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ABSTRACT
A considerable number of research projects are exploring
how to extend object-oriented programming languages such
as Java with, for example, support for generics, multiple dis-
patch, or pattern matching. To keep up with these changes,
language implementors need appropriate tools. In this con-
text, easily extensible parser generators are especially im-
portant because parsing program sources is a necessary first
step for any language processor, be it a compiler, syntax-
highlighting editor, or API documentation generator. Un-
fortunately, context-free grammars and the corresponding
LR or LL parsers, while well understood and widely used,
are also unnecessarily hard to extend. To address this lack
of appropriate tools, we introduce Rats!, a parser genera-
tor for Java that supports easily modifiable grammars and
avoids the complexities associated with altering LR or LL
grammars. Our work builds on recent research on pack-
rat parsers, which are recursive descent parsers that per-
form backtracking but also memoize all intermediate results
(hence their name), thus ensuring linear-time performance.
Our work makes this parsing technique, which has been de-
veloped in the context of functional programming languages,
practical for object-oriented languages. Furthermore, our
parser generator supports simpler grammar specifications
and more convenient error reporting, while also producing
better performing parsers through aggressive optimizations.
In this paper, we motivate the need for more easily extensi-
ble parsers, describe our parser generator and its optimiza-
tions in detail, and present the results of our experimental
evaluation.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers, optimization, parsing, translator writing systems and
compiler generators

General Terms
Design, languages, performance

Keywords
Parser generators, parsing expression grammars, packrat
parsers, extensible programming languages

1. INTRODUCTION
A considerable number of research projects have been ex-
ploring language extensions that improve the expressivity of
object-oriented programming languages, with many projects
focusing on Java as a base language. Examples include
generics [9, 10, 19, 27, 35], aspect-oriented programming [20,
21], multiple dispatch [11, 25], pattern matching [22, 24],
and support for controlling information flow [26]. Other
projects have been exploring extensibility mechanisms for
object-oriented languages, focusing either on macro systems
[2, 3] or on the compiler itself [28].

Taken together, these efforts illustrate that programming
languages are not static entities, but rather in constant flux.
In fact, Sun has incorporated generics, among several other
new features, into the upcoming 1.5 release of Java [8, 17].
An important challenge, then, is how to gracefully evolve
programming languages [32] and, more specifically, how to
provide language implementors with the appropriate tools
for tracking ever changing languages. While our larger re-
search agenda aims to explore how to express, compose,
and efficiently implement language extensions for C-like lan-
guages, for the purposes of this paper we focus on the ex-
tensibility of programming language grammars and their
parsers. After all, parsing program sources is a necessary
first step for any language processor, be it a compiler, inter-
preter, syntax-highlighting editor, API documentation gen-
erator, or source measurement tool.

Unfortunately, context-free grammars (CFGs) and the cor-
responding LR or LL parsers [1], while well understood and
widely used, offer only limited extensibility [7, 15] and thus
represent an unsuitable foundation for managing the evolu-
tion of programming languages and their implementations.
On the other hand, parsing expression grammars [4, 5, 15]
(PEGs) and packrat parsers [13, 14] provide an attractive
alternative. While PEGs share many constructs with the fa-
miliar EBNF notation [18, 36], a key difference is that PEGs
rely on ordered choices instead of the unordered choices used
in CFGs. As a result, PEGs can avoid unnecessary ambigu-
ities and are more easily modifiable. Additional flexibility
is offered through syntactic predicates, which match expres-
sions but do not consume the input, thus providing unlim-
ited lookahead, and through the integration of lexing with
parsing, which greatly simplifies the addition of new tokens
to a grammar.

Parsing expression grammars can be implemented by so-



called packrat parsers. They are recursive descent parsers,
which perform backtracking but also memoize all interme-
diate results (hence the name), thus ensuring linear-time
performance. So far, Ford [13, 14] has implemented sev-
eral handwritten packrat parsers as well as a packrat parser
generator, called Pappy, for and in Haskell. As a lazy, func-
tional programming language, Haskell certainly provides a
convenient platform for implementing this memoizing pars-
ing technique. However, the choice of target language (ar-
guably) also limits the accessibility of packrat parsers.

To make packrat parsers more widely accessible, this pa-
per introduces Rats!,1 a packrat parser generator for Java.
By leveraging Java’s object-oriented features, parsers gen-
erated by Rats! have a simple and elegant implementation
of memoization in a strict, imperative programming lan-
guage. Compared to Pappy, Ford’s packrat parser generator
for Haskell, Rats! features more concise grammar specifica-
tions, has better support for debugging grammars and for
reporting parser errors, and, through aggressive optimiza-
tions, generates better performing code. Our parser gen-
erator has been implemented within our own framework for
building extensible source-to-source language processors and
includes optional support for using the framework in gener-
ated parsers, thus simplifying the implementation of other
language processors. Rats! has been released as open source
and is available at http://www.cs.nyu.edu/rgrimm/xtc/.

The rest of this paper is organized as follows. In Section 2,
we motivate our work and review other approaches to pars-
ing programming languages. We follow with an overview
of our parser generator in Section 3. We then discuss our
object-oriented implementation of packrat parsers in Sec-
tion 4 and describe the optimizations performed by Rats!
in Section 5. In Section 6, we present the results of our
experimental evaluation. In Section 7, we follow with a dis-
cussion of our framework for building extensible source-to-
source language processors. Finally, we outline future work
in Section 8 and conclude in Section 9.

2. MOTIVATION AND RELATED WORK
From the perspective of language extensibility, using a parser
generator to create a parser has an important advantage over
a handwritten parser: the grammar provides a concise spec-
ification of the corresponding language. As a result, we gen-
erally expect it to be easier to modify the machine-generated
parser than the handwritten one. However, LALR(1) gram-
mars for the popular Yacc tool [23] and similar parser gen-
erators are fairly brittle in the face of change. For example,
Brabrand et al. [7] suggest adding the following, admittedly
clumsy, extension to a Java grammar for synchronization on
two objects:

GuardingStatement : SYNCHRONIZED

’(’ Expression Expression ’)’ Statement;

Yet, this simple modification results in 29 shift/reduce and
26 reduce/reduce conflicts. To make matters worse, none of
the conflicts occur in parser states related to the new produc-
tion, making it unnecessarily hard to correct the grammar.

LL(k) parser generators do not suffer from this brittleness,
but, instead, need to disambiguate alternatives that share a
common prefix. A grammar writer can avoid the need for

1The name is pronounced with the conviction of a native
New Yorker when faced with a troublesome obstacle.

disambiguation by factoring such prefixes by hand, but this
requires extra effort and obfuscates the language specifica-
tion. JavaCC [12] supports explicit lookahead expressions,
but they still tend to obfuscate the language specification.
In contrast, ANTLR [31] supports a global lookahead flag,
but, in practice, still requires local options to fine-tune the
lookahead. In either case, the need for explicit lookahead
specifications complicates the grammar and makes it more
difficult to modify.

An additional problem common to both LR and LL parser
generators is the separation of lexing and parsing, which can
make it unnecessarily hard to add new tokens to a gram-
mar. As an example, consider adding support for character
classes, such as “[0-9a-fA-F]” for hexadecimal digits, to
the grammar of a parser generator. At the grammar-level,
the corresponding parsing expression should look as follows
(with ‘/’ denoting the ordered choice operator):

’[’ ( Char ’-’ Char / Char )+ ’]’

However, because the definition of the Char token overlaps
almost all other tokens, its addition results in a substan-
tial number of ambiguity errors for the lexical specification.
Common workarounds are the use of separate lexer states,
as supported by Lex [23], or the composition of different
lexers, as supported by ANTLR, both of which, again, ob-
fuscate the language specification.

Packrat parsers can avoid these problems while still ex-
hibiting linear-time performance. In particular, because they
are recursive descent parsers, they avoid the brittleness of
LR parsers. Next, because they backtrack while also mem-
oizing all intermediate results, they do not require explicit
management of lookahead. Unlimited lookahead is still avail-
able through syntactic predicates, though not to ensure lin-
ear-time performance but rather to increase expressiveness.
For example, by using syntactic predicates, packrat parsers
can recognize {anbncn | n > 0}, which cannot be expressed
by CFGs. Finally, because packrat parsers effectively treat
every character in the input as a token, they do not require
separate lexical specifications and make the full power of
parsing expression grammars available for recognizing lexi-
cal syntax.

However, this last property of packrat parsers also repre-
sents the biggest challenge to an efficient implementation:
The data structure for memoizing intermediate results is
a possibly very large table, with the characters in the in-
put defining the horizontal dimension and the nonterminals
in the grammar defining the vertical dimension. Keeping
this table as small as possible, e.g., by only computing en-
tries as necessary, is the key to efficient packrat parsing. In
other words, the challenge of practical packrat parsing is to
balance the ease of extensibility with reasonable parser per-
formance, both in terms of memory utilization and parsing
latency.

Several techniques used in parsing expression grammars
and packrat parsers have also been explored in other parser
generation systems. Notably, Parr and Quong have intro-
duced the use of predicates for LL(k) parsing [30] and in-
tegrated them into ANTLR [31]. They were later adopted
in JavaCC [33]. ANTLR also uses a recursive descent lexer,
which provides many of the advantages of packrat parsers
when recognizing lexical syntax, though it still separates lex-
ing from parsing. Finally, the metafront system [7] builds
on a new, linear-time parsing technique that also includes

http://www.cs.nyu.edu/rgrimm/xtc/


Operator Type Prec. Description
’ ’ Primary 5 Literal character
" " Primary 5 Literal string
[ ] Primary 5 Character class
. Primary 5 Any character
{ } Primary 5 Semantic action
(e) Primary 5 Grouping
e? Unary suffix 4 Option
e* Unary suffix 4 Zero-or-more
e+ Unary suffix 4 One-or-more
&e Unary prefix 3 And-predicate
!e Unary prefix 3 Not-predicate

id:e Unary prefix 3 Binding
" ":e Unary prefix 3 String match
e1 e2 Binary 2 Sequence

e1 / e2 Binary 1 Ordered choice

Table 1: The operators supported by Rats!. Note
that “Prec.” stands for precedence level.

a limited form of syntactic predicates. The advantage of
packrat parsers is that they combine all these features into
a simple and easily extensible framework with a well-defined
formal foundation [15].

3. RATS!
Like most other parser generators, Rats! is implemented
as a source-to-source transformer that translates a gram-
mar specification into programming language source code.
Our parser generator currently targets only Java, though
all language-specific aspects have been carefully isolated in
two classes to ease future ports to other object-oriented pro-
gramming languages. A grammar specification starts with
a header, which includes the Java package and class name
of the corresponding parser, a declaration of top-level non-
terminals, and optional code blocks to be included verbatim
before, within, and after the parser class. The header is
followed by one or more productions, which are of the form:

Type Nonterminal = e ;

The Type is the Java type of the semantic value, Nontermi-
nal is the name of the nonterminal, and e is the expression
to be parsed.

Table 1 summarizes the expression operators supported
by Rats!. They directly mirror the operators of parsing ex-
pression grammars [15], with straight-forward extensions to
create and manipulate semantic values. In particular, se-
mantic actions may appear anywhere in a production and
typically define the production’s semantic value through an
assignment to yyValue (so named in deference to Yacc).
Bindings assign the semantic value of an expression to a
variable, making that value accessible in subsequent actions.
Additionally, an and-predicate operator ‘&’ directly followed
by a semantic action is interpreted as a semantic predicate,
whose code must evaluate to a boolean value. Finally, a
string match "text":e is semantically equivalent to:

fresh-id:e { "text".equals(fresh-id) }

However, since this is a common idiom for writing pars-
ing expression grammars, it is directly supported by Rats!
(which also allows it to generate slightly more efficient code).

3.1 Determining Semantic Values
Typically, parsers do not just determine whether an input
conforms to a language specification but rather generate an
abstract syntax tree (AST) for further processing by a tool.
The AST is constructed through semantic actions. As an ex-
ample, consider this production, which, coincidentally, rec-
ognizes productions, from Rats! ’ own grammar:

Production Production =

isTransient:("transient":Id)?

type:QualifiedName nt:Nonterminal

Assignment choice:Choice Semicolon

{ yyValue = new

Production(null != isTransient,

type, nt, choice); }

;

The production binds the results of recognizing the optional
transient keyword and the mandatory nonterminals Qual-
ifiedName, Nonterminal, and Choice, while also ignoring
the semantic values of the Assignment and Semicolon non-
terminals. It then constructs the corresponding AST node
by using the bound values. Note that the first occurrence
of the word Production defines the Java type of the seman-
tic value, while the second one represents the nonterminal.
The usage of the optional transient keyword is explained
in Section 5.1.

While semantic actions provide considerable flexibility in
creating a production’s semantic value, they are not al-
ways necessary, thus needlessly cluttering a grammar, and,
even worse, can also lead to inefficient or incorrect packrat
parsers. For instance, it is often convenient to create pro-
ductions, which consume keywords or punctuation before or
after another nonterminal or which combine several nonter-
minals into a larger choice. In either case, the referenced
nonterminals typically recognize more complex expressions,
and the semantic value of the higher-level production is the
same as the semantic value of one of the nonterminals. In
other words, the higher-level production only passes the se-
mantic value through but does not create a new one.

More importantly, productions that recognize lexical syn-
tax either do not need to return semantic values at all—
they may, for example, simply consume white space and
comments—or they only need to return the text matched
in the input as a string. However, explicitly creating such a
string within an semantic action is not only tedious, but can
also lead to inefficient or incorrect packrat parsers. The un-
derlying problem is that semantic values for packrat parsers
must be implemented by functional data structures: mutat-
ing a data structure after it has been memoized invalidates
the parser’s state. As a result, the common idiom for effi-
ciently building up Java strings through string buffers must
not be used in packrat parsers. To address these issues, Rats!
adds support for easily passing a semantic value through a
production and for simplifying lexical analysis through void
and text-only productions. The support for void produc-
tions has the added benefit that it further strengthens our
parser generator’s support for passing a value through. We
now discuss these features in turn.

Rats! provides two ways of passing a semantic value through
a production; in either case, no semantic actions are re-
quired. First, grammar writers can explicitly bind to yyValue.
This technique is illustrated in the following production,
again from Rats! ’ own grammar:



Action Header =

"header":Id yyValue:Action ;

The production recognizes the keyword “header” followed
by an action; its semantic value simply is the AST node
representing the action’s code. Second, for many expres-
sions, Rats! can automatically deduce the semantic value.
As an example, consider this production:

Element Primary =

Nonterminal / Terminal / Action /

OpeningParenthesis Choice ClosingParenthesis

;

Since the first three alternatives contain only a single nonter-
minal each, Rats! can easily deduce that each alternative’s
semantic value is the value of the referenced production.
The semantic value of the fourth alternative is the value of
the Choice production, which Rats! deduces with the help
of void productions.

A void production is a production with a declared type of
void; its semantic value is null. Void productions are useful
for recognizing punctuation elements, such as the operators
appearing in Rats! ’ own grammar, or ignored spacing in-
cluding comments. For example, the following void produc-
tion recognizes an opening parenthesis followed by spacing:

void OpeningParenthesis =

’(’ Spacing ;

Void productions also improve the accuracy of Rats! ’ auto-
matic deduction of a compound expression’s semantic value:
If the compound expression references only a single non-
void nonterminal, that nonterminal’s semantic value must be
the overall expression’s value. In the example of the above
Primary production, both OpeningParenthesis (as shown)
and ClosingParenthesis reference void productions, while
Choice does not. Consequently, the semantic value of the
overall expression is the value of the Choice production.

A text-only production is a production with a declared
type of String. Additionally, it may not contain any ac-
tions and may reference only other text-only productions.
The semantic value of a text-only production is the text
matched in the input. Text-only productions are typically
used for recognizing identifiers, keywords, and literals. For
example, the following production from Rats! ’ own gram-
mar recognizes string literals:

String StringLiteral =

["] (EscapeSequence / !["\\] .)* ["] ;

The semantic value of this production is the entire string lit-
eral, including the opening and closing double quotes. Note
that the “!["\\] .” expression is read as “any character
but a double-quote or backslash.”

A final issue that impacts how semantic values are de-
termined is Rats! ’ processing of options, repetitions, and
nested choices. To ensure that parser code generation is
correct and manageable, our parser generator, similar to
Ford’s Pappy, lifts options, repetitions, and nested choices
into their own productions. Furthermore, it desugars op-
tions into choices with an empty, second alternative and rep-
etitions into the corresponding right-recursive expressions.
Desugaring repetitions is also necessary so that the compo-
nent expressions are correctly memoized; otherwise, a pack-
rat parser might not recognize its input in linear time. Note

that nested choices that appear as the last element in a
sequence need not be lifted. Further note that repeated
choices in void and text-only productions are combined dur-
ing lifting and desugaring (and not lifted into separate pro-
ductions). The semantic value of the second, empty alter-
native of a desugared option is null. For instance, the
“null != isTransient” test in the above production for
Production relies on this to determine the presence of the
transient keyword. Furthermore, the semantic value of a
desugared repetition is a functional list of the component ex-
pressions’ semantic values; just like the corresponding lists in
Scheme or Haskell, Rats! ’ functional lists are implemented
as sequences of pairs. To better integrate with Java, func-
tional lists can easily be converted into the corresponding
lists in the Java collections framework. Finally, the seman-
tic values of a nested choice must be specified individually
in the different alternatives of the choice, unless, of course,
Rats! can automatically deduce them.

3.2 Error Handling
So far, we have focused on Rats! ’ support for parsing well-
formed inputs and generating the corresponding abstract
syntax trees through semantic actions. In reality, however,
both grammars and language source files are likely to contain
errors. Consequently, to assist tool developers in debugging
grammars and users in debugging source files, Rats! includes
a number of error detection and reporting facilities.

Like other recursive descent parsers, packrat parsers can-
not support left-recursion. Accordingly, Rats!, among sev-
eral other grammar validity checks, detects both direct and
indirect left-recursion and reports a grammar error.2 Fur-
thermore, like other packrat parsers, Rats! -generated parsers
collect parse errors even for successful parser steps. To il-
lustrate the need for always tracking parse errors, consider
this grammar fragment:

Production+ EndOfFile

The Production+ expression succeeds for any input that
contains at least one valid production. If, however, the in-
put contains an additional production with an embedded
syntax error, this grammar fragment fails on the EndOfFile

expression. If the parser does not track parse errors, it can
only generate the not very illuminating error message “end
of file expected.” However, by tracking parse errors even
for successful steps, it can generate a more specific message,
such as “assignment expected.”

In addition to these error handling facilities also supported
by Ford’s Pappy, Rats! adds the following four features.
First, to aid with the debugging of grammars, Rats! can
pretty print grammars right after parsing and after per-
forming its optimizations. Grammar writers can also select
which optimizations should be performed. Second, Rats! -
generated parsers enforce the declared type of each produc-
tion’s semantic value, with the result that type errors are de-
tected when compiling a parser. While Rats! relies on type
erasure [9] to memoize semantic values in instances of a com-
mon container class SemanticValue, it is sufficient for type
safety to declare yyValue and all bound variables with the
correct type. Third, parse error messages are automatically

2Ford’s Pappy automatically converts direct left-recursions
into the corresponding right-recursions; we have not yet im-
plemented this feature in Rats!.



public abstract class Result {
// The parser object.
public final PackratParser parser;

// Create a new result.
public Result(PackratParser parser) {

this.parser = parser;
}

// Determine if the instance has a value.
public abstract boolean hasValue();

// Get the actual value.
public abstract Object semanticValue();

// Get the (embedded) parse error.
public abstract ParseError parseError();

// Create a new semantic value, using this result’s
// parser.
public abstract SemanticValue

createValue(Object value, ParseError error);
}

Figure 1: The common base class for semantic values
and parse errors.

deduced from nonterminal names. For example, a parse er-
ror within the production for StringLiteral results in the
error message “string literal expected.” The reported posi-
tion in the input is the start of the production. However, for
string literals and string matches, which are typically used
for recognizing keywords or punctuation, the error message
specifies the string and the beginning of the corresponding
expression. Finally, parsers automatically track file names,
line numbers, and column numbers. Furthermore, if seman-
tic values are instances of our source-to-source transformer’s
AST nodes, Rats! -generated parsers can optionally annotate
these nodes with the corresponding information. That way,
later tool phases can easily report the location of semantic
errors. Overall, Rats! ’ error handling facilities have been
designed so that tool implementors can focus on the func-
tionality of their tools and need not worry about the details
of error detection and reporting.

4. PARSER IMPLEMENTATION
Each parser generated by Rats! has a main class, which is in-
stantiated once for each character in the input. This parser
class thus represents the columns of a packrat parser’s mem-
oization table. For each production, the parser class has a
field to store the memoized intermediate result and a cor-
responding accessor method. On invocation, the accessor
method tests whether the field’s value is null. If so, the
accessor calculates the result, stores it, and then returns it.
If the field is not null, the accessor method simply returns
the stored value.

All parser classes have a common parent, named Packrat-

Parser, which provides access to the characters in the input
and tracks file names as well as line and column numbers.
Characters are read in, on demand, from regular Java char-
acter streams. While seemingly trivial, this implementation
detail avoids an important restriction when compared to

yyResult = this.pId();
yyError = yyError.select(yyResult.parseError());
if (yyResult.hasValue()) {

String att = (String)yyResult.semanticValue();
...

}

Figure 2: An example code snippet corresponding
to the expression att:Id, with Id having a seman-
tic value of type String. The code snippet first at-
tempts to match the Id production in the input. It
then records any parse errors in yyError. Next, if
the match has been successful, it binds the corre-
sponding semantic value to att.

Ford’s packrat parsers: Ford states [13, 14] that his parsers
need to have the entire input available up-front, thus mak-
ing them unusable for interactive applications. Because they
use Java’s character streams, this is not the case for Rats! -
generated parsers.

When receiving a result from an accessor method, parsers
need to easily distinguish between semantic values and parse
errors, as they need to execute different code depending on
the type of result. To this end, we leverage Java’s object-
oriented features and represent them through two separate
container classes. The container class for semantic values,
named SemanticValue, stores the actual value, a reference
to the parser object representing the input after the parsed
expression, and possibly an embedded parse error. As al-
ready hinted at in Section 3.2, the field for the actual value
is declared to be a Java Object, which is an application of
type erasure [9] and allows us to use the same container class
for all types of semantic values. The container class for parse
errors, named ParseError, stores the error message and a
reference to the parser object representing the location of
the error.

Both container classes have a common base class, which
is shown in Figure 1. The implementation of the concrete
methods is trivial—between one and two lines of code per
method. At the same time, the use of this common base
class significantly simplifies the implementation of memo-
izing parsers, as illustrated in Figure 2. In particular, no
instanceof tests are necessary to distinguish between se-
mantic values and parse errors, and no type casts are re-
quired to access each container class. Due to our use of type
erasure, type casts are still necessary for accessing the ac-
tual semantic values. However, these casts cannot fail, as
the corresponding yyValue declarations in the productions
that create the values have the same type.

5. OPTIMIZATIONS
With the overview of our parser implementation in place,
we can now turn to the optimizations performed by Rats!.
The goals for optimizing packrat parsers are two-fold. First,
the optimizations should reduce the size of the table memo-
izing intermediate results. Decreasing the size of this table
is important not only for keeping heap utilization as low as
possible but also for improving parser performance. After
all, a smaller memoization table decreases the frequency of
memory allocator and garbage collector invocations and also



Name Description Rats!
Chunks Break memoizing fields into

chunks; do not memoize pro-
ductions referenced only once.

√

Grammar Fold duplicate productions
and eliminate dead produc-
tions.

√

Transient Do not memoize transient pro-
ductions.

New

Choices Inline transient productions
into choices.

New

Terminals Optimize recognition of termi-
nals, notably by using switch
statements.

Improved

Prefixes Fold common prefixes. New
Errors Avoid the creation of unneces-

sary parsing errors.
New

Values Avoid the creation of duplicate
semantic values.

New

Repeated Do not desugar transient repe-
titions.

New

Cost Perform cost-based inlining.
√

Table 2: Overview of optimizations.

increases the table fraction that fits into a processor’s caches.
Second, the optimizations should improve the performance
of productions that recognize lexical syntax. This is impor-
tant, because packrat parsers integrate lexical analysis with
parsing and thus cannot utilize well-performing techniques,
such as DFAs [1], for recognizing tokens.

Table 2 summarizes the optimizations performed by Rats! ;
it also identifies which optimizations are new or improved
in comparison to Ford’s Pappy. The chunks, grammar, and
cost optimizations, which are also performed by Pappy, work
as follows. First, the chunks optimization is based on the
observation that most table fields for a given parser object
never memoize a result, i.e., remain null. Consequently,
to reduce the memory overhead of allocating the fields, the
chunks optimization introduces a level of indirection and
allocates fields in chunks. The parser object, in turn, ref-
erences the chunks, instead of referencing results directly.
Additionally, if a nonterminal is referenced only once within
a grammar, the parser cannot backtrack on the correspond-
ing production, and the production is not memoized at all.

Next, the grammar optimization is based on the observa-
tion that the lifting and desugaring of expressions described
in Section 3.1 can result in duplicate productions, which
might even increase the size of the memoization table. Con-
sequently, to minimize the impact of these transformations,
the grammar optimization folds equivalent productions into
a single one. Comparable to dead code elimination, it also
removes non-top-level productions that are never referenced
from the grammar. Finally, the cost optimization inlines
productions, with the goal of avoiding the overhead of invok-
ing accessor methods and performing memoization. How-
ever, since indiscriminate inlining can invalidate the linear-
time performance guarantee of packrat parsers, the cost op-
timization only inlines very small productions.

We now describe the optimizations new to or improved
by Rats!. More specifically, in Section 5.1, we show how to
further reduce the number of productions that need to be

memoized. Next, in Section 5.2, we explore how to improve
the recognition speed for lexical syntax. In Section 5.3, we
describe how to reduce the memory overhead for productions
that need to be memoized. Finally, in Section 5.4, we explore
an optimization that avoids the possibly deep recursion of
desugared repetitions when recognizing long inputs.

5.1 Transient Productions
The transient optimization is based on the observation that
packrat parsers typically do not need to backtrack for pro-
ductions recognizing lexical syntax. In particular, identi-
fiers, keywords, operators (such as “<=”), and punctuation
(such as “;”) have straight-forward productions that do not
backtrack. More importantly, spacing, which includes all
white space and comments, makes up large parts of most
programming language source files but also does not require
backtracking. At the same time, productions that recognize
numeric literals often do need to backtrack. However, if a
production does not need to backtrack, there is no need to
memoize the intermediate results.

Consequently, the transient optimization gives grammar
writers control over which productions are memoized through
the transient keyword. If a production is declared to be
transient, Rats! does not allocate a field for memoizing the
production’s result; rather, the corresponding parsing code
is always executed. The use of this keyword is illustrated
in the following production, which consumes optional white
space and comments:

transient void Spacing =

( WhiteSpace

/ TraditionalComment

/ EndOfLineComment )*

;

Obviously, the indiscriminate use of the transient key-
word can negate the benefits of memoization and result in
parsers that perform in time (considerably) worse than lin-
ear. As a result, grammar writers need to use the transient
keyword with care. They should either verify that a produc-
tion cannot backtrack or measure the effects over a set of
representative inputs. In practice, we expect that grammar
writers mostly reuse the corresponding productions from the
grammars distributed with our source release of Rats!.

5.2 Improved Terminal Recognition
Like the corresponding optimization in Ford’s Pappy, the
terminals optimization is based on the observation that many
productions for recognizing lexical syntax have alternatives
that start with different characters. To improve recogni-
tion speed, the terminals optimization replaces successive
if statements that parse disjoint lexical alternatives with a
single switch statement, while also folding alternatives that
start with the same characters into one alternative with a
common prefix.3 Furthermore, to avoid the dynamic instan-
tiation of text matched in the input, our version also uses
literal Java strings, if the recognized text can be statically
determined, and converts text-only productions, whose se-
mantic value is never used, i.e., bound, into the correspond-
ing void productions. The prefixes optimization generalizes

3Note that the resulting nested choice does not need to be
lifted because it always appears as the last element in a
sequence.



the folding of alternatives with common prefixes to nonter-
minals, with the goal of avoiding repeated calls to accessor
methods and possibly even memoization.

However, the effectiveness of the terminals optimization
depends to some degree on how a grammar has been written.
For instance, the Spacing production shown in Section 5.1
references three nonterminals instead of directly specifying
the expressions for recognizing white space and comments.
As a result, the terminals optimization can use a switch

statement to recognize white space, but not for spacing over-
all. The choices optimization addresses this problem and
creates further opportunities for the terminals optimization.
It is based on two observations. First, most productions for
recognizing lexical syntax never backtrack and can safely
be declared as transient. Second, if a transient production
references another transient production, the referenced pro-
duction can safely be inlined into the first, as no interme-
diate results need to be memoized. Consequently, if a non-
terminal appears as the only expression in an alternative,
the nonterminal references a void or text-only production,
and both the referencing and the referenced productions are
transient, the choices optimization simply inlines the refer-
enced production. In the case of the Spacing production,
the overall result of the combined terminals and choice opti-
mizations is a single switch statement for recognizing white
space and comments instead of just white space alone.

5.3 Avoiding the Creation of Results
The errors and values optimizations reduce the number of
ParseError and SemanticValue container objects allocated
by packrat parsers. The errors optimization is based on the
observation that most alternatives in a production’s top-
level choice fail on the first expression. For example, the
statement production for any C-like language has a large
number of alternatives. Only one of these alternatives can
succeed on a given input and most alternatives are com-
pletely distinct, starting with a different keyword. Conse-
quently, the errors optimization suppresses the generation
of a parse error when the first expression in an alterna-
tive fails. At the same time, parse errors are still generated
when a subsequent expression fails or when all alternatives
fail. Generating a single parse error when all of a produc-
tion’s alternatives fail on their respective first expressions
has one added benefit: the corresponding error message is
more meaningful, as it indicates that the overall production
has failed. For example, instead of “if expected” (assuming
that the last alternative parses the if statement) the error
message would read “statement expected.”

The values optimization is based on the observation that
many productions simply pass the semantic value through.
For example, Java has 17 expression precedence levels, which
are implemented by separate productions. All of these pro-
ductions must be invoked to recognize a primary expression,
such as a literal or identifier, with productions of lower prece-
dence levels simply passing the corresponding value through.
As discussed in Section 3.1, similar observations have mo-
tivated us to simplify the specification of such productions
by eliminating the need for explicit semantic actions. The
values optimization, however, does not depend on how a
semantic value is calculated, be it through an explicit ac-
tion, an assignment to yyValue, or through Rats! ’ value de-
duction facilities. Rather, where possible, new instances of
SemanticValue are created by invoking the createValue()

method shown in Figure 1 on the last result accessed while
parsing an expression. The method’s implementation for
semantic values uses the reference equality test == to com-
pare the specified value and error with its own and, if they
are identical, returns this instead of allocating a new con-
tainer object. This simple and dynamic delegation of object
creation makes the values optimization available to a much
larger class of parsing expressions than would be possible
with using only static analysis in the parser generator.

5.4 Repetitions in Transient Productions
Our final optimization is motivated by the observation that
desugared repetitions may recurse quite deeply when match-
ing a large number of repeated expressions. As a result, we
have observed stack overflow errors on some Java virtual ma-
chines when parsing source files with very long comments
(on the order of several printed pages). In general, repe-
titions need to be desugared into the corresponding right-
recursive expressions to ensure that the component expres-
sions are correctly memoized. However, as discussed in Sec-
tion 5.1, spacing, including comments, typically does not
require memoization, as a packrat parser does not back-
track for the corresponding productions. Consequently, the
repeated optimization preserves repetitions in transient void
or text-only productions. While this optimization has com-
plicated parser code generation considerably, it also ensures
that Rats! -generated parsers can scale over longer inputs.

6. EXPERIMENTAL EVALUATION
In this section, we present the results of our experimental
evaluation. The goal is to understand the costs associated
with packrat parsing and thus the costs of making parsers
more easily extensible. We focus on quantifying the over-
all performance of packrat parsers, notably their memory
overhead and latency, and the effects of the optimizations
presented in Section 5. More specifically, we compare the
performance of a Java parser generated by Rats! with the
corresponding parsers generated by ANTLR and JavaCC
over a sampling of Java source files. We also analyze the
impact of the different optimizations when parsing an ex-
ample source file.

To summarize our results, we show that relative to ANTLR
and JavaCC our packrat parser has noticeable overheads,
while its absolute performance is reasonable on modern com-
puter hardware. For instance, on a 2002 consumer-level
computer, the Rats! -generated parser processes a 67 KB
Java source file in only 0.3 seconds, which is acceptable given
the complexity of subsequent language processor phases.
Furthermore, while our experimental setup is not directly
comparable with Ford’s, packrat parsers generated by Rats!
perform considerable better than those generated by Ford’s
parser generator, Pappy, requiring only a quarter as much
memory and parsing 4.6 times faster. Finally, we show that
all optimizations besides prefix folding and cost-based in-
lining result in measurable improvements in parser perfor-
mance. Chunking and transient productions are particu-
larly effective at reducing the memory overheads of pack-
rat parsers, while the other optimizations improve latency.
From these results, we conclude that packrat parsers gen-
erated by Rats! are a realistic building block for making
compilers and other programming language processors more
easily extensible.
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Figure 3: Heap utilization.

6.1 Experimental Setup
All measurements reported in this section were performed on
both a consumer-level and a top-of-the-line computer from
the fall of 2002. The consumer-level computer is an Ap-
ple iMac, with an 800 MHz PowerPC G4 processor and 1
GB of RAM, running Mac OS X 10.3.2 and Apple’s port of
the Java Development Kit version 1.4.1. Spotchecks with
the more recent version 1.4.2 show the same results. The
top-of-the-line computer is a Dell Dimension 8250, with a
3 GHz Pentium IV processor and 1 GB of RAM, running
Windows XP Professional (service pack 1) and Sun’s Java
Development Kit version 1.4.2.

Our experiments compare parsers created with three dif-
ferent parser generators. The first parser is a packrat parser
generated by Rats! from our own Java grammar. Unless oth-
erwise noted, our packrat parser has been generated with
all optimizations besides prefix folding and cost-based in-
lining. The second parser has been generated by ANTLR
version 2.7.2, using a modified version of the Java grammar
(v. 1.20) distributed by the ANTLR project. Finally, the
third parser has been generated by JavaCC version 3.2, us-
ing the Java grammar dated 5/5/2002 and distributed by
the JavaCC project. To measure only parser performance,
all three grammars do not contain any semantic actions and
do not create an abstract syntax tree. In fact, our modifi-
cations to ANTLR’s grammar only remove the instructions
for creating an AST. As inputs, we use a sampling of 38
Java source files taken from the Cryptix open source cryp-
tographic libraries [34], from ANTLR’s sources, and from
Rats! ’ sources. The files are between 766 bytes and 67 KB
large, represent a variety of programming and commenting
styles, and contain a total of 714 methods with 8,058 non-
commenting source statements.

All measurements represent the average of 20 iterations
over the same input. To ensure that the Java virtual ma-
chine could load all classes and perform just-in-time com-
pilation of commonly executed code, we perform two addi-
tional iterations before the 20 instrumented ones. We be-

lieve that this setup is consistent with a compiler processing
several source files in a single invocation. To exclude the
overhead of accessing the file system, each experiment also
reads the input file into memory before parsing. Further-
more, to exclude the overhead of automatic memory man-
agement, we allocate an initial Java heap sufficiently large
to avoid garbage collection during each iteration; though,
we do force GC before each iteration. As a result, our heap
utilization numbers reflect total memory pressure for each
iteration and may include objects that are not reachable by
the end of the iteration.

6.2 Overall Performance
Figure 3 graphs the heap utilization in KB against file size
for the 38 Java source files as measured on the iMac. Fig-
ure 4 graphs the corresponding latency in milliseconds, also
measured on the iMac. The graphs clearly show that mem-
oization is an effective technique for packrat parsers, as
both heap utilization and latency grow only linearly with
input size (with latency showing larger variations). How-
ever, they also illustrate the costs of memoization, as our
packrat parser requires 113 bytes for each byte in the input,
which is an order of magnitude more memory than for both
the parsers generated by ANTLR and JavaCC. Further-
more, our packrat parser performs 2.94 times slower than
the parser generated by ANTLR, which, in turn, performs
2.24 times slower than the parser generated by JavaCC. We
believe that ANTLR’s inferior performance when compared
to JavaCC is mostly due to its lexer, which, like the parser,
uses a recursive descent algorithm instead of JavaCC’s table-
driven lexer.

When performing the same experiments on the Dell PC,
the measured heap utilization is the same as on the iMac:
113:1 for Rats!, 11:1 for ANTLR, and 10:1 for JavaCC. Due
to the limited resolution of Java’s System.currentTime-

Millis(), however, we could only measure the parsing la-
tency for the 13 largest input files. All three parsers still per-
form linearly relative to input size, though at different rates:
625 KB/second for Rats!, 1375 KB/second for ANTLR, and
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Figure 4: Latency.

3125 KB/second for JavaCC. While the latency ratio be-
tween ANTLR and JavaCC is almost the same on the Dell
PC—the ANTLR parser performs 2.27 times slower than
the JavaCC parser, the latency ratio between our packrat
parser and the ANTLR parser is only 2.20. We believe that
this improvement reflects the Dell PC’s superior memory
subsystem: Not only has the Dell PC double the level-2 pro-
cessor cache at 512 KB instead of 256 KB, but it also has
a considerably faster system bus at 533 MHz instead of 100
MHz and correspondingly faster memory. In other words
and not surprisingly due to their relatively large memory
requirements, packrat parsers can clearly benefit from large
processor caches.

6.3 Effects of the Optimizations
Figure 5 illustrates the effects of the different optimizations
when parsing Rats! ’ own code generator, showing both heap
utilization—the lower curve—and latency—the upper curve.
Note that the names of the individual optimizations are de-
fined in Table 2. Further note that optimizations are cu-
mulative from left to right. For example, the data points
labelled “transient” include the chunks, grammar, and tran-
sient optimizations.

The figure shows that the largest savings in heap utiliza-
tion are due to the use of chunks for storing memoized re-
sults. The use of transient productions reduces heap uti-
lization by another 43%. While the other optimizations
reduce heap utilization by only a further 13%, they have
a considerable impact on latency. In particular, the gram-
mar optimization reduces latency by 15% when compared to
only performing the chunks optimization. Furthermore, the
choices, terminals, errors, values, and repeated optimiza-
tions together reduce latency by another 53% when com-
pared to only using the chunks, grammar, and transient op-
timizations.

Cost-based inlining, however, has almost no impact on
heap utilization and slightly increases latency. Even worse,
prefix folding, which is not shown in Figure 5 and has been
measured separately for all source files, increases heap uti-

lization by 7% to 121 bytes for each byte in the input. This
increase is due to the fact that prefix folding changes which
fields are part of which chunk, with the result that more
chunks are allocated. Based on these results, both cost-
based inlining and prefix folding are disabled by default.
However, grammar writers can use command line flags to
control which optimizations are performed by Rats!, includ-
ing cost-based inlining and prefix folding.

6.4 Discussion
As shown above, our packrat parser for Java has consider-
ably higher memory requirements than the corresponding
parsers generated by ANTLR and JavaCC. It is also slower,
between 2.20 and 2.94 times in our experiments when com-
pared to the corresponding ANTLR parser. At the same
time, grammars for Rats! are easier to modify and extend.
They also are more concise: our Java grammar has 530 lines,
while both the ANTLR and JavaCC grammars are more
than twice as large, each comprising about 1,200 lines. Fur-
thermore, our packrat parser has reasonable absolute per-
formance, for example, parsing a 67 KB source file in only
0.3 seconds and requiring 7,571 KB of memory. Given that
source files in many object-oriented languages tend to be
small, we believe that these overheads are acceptable, es-
pecially for modern computer hardware. We also note that
the high heap utilization of packrat parsers does not impact
later language processor phases. Any memoized intermedi-
ate results only need to be available during parsing and can
be safely discarded after the AST has been built.

In comparison to Ford’s work, Rats! represents a clear im-
provement in resource utilization. His packrat parsers are
written in Haskell, do construct an AST, and were measured
on a 1.3 GHz Athlon PC running Linux. The Java parser
generated by Ford’s parser generator, Pappy, has a heap uti-
lization of 441:1 and parses 43.4 KB/second. A handwritten
packrat parser performs better, showing a heap utilization
of 297:1 and parsing 52.1 KB/second. While the two exper-
imental setups are not directly comparable, the Java parser
generated by Rats! performs better in absolute terms, expos-
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Figure 5: Effects of individual optimizations.

ing a heap utilization of 113:1 and parsing 200 KB/second
on roughly comparable hardware. Furthermore, as discussed
in Section 6.3, our additional optimizations are also effective
at reducing heap utilization and improving parsing speed in
relative terms. Overall, we conclude that, while traditional
parsers are still an appropriate substrate for compilers that
target static languages, Rats! represents a realistic building
block for making compilers and other language processing
tools more easily extensible.

7. OUR TRANSFORMER FRAMEWORK
In parallel to developing Rats!, we have also been creat-
ing a framework for extensible source-to-source transform-
ers. Rats! is implemented within this framework, and, as
mentioned in Section 3.2, Rats! -generated parsers can au-
tomatically annotate AST nodes from our framework with
location information to simplify error reporting. Addition-
ally, both Rats! and our framework are being used as the
basis for term projects in our department’s PhD-level com-
pilers course.

Our source-to-source transformer framework is centered
around three main abstractions, which are implemented by
extending the corresponding abstract base classes:

Nodes. Abstract syntax tree nodes represent the structure
of programs, such as declarations, statements, and ex-
pressions. Nodes can be annotated with metadata
through properties, which map names to the corre-
sponding values.

Visitors. Visitors represent the different phases of a lan-
guage processor, such as semantic analysis, optimiza-
tions, and code generation. They can either walk or
modify a program’s AST.

Utilities. Utilities provide state and functionality shared
between several visitors. So far, we have implemented
a concrete utility for analyzing Rats! ’ grammars and
one for pretty printing grammar as well as program
sources.

To provide scalable extensibility [28], visitors do not rely
on statically declared interfaces, as in the original visitor
design pattern [16]. Rather, the appropriate visit() meth-
ods are selected through reflection [6] based on an AST
node’s type. Lookups are cached to improve dynamic dis-
patch performance. Furthermore, language processor func-
tionality can also be implemented by AST nodes: instead
of accepting an AST node in a visit() method, the corre-
sponding AST node methods accept a visitor in a process()

method. The appropriate visit() or process() method is
transparently selected through our reflection-based dynamic
dispatch facility. As a result, both transformer and language
extensions have straight-forward implementation strategies:
New transformer phases can be structured as complete vis-
itors, while new language constructs can be structured as
AST nodes that also specify the corresponding analysis and
transformation methods. In either case, the extension re-
quires a single main class that concisely defines the added
functionality.

While our framework clearly is not as mature as Poly-
glot [28], which provides a toolkit for extending Java and has
been used for several language extensions [24, 27, 26], we still
believe that our use of reflection-based dynamic dispatch
represents a useful alternative to Polyglot’s mixin-based ex-
tension model. In particular, Polyglot’s mixin-based model
requires that all compiler functionality is associated with
AST nodes. This clearly simplifies the addition of new lan-
guage features to a compiler—which, after all, is the the
goal behind Polyglot’s design. However, it also makes the
addition of new compiler phases rather cumbersome. In con-
trast, reflection-based dynamic dispatch allows us to easily
support both language and compiler extensions, albeit at
some performance overhead.



8. FUTURE WORK
For future work, we plan to focus on two issues. First, our
optimizations are effective at eliminating entire rows—which
correspond to nonterminals in a grammar—from a packrat
parser’s memoization table and at also reducing the memory
overhead of the remaining rows. However, we believe that
it may be possible to also avoid the instantiation of entire
columns—which correspond to characters in the input. The
key observation is that programming language source files
typically contain considerable amounts of spacing, which are
also ignored by most language processing tools. Since spac-
ing is recognized by transient productions, the correspond-
ing productions are not memoized. At the same time, our
parsers still allocate a parser object for each spacing char-
acter in the input, even though no memoization fields are
used. The new optimization would thus avoid the allocation
of parser objects for spacing and similar productions.

A second issue is that our parser generator still requires
tool implementors to explicitly define AST nodes, which un-
necessarily complicates the initial development of language
processors. ANTLR, for example, addresses this problem by
including support for easily creating abstract syntax trees
that are based on a generic tree node class [29]. However,
it also lacks the integration with a framework for building
tools that process the generated trees. We believe that we
can do better by integrating such a generic tree node fa-
cility not only with our parser generator but also with our
framework for building source-to-source transformers.

9. CONCLUSIONS
As object-oriented programming languages are evolving at a
rather rapid pace, language implementors need appropriate
tools, such as easily extensible parser generators, to keep
up with these changes. However, context-free grammars
and the corresponding LR and LL parsers, while well un-
derstood and widely used, are also unnecessarily hard to
extend. To address this need, we have introduced Rats!, a
parser generator for Java, that supports easily modifiable
grammars and avoids the complexities associated with al-
tering LR and LL grammars. Our parser generator builds
on recent research by Ford on packrat parsers, which are re-
cursive descent parsers that perform backtracking but also
memoize each intermediate result, thus ensuring linear-time
performance.

Compared to Ford’s packrat parser generator, Rats! sup-
ports simpler grammar specifications by automatically de-
ducing a production’s semantic value and through void and
text-only productions. Additionally, it features improved
error detection and reporting facilities. Finally, it performs
more aggressive optimizations, which not only reduce the
memory requirements for a packrat parser’s memoization
table but also improve its recognition speed, especially for
productions that perform lexical analysis. Our performance
evaluation shows that these optimizations are effective. It
also illustrates that, while packrat parsers have higher re-
source requirements than more conventional parsers, they
have acceptable absolute performance on modern computer
hardware. For example, a Rats! -generated Java parser pro-
cesses a 67 KB source file in only 0.3 seconds on a consumer-
level computer, while also requiring 7,571 KB of memory.
Based on these results, we conclude that Rats! provides
a practical building block for building more easily exten-

sible language processing tools. The open source release for
our parser generator and the corresponding source-to-source
transformer framework is available at http://www.cs.nyu.

edu/rgrimm/xtc/.
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