AN ITERATIVE SUBSTRUCTURING METHOD FOR
RAVIART-THOMAS VECTOR FIELDS IN THREE DIMENSIONS
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Abstract. The iterative substructuring methods, also known as Schur complement methods,
form one of two important families of domain decomposition algorithms. They are based on a parti-
tioning of a given region, on which the partial differential equation is defined, into non-overlapping
substructures. The preconditioners of these conjugate gradient methods are then defined in terms
of local problems defined on individual substructures and pairs of substructures, and, in addition, a
global problem of low dimension. An iterative method of this kind is introduced for the lowest order
Raviart-Thomas finite elements in three dimensions and it is shown that the condition number of the
relevant operator is independent of the number of substructures and grows only as the square of the
logarithm of the number of unknowns associated with an individual substructure. The theoretical
bounds are confirmed by a series of numerical experiments.
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1. Introduction. In this paper, we consider a boundary value problem for vector
fields, associated with the divergence operator,

(1) Ly := —grad(adivu)+ Bu = f in Q,
u-n = 0 on 9N.

Here Q is a bounded polyhedral domain in R® of unit diameter, and n its outward
normal. We assume that f € (L?(Q))3, that the coefficient matrix B is a symmetric
uniformly positive matrix-valued function with b; ; € L*°(Q), 1 < 4,j < 3, and that
a € L*>(Q) is a positive function bounded away from zero.

The weak formulation of problem (1), and the study of the Raviart-Thomas finite
elements as well as our iterative method require the introduction of an appropriate
Hilbert space H (div; ). It is given by

H(div; Q) := {v € (L*())*| divve L*(Q)},

and equipped with the inner product (-, -)4iy and the associated graph norm || - ||diy,
defined by

(u,V)aiy == /u -vdr + /divudivv de, |[ull, = (u,u)giy.
Q Q
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The normal component of any vector u € H(div;(), on the boundary 912, belongs
to the space H~2 (89); see [8]. The subspace of vectors in H(div ;) with vanishing
normal component on 912 is denoted by Hy(div;2) and it is the appropriate space
for the variational formulation of equation (1):

Find u € Hy(div; Q) such that

(2) a(u,v) = /f-v dx, v € Hy(div;Q),
Q

where the bilinear form a(-,-) is given by

a(u,v) := /(a divudivv+ Bu-v)dz, u,veH(div;Q).
Q

We associate an energy norm, defined by || - ||2 := a(-,-), with the bilinear form; our
assumptions on the coefficients guarantee that this norm is equivalent to the graph
norm.

We remark that if there is a g such that f = —V(ag) then (2) is equivalent to a
mixed variational formulation of the following elliptic equation

—div(B™'Vw) +a”'lw = g, inQ,
B7'Vw-n = 0, ondQ.
To see this, we introduce a flux q := —B~'Vw as an additional unknown. The

corresponding mixed variational problem can be written as:
Find (q,w) € Ho(div;Q) x L*(Q) such that

JBq-pde— [wdivpdz = 0, pe Hy(div;Q),
Q Q
[divqudz + [a twods = (g,v)0, ve€ L*Q).
Q )

The second equation gives
w = ag — adiv q

and thus, using the first equation, q = u.

Another application is provided by stabilized mixed formulations of advection-
diffusion equations; see [8] and the references therein. Still other applications of the
space H(div;Q) are given in [2].

In this paper, we will construct a domain decomposition algorithm for the dis-
cretization of equation (2) by the lowest order Raviart-Thomas elements. Our al-
gorithm is an iterative substructuring method, based on a decomposition of  into
nonoverlapping substructures, and it is designed and analyzed in the Schwarz method
framework; see, e.g. [22]. A Schwarz algorithm is an iteration scheme defined on a
finite dimensional space V, in our case that of the Raviart-Thomas finite elements
on Q. It is specified by a family of subspaces {V;, ¢ = 0,---,J}, and in the simplest
case, by projections P; : V — V;; these projections are orthogonal with respect to the
energy inner product.

An additive Schwarz method provides a new operator equation

J
Pasu:ZPiu:ga
=0
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which can be much better conditioned than the original discrete elliptic problem; it
can often be solved effectively by the conjugate gradient method, without further
preconditioning, employing a(-,-) as the inner product. The right hand side g can
be chosen so that the new problem has the same solution u as the original one; it is
possible to compute P;u from the data given by the original problem.

A lower bound for the smallest eigenvalue of P,; is given by the following well-
known lemma; see [22, Section 5.2].

LEMMA 1.1. If for all u € V there exists a representation, u = ZiJ:o u;, u; € V;,
such that

J
> a(wi,w) < CF a(u,u),

=0

then the smallest eigenvalue of the additive Schwarz operator P,s is bounded from
below by Cy 2.

As it is often the case, a good bound for the largest eigenvalue P,s is routine
and can be obtained by a standard coloring argument; see, e.g. [22, p. 165]. We
also note that we will only consider the basic case when all the problems defined
on the subspaces are solved exactly; this removes the necessity to develop a bound
for the norms of certain projection-like operators that otherwise would be required;
see [22, Assumption 3]. We note that, as always, the extension of our analysis to
other Schwarz methods such as the multiplicative and hybrid variants is completely
routine and that we are in no way suggesting that the additive form of the algorithm
should be preferred over the others. Good results for all these variants of the Schwarz
algorithms will follow from our bound on Cj.

We note that many Schwarz methods have been designed and analyzed for the
case of H'(Q2) in three dimensions, see, e.g. [11, 22], but that there have been only
relatively few studies of the H(div;Q) and H(curl;Q) cases for three dimensional
problems. Among them are [9, 14, 23], on two-level overlapping methods, [3, 13], on
multilevel methods, and [1], which is a study of an iterative substructuring method in
H(curl; Q). We also mention [20, 21] which report on a study of a class of two- and
multi-level methods for mixed approximations of Poisson’s equation. The present work
is a continuation of our recent work in two dimensions; see [5]. See also [2, 7,12, 15, 16],
and the references therein, for some Schwarz methods for problems in H(div; () in
two dimensions.

The choice of the coarse space for a Schur complement method in H'(2), in three
dimensions, is a delicate matter; see, e.g. [11, 25]. Thus, if a standard subspace built
on a coarse triangulation is employed in a vertex-based algorithm, the condition num-
ber of the method cannot be both quasi-optimal and independent on the jumps of
the coefficients across the substructures; see [11]. In particular, if only edge, face,
and interior spaces are used in addition to a conventional coarse space, the condi-
tion number can be made independent of the jumps but it will grow algebraically
with the number of unknowns in each subdomain. If, on the other hand, local vertex
spaces are added then a logarithmic bound can be found for the condition number
of the iteration operator, but this bound will not, in general, be independent of the
jumps of the coefficients. The reason is that the standard, vertex based interpolation
operator onto the coarse space has a norm that grows algebraically in three dimen-
sions. For this reason, other coarse spaces and iterative substructuring methods have
been introduced, among them the wire-basket based algorithms; see [11]. (We recall
that the wire-basket is the union of the boundaries of the faces which separate the
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substructures.) In this respect, there is an interesting difference between H'(Q) and
H(div; ), since our new method for H(div ;) uses a standard coarse space that is
just a smaller instance of the original finite element problem. At the same time, we
are able to maintain the same kind of quasi-optimality and independence of the jumps
as the best, more complicated algorithms for the H(Q) case. This is a consequence
of a certain stability result, given in Lemma 4.1, for the interpolant for the Raviart-
Thomas space, the degrees of freedoms of which are defined by averages of the normal
component over the faces of the triangulation.

The rest of this paper is organized as follows. We review some properties of the
H(div; Q) space in Section 2, and introduce the Raviart-Thomas elements in Section 3.
Several important auxiliary results are developed in Section 4 in preparation for the
introduction and analysis of our iterative substructuring preconditioner in Section 5.
Our main result is a polylogarithmic upper bound for the condition number of the
resulting additive Schwarz operator. Section 6 concludes the paper with numerical
results which illustrate the performance of our iterative substructuring method.

2. Sobolev and trace spaces. In addition to H(div; ), we will also use some
standard Sobolev spaces. Given a bounded open Lipschitz domain D C R?, with a
boundary 0D and a diameter Hp, let |-|5p denote the semi-norm of the Sobolev space
H?3 (D). In case that D = 2, we will drop the reference to the region. Throughout, we
will work with scaled norms for the spaces H*(D), s > 0, obtained from the standard
definition of the Sobolev norm on a region with diameter one and a dilation. Thus,
with || - ||o the Le—norm,

1
lulfp = [ultp + —— lullo,
D

and
2 2 2
”u”%;ap = |u|%;ap + Hp ||U||o;a1>-

As already mentioned, the normal component of any vector field u € H(div; D)
belongs to H™% (0D), and the corresponding trace operator is continuous [8]. Here,
H-z (0D) is equipped with the norm

(u-n,¢)
(3) ||u'n||7%;3'D = sup ||¢||1, ’
qseH%(aD) 5;0D
P#0

where (-, -) represents the duality pairing between H~2 (8D) and H?=(dD). Results
on the trace are formulated in the following two lemmas; we note that the first bound
in the second of these lemmas is quite similar to a lemma given in [4]. From now on,
we will denote by C' a positive generic constant, uniformly bounded from above, and
by ¢ a positive generic constant uniformly bounded away from zero.

LEMMA 2.1. There exists a constant C, which is independent of the diameter of
D, such that

(4) [ nl? 5 < C (ul 3 + Hldivulp)

Proof. By using Green’s formula on a reference domain D with diameter one, we

find
/Ad)u-nda:/u-V¢dx+/divu¢dx,
aD D D
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where ¢ is extended harmonically to the interior of D. We then arrive at (4) by
bounding [|¢||,.5 in terms of ||¢||%;315 and by using a scaling argument. O

We note that the right hand side of inequality (4) is a multiple of a scaled
H(div;D) norm but that we will need to work with the unscaled norm in our de-
composition of the finite element functions; see also Lemma 4.3

LEMMA 2.2. There exists a constant ¢, which is independent of the diameter of
D, such that for each u € H(div; D) with (u-n,1) =0

(5) cosp B < sy RO
¢GH%(M>) |¢|%;B’D ¢€H%(BD) |¢|%;8’D
¢#const ¢#const

Proof. The upper bound in (5) is an immediate consequence of the definition of
the || - ||_1,sp-norm. The proof of the lower bound in (5) is based on the following
norm equivalence

2

. . 1
6) 61,00 < 0l o+ 5 | [ 67 ) <ClIlR om.
oD

This is a Poincaré-type inequality; see, e.g. [17, Chap. 2.7] for a classical introduction
to such inequalities. We note that the scale factor results from writing down the result
for a region of diameter one and using dilation. Then, the definition of the H ~%-norm
and the assumption that (u-n,1) = 0 yield, for all real a,

u-n,¢
||u-n||7%;aD= sup ”(;_T”’1>
¢EH%(5‘D) 530D
bconst.

The lower bound is obtained by using (6) and choosing & = [, ¢do. O

In the next section, we will introduce an alternative formula for the trace norm
(3) of Raviart-Thomas elements, based on a finite element discretization V3 (9T') of
Hz(8T), where T is an element of a coarse triangulation of the region . We begin
by introducing two triangulations 7y and 7, where the second is a refinement of
the first. The coarse triangulation 7Ty of Q consists of shape regular hexahedra the
diameters of which can vary across the region Q. The finite approximation is given on
the finer mesh, 7, which is obtained by quasi-uniform and shape-regular refinements
of individual coarse mesh elements, in such a way that 7}, is a conforming triangulation
of the whole €. A generic element of Ty, or Tx will be denoted by ¢ and T', respectively.
The sets of faces and edges of the triangulations 75 and Ty, are denoted by Fp, Fg
and &, £m, respectively. A generic face will be denoted by f and F, and a generic
edge by e and E, respectively.

We only consider triangulations based on hexahedra in this paper, but our results
are equally valid for finite element spaces built on tetrahedra. Much of the analysis is
carried out on a cubic substructure divided into cubic elements but the results remain
equally valid if the elements and substructures are images of a reference cube under
sufficiently benign mappings, which effectively means that their aspect ratios have to
remain uniformly bounded. We remark that our analysis is carried out locally for one
substructure at a time. We can therefore interpret the factor H/h, which appears in
our the estimates, as

Hr

max max ——.
TeTu ter, H,
tCT
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Our approximation V;,(8T) of H2(8T), T € T, is given as a direct sum
Vi(0T) := Qn(0T) + B (0T).

Here Qn(0T) is the space of all continuous piecewise bilinear functions and By, (97T)
a space of bubble functions vanishing on the boundary of the elements of 7p:

QrdT) = {¢¢€ CO(BT), ¢‘f e Qi1(f),f COT, f € Fn},
By(0T) := {¢ € C°0T), ¢, = asp1 2 p3 pa, f COT, f € Fn,a5 € R},

where ;, 1 < i < 4, are the nodal basis functions that span Q1(f) on the face f.
The support of any bubble basis function is exactly one element. This property is
often exploited, e.g. in local a posteriori analysis [24]. The following lemma shows
that the H2-seminorm of an element ¢ = ¢ + ¢p in V4(8T), with ¢g € Q4 (8T) and
¢B € By(0T), is equivalent to the sum of the seminorms of ¢ and ¢g.

LEMMA 2.3. There exists a constant C, which depends only on the aspect ratio
of T, such that for each ¢ = ¢pg + B, with g € Qn(0T) and ¢pp € By(0T), the
following equivalence holds

(7) 19l 1,0m < 0l 1,0m + 1¢8l1,00 < Cldl1,07-

Proof. The lower bound follows from the triangle inequality. To prove the upper,
we consider one element at a time and note that the restriction of the two subspaces
to a face f of an element are of fixed dimension. It then follows immediately from
the linear independence of the basis functions that ||¢g|lo;s < C||4|lo;s and that
|pol1;7 < C|@l1;¢. Squaring these inequalities and adding, gives the same inequalities
for OT. An interpolation argument then gives a bound in H 5 from which (7) follows
directly. O

We conclude this section by introducing an operator Py, : H2 (8T) — Vi (dT),
defined by

Ph = PQ + PB-

Here, Py is the L2-projection onto Q4 (8T') and Pg a projection onto By (0T), defined
by

[Povdo= [@-Pos)do. feFiscor
f f

We note that the operator P, preserves integrals over each face f.
LEMMA 2.4. The operator Py is bounded uniformly in Ly(0T) and in H= (8T).
Proof. Tt is well known that Pg is L?- and H'-stable, since T}, is quasi-uniform;
see, e.g. [6]. We then obtain the H 3-stability of Py by an interpolation argument. To

prove the H %—stability of Py, we also have to consider Pg. The proof of its L2-stability
is quite elementary. By using the inverse inequality

C
|¢B|2%;3T < E“‘ZSB”%;BTa ¢B € Bh(aT)a

and the approximation property of Pgp, see [6], we find that
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I1PBél[L0r < /¢ Poo) da)
?E?f 1
c
< lle = Podliger < Clol}or-

3. Raviart-Thomas finite elements. Our study concerns the lowest order
Raviart-Thomas finite elements approximation of (1); see [8]. The Raviart-Thomas
element space X}, is defined by

Xp = Xn(Q) := {u e Hdiv;Q)| u, e RT(),t€Th},

where the local space, for a cube with sides parallel to the coordinate axes, is given
by

oy + BT
RT (@)= az+ By
as + B3z

The degrees of freedom of X} are given by the averages of the normal components
over the faces of the triangulation:

(8) Af(u) = ﬁf/u-nda, f € Fu.

Here | f| is the area of the face f and the direction of the normal can be fixed arbitrarily
for each face. This formula also defines the natural interpolation operator onto the
space Xp. We note that the normal component of any Raviart-Thomas function
is constant on each face. The dimension of the local space RT (t) is six, and the
dimension of the global space X}, equals the number of faces, f € F;,. We also define
the subspaces of vectors with vanishing normal components on the boundary of 2 by

XO;h = XO;h(Q) = Xh(Q) n Ho(dlv ) Q)

We define the coarse spaces Xy and Xo,m in exactly the same way, using the coarse
triangulation Tg.

As in the case of Lagrangian finite elements, the L2-norm of these discrete vector
fields can be bounded from above and below by means of the values of their degrees
of freedom. This is a simple matter; we can, e.g. easily adapt the proof given for
Lagrangian elements in [19, Proposition 6.3.1].

LEMMA 3.1. Let t be an element of Ty,. There exist constants, ¢ and C, which
only depend on the aspect ratio of the element t, such that

0) Y (HYx u)2 < ulBy < X (HY A s )2, u e RT ).
fcot fcot

Moreover, the following inverse estimate holds:

) 1
(10) ldivallos < Czrllullo, weRT(E).
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The same bounds hold for a coarse element T € Ty.

We will also need some trace spaces associated with the substructure T' € Tg.
We define Sy (9T) as the space of functions which are constant on each coarse face
F C 0T} its dimension is six. We also define So,,(0T') as the space of functions that
are constant on each fine face f € F, f C 0T, and that have mean value zero on 07T'.

4. Stability estimates. In this section, we will study two operators and analyze
their stability properties; they will play essential roles in the proof of the bound for
our iterative substructuring method. The first operator is the standard interpolant
onto the global coarse subspace and the second is an extension operator. Finally, we
will prove a decomposition lemma for the traces of Raviart-Thomas functions on a
substructure, which is analogous to similar results for conforming finite elements in
H?'; see [11]. However, the bounds are now given in terms of the norm of H~'/2, the
trace space of vectors in H(div;{2). We note that just as in the H' case, some of our
bounds will not be uniform in the mesh size.

We first consider the interpolation operator pg onto X g, which is defined in terms
of the degrees of freedom of X g, i.e.

1

Ar(pgu) = m/u-nda, F e Fy.
F

Our next lemma establishes the stability of the interpolant pg. As previously
remarked, pg is logarithmically stable in the || - [|giv -norm, in three dimensions, in
contrast to the nodal interpolant on continuous finite element spaces, which has a
norm which grows algebraically with H/h; see [11]. We also note that for the case at
hand the best bound for the L2-norm alone involves a factor of H/h; this can easily
be seen by considering an element u, for which all the interior degrees of freedom
vanish.

LEMMA 4.1. There exists a constant C, which depends only on the aspect ratios
of T € Ty and the elements of Ty, such that for all u € X,

1D lldiv(prw)lr < lldivullgr,

H :
(12) ol < € ( (1108 (5) ) Iull + v uli )

VAN

Proof. By a simple computation and the use of Green’s formula, we find that
(13) (div (pg)) |7 = (Mgdiv (u)) |7,

where Iz is the L2-projection operator onto the space of constants on T € Tx; see
[8, Sect. III1.3.4]. Inequality (11) follows immediately.

The proof of (12) uses Green’s formula, Lemma 3.1, and a partition of unity very
similar to one given in [11] for the simplex case. Consider a face F' C 9T, and note
that it is partitioned into Np non-overlapping faces f € Fp; see Figure 1 depicting,
for simplicity, just a very regular case. Number these faces so that f;, 1 <i < np have
at least one vertex on an edge of F, (see Fig 1), and let {f1, f2, f3, fa} be the faces
that contain a corner point. Let ¢; C T, be the associated elements. We note that
since, by assumption, the triangulation of the face is quasi-uniform, ny < C(H/h).

Let Y5 be a continuous, piecewise trilinear function defined on T'. It vanishes on
OT \ F and is equal to 1 at all interior mesh points of F. The extension of ¥z to
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F f1 f5 fe f2
fr
iz fs
H

F1G. 1. Decomposition of F

the interior of T has values between 0 and 1, and the absolute value of its gradient
is bounded by C/max(r,h) where r denotes the distance to the wire-basket of T
We refer to [11] for an explicit construction of such a function for a simplex; this
construction can easily be adapted to the cubic case. It is established in [11] that

(14) [Wrliy < CQ+logH/WH,  |[0r|for < CH?.

Using (9), it is sufficient to bound Ar(pgu), for each face F C 8T. Applying Green’s
formula, we obtain

FI Ao = [ (u-n)do
F

4 nF
3 1
= /0F(u-n)da+ZZ\fi|(u-n‘fi)+§Z|fi| (u-n|fi)
aT i=1 =5
3 4 1 ng
= /(ﬂFdiVUJr graddp -u)dz + o ; [fil Az (w) + 5 12:; PARYACYE

T

Thanks to (9), the absolute values of the last two terms can be bounded by

- np 1/2
O3 W2 ullog, < Cnlf*nt/? (Z ||u||’a’m> < CH'Julor,

i=1 i=1

and, by using (14), we find the following bound for |F| |Ar(pru)]
(15)  C (B |divullor + (H( +log /W) ullor + B/ ullor )

Summing over all F' C 9T, (15) finally gives

. H
lomullr < CHAdivullr +€ (1+105 (7)) Il

a
Remark: We can obtain a similar estimate for the energy norm on each sub-
structure T
JIB (pru) - (pru)dz < CZE (1+1og (%))JIB u-udr
+ C% Jadivu divudz.
T
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Here, ar is the minimum of a(x) on T, and Br and yr satisfy
BroTn <n"B(@)y <~rn’n, VneR’, VreT.

The constant in the corresponding global estimate depends on the ratio of the coeffi-
cients B and a on individual substructures, and is independent of the jumps of the
coefficients between the substructures.

The following lemma is an easy consequence of the stability of the operator Pj;
cf. Lemma 2.4. It ensures that an equivalent discrete norm can be found for the trace
spaces of the Raviart-Thomas finite elements. It will be employed in the proof of
Lemma 4.3. We note that we use the stability of P, in H 7 and the fact that this
operator preserves the integrals over the faces f. This latter property is not satisfied

by Pg alone.
LEMMA 4.2. There exist constants, ¢ and C, such that
(16) ¢ sup (u-n,¢) <|la-nfl_1,57 <C sup (u-n,¢) ’¢>
sV om) 6]l z;0m
Furthermore, if (u-n,1) = 0, the || - ||%;8T—n0rm in (16) can be replaced by the
seminorm and the supremum can be taken over the non-constant functions ¢.
Proof. The lower bound follows directly from the definition of the ||-[|_,sp-norm.
For the upper bound, let u € X, (T'). There then exists a ¢, € H 3 (8T) such that
(u n, ¢U)
- nll o7
||¢u||_ o7

Recalling the definition of Pj, and the fact that u-n is constant on each element, and
using Lemma 2.4, we find that

(u-n,Ph¢u) <C<u'n,Ph,¢u)
bullzor  —  [|Paédullior

The proof is now completed by proceeding as in the proof of Lemma 2.2. O

An important step in finding a stable decomposition of Xp () involves a discrete
extension operator from the boundary of a substructure to its interior. The stable
extension operator, defined in the next lemma, provides a divergence-free extension
of the boundary data given on 9T. This fact ensures that the stability constant will
be independent of the diameter of 7. This will not be true for some other extension
procedures.

LEMMA 4.3. There exists an extension operator Hr : So;n(0T) — Xp(T), such
that, for any p € So;(0T),

lu-nf| 157 <2

divHrp =0,
and

(17) [Hrpllor < Cllull—g,or

Here C' is independent of h, H, and p.
Proof. The proof is similar to one given in [13, Lemma 2.47]. We will first prove
the result for a substructure T' of unit diameter. Consider a Neumann problem

Ap = 0, inT,
9%

n , on OT.
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Here, 0/0n is the derivative in the direction of the outward normal of dT. This
problem is solvable, since the boundary data pu has mean value zero on 07T. We can
select any solution, e.g. that with mean value zero on T. Our extension operator
Hr is defined by Hrp := ppu, where u = grad ¢, and py, is the interpolant onto the
Raviart-Thomas space X (T'), defined by the degrees of freedom given in (8); we will
show below that the {Af(u)} are well defined.

An elementary variational argument shows that [lullo,r = |¢[y;r < Cllpll_1,a7-
In order to estimate ||ppullo,r, we will now estimate |[u — ppullo;7. This requires
the use of a regularity result and a finite element error bound. Since p is piecewise
constant on 9T, it belongs to H?(0T), for all s < 1/2. Using the surjectivity of the
map ¢ > 8¢/0n from H3/>+5(T) onto H*(OT) and a regularity result given in [10,
Corollary 23.5], we deduce

(18) [16llz.45;7 < Cllul

Here e is strictly positive and depends on T'.
The {A¢(u), f € Fp} are well-defined, since u € H3+5(T), with s > 0, and, as in
(13),

50T, S <E€T.

div (ppu) = I}, (divu) = 0,

where IT;, is the L? projection onto the space of constant functions on each fine element
tCT.
We now use the following error estimate for the interpolating operator:

1
(19 lu = prullozr < CH'lulyr, 5 <r <1,

where C depends only on the aspect ratios of the elements of 7, and the exponent
r; inequality (19) can be proven using standard arguments as in [19, Sect. 3.4.2].
Employing (19) with r = 1/2 + s, (18) and an inverse inequality, we find that for
s < €T,

1
(20) llu = prullo;r < Ch2*?(|¢ll3 4y < Cllull— g0

The bound for the Ly—norm of ppu is then obtained by applying the triangle inequal-
ity.

We now consider a substructure 7" of diameter H, obtained by dilation from the
substructure of unit diameter. Using the previous result and a scaling argument, we
obtain

div HTN = 0,
||HT//'||0;T S C”l"”—%;aT:

where C' is independent of the diameter of T'. O

We conclude this section by proving a decomposition lemma for the traces of
Raviart-Thomas functions on a substructure.

LEMMA 4.4. Let T be in Ta and let {ur, F C 0T} be functions in So,(0T),
which vanish on 0T \ F. Let p := Y pcorpr. Then there exists a constant C,
independent of h and pg, such that, for oll ug € Sy (0T),

(1) |lur |l 5. o7 < C(1+1og H/B) (1 +log H/B)||u+ g y o + Il 5 ).
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Proof. Since pr € So,,(0T), we obtain

laell_por <O sup 02

$EV (8T) |¢|%;8T,
$#const.

by applying Lemma 4.2.
Now, ¢ € V3, (9T') can be split uniquely into ¢g+¢5, ¢g € Qr(0T), ¢ € By(0T)
and by using Lemma 2.3, we find that

(02)  rll gor<C| sup BEOQ o, lur.on)
> $Q€QR(T) |¢Q|%;8T $BEB(IT) |¢B|%;8T
@ F#const. ¢ g #0

For any ¢q € Qn(0T), we now define a weighted average cg, by

C¢Q /191:‘ do‘Z/Ih(’ﬁF(ﬁQ) do.
F

F

Here, ¥ is given in the proof of Lemma, 4.1 and I, is the nodal interpolation operator
onto @Qn(0T). Then, the supremum in the first term on the right in (22) can be
replaced by

—C
(23)  sup (Emde) o rdo-cel) 0 (wrda)
$QEQK(OT) |¢Q|%;8T PQERQL(OT) |¢Q _C¢Q|%;(-)T $QERQR(OT) |¢Q|%;3T
$ @ Fconst. ¢ @ #const. 6Q#0, o —o0

i.e., we need only consider functions ¢g which have a zero weighted average. The
following norm equivalence is similar to (6) and can be proved by the same standard
techniques

(24) (60l or + Hed,) < I6alli or < Clldal or + HeZ,).

We remark that, because of (24), in the last term of (23), the Hz-seminorm can be
replaced by the full norm.

We next decompose ¢p into the sum of terms ¢p,r supported on individual faces
Fcor

(25) ¢ = Z ?B;F-

FeFy
FCaT

Similarly we decompose ¢ into a sum of contributions ¢g,r supported on individual
faces F' C 0T and ¢g,,, supported in a neighborhood of the wire-basket which is one
element wide; see Figure 2. Thus,

(26) bo= > boF + bou-

FeFy
FCoT

Local inverse estimates combined with interpolation arguments easily give

(27) |¢B;F|2%;6T < C|¢B|2%;3T-
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I

F1G. 2. Neighborhood of the wire-basket

Similar arguments give

1
(28) 60wl or < Cﬁll%;wllg;aT < Cllquullo;w

where W is the wire-basket of T. We note that ||¢q;w |5,y is defined by aline integral.
"3 /2,67» Which is valid for discrete harmonic

functions, and [11, Lemma 4.3 and Lemma 4.5], we can prove

(29) l¢Qullow < C(1+log H/R) ||¢Q||2%;3T,
(30) ||¢Q;F”2%;aT < C(1+10gH/h)2||¢Q”2%;aT-

By using the inequality ||u"||1,7 < C|lu

The proofs in [11] are for the simplicial case; they can be carried out in exactly the
same way for the rectangular case and are therefore omitted. Combining (28) and
(29), we find

(31) 60uull} oz < C1 +10g H/B) 160113 7-
We find, by using the splitting (26), that
(r,dq) = X (wr,dg.p) + (LF, dQuuw)

(32) Fcoar
= </J/: ¢Q;F) + <NF7 ¢Q;w)'

Since Iy (9rpq) = ¢q@;r = In(9rdg,r) and since we can always assume that cg, =0,
we obtain

<NHa¢Q;F) = 0, V,U/H c SH((?T),

and ¢4, = 0. The first term on the right side of (32) can be bounded by means of
(30)

(33) [u dasr)| = [+ prr, poir)| < C(1 +log H/b)|9all 3 0m |1+ sl - 107

For each ¢g,, there is a unique ¢p,r € By (9T) such that

/mw do=/q§B;F do, feFn fCF
f f

with ¢~53; r =0 on 0T \ F. Moreover, this mapping is continuous

~ 1, -~ 1
||¢B;F||2%;3T < Cﬁ”‘bB;FH(Q);BT < Cﬁ”‘bQ;w

|(2);8T S C||¢Q?w||2%;8T'
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By means of this bound and (31), we finally obtain

s o)l = [(ars dme)| = [, dm.6)| < Cllull_y ol lf0ully or
(34) < O+ log H/W'2|lul_ yorlidallyior-

Using (27), we find for the second term on the right hand side of (22)

(e el _ [ dmr) _ ellgor [198:Fll0r

|9B|16r |9Bl10r ~ |9B|107

||p’||—%;8T |¢B§F| %;OT

(35) |¢B | 3;0T

IN

c

< Cllull-yor-

The proof is completed by combining (22), (23), (24), (26), (33), (34), and (35). O

5. The iterative substructuring method. It follows from Lemma 1.1 that the
first step towards the introduction of our Schwarz method is to define a decomposition
of the space Xg;;. For each interior face F' € Fp there are two elements T, T; € T
such that F := 8T; N 8T}, and we set Tp := T; UT;. We will now decompose Xo,p,
into the coarse space Xo,m, the face spaces Xr, F' € Fg, and the interior spaces
X7 := Xo;n(T), T € Tu. The face spaces are defined by

Xp:={veXoy | a(v,w)=0, we X1, UXr;, suppv C Tp}.

We note that an element v € Xy is defined uniquely by the value of v-n on F and
that the coarse space Xo,x is contained in the union of the face and interior spaces.
Thus, the decomposition

(36) Xo;n = Xoyg + Z Xt + Z Xr,
TeET FeFu

is not a direct sum.

In our proof, we will also use {55 r} which are divergence free subspaces of Xop,
and are built in the following way:
Consider any function p on F', that is piecewise constant and has mean-value zero on
F'. Then, p can be extended by zero to all of 8T}, to obtain a function of So.,(07T3),
still denoted by u. Let u; := Hr, . In a similar way, we can extend —u by zero on
OT; \ F, and construct a function u; = Hr, (—u), on T;j. The minus sign has to be
chosen, since the elements T; and T} have outward normals in opposite directions. We
define Xy as the space of functions u, the restriction of which to T; and T} are equal
to u; and u;, respectively, and that are zero outside Tr. Thus, each element in Xp
is uniquely defined by its normal component on F', and its dimension is equal to the
number of fine faces in F' minus one.
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THEOREM 5.1. For each u € Xq,p, there exists a decomposition

u=ug+ » ur+ » up,

TETH FeFy

corresponding to (36), such that

a(um,um) + Z a(ur,ur) + Z a(up,ur) <C (1 + log (%))261(“; u),

TeT FeFu

with a constant C, independent of h, H and u.

Proof. We remark that, because of the equivalence of the graph and energy norms,
we only have to prove the stability of the decomposition (36) with respect to the graph
norm.

We will first prove the stability of the decomposition

(37) Xow=Xom+ Y Xr+ Y. Xr,
TeTH FeFu

and we will then employ the energy-minimizing property of the harmonic extensions
{ur}. We also consider one subdomain 7' at a time; the global result is obtained by
summing over all subdomains.

Counting the degrees of freedom shows that (37) is a direct sum, and consequently
for each u, (37) defines a unique ug. In particular, pg(u—ugy) = 0 yields pgu = upy.
Using Lemma 4.1, we immediately obtain an upper bound for the first term

H
sz < © (1 +108 2 )l

For each face F' C OT there is a unique pp € So,,(0T') which is zero on 0T \ F, such
that (u—ug)-n|, = pr. By means of the definition of Xr, we obtain i = Hr pr,
in T. Combining (17) and Lemma 4.4, we obtain, for any pg € Sy (07T),

g NPl S CORRE/DI ) alf

+ C(L+log H/h)?[|(u—um) - n+ pull2,y o
Lemma 2.1, the triangle inequality, and Lemma 4.1 yield
(e —ug) 0l 5 < COA+log H/b)||ul[Gy )
and the choice pg = ug - n, finally, gives
ll8r (& r < CQ +log H/R)|[ul Gy ;7

An upper bound for ||uT||<2iiv;T is now an easy consequence of the triangle inequality.

The stability of (37) with respect to the energy norm || - ||, is a consequence of
the norm equivalence of the graph norm || - ||4iy and the energy norm. More precisely,
the constant C' in (37) is proportional to

h2
max max 7—T, 7T ;
TeTu Br’ ar




16 B. WOHLMUTH, A. TOSELLI, O. WIDLUND

see the Remark to Lemma 4.1.

In order to prove the stability of the decomposition (36), we set ugy := pgu and
extend the trace ur = (u—ug) - n|,, harmonically in T; and T} to obtain a function
ur € Xr. The energy-minimizing property of the harmonic extension yields

a(up,ur) < a(ip,ir) <C (1 + log %) a(u,u).

The remainder u —ug — ) pc 7, ur is a sum of elements belonging to the interior
spaces, the contributions of which can be bounded using the triangle inequality. O

Finally, we consider the splitting (36) for the limit case a = 0. In this case, the
bilinear form a(-,-) is just a weighted L?-scalar product

a(v,w) = / Bv -wdz.
Q
Let us first decompose u as follows

u= Y ar+ ) i

TeTH FeFu

where r € Xo;, with Ag(ar) := Ap(u), f C F, f € Fp, and Ag(r) = 0 elsewhere,
and ur € X7. Then, Lemma 3.1 guarantees that

> llurll; < Cllull3.
FeFu

We remark that @iF is an extension by zero to the interior of the substructures and,
therefore, in general not contained in Xg. Let us now consider the unique decompo-
sition

u= Z ur + Z urp,

TeTH FeFu

where ur € X7 and up € Xp. By using the minimization property of ug and the
fact that up -n|, = ur -n|,, we obtain

Do lurlls < Y llaells < Olullg.

FeFu FeFu

This proves the stability of the decomposition of u with respect to the L2-norm. Thus,
as the ratio between the coefficients B and a becomes large, we get an upper bound
for the condition number which is independent of H/h. We remark that this result
cannot be obtained with the splitting (37).

In the second limit case, B = 0, the bilinear form a(-,-) is no longer positive
definite. However, we can still work with the preconditioned conjugate gradient in a
subspace, if the right hand side f is consistent. Then, the stability of pg with respect
to the L2-norm of the divergence, (11), gives us an optimal result, i.e., we obtain a
condition number which is independent of H/h.

Remark: In the multilevel context, we can immediately get an additive Schwarz
method by using a decomposition of Xo,, in terms of the hierarchical surplus spaces
associated with the different levels and a vertical splitting into divergence-free and
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complementary spaces. Using Lemma 4.1, we get a lower bound for the minimal
eigenvalue that is proportional to 1=2, where | is the number of refinement levels.
A strengthened Cauchy-Schwarz inequality, similar to the one established in [26] for
the two dimensional case, proves that the largest eigenvalue is bounded independently
of the number of refinement levels. Altogether a multilevel preconditioner is obtained,
where the number of conjugate gradient steps to obtain a fixed reduction of the residual
norm grows linear with the number of refinement steps.

6. Numerical results. In this section, we present some numerical results on
the performance of the iterative substructuring method based on the decomposition
(36), for varying coarse and fine mesh sizes, and varying coefficients a and B. We
refer to [22], for a general discussion of practical issues concerning Schwarz methods.

We consider the domain = (0,1)% and uniform triangulations 73, and Tgz. The
fine triangulation 7, consists of n® cubical elements, with h = 1/n. The matrix B is
given by

B = diag{b, b, b}.
TABLE 1

Estimated condition number and number of conjugate gradient iterations for a residual norm
reduction of 10=% (in parentheses), versus H/h and n. Case of a =1, b= 1.

(#/n | 8 [ 4 [ 2 |
n=8 - 13.28 (14) | 15.15 (22)
n=16 | 19.46 (16) | 23.26 (24) | 17.37 (24)
n=24 | 32.78 (27) | 25.55 (26) | 17.43 (21)
n=32 | 33.48 (27) | 26.01 (26) | 17.42 (21)
n=40 | 35.50 (27) | 26.08 (25) -
n=48 | 36.47 (28) | 25.91 (22) -

Table 1 shows the estimated condition number and the number of iterations to obtain
a reduction of the residual norm by a factor 1079, as a function of the dimensions of
the fine and coarse meshes. The estimate of the condition number is obtained from
the parameters calculated during the conjugate gradient iteration, as described in [18].
For a fixed H/h, the condition number appears to remain bounded independently of
the number of fine mesh points n. The number of iterations varies slowly with H/h
and n.

We remark that the supports of the face spaces, consisting of the union of two
substructures, can be colored in such a way that spaces with the same color do not
intersect. Therefore, the largest eigenvalue of the additive Schwarz operator P, is
bounded by the number of colors plus one; see [22, p. 165]. The largest eigenvalue is
7 in all the cases in Table 1, except for (n =8, H/h = 4) and (n = 16, H/h = 8); the
latter cases correspond to a partition into 2 by 2 by 2 subregions and, consequently,
the largest eigenvalue is bounded by 4.

In Figure 3, we plot the results of Table 1, together with the best least-square fit
second order logarithmic polynomial. Our numerical results are in good agreement
with the theoretical bound obtained in the previous section and they suggest that our
bound is sharp.

In Table 2, we show some results when the ratio of the coefficients b and a is
changed. For a fixed value of n = 24 and a = 1, the estimated condition number
and the number of iterations are shown as functions of H/h and b. These numerical
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* calculated condition number; - least square fitting
T T T T T

40

condition number

Hih

Fig. 3. Estimated condition number from Table 1 (asterisk) and least-square second order
logarithmic polynomial (solid line), versus H/h; the relative fitting error is about 4.5 per cent.

TABLE 2
Estimated condition number and number of conjugate gradient iterations for a residual norm
reduction of 1078 (in parentheses), versus H/h and b. Case of n =24 and a = 1.

(#m | 8 [ 4 | 2 |
b=1e-09 | 4.00 (10) | 5.81 (16) | 6.29 (15)
b=1e-08 | 4.00 (10) | 5.81 (16) | 6.29 (15)
b=1e-07 | 4.00 (10) | 5.82 (16) | 6.29 (15)
b=1e-06 | 4.00 (10) | 21.0 (18) | 6.29 (15)
b=1e-05 | 17.5 (11) | 25.0 (19) | 16.1 (18)
b=0.0001 | 29.5 (12) | 25.0 (19) | 17.1 (18)
b=0.001 | 30.9 (15) | 25.3 (21) | 17.2 (18)
b=0.01 | 32.3 (20) | 25.4 (22) | 17.2 (13)
b=0.1 32.6 (22) | 25.5 (25) | 17.4 (20)
b= 1 32.8 (27) | 25.6 (26) | 17.4 (21)
b= 10 30.0 (29) | 234 (26) | 171 (23)
b=1e+02 | 23.6 (26) | 20.4 (25) | 15.1 (22)
b=1e+03 | 144 (21) | 14.1 (22) | 12.6 (19)
b=1e+04 | 8.42 (16) | 8.57 (17) | 9.43 (17)
b=1e+05 | 6.75 (14) | 6.98 (15) | 7.92 (17)
b=1e+06 | 6.72 (14) | 6.91 (15) | 7.80 (16)

results also confirm the theoretical results in the limit cases b = 0 and b = oo, as
given in the previous section, since we observe that the condition number appears to
be bounded independently of the ratio H/h when the ratio b/a is very small or very
large.
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