. Such a system is parameterized by a positive
integerh, which is the heap size. Some auxiliary arrays may be used to specify more
complex structures (e.g., ordered trees). However, each nodeu has a single link to which
we refer as its “parent,” and denote it byparent(u).

4

Example 1 (Tree Insertion).For example, we present in Fig. 2 a program that inserts
a node into a binary sort tree rooted at a noder. If the data contained in noden is not
already contained in the tree, thenn is inserted as a new leaf. Otherwise the tree is
not modified. Obviously,n is to be an isolated node, i.e., to be both a root and a leaf.
To allow for the presentation of a sorted binary tree, we use an arrayct (child-type)
such thatct [u] equalsleft or right if nodeu is, respectively, the left or right child of
its parent. We also require that any two children of the same parent must have different
child-types. In Subsection 3.2 we expand on the notion of sibling order. One may wish
to show, for example, that program TREE-INSERTsatisfies the following for everyx:

no-loss: parent∗(x, r) → 0 parent∗(x, r)
no-gain: x 6= n ∧ ¬parent∗(x, r) → 0 ¬parent∗(x, r)

r, t : [1..h] init t = r
n : [0..h] init n > 0
parent : array [0..h] of [0..h] init parent[n] = parent[r] = 0 ∧ parent[0] = 0 ∧

∀u . parent[u] 6= n
ct : array [0..h] of {left, right} init ∀i 6= j . parent[i] = parent[j] 6= 0 → ct[i] 6= ct[j]
data : array [0..h] of [1..k]
done : bool init done= FALSE

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 : while ¬donedo
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2 : if data[n] = data[t] then
3 : done:= TRUE

4 : elseifdata[n] < data[t] then
2

6

6

6

4

5 : if ∀j.parent[j] 6= t ∨ ct[j] 6= left then
6 : (parent[n], ct[n]) := (t, left)
7 : done:= TRUE

else
8 : t := ǫ j . parent[j] = t ∧ ct[j] = left

3

7

7

7

5

9 : elseif ∀j.parent[j] 6= t ∨ ct[j] 6= right then
10 : (parent[n], ct[n]) := (t, right)
11 : done:= TRUE

else
12 : t := ǫ j . parent[j] = t ∧ ct[j] = right

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

13 :

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 2.Program TREE-INSERTinserts a new noden into a binary sort tree rooted at noder

The ǫ-expressions,ǫ j . cond in lines 8 and 12 denote “choose any node j that
satisfiescond.” For both statements in this program, it is easy to see that there is exactly
one nodej that meetscond. However, this is not always the case, and then such an
assignment is interpreted non-deterministically. We alsoallow for universal tests, as
those in lines 5 and 9, that test for existence of a particularnode’s left or right child.

3.1 Unordered Single-Parent Heaps

We now formally define the class of single-parent heap systems. Leth > 0 be theheap
size. We allow the following data types:

bool Variables whose values are boolean. With no loss of generality, we assume that
all finite domain(unparameterized) values are encoded asbools;

5

error ∧ error′ ∧ presEx(error)
∨

¬error ∧
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

π = 1 ∧ ¬done ∧ π′ = 2 ∧ presEx(π)
∨ π = 1 ∧ done ∧ π′ = 13 ∧ presEx(π)
∨ π = 2 ∧ data[t] = data[n] ∧ π′ = 3 ∧ presEx(π)
∨ π = 2 ∧ data[t] 6= data[n] ∧ π′ = 4 ∧ presEx(π)
∨ π = 3 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = 4 ∧ data[n] < data[t] ∧ π′ = 5 ∧ presEx(π)
∨ π = 4 ∧ data[t] ≤ data[n] ∧ π′ = 9 ∧ presEx(π)
∨ π = 5 ∧ π′ = 6 ∧ (∀j.parent[j] 6= t ∨ ct[j] 6= left) ∧ presEx(π)
∨ π = 5 ∧ π′ = 8 ∧ (∃j.parent[j] = t ∧ ct[j] = left) ∧ presEx(π)
∨ π = 6 ∧ n = 0 ∧ error′ ∧ presEx(error)
∨ π = 6 ∧ π′ = 7 ∧ n 6= 0 ∧ parent′[n] = t ∧ ct′[n] = left ∧ presEx(π, parent[n], ct[n])
∨ π = 7 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = 8 ∧ π′ = 1 ∧ (∃j . parent[j] = t ∧ ct[j] = left ∧ t′ = j) ∧ presEx(π, t)
∨ π = 9 ∧ π′ = 10 ∧ (∀j.parent[j] 6= t ∨ ct[j] 6= right) ∧ presEx(π)
∨ π = 9 ∧ π′ = 12 ∧ (∃j.parent[j] = t ∨ ct[j] = right) ∧ presEx(π)
∨ π = 10 ∧ n = 0 ∧ error′ ∧ presEx(error)
∨ π = 10 ∧ π′ = 11 ∧ n 6= 0 ∧ parent′[n] = t ∧ ct ′[n] = right ∧ presEx(π, parent[n], ct[n])
∨ π = 11 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = 12 ∧ π′ = 1 ∧ (∃j . parent[j] = t ∧ ct [j] = right ∧ t′ = j) ∧ presEx(π, t)
∨ π = 13 ∧ π′ = 13 ∧ presEx(π)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 3.The transition relation of TREE-INSERT. The variableπ represents the program counter.

index Variables whose value is in the range[0..h];
index → bool arrays (bool arrays) that map heap elements to boolean values (such as

ct above, where the valueleft is mapped to FALSE, andright to TRUE);
index → index arrays (index arrays), that describe the heap structure. We allow at

most twoindex arrays, which we usually denote byparent andparent ′.

We assume a signature of variables of all of these types. Constants are introduced as
variables with reserved names. Thus, we admit the boolean constants FALSE and TRUE,
and theindex constant0. In order to have all functions in the model total, we define
bothbool andindex arrays as having the domainindex. A well-formed program should
never assign a value toZ[0] for any (bool or index) arrayZ. On the other hand, unless
stated otherwise, all quantifications are taken over the range[1..h].

We refer toindex elements asnodes. If in states, theindex variablex has the value
ℓ, then we say that ins, x points to the nodeℓ. An index termis the constant0, anindex
variable, or an expressionZ[y], whereZ is anindex array andy is anindex variable.

Atomic formulaeare defined as follows:

• If x is a boolean variable,B is abool array, andy is anindex variable, thenx and
B[y] are atomic formulae.

• If t1 andt2 areindex terms, thent1 = t2 is an atomic formula.
• A Transitive closureformula (tcf) of the formZ∗(x1, x2), denoting thatx2 is Z-

reachable fromx1, wherex1 andx2 areindex variables andZ is anindex array.

We find it convenient to include “preservation statements” for each transition, that de-
scribe the variables that are not changed by the transition.There are two types of such
statements:

6

1. Assertions of the formpres({v1, . . . , vk}) =
∧k
i=1 v

′
i = vi where allvi’s are scalar

(bool or index) variables;
2. Assertions of the formpresH({a1, . . . , ak}) =

∧k
i=1 ∀h 6∈ H . a′i[h] = ai[h]

where allai’s are arrays andH is a (possible empty) set ofindex variables. Such
an assertion denotes that all but finitely many (usually a none or a single) entries of
arrays indexed by certain nodes remain intact.

Note that preservation formulae are at most universal. We abuse notation and use the
expressionpresEx (v1, . . . , vk) to denote the preservation of all variables, excluding the
termsv1, . . . , vk, which are either variables or array terms of the formA[x].

Fig. 3 presents the transition relation associated with theprogram of Fig. 2. The
implied encoding introduces an additionalbool variableerror which is set to TRUE

whenever there is an attempt to assign a value toA[0], for some arrayA. Consequently,
the transitions corresponding to statements 6 and 10 seterror to TRUE if n = 0, which
is tested before assigning values toparent [n] and toct [n].

A restricted A-assertionis either one of the following forms:∀y . Z[y] 6= u,
∀y . Z[y] 6= u ∨ B[y], ∀y . Z[y] 6= u ∨ ¬B[y], presH(Z), andpresH(B), where
Z is an index array andB is a bool array, andH is a (possibly empty) set ofindex
variables. Arestricted EA-assertionis a formula of the form∃~x . ψ(~u, ~x), where~x is a
list of index variables, andψ(~u, ~x) is a boolean combination of atomic formulae and re-
stricted A-assertions, where restricted A-assertions appear under positive polarity. Note
that in restricted EA-assertions, universally quantified variables maynot occur in tcf’s.
As the initial conditionΘ we allow restricted EA-assertions, and in the transition rela-
tion ρ and fairness requirements we only allow restricted EA-assertions without tcf’s.
Properties of systems are restricted EA-assertions. Abstraction predicates are boolean
combinations of atomic formulae and non-preservation universal formulae. This last re-
striction ensures that the language of abstraction predicates is closed under negation, an
assumption needed during abstraction computation.

Note that restricted EA-assertions are more expressive than restricted A-assertions
of [2] in that they allow, by means of existential and universal quantification, for traver-
sal of trees in both directions.

3.2 Ordered Single-Parent Heaps

We now formalize the notion of order among siblings, as seen in Example 1. Anordered
single-parent heap system is one that includes a distinguishedct : index → [1..k] array,
for some constantk, that denotes for each heap node its place among its siblings. This
allows the subtrees of a given root node to be distinguished by their ct order. We now
extend the assertional language with a new type of atomic formula: For eachi ∈ [1..k],
the formulai-subtreeZ(x1, x2) denotes thatx1 is in the ith subtree ofx2, wherex1

andx2 areindex variables andZ is an index array. This is formally expressed by the
formula

i-subtreeZ(x1, x2) : ∃u . Z[u] = x2 ∧ ct [u] = i ∧ Z∗(x1, u)

We support these predicates explicitly rather than as derived forms because, due to the
transitive closure over a quantified variable, they would otherwise be outside of the

7

assertional language allowed for abstraction predicates.Throughout the paper, when
theindex arrayZ is apparent from the context, we use the short formi-subtree(x1, x2).
For example, in the context of program TREE-INSERT of Example 1, the predicates
left-subtreeandright-subtreedenote the left and right subtree relations among nodes
of the parent array, whereasleft-subtree′ and right-subtree′ denote subtree relations
among nodes of theparent ′ array.

4 Computing Symbolic Abstractions of Single-Parent Heaps

We show how to symbolically compute the abstraction of a single-parent heap system
by extending the methodology of [2]. That methodology is based on a small model
property establishing that satisfiability of a restricted assertion is checkable on a small
instantiation of a system. The main effort here is dealing with the extensions to the
assertional language introduced for single-parent heap systems. For simplicity, it is as-
sumed that all scalar values are represented by multiple boolean values.

Assume a vocabularyV of typed variables, as well as theprimedversion of said
variables. Furthermore, assume that there is a single unprimedindex array inV as well
as a single primed one. These will be denoted throughout the rest of this section by
parent andparent ′, respectively. AmodelM of sizeh+ 1 for V consists of:

• A positive integerh > 0;
• For each boolean variableb ∈ V , a boolean valueM [b] ∈ {FALSE, TRUE}. It is

required thatM [FALSE] = FALSE andM [TRUE] = TRUE;
• For eachindex variablex ∈ V , a valueM [x] ∈ [0..h]. It is required thatM [0] = 0;
• For eachbool arrayB ∈ V , a functionM [B] : [0..h] → {FALSE, TRUE};
• For eachindex arrayZ ∈ {parent , parent ′}, a functionM [Z] : [0..h] → [0..h].

Let ϕ be a restricted EA-assertion, which we fix for this section. We require that if a
term of the formparent ′[u] occurs inϕwhereu is a free or existentially quantified vari-
able inϕ, thenϕ also contains the preservation formula associated withparent . Note
that this requirement is satisfied by any reasonableϕ — assertions that contain primed
variables occur only in proofs for abstraction computation(rather than in properties of
systems), and are generated automatically by the proof system. In such cases, the as-
sertion generated includes also the transition relation, which includes all preservation
formulae. We include this requirement explicitly since theproof of the small model
theorem depends on it.

Given a modelM , one can evaluate the formulaϕ over the modelM . The modelM
is asatisfying modelfor ϕ, if ϕ evaluates to TRUE in M , i.e., ifM |= ϕ. An index term
t ∈ {u, Z[u]} in ϕ, whereu is an existentially quantified or a free variable, is called a
free term. LetTϕ denote the minimal set consisting of the following:

• The term0 and all free terms inϕ;
• For every arrayZ ∈ V , if Z[u] ∈ Tϕ thenu ∈ Tϕ;
• For everybool arrayB ∈ V , if B[u] ∈ ϕ, then ifB is unprimed,parent [u] ∈ Tϕ,

and ifB is primed,parent ′[u] ∈ Tϕ;
• If parent ′[u] ∈ Tϕ thenparent [u] ∈ Tϕ (this is similar tohistory closureof [2]).

8

LetM be a model that satisfiesϕwith size greater then|Tϕ|+1 as follows: LetN be the
set of[0..h] values thatM assigns to free terms inTϕ. Assume thatN = {n0, . . . , nm}
where0 = n0 < · · · < nm. Obviously,m ≤ |Tϕ|. Define a mappingγ : N → [0..m]
such thatγ(u) = i iff M [u] = ni (Recall thatM [Tϕ] = N , so thatγ is onto).

We now define the modelM . We start with its size and the interpretation of the
scalars:M [h] = m+1; For eachbool variableb, M [b] = M [b]; For each termu ∈ Tϕ
M [u] = γ(u).

Let Z ∈ {parent , parent ′} be anindex array, and letj ∈ [0..m]. Consider theZ-
chain inM α : nj = u0, . . . such that for everyi ≥ 1,M [Z](ui−1) = M [ui]. If there is
somei ≥ 1 such thatui ∈ N , then letk be the minimal suchi. We then say thatuk−1

is theM representative ofZ for j and defineM [Z](j) = γ(uk). If no suchi exists,
thenM [Z](j) = m+1.

As for the interpretation ofM over bool arrays, we distinguish between the case
of unprimed and primed arrays. For an unprimed (resp. primed) bool arrayB, for
every j ∈ [0..m], if the M representative ofparent (resp.parent ′) is defined and
equalsv, then letM [B](j) = M [B](v). Otherwise,M [B](j) = M [B](nj). As for
M [B](m+1), let d ∈ [0..h] be the minimal such thatM [d] 6∈ N . ThenM [B](m+1) is
defined to beM [B](d).

Example 2 (Model Reduction).

(a) A single-parent heap model
M

(b) The reduction
M of M

Fig. 4. Model Reduction

Let parent anddata be index andbool arrays respectively, and letϕ be the asser-
tion:

ϕ : ∃u, v . u 6= v ∧ ∀y . (parent [y] 6= u ∨ data[y])

Since there are no free variables inϕ, and since no array term refers to theuth or vth

element, it follows thatTϕ consists only of theindex termsu andv. LetM be a model
of ϕ of size 7, as shown in Fig. 4(a). The interpretations byM of terms inTϕ are the
highlighted nodes. Each nodey is annotated with the valueM [data](y) (e.g., the node
pointed to byu has data value of FALSE).M , which is the reduction ofM with respect
to Tϕ, is given in Fig. 4(b). TheM representative ofparent for M [v] is given by the
node highlighted by a dashed line in Fig. 4(a). As shown here,the node pointed to byv
in M takes on the properties of this representative node.

9

Theorem 2. If M |= ϕ thenϕ is satisfiable by a model of size at most|Tϕ| + 1.

Before we prove the theorem, we make the following observation:

Observation 1 For everyni, nj ∈ N and everyindex arrayZ, the following all hold:

1. ifM(Z)[ni] = nj thenM(Z)[i] = j, and ifM(Z)[i] = j thenM |= Z∗(i, j);
2. M 6|= Z∗(ni, nℓ), for anynℓ ∈ N , iff M(Z)[i] = m+1.
3. M |= Z∗(ni, nj) iff M |= Z∗(i, j);
4. If B′[u] occurs inϕ for someu ∈ Tϕ and abool arrayB ∈ V , thenu, parent [u],

andparent ′[u] are all in Tϕ.

Proof. (1), (2), and (4) follow immediately from the construction.As for (3), in one di-
rection assume thatM |= Z∗(ni, nj). Thus, there exists aZ-chainα : ni = v0, . . . , vk =
nj in M . Remove all the non-N nodes fromα, and letvi0 , . . . , vin be the remaining
nodes. From the definition ofM(Z) it follows that for everyℓ = 1, . . . , n,M(Z)[γ(vij−1

)] =

γ(vij). Thus,M |= Z∗(γ(v0), γ(vk) = Z∗(i, j). In the other direction assume that
M |= Z∗(i, j). Sinceni ∈ N , i 6= m+1. Therefore, there exists aZ chainα : i =
u0, u1, . . . , uk = j in M such that for everyℓ = 1, . . . , ℓ, M(Z)(uℓ−1) = uℓ. From
part(1) it now follows thatM |= Z∗(ni, nj). ⊓⊔

We now return to the proof of Theorem 2

Proof. Assume thatϕ is satisfiable. Recall thatϕ is a restricted EA-assertion, i.e.,ϕ is
for the formϕ : ∃~x.ψ(~u, ~x), where~x and~u are disjoint lists ofindex variables, andψ is
a boolean combination of atomic formulae and restricted A-assertions. A model satisfies
ϕ is it model can be augmented by an interpretation of~x such that the augmented model
satisfiesψ(~x, ~u). LetM be such an augmented model, and letM be its reduction with
respect toTψ = Tϕ. To prove the theorem, we need to show thatM |= ψ if M |= ψ.

Assume therefore thatM |= ψ. To show thatM |= ψ, it suffices to show that
(1) every atomic formulap is true inM iff it is true in M , and (2) every restricted
A-assertionp that is satisfied inM is also satisfied inM . (Recall that restricted A-
assertions only may appear inψ only under positive polarity.)

For the first case, letp be an atomic sub-formula ofψ. We distinguish between the
following cases:

p is a tcf formula. The claim follows immediately from Observation 1 (part 3).
p is of the form i-subtreeZ(x1, x2). Z, x1, andx2 are assumed to be anindex ar-

ray and index variables, respectively. In this case, we are dealing with an or-
dered heap as defined in Subsection 3.2, and assume the presence of an array
ct : index → [1..k], with i ∈ [1..k]. In one direction, assume thatM |= p. Expand-
ing the definition ofp to ∃u .Z[u] = x2 ∧ ct [u] = i ∧ Z∗(x1, u), we conclude
thatM |= Z∗(x1, x2).
We first identify theZ-chain fromx1 to x2 in M , i.e. the node sequenceM [x1] =
u1, . . . , uℓ, uℓ+1 = M [x2] such thatM [Z](uj) = uj+1, for everyj = 1, . . . , ℓ.
Let nj be the nodeua, for the maximala ∈ [1..ℓ], such thatnj ∈ N . Thenuℓ is
theM representative ofZ for nj . SinceM [Z](uℓ) = uℓ+1 = M [x2], it must be
the case thatM [ct](uℓ) = i. By construction,M [ct](j) = M [ct](uℓ) = i, and

10

M [Z](j) = γ(M [Z](uℓ)) = γ(M [x2]). Furthermore, from Observation 1 (part 3)
we conclude that nodej is Z-reachable from nodeM [x1] in M . Thus,x1 is in the
ith subtree ofx2 in M , i.e.,M |= ∃u .Z[u] = x2 ∧ ct [u] = i ∧ Z∗(x1, u), and
the claim holds.
In the other direction, assume thatM |= p. LetM [x1] = j < m+1 andM [x2] =
ℓ < m+1. The claim is proven by considering theZ-chain inM from j to ℓ and,
based on the definition ofM , constructing a correspondingZ-chain inM from
M [x1] = nj toM [x2] = nℓ in whichnj is in theith subtree ofnℓ.

p is a bool variable. The claim follows trivially from the construction ofM .
p is of the form B[u] for an index variable u and a bool arrayB. It then follows that

parent [u] or parent ′[u] is in Tϕ, according to whetherB is unprimed or primed,
and then it follows from the construction thatM [B](u) = M [B](u).

p is of the form t1 = t2 for index terms t1 and t2. Sincet1, t2 ∈ Tϕ, it follows from
the construction thatM |= t1 = t2 iff M |= t1 = t2.

For the second case, letp be a universal formula. We distinguish between two cases.
The first is whenp is in one of the forms:∀y.Z[y] 6= u, ∀y.Z[y] 6= u ∨ B[y], or
∀y.Z[y] 6= u ∨ ¬B[y]. We show here the second case; The other two are similar. Recall
thatu must be inTϕ, and assume thatM(u) = nj. Assume, by way of contradiction,
thatM |= ∀y.Z[y] 6= u ∨ B[y] and for somei ∈ [0..m+1],M |= Z[i] = j ∧ ¬B[i].
If i = m+1, then obviouslyM(Z)[i] = m+1, and thusM 6|= Z[i] = u. Hence,
i 6= m+1. From Observation 1 it follows thatZ[ni] 6= nj . Thus, there exists aZ-
representativev 6= ni for i in M . From the construction it follows thatM(Z)[i] =
γ(M(Z)[v]) and thatM(B)[i] = M(B)[v]. From the assumption thatM |= ¬B[i],
it follows that¬M(B)[v], and from the assumption thatM |= p it then follows that
M(Z)[v] 6= nj , contradicting the assumption thatM(Z)[i] = j.

It remains to show the claim for the case thatp is a preservation formula. We distin-
guish between the following cases:

p is a preservation formula of a index array. Hence,p is of the form∀y.Z ′[y] = Z[y]∨
∨n
i=j(y = yi), wherey1, . . . , yn areindex variables inTϕ andZ is index array. De-

note byY the set{y1, . . . , yn} and byγ(Y) the set{γ(y1), . . . , γ(yk)}. Thusp can
be re-written as∀y.Z ′[y] = Z[y] ∨ y ∈ Y . Assume thatM |= p. We have to show
thatM |= p, i.e., thatM |= ∀i ∈ [0..m+1].Z ′[i] = Z[i] ∨ i ∈ γ(Y). Assume,
by way of contradiction, that for somei ∈ [0..m+1], M |= Z ′[i] 6= Z[i] ∧ i 6∈
γ(Y). We show thatM(Z)[i] = M(Z ′)[i], contradicting the assumption. Since
M(Z)[m+1] = M(Z ′)[m+1] = m+1, it follows that i 6= m+1. Consider the
Z-chainni = u0, u1, . . . and theZ ′-chainni = v0, v1, . . . in M . Sincei 6= γ(Y),
it follows, from the assumption thatM |= p, thatM |= Z[u0] = Z[v0], hence
v1 = u1. Proceeding like this, we obtain that either
1. For allj ≥ 0, uj = vj , or
2. For somem ≥ 1, um = vm ∈ Y , and for allj = 0, . . . ,m− 1, uj = vj 6∈ Y .

In the first case we obtain thatM(Z ′)[i] = M(Z)[i]. In the second case,since
um = vm ∈ Y ∈ Tϕ, we obtain thati has the sameZ-representative inM , and
thusM(Z)[i] = M(Z ′)[i]. (Note that thisZ-representative is eitheruj = vj for
somej < m, orum = jm. The claim follows in either case.)

11

ψ is a preservation formula of a bool array. Following the notation of the previous
part, assumep is of the form∀y.B′[y] = B[y] ∨ y ∈ Y whereY is a set ofindex
variables inTϕ. Assume thatM |= p, and thatM 6|= p, i.e., for somei ∈ [0..m+1],
M |= B′[i] 6= B[i] ∧ i 6∈ γ(Y). SinceM(B)[m+1] = M(B)[d], M(B′)[d] =
M(B′)[d], andd 6∈ Y , it follows thati 6= m+1.
This case is handled similarly to the previous case, considering theZ-chainni =
u0, . . . andZ ′-chainni = v0, . . . in M , and conclude thatM(B′)[i] = M(B)[i].
The only difference is in the inductive step: Letk ≥ 0, and assume that for allj ≤
k, uj = vj anduj 6∈ Y . If M(Z ′)[vk] = M(Z)[vk], then obviouslyvk+1 = uk+1.
Otherwise,M(Z ′)[vk] 6= M(Z)[vk]. From Observation 1, part (4), it follows that
vk, uk+1, vk+1 ∈ Tϕ. It thus follows thati has the sameZ andZ representative
in M (which is eitherv0, vj for somej < k, or vk) and thereforeM(B)[i] =
M(B′)[i]. ⊓⊔

The discussion below is similar to the one in [2]; see detailsthere. For a restricted
EA-assertionϕ and a positive integerh0 > 0, define theh0-boundedversion ofϕ,
denoted by⌊ϕ⌋h0

, to be the conjunctionϕ ∧ ∀y . y ≤ h0. Theorem 2 can be interpreted
as stating thatϕ is satisfiable iff⌊ϕ⌋|Tϕ| is satisfiable.

We next extend the small model theorem to the computation of abstraction of sys-
tems. Consider an abstractionα, where the set of (finitely many combinations of) val-
ues of the abstract system variablesV

A
is {U1, . . . , Uk}. Let sat(ϕ) be the subset of

indicesi ∈ [1..k], such thatUi = Eα(V) ∧ ϕ(V) is satisfiable. Thenα(ϕ)(V
A
) =

∨

i∈sat(ϕ)(VA
= Ui).

Consider the assertionψ0 : Ui = Eα(V) ∧ ϕ(V). Let h0 = |Tψ0
|. Our reinter-

pretation of Theorem 2 states thatψ0 is satisfiable iff⌊ψ0⌋h0
is satisfiable. Therefore,

sat(⌊ϕ⌋h0
) = sat(ϕ). Thus,α(ϕ)(V

A
) ↔ α(⌊ϕ⌋h0

)(V
A
). This can be extended to ab-

straction of assertions that refer to primed variables. Recall that the abstraction of such
an assertion involves a double application of the abstraction mapping, an unprimed ver-
sion and a primed version. Assume thatϕ(V, V ′) is such an assertion, and consider
ψ1 : (Ui = E

A
(V)) ∧ (Uj = E

A
(V ′)) ∧ ϕ(V, V ′). Let h1 = |Tψ1

|. By the same
reasoning, we haveα(ϕ)(V

A
, V ′

A
) ↔ α(⌊ϕ⌋h1

(V
A
, V ′

A
)).

Next we generalize these results to entire systems. For anFHSS = 〈V,Θ, ρ,J , C〉
and positive integerh0, we define theh0-bounded version ofS, denoted⌊S⌋h0

, as
〈V ∪ {H}, ⌊ρ⌋h0

, ⌊J ⌋h0
, ⌊C⌋h0

〉, where⌊J ⌋h0
= {⌊J⌋h0

| J ∈ J } and⌊C⌋h0
=

{(⌊p⌋h0
, ⌊q⌋h0

) | (p, q) ∈ C}. Let h0 be the maximum size of the setsTψ, for every
abstraction formulaψ necessary for computing the abstraction of all the components of
S. Then we have the following theorem:

Theorem 3. LetS be a single-parent heap system,α be an abstraction mapping, and
h0 the maximal size of the relevant sets of free terms as described above. Then the
abstract systemSα is equivalent to the abstract system⌊S⌋αh0

.

As a consequence, in order to compute the abstract systemSα, we can instantiate
the systemS to a heap of sizeh0, and use propositional methods, e.g.,BDD-techniques4,
to compute the abstract system⌊S⌋αh0

. Note thath0 is linear in the number of system

4 In our experiments we useTLV ([17]).

12

variables. This process is fully automatic once the predicate base is given. The exact
manner by which predicates themselves are derived (e.g., byuser input or as part of a
refinement loop) is orthogonal to the method presented here.

5 Multi-Linked Heap Systems

In this section we definemulti-linked heap systemswith a bounded out-degree on nodes.
A multi-linked heap is represented similar to a single-parent heap, only, instead of hav-
ing a singleindex array, we allow for somek > 1 index arrays, each describing one of
the links a node may have. We denote these arrays bylink1, . . . , linkk. Thus, eachlink i
is an array[0..h] → [0..h]. We are mainly interested innon-sharing heaps, defined as
follows:

Definition 1. A non-sharing heapis one that satisfies the following requirements:

1. For everyi = 1, . . . , k, link i[0] = 0.
2. For everybool arrayB, ¬B[0].
3. No two distinct positive nodes may share a common positivechild. This requirement

can be formalized as

∀j, ℓ ∈ [1..h], i, r ∈ [1..k] . (j 6= ℓ) ∧ (link i[j] = link r[ℓ]) → link i[j] = 0

4. No two distinct links of a positive node may point to the same positive child. This
can be formalized as

∀j ∈ [1..h], s, t ∈ [1..k] . (s 6= t) ∧ (links[j] = link t[j]) → link s[j] = 0

We refer to the conjunction of the requirements in Definition1 by the formula
no sharing. A state violating one of these three requirements is calledasharing state.

A multi-linked system is calledsharing-freeif none of its computations ever reaches
a sharing state, nor does a computation ever attempt to assign a value toA[0] for some
arrayA.

LetD : 〈V,Θ, ρ,J , C〉 be ak-bounded multi-linked heap system. Fig. 5 describes
a BNF-like syntax of the assertions used in describingD. There,Ivar denotes an
unprimedindex variable,Iarr denotes an unprimedindex array,Bvar denotes an
unprimedbool variable, andBarr denotes an unprimedbool array. The expression
reach(x, y) abbreviates(x, y) ∈ (

⋃k
i=1 link i)

∗, and the expressioncycle(x) abbrevi-
ates(x, x) ∈ (

⋃k
i=1 link i)

+. ThePreservationassertion is just like in the single-parent
case and we require that ifAssign appears inτ , then thePreservationassertion that
is conjoined with it includes preservation of all variablesthat don’t appear in the left-
hand-side of any clause ofAssign.

For example, consider a binary tree, which is a multi-linkedheap with bound 2 and
no sharing. Each ofleft and right is a link . Program TREE-INSERT in Fig. 6 is the
standard algorithm for inserting a new node,n, into a sorted binary tree rooted atr.

13

MCond1 ::= TRUE | Bvar | Barr[Ivar] | Ivar = Ivar | Ivar = 0 |
Iarr[Ivar] = Ivar | Iarr[Ivar] = 0 |
MCond1 ∨ MCond1 | ¬MCond1

MCond2 ::= MCond1 | reach(Ivar,Ivar) | cycle(Ivar) |
¬MCond2 | MCond2 ∨ MCond2

Assign ::= ǫ | Bvar′ | ¬Bvar′ | Barr′[Ivar] | ¬Barr′[Ivar] |
Bvar′ = Bvar | Ivar′ = 0 | Ivar′ = Ivar |
Iarr′[Ivar] = Ivar | Iarr′[Ivar] = 0 | Assign ∧ Assign

Θ ::= MCond2 ∧ no sharing

ρ ::= TRUE | MCond1 ∧ Assign ∧ Preservation | ρ ∨ ρ

J ::= ∅ | J ∪ { MCond1}

C ::= ∅ | C ∪ {(MCond1,MCond1)}

Fig. 5. Grammar for Assertions for Multi-Linked Systems

6 Reducing Multi-Linked into Single-Parent Heaps

We now show how to transform multi-linked heap systems into ordered single-parent
heap systems.

6.1 The Transformation

Let Dm : 〈Vm, Θm, ρm,Jm, Cm〉 be ak-bounded multi-linked heap system. Thus,Vm
includes theindex arrayslink1, . . . , linkk. We transformDm into a single-parent heap
systemDs : 〈Vs, Θs, ρs,Js, Cs〉 as follows:

The set of variablesVs consists of the following:

1. Vm \ {link1, . . . , linkk}, i.e., we remove fromVm all thelink arrays;
2. An index arrayparent : [0..h] 7→ [0..h] that does not appear inVm;
3. A bool arrayct : [0..h] 7→ [0..k] that does not appear inVm (recall our convention

that “bool” can be any finite-domain type);
4. A newbool variableerror; error is set whenDm contains an erroneous transition

such as one that introduces sharing in the heap, or attempts to assign values toA[0]
for some arrayA.

Intuitively, we replace theindex link arrays with a singleindex parent array that re-
verses the direction of the links, and assign toct [i] (child type) the “birth order” ofi in
the heap. The variableerror is boolean and is set whenDm cannot be transformed into a
singe-parent system. This is caused by either an assignmenttoA[0] or by a violation of
the non-sharing requirements. When such an error occurs,error is raised, and remains
so, i.e.,ρs implieserror → error′.

Definition 2. A single-parent state is said to bewell formedif the parent of 0 is itself,
all the bool arraysB ⊂ Vs associate 0 with the valueFALSE, and no parent has two

14

left, right : array [0..h] of [0..h] init no sharing
data : array [0..h] of bool
r, n : [1..h] init ¬reach(r, n) ∧ ¬cycle(r) ∧

left[n] = 0 ∧ right[n] = 0
t : [0..h] init t = r
done : bool init done= FALSE

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 : while ¬donedo
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2 : if data[n] = data[t] then
3 : done:= TRUE

4 : elseifdata [n] < data[t] then
2

6

6

6

4

5 : if left[t] = 0 then
6 : left[t] := n
7 : done:= TRUE

else
8 : t := left[t]

3

7

7

7

5

9 : elseifright[t] = 0 then
10 : right[t] := n
11 : done:= TRUE

else
12 : t := right[t]

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

13 :

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 6. Program TREE-INSERTof Fig. 2, adapted to the encoding of trees as multi-linked heaps.

distinct children with the same birth order, i.e.,

wf : parent [0] = 0 ∧
∧

B∈B(¬B[0]) ∧
∀i 6= j . (parent [i] = parent [j] 6= 0 → ct [i] 6= ct [j])

To transformρm, Jm, andCm into theirDs counterparts, it suffices to transform
M-assertions overVm ∪ V ′

m into restricted EA-assertions overVs ∪ V ′
s. To transform

Θm, which is of the formno sharing∧ ϕ, whereϕ is anMCond2, intoΘs, we take
the conjunction ofwf and the transformation ofϕ. It thus remains to transformM-
assertions. Recall thatρm is a disjunction of clauses (see Section 5), each one of the
form

ϕ ∧ τ ∧ presEx (Vm − {V })

whereV ⊆ Vm, ϕ is anMCond overVm, andτ is anAssign statement of the form
∧

v∈V v
′ = Ev(Vm) (whereEv is some expression). When we transform such aρm-

disjunct, we sometimes obtain several disjuncts. We assumethat each has its obvious
presEx assertions overVs. At times, for simplicity of representation, we do not express
the transformation directly in DNF. Yet, in those cases, theDNF form is straightforward.

It thus remains to show how to transformM-assertions into restricted EA-assertions.
This is done by induction on theM-assertions, where we ignore the preservation part
(which, as discussed above, is defined by the transition relation for bothDm andDs.)

Letψ be anM-assertion. In the following cases,ψ remains unchanged in the trans-
formation:

1. ψ contains no reference toindex variables and arrays;

15

2. ψ is of the formx1 = x2 wherex1 andx2 are both primed, or both unprimed,
index variables;

3. ψ is of the formx1 = x2 wherex1 is a primed, andx2 is an unprimed,index
variable;

4. ψ is of the formx = 0 wherex is a (either primed or unprimed)index variable;
5. ψ is of the formB[x], whereB is an unprimedbool array.

The other cases are treated below. We now denote primed variables explicitly, e.g.,x1

refers to an unprimed variable, andx′1 refers to a primed variable:

1. An assertion of the formlink j [x2] = x1 is transformed into

(x2 = 0 ∧ x1 = 0)
∨ (x2 6= 0 ∧ x1 = 0 ∧ ∀z . (parent [z] 6= x2 ∨ ct [z] 6= j))
∨ (x2 6= 0 ∧ x1 6= 0 ∧ parent [x1] = x2 ∧ ct [x1] = j)

In the case thatx2 6= 0 andx1 = 0, x2 should have nojth child. If x2 6= 0 and
x1 6= 0, thenx1 should havex2 as a parent and the child type ofx1 should bej.

2. A transitive closure formulareach(x1, x2) is transformed into

(x1 6= 0 ∧ x2 6= 0 ∧ parent∗(x2, x1)) ∨ (x2 = 0)

The first disjunct deals with the case wherex1 andx2 are both non-0 nodes, and
then the reachability direction is reversed, reflecting reversal of heap edges in the
transformation to a single-parent heap. The second disjunct deals with the case that
x2 = 0, and then, sincek > 0, there is a path from any node into 0.

3. A transitive closure formulacycle(x), wherex is anindex variable, is transformed
into parent∗(parent [x], x).

4. An assertion of the formx′1 = link j [x2] is transformed into:

(x2 = 0 ∧ x′1 = 0) ∨ (x2 6= 0 ∧ x′1 = 0 ∧ ∀y . (parent [y] 6= x2 ∨ ct [y] 6= j))
∨ (x2 6= 0 ∧ ∃y . (parent [y] = x2 ∧ ct [y] = j ∧ x′1 = y)

In casex2 = 0, this transition setsx1 to 0 since we assume that in non-sharing
stateslink j [0] = 0 for everyj = 1, . . . , k. Otherwise, ifx2 has nojth child, then
x1 is set to0. Otherwise, there exists ay which is thejth child of x2, and thenx1

is set toy.
5. An assertion of the formB′[x], whereB is an unprimedbool array, is transformed

differently based on its polarity. If it appears underpositivepolarity, it is trans-
formed into:

(x = 0 ∧ error′) ∨ (x 6= 0 ∧ B′[x])

The error condition reflects an attempt to assign TRUE to B[0]. If the assertion
B′[x] appears undernegativepolarity, then no erroneous assignment is possible,
and the assertion remains unchanged by the transformation.

16

6. An assertion of the formlink
′
j [x1] = x2 is transformed into:

Err ∧ error′ ∨
¬Err

∧ (x2 = 0 ∨ (x2 6= 0 ∧ parent ′[x2] = x1 ∧ ct ′[x2] = j))

∧

(

∀z . (parent [z] 6= x1 ∨ ct [z] 6= j)
∨ ∃z . (parent [z] = x1 ∧ ct [z] = j ∧ (z = x2 ∨ parent ′[z] = 0))

)

WhereErr is defined by:

(x1 = 0∧ x2 6= 0)∨ (x2 6= 0∧ parent [x2] 6= 0∧ (parent [x2] 6= x1 ∨ ct [x2] 6= j))

I.e., the assignment may cause an error by either attemptingto assign a nonzero
value tolink j [0], or by introducing sharing (whenx2 either has a parent that is not
x1, or isx1’s ith child for somei 6= j).
When there is no error,x2 should become thejth child of x1 unless it is 0, which
is expressed by the first conjunct of the non-error case; in addition, any node that
was thejth child of x1 before the transition should become “orphaned,” which is
expressed by the second conjunct of the non-error case.

The following observation follows trivially from the construction above:

Observation 2 The transformation of anM-assertion is a restricted EA-assertion.

Having defined the system transformation, we can now demonstrate the complete
verification process of the tree insertion program.

Example 3 (Verification ofTREE-INSERT).
We wish to verify that the multi-linked tree insertion program given in Fig. 6 satis-

fies the following specification:

no-loss: ∀x . reach(r, x) → 0 reach(r, x)
no-gain: ∀x . x 6= n ∧ ¬reach(r, x) → 0 ¬reach(r, x)

insertion: (∀u . reach(r, u) → data[u] 6= data [n]) → 0 at−13 → reach(r, n)

We begin by eliminating the universal quantifiers in theno-lossandno-gainproperties
by introducing askolem constantx. This is done by augmenting the program with a
variable with an undetermined initial value that stays constant throughout a computa-
tion. This is a purely syntactic transformation.

As for theinsertionproperty, unfortunately the abstraction computation method of
Section 4 disallows any occurrence ofreach predicates under universal quantification.
Therefore, we heuristicallyinstantiatethe universal variableu to derive the following
(stronger) property:

insertion:
(

∧

u∈{r,n,t} reach(r, u) → data[u] 6= data[n]
)

→ 0 at−13 → reach(r, n)

We proceed by applying the system transformation, resulting in the single-parent
heap system5 shown in Fig. 7. We now apply predicate abstraction. We use the predicate

5 Note that this automatically-derived version is less optimal than the manually-constructed
single-parent system given in Fig. 2.

17

Θ: parent[0] = 0 ∧ ∀i 6= j . (parent[i] = parent[j] 6= 0 → ct[i] 6= ct[j]) ∧
¬parent∗(n, r) ∧ ∀i . (parent[i] 6= n) ∧ t = r ∧ ¬parent∗(parent[r], r) ∧ ¬done

ρ: error ∧ error′ ∧ presEx(error)
∨

¬error ∧
2

6

6

6

6

6

6

6

6

6

6

6

4

π = 1 ∧ ¬done ∧ π′ = 2 ∧ presEx(π)
∨ π = 1 ∧ done ∧ π′ = 13 ∧ presEx(π)
∨ π = 2 ∧ data[t] = data[n] ∧ π′ = 3 ∧ presEx(π)
∨ π = 2 ∧ data[t] 6= data[n] ∧ π′ = 4 ∧ presEx(π)
∨ π = 3 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = 4 ∧ t 6= 0 ∧ data[n] < data[t] ∧ π′ = 5 ∧ presEx(π)
∨ π = 4 ∧ (t = 0 ∨ data[t] ≤ data[n]) ∧ π′ = 9 ∧ presEx(π)
∨ try(5, left) ∨ try(9, right)
∨ π = 13 ∧ π′ = 13 ∧ presEx(π)

3

7

7

7

7

7

7

7

7

7

7

7

5

try(link , π0):
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

π = π0 ∧ π′ = π0 + 1 ∧ presEx(π) ∧
(t = 0 ∨ (t 6= 0 ∧ ∀j . parent[j] 6= t ∨ ct[j] 6= left))

∨ π = π0 ∧ π′ = π0 + 3 ∧ t 6= 0 ∧ presEx(π)
(∃j . parent[j] = t ∧ ct[j] = left)

∨ π = π0 + 1 ∧ error′ ∧ presEx(error) ∧
(t = 0 ∨ (t 6= 0 ∧ parent[n] 6= 0 ∧ (parent[n] 6= t ∨ ct[n] 6= left))) ∧

∨ π = π0 + 1 ∧ π′ = π0 + 2 ∧ t 6= 0 ∧
(parent[n] = 0 ∨ (parent[n] = t ∧ ct[n] = left)) ∧
parent′[n] = t ∧ ct′[n] = left ∧ presEx(π, parent[n], ct[n]) ∧
„

∀j . (parent[j] 6= t ∨ ct[j] 6= left)
∨ ∃j . (parent[j] = t ∧ ct[j] = left ∧ (j = n ∨ parent′[j] = 0))

«

∧

∨ π = π0 + 2 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = π0 + 3 ∧ π′ = 1 ∧ presEx(π, t) ∧

0

@

t = 0 ∧ t′ = 0
∨ t 6= 0 ∧ t′ = 0 ∧ ∀j . (parent[j] 6= t ∨ ct[j] 6= left)
∨ t 6= 0 ∧ ∃j . (parent[j] = t ∧ ct[j] = left ∧ t′ = j)

1

A

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 7. The single-parent program resulting from transformation of the tree insertion program of
Fig. 6

base given by the following set of assertions:

P :







































p1 : ∀j . parent [j] 6= n,

p2 : left-subtree(n, r),
p3 : right-subtree(n, r),
p4 : parent∗(t, r),
p5 : ∃j . parent [j] = t,

p6 : data[t] = data[n],
p7 : parent∗(x, r)







































Note that the predicatep1 is in fact an inductive invariant, a fact that can be decided
(without the use of abstraction) by directly applying Theorem 2 to check validity of the
verification conditions

I1. Θ → p1

I2. p1 ∧ ρ→ p′1

Having decided the invariance ofp1, it is possible to optimize the abstraction compu-
tation by removingp1 from the predicate base, and by constraining the concrete state
space top1-states only.

In the following section we establish the soundness of the transformation.

18

6.2 Correctness of Transformation

In order for the above transformation to fit into the verification process proposed in
Section 1, we have to show that the result of the verification,as carried out on the
transformed system and property, holds with respect to the untransformed counterparts.
Such a result is provided by Theorem 4 below. To show that the abstraction computation
method of Section 4 is sound with respect to a transformed program and property, we
use Observation 2 and Theorem 5 below. For simplicity of presentation, in this section
we do not take into account fairness requirements. However,it is straightforward to ex-
tend the results, i.e., show that the heap transformation preserves satisfiability of justice
requirements, and that the computation transformation preserves compassion.

LetDm : 〈Vm, Θm, ρm,Jm, Cs〉 be ak-bounded multi-linked heap system over the
set of variablesVm, with k > 1, and letDs : 〈Vs, Θs, ρs,Js, Cs〉 be its transformation
into a single-parent heap system. The transformation into asingle-parent heap system
induces a mappingS : Σm → Σs. The mappingS is formally defined below.

Definition 3. LetS be a mapping fromΣm intoΣs, such that for everysm ∈ Σm, if
ss = S(sm), then the following all hold:

1. For everybool variablev ∈ Vm, ss[v] = sm[v];
2. For everybool arrayB ∈ Vm andx ∈ [0..h], ss[B](x) = sm[B](x);
3. For everyindex variablex ∈ Vm, ss[x] = sm[x]
4. ss[parent](0) = 0 andss[ct](0) = 1.
5. Let y ∈ [1..h]. If for all z ∈ [1..h] and i ∈ [1..k], sm[link i](z) 6= y, then
ss[parent](y) = 0 andss[ct](y) = 1. Otherwise,ss[parent](y) = x andss[ct](y) =
j where(x, j) is the lexicographically minimal pair in{(z, i) : z ∈ [1..h], i ∈
[1..k], andsm[link i](z) = y}.

6. sm[error] =

{

FALSE, if sm |= no sharing
TRUE, otherwise

We first make the following observation regardingS:

Observation 3 The inverseS−1 is well defined for any well formed non-error state
ss ∈ Σs. That is, ifss |= wf ∧ ¬error then there exists a statesm ∈ Σk such that
S(sm) = ss.

Lemma 1. Let sm ∈ Σm, and letss = S(sm). Thensm |= no sharing ⇐⇒ ss |=
wf ∧ ¬error.

Proof. The reverse direction holds trivially. We now assume thatsm |= no sharing,
and show thatss satisfieswf, i.e.,

¬error ∧ parent [0] = 0 ∧
∧

B∈B(¬B[0]) ∧
∀i 6= j . (parent [i] = parent [j] 6= 0 → ct [i] 6= ct [j])

whereB ⊂ Vs is the set ofbool arrays ofDs. ss[error] = FALSE, ss[parent](0) = 0,
andss[B](0) = FALSE, for allB ∈ B, all follow from the definition ofS. The universal
condition follows from two properties:

19

– The links in a multi-linked heap are functional, i.e., for everyi ∈ [1..k], every node
has at most onelink i-child.

– From Item 5 of the definition ofS, we have that for any nodesu andv, andi ∈
[1..k], we havess[parent](u) = v andss[ct](u) = i iff sm[link i](v) = u. ⊓⊔

Lemma 2. Let sm ∈ Σm be a state that satisfies the nosharing constraint, and let
ss = S(sm). Letϕm be a boolean combination ofM-atomic formulae overDm, and let
ϕs be its transformation into an assertion overDs. Then:sm |= ϕm ⇐⇒ ss |= ϕs

Proof. The claim follows immediately from Lemma 1 for the case thatϕm is an M-
atomic non-reach and non-cycleformula. For the other cases, we distinguish between:

ϕm is of the form reach(x1, x2). Then,ϕs is of the from

(x1 6= 0 ∧ x2 6= 0 ∧ parent∗(x2, x1)) ∨ (x2 = 0)

From the definition ofS it follows thatss[x1] = sm[x1] andss[x2] = sm[x2]. In
one direction, assume thatsm |= ϕm. If sm[x2] = 0, then obviouslyss |= ϕs.
Otherwise, assume thatsm[x2] 6= 0. Hence, for somen ≥ 1 there exist nodes
sm[x1] = u1, . . . , un = sm[x2] such that for everyi = 1, . . . , n, there exists some
ji ∈ [1..k] such thatsm |= link ji [ui] = ui+1, andsm[ui] 6= 0. SinceDm |=
no sharing, it follows that for everyi = 1, . . . , n − 1, ss[parent](ui+1) = ui.
Thus,ss |= parent∗(un, u1). Thusss |= ϕs.
In the other direction, assume thatss |= ϕs. If ss[x1] = 0, thenss[x2] = 0, and
thensm |= ϕm trivially follows. Assume therefore thatss[x1] 6= 0. If ss[x2] 6= 0,
an argument, similar to the one used for this case in the otherdirection, shows that
sm |= ϕm. If ss[x2] = 0, then letu 6= 0 be such that there is ass[parent]-path
from u to ss[x1], and for somei ∈ [1..k], and for everyy eitherss[parent](y) 6=
u or Mk[ct](y) 6= i. Thus,sm[link i](u) 6= y for everyy. It thus follows that
sm[link i](u) = 0. Similar arguments to the previous direction show that there
is a (

⋃k
i=1 link i)-path fromsm[x1] to u. We can therefore conclude thatsm |=

reach
∗(x1, x2).

ϕm is of the form cycle(x). This case is similar to the previous case. ⊓⊔

Since the initial condition ofDm is not a restricted A-assertion, it needs to be dealt
with separately:

Lemma 3. Let sm ∈ Σm such thatsm |= no sharing. Letss = S(sm). Then:sm |=
Θm ⇐⇒ ss |= Θs

Proof. As a consequence of the grammar in Fig. 5,Θm is of the formψ ∧ no sharing
whereψ is a boolean combination ofM-atomic formulae. Section 6 definesΘs asψs ∧
wf, whereψs is the transformation ofψ by the rules of Section 6 andwf is given
in Definition 2. From Lemma 2 we have that ifsm |= no sharing, thensm |= ψ

iff ss |= ψs. From Definition 3 we havess |= ¬error, and from Lemma 1 we have
sm |= no sharingiff ss |= ¬error ∧ wf. Thussm |= Θm iff ss |= Θs. ⊓⊔

We now extend Lemma 2 to show that transformation of the transition relation preserves
the mappingS:

20

Lemma 4. Let sm ∈ Σm and ss = S(sm), such thatsm |= no sharing. Then for
any states′m ∈ Σm, S(s′m) is a ρs-successor ofss if s′m is a ρm-successor ofsm.
Furthermore, ifs′m |= no sharing, then the reverse direction holds as well.

Proof. Let s′m ∈ Σm be a state such thats′m |= no sharing. Sinceρm is a disjunc-
tion of clauses, Letϕ(Vm) ∧ τ(Vm,V

′
m) ∧ preserve(Vm,V ′

m) be one such arbitrary
clause. Then the transformed clause is given byϕs(Vs) ∧ τs(Vs,V

′
s), whereϕs(Vs)

is the transformation ofϕ(Vm) andτs(Vs,V ′
s) is the transformation ofτ(Vm,V ′

m) (re-
call that the preservation conjunct, present in the original clause, is discarded by the
transformation, and thatτs encapsulates variable preservation clauses).

From Lemma 2 and Lemma 3 we havesm |= ϕ(Vm) iff ss |= ϕs(Vs). Let s′s =
S(s′m). It is left to show that(sm, s′m) |= τ(Vm,V

′
m) ∧ preserve(Vm,V ′

m) iff (ss, s
′
s) |=

τs(Vs,V
′
s). Sinceτ is a conjunction ofAssign formulas, we show that for each type

of atomicAssign formulaψ(Vm,V
′
m) and its transformationψs(Vs,V ′

s), (sm, s
′
m) |=

ψ(Vm,V
′
m) =⇒ (ss, s

′
s) |= ψs(Vs,V

′
s), and if s′m |= no sharing then the reverse

direction holds as well.

ψ has the form x′1 = t2 wheret2 is either anindex variable or 0. In this case the claim
holds trivially for both directions.

ψ has the form B′[x] or ¬B′[x], whereB is abool array andx is anindex variable.
In the case of¬B′[x], the claim follows trivially. In the case ofB′[x], ψs is the formula
(x = 0 ∧ error′) ∨ (x 6= 0 ∧ B′[x]).

1. s′m |= no sharing. Thens′m |= ¬B[0], ands′s |= ¬error. If (sm, s
′
m) |= B′[x],

thenx cannot be0 in sm, nor in ss. FromS we have(ss, s′s) |= x 6= 0 ∧ B′[x].
Otherwise, if(ss, s′s) |= ψs, then the claim follows from the definition ofS and the
fact thaterror is FALSE in s′s.

2. s′m 6|= no sharing. Thens′s |= error. If sm[x] = 0, then from the definition ofS
we have(ss, s′s) |= x = 0 ∧ error′. Thus(sm, s

′
m) |= ψ =⇒ (ss, s

′
s) |= ψs.

Otherwise,sm[x] = ss[x] 6= 0. Since, by definition ofS, s′m[B](sm[x]) = s′s[B](ss[x]),
then(sm, s

′
m) |= x 6= 0 ∧ B′[x] iff (ss, s

′
s) |= x 6= 0 ∧ B′[x].

ψ has the form x′1 = link j [x2]. We focus on the nontrivial case thatsm[x2] 6= 0
ands′m[x′1] 6= 0. First assume thatx2 is a leaf, i.e.,sm[link j](sm[x2]) = 0. In this
cases′m[x1] = 0, and by definition ofS, s′s[x1] = 0. From the assumption, we have
sm |= link j [x1] = 0. Then by Lemma 2,ss |= ∀y . (parent [y] 6= x2 ∨ ct [y] 6= j).
Otherwise, assume thatx2 is not a leaf, i.e.,sm[link j](sm[x2]) 6= 0. Then by definition
of S, there exists a nodeu 6= 0 such thats′m[x1] = u ands′m[link j](sm[x2]) = u.
Then by definition ofS, ss[parent](u) = ss[x2], ss[ct](u) = j, ands′s[x1] = u. Thus
(ss, s

′
s) |= ∃y . (parent [y] = x2 ∧ ct [y] = j ∧ x′1 = y). In the reverse direction, if

sm ands′m both satisfy theno sharingconstraint, then the claim follows trivially from
the definition ofS.

21

ψ has the form link
′
j [x1] = x2. Thenψs is the formula

Err ∧ error′ (1)
∨













¬Err
∧ (x2 = 0 ∨ (x2 6= 0 ∧ parent ′[x2] = x1 ∧ ct ′[x2] = j))

∧





∀z . (parent [z] 6= x1 ∨ ct [z] 6= j)
∨ ∃z . (parent [z] = x1 ∧ ct [z] = j ∧

(z = x2 ∨ parent ′[z] = 0))

















(2)

First assume(sm, s′m) |= ψ. Let u1 = sm[x1] andu2 = sm[x2]. We consider two
cases:

1. Nodeu2 has multiple parents ins′m, one of which must beu1. In this case, we have
s′m |= no sharing. Furthermore, by definition ofS, we haves′s[error] = TRUE and
ss |= Err . Thus(ss, s

′
s) |= ψs.

2. Nodeu2 has a single parent ins′m, which must beu1. In this case it must be the
case thatss |= ¬Err . We now show that(ss, s′s) satisfies the other two conjuncts
in disjunct (2) of ψs. The conjunct(x2 = 0 ∨ (x2 6= 0 ∧ parent ′[x2] =
x1 ∧ ct ′[x2] = j)) follows from the definition ofS. As for the third conjunct,
consider first the case thatu1 has noj-child in sm. Then by definition ofS, ss |=
∀z . parent [z] 6= x1 ∨ ct [z] 6= j. Otherwise, there exists a nodez that is the
j-child of u1 in sm. If z is notu2, then it is no longer thej-child of u1 in s′m. It
follows from the definition ofS that(ss, s′s) |= ψs.

It is left to show the reverse direction, under the assumption thats′m |= no sharing.
It follows thats′s[error] = FALSE. Thus, it must be the case that(ss, s

′
s) satisfies dis-

junct (2) of ψs. Let u1 = ss[x1] andu2 = ss[x2]. From the definition ofS and the
conjunct(x2 = 0 ∨ (x2 6= 0 ∧ parent ′[x2] = x1 ∧ ct ′[x2] = j)) we conclude that
if u2 6= 0, thenu2 is aj-child of u1 in s′m. If u2 = 0, then from the third conjunct we
conclude thatu1 has no child ins′m. Therefore,(sm, s′m) |= ψ. ⊓⊔

Corollary 1. Letµ : s0m, s
1
m, . . . be a (finite or infinite) sequence of states that consists

only of non-sharing states. Thenµ is a run ofDm iff S(µ) : S(s0m),S(s1m) . . . is a run
ofDs without error states.

Proof. The proof is by induction on the run length. At the base case, from Lemma 3
we have thatS(s0m) |= Θs iff s0m |= Θm. SinceΘm is defined to include the conjunct
no sharing, thens0m satisfies the non-sharing constraint, and by definition ofS we have
S(s0m) |= ¬error.

For the inductive step, lets0m, . . . , s
n
m be a run ofDm that is without sharing, and

let S(s0m), . . . ,S(snm) be a run ofDs that is without error states. By Lemma 4 and the
definition ofS, aDm-statesn+1

m without sharing is aρm-successor ofsnm iff S(sn+1
m)

is aρs-successor ofss such thatS(sn+1
m)[error] = FALSE. ⊓⊔

From Lemma 2, Corollary 1, and Observation 3 we can now prove:

22

Theorem 4 (Soundness).Assume that for every reachableDm-statesm ∈ Σm, s |=
no sharing. Letϕm be a temporal property overM-restricted A-assertions overVm,
and letϕs beϕm, where every assertion overVm is replaced with its transformation
into a restricted EA-assertion overVs. Then:Ds |= ϕs ⇐⇒ Dm |= ϕm

While Theorem 4 shows that validity of temporal formulae carries from multi-linked
systems into single-parent ones only when the former satisfy non-sharing, we prove
that if the latter never reaches an error state, then the former never violates non-sharing:

Theorem 5 (Non-sharing).If Ds |= 0 ¬error thenDm |= 0 no sharing.

Proof. Assume thatDm has a computation with a prefixs0m, . . . , s
n
m, where for any

0 ≤ i < n, sim |= no sharing and snm 6|= no sharing. Following Corollary 1, the
sequenceS(s0m), . . . ,S(sn−1

m) is an error-free run ofDs. From Lemma 4,S(snm) is a
successor inDs of S(sn−1

m). From the definition ofS we haveS(snm) |= error. ⊓⊔

Thus, to verifyDm |= ϕm, one would initially perform a “sanity check” by verifying
Ds |= 0 ¬error. If this is successful, then the process outlined in Section1 can be
carried out. Theorem 4 guarantees not only that correctnessof Ds implies correctness
of Dm, but also that a counterexample overDs is mappable back intoDm.

7 Conclusion

We describe a transformation from programs that perform destructive updates over
multi-linked heaps without sharing into single-parent heaps that is based on the idea of
simulating a tree (or forest) by a set of converging lists. Wethen apply an abstraction-
based verification framework to automatically verify properties of systems over multi-
linked heaps.

We applied our technique to verify properties of insertion into AVL trees. We are
currently implementing more benchmarks, including an implementation of 2-3 trees.
We are also extending the transformation to allow for unbounded out-degrees in the
multi-linked heap, and to heaps whose “backbone” is single-parent, which would allow
us to model algorithms that “flip” heap edges (a surprisinglyuseful feature). In the
longer term, we would like to investigate how to use multi-linked heap systems as the
basis for further structure simulation (e.g., as in [19, 12]).

Acknowledgement: We would like to thank Viktor Kuncak and Greta Yorsh for their
insight regarding structure simulation. We also would liketo thank the anonymous re-
viewers for their constructive comments.

References

1. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with automat-
ically computed inductive assertions. InProc. 13rd Intl. Conference on Computer Aided
Verification, pages 221–234. LNCS 2102, 2001.

2. I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate abstraction. In R. Cousot,
editor,Proc. of the6th Int. Conference on Verification, Model Checking, and Abstract Inter-
pretation, volume 3385 ofLect. Notes in Comp. Sci., pages 164–180. Springer, 2005.

23

3. I. Balaban, A. Pnueli, and L. D. Zuck. Modular ranking abstraction. To appear
in International Journal of Foundations of Computer Science (IJFCS), 2007. See
http://www.cs.nyu.edu/acsys/pubs/permanent/ranking-companion-pre.pdf.

4. T. Ball and R. B. Jones, editors.Computer Aided Verification, 18th International Conference,
CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144 ofLecture
Notes in Computer Science. Springer, 2006.

5. M. Benedikt, T. W. Reps, and S. Sagiv. A decidable logic fordescribing linked data struc-
tures. In S. D. Swierstra, editor,ESOP, volume 1576 ofLecture Notes in Computer Science,
pages 2–19. Springer, 1999.

6. J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic termination proofs for
programs with shape-shifting heaps. In Ball and Jones [4], pages 386–400.

7. J. D. Bingham and Z. Rakamaric. A logic and decision procedure for predicate abstraction
of heap-manipulating programs. In E. A. Emerson and K. S. Namjoshi, editors,VMCAI,
volume 3855 ofLecture Notes in Computer Science, pages 207–221. Springer, 2006.

8. E. Börger, E. Grädel, and Y. Gurevich.The Classical Decision Problem. Perspectives of
Mathematical Logic. Springer-Verlag, 1997. Second printing (Universitext) 2001.

9. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists
are counter automata. In Ball and Jones [4], pages 517–531.

10. E. Grädel, M. Otto, and E. Rosen. Undecidability results on two-variable logics. In R. Reis-
chuk and M. Morvan, editors,STACS, volume 1200 ofLecture Notes in Computer Science,
pages 249–260. Springer, 1997.

11. N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and G.Yorsh. The boundary between
decidability and undecidability for transitive-closure logics. In J. Marcinkowski and A. Tar-
lecki, editors,CSL, volume 3210 ofLecture Notes in Computer Science, pages 160–174.
Springer, 2004.

12. N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and G.Yorsh. Verification via
structure simulation. InProc. 16th Intl. Conference on Computer Aided Verification, Lect.
Notes in Comp. Sci., pages 281–294. Springer-Verlag, 2004.

13. Y. Kesten and A. Pnueli. Verification by augmented finitary abstraction.Information and
Computation, 163(1):203–243, 2000.

14. N. Klarlund and M. I. Schwartzbach. Graph types. InProc.20th ACM Symp. Princ. of Prog.
Lang., pages 196–205, New York, NY, USA, 1993. ACM Press.

15. R. Manevich, E. Yahav, G. Ramalingam, and S. Sagiv. Predicate abstraction and canonical
abstraction for singly-linked lists. In R. Cousot, editor,Proc. of the6th Int. Conference on
Verification, Model Checking, and Abstract Interpretation, volume 3385 ofLect. Notes in
Comp. Sci., pages 181–198. Springer, 2005.

16. A. Møller and M. I. Schwartzbach. The Pointer Assertion Logic Engine. InProgramming
Language Design and Implementation, 2001.

17. A. Pnueli and E. Shahar. A platform combining deductive with algorithmic verification.
In Rajeev Alur and Thomas A. Henzinger, editors,Proceedings of the Eighth International
Conference on Computer Aided Verification CAV, volume 1102, page 184, New Brunswick,
NJ, USA, / 1996. Springer Verlag.

18. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. InLICS, pages
55–74. IEEE Computer Society, 2002.

19. T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. On field constraint analysis. InProc.
of the 7

th Int. Conference on Verification, Model Checking, and Abstract Interpretation,
2006.

20. G. Yorsh, A. M. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A logic of reachable
patterns in linked data-structures. In L. Aceto and A. Ingólfsdóttir, editors,FoSSaCS, volume
3921 ofLecture Notes in Computer Science, pages 94–110. Springer, 2006.

24

