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Abstract
Semidefinite programming (SDP) is a convex optimization problem in the space of
symmetric matrices. Primal-dual interior-point methods for SDP are discussed. These
generate primal and dual matrices X and Z which commute only in the limit. A new
method is proposed which iterates in the space of commuting matrices.

Let SR™*™ denote the set of real symmetric n X n matrices. The standard inner product
on this space is Ae B =tr AB =3, ia;;b;;. By X = 0, where X € SR™X™ we mean that
X is positive semidefinite. Consider the semidefinite programming problem (SDP)

(1) min CeX
(2) st. A e X =0, 1=1,...,m; X >0.
Here C' and A;, i = 1,...,m, are all fixed matrices in SR™*", and the unknown variable

X also lies in SR™*™. The semidefinite constraint on X is said to be nonsmooth, since it is
equivalent to a bound constraint on the least eigenvalue of X, which is not a differentiable
function of X. The constraint is, however, convex. If the constraints are chosen to enforce
X to be diagonal one obtains linear programming (LP) as a special case of SDP.

There is a complete duality theory for SDP, which is quite analogous! to the well known
duality theory for linear programming (LP). The dual of SDP is

(3) max by
(4) st Z+ (L pdi)=C; 220

where Z is a dual slack matrix variable, which also lies in SR"*". The SDP primal-
dual pair enjoy many of the same properties as in LP. If either is unbounded, the other is
infeasible, and if one has a finite optimal value, the other does also, with the same objective
value. A complementary slackness result also holds for SDP: if X and y, Z are respectively
primal and dual optimal, then XZ = 0. Notice that, in contrast with LP, component-
wise multiplication in the complementary slackness theorem is replaced by matrix-matrix
multiplication. Proofs of all these duality results and references to relevant literature are
given in [2].
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LA constraint qualification is required to establish these properties in general. It is sufficient to assume
that the primal feasible region has nonempty relative interior. See [2] for details.
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Several authors [1,2,6,8,9,10] have observed that the interior point methods which have
been so successful for LP may also be applied to solve SDP and related problems. Nesterov
and Nemirovskii [6] is the primary reference for theoretical properties of interior point
algorithms for general convex programs. Alizadeh [1,2] argues that the various algorithmic
techniques and mathematical proofs which have been developed for LP may be generalized
in a systematic way to apply to SDP. Instead of the barrier term — 3" _; log z; used in LP,
one introduces the barrier term —logdet X to correspond to the semidefinite constraint
X > 0. Provided the initial guess X satisfies the semidefinite constraint, the barrier term
prevents subsequent values from leaving the positive semidefinite cone.

Primal-dual interior point methods are of particular interest, since these have been
shown to be very efficient for solving LP (see e.g. [3,4,11,12]). One iteration of the primal-
dual method can be derived by applying Newton’s method to three equations: primal
feasibility, dual feasibility, and complementarity/centering. The primal and dual feasibility
equations are the equality constraints in (2), (4). The complementarity/centering equation
is XZ = pl, where p is a parameter to be driven to zero. In contrast to LP, X and Z are
full matrices, not diagonal matrices, so the left hand side X Z is not necessarily symmetric.
Consequently, direct application of Newton’s method to X Z = pl leads to nonsymmetric
corrections AX and AZ, which is not acceptable. Instead, one may apply Newton’s method
to any of the following three symmetric matrix equations

(5) Z = pX7!
(6) X = puz™!
(7) XZ+7ZX = 2ul.

These equations have been used by various authors. For example, (6) is used by [8], while
the algorithm of [10] implicitly uses a combination of (5) and (6). The third form (7), which
has the attraction of symmetry in X and Z, does not seem to have been used previously.
It is also attractive because in the special case of LP, it is generally agreed that the form
X7 = ul is preferable to formulations involving X ! or Z=!. Newton linearization of (7)
gives

(8) X(AZ)+ (AX)Z + Z(AX)+ (AZ)X = 2ul - X Z — ZX.

Combining this equation with the primal and dual feasibility equations we see that one step
of the primal-dual Newton method can be written?

0 AT 1 vecAX vecC — ATy — vecZ
(9) A 0 0 Ay = b— Avec X ,
E 0 F vecAZ vec(2ul — XZ - ZX)

where E=2Z@I4+1®@7Zand F=X®I+1® X.If (5) or (6) is used instead of (7), the
only change in the left-hand side occurs in the blocks £ and F, which become, respectively,
E=pX"1'@X ', F =1 (in the case of (5)) and E =1, F = uZ=t @ Z7! (for (6)).

As in LP, this 3 by 3 block matrix equation (9) can be reduced by block Gauss
elimination. Using the third block equation, either AX or AZ can be eliminated in terms

2The operator “vec” maps the matrix space SR™*™ into the corresponding vector space §R"2, so that
(Vec A)T( vec B) = Ae B. The matrix A consists of the m rows (Vec Ai)T 1 =1,...,m. The notation A® B
means the Kronecker product. The block matrix equation contains duplicate rows because of symmetry.
Consequently, in practice, the vec operator is modified to generate vectors of length n(n + 1)/2, not n?.
The Kronecker product is likewise also modified to exploit symmetry. Thus (9) consists of n(r + 1) + m
equations in n(n + 1) + m variables.
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of the other. This leaves a 2 by 2 block matrix equation of order ﬂnTHl + m. Application
of block Gauss elimination then reduces the problem to that of factoring the m by m
matrix AGAT, where G is either E~'F or F7'E. In cases (5) and (6) the matrix G can
be computed in O(n?) operations by observing that the inverse of a Kronecker product is
the Kronecker product of the inverses. Likewise in case (7) the spectral decompositions of
FE and F can be explicitly written in terms of those of Z, X. For large problems, it may
be better not to form the matrix AG.A” at all, but solve the corresponding least squares
problem by conjugate gradients or LSQR [10].

Once AX, Ay and AZ are computed, the variables are updated by X «— X + aAX,
y «— y+ BAy, and Z «— Z + BAZ, where a and (§ are respectively primal and dual
steplengths. The method of [10] uses a rule based on work of [6] which guarantees global
convergence. Alternatively one can, asin LP, take steps @« = min(1, 7&) and § = min(1, Tﬁ),
where 7 is a number close to 1, and & and ﬁ are respectively steps to the boundary of the
feasible regions X > 0 and Z > 0. This can be computed explicitly [8]: & is the inverse of
the maximum eigenvalue of —R~T(AX)R™!, where X = RTR.

We have experimented with all these versions of the primal-dual method, using various
techniques to reduce p. We have found no clear advantage to any one of the three
forms of the complementarity/centering condition. We find that taking steps close to
the boundary, e.g. with 7 = 0.99, has much faster convergence than using a Nesterov—
Nemirovskii line search as in [10], but is less reliable. The SDP algorithms are much
more prone to “getting stuck” than corresponding LP algorithms, for reasons that are not
clear. The rate of convergence is significantly improved by using Mehrotra’s LP predictor-
corrector method [5]. This method uses additional terms of the Taylor approximation to
the complementarity/centering condition and is particularly easy to implement using (7),
since its expansion is so convenient. However, problems with reliability remain.

We now outline a new primal-dual interior point method for SDP. The idea is to it-
erate in the space of commuting matrices X and Z. Consider again the complementar-
ity /centering matrix equation X Z = pl. For matrices X and Z to satisfy this equation,
they must commute with each other, i.e. share a common set of eigenvectors. Let us there-
fore replace X and Z respectively by

QXQT and QzQ"

where () is an n by n orthogonal matrix and X and Z are now diagonal matrices. Thus
the new diagonal matrices X and Z consist of eigenvalues of the original X and Z while
the columns of ) are the common set of orthogonal eigenvectors. The primal and dual
feasibility equations then become

(10) QTA,QeX=b;, i=1,...,m and Z+ (i 1:QTA;Q) = QTCQ.

=1

The complementarity/centering condition reduces to the diagonal equation X Z = pl. The
total number of variables and unknowns is reduced from n2 + n + m to @ +n+m,
since the orthogonal matrix ¢ has @ degrees of freedom. The price paid for the
diagonalization is the nonlinear appearance of the variable ) in the feasibility equations.
We now wish to apply Newton’s method to (10) together with XZ = pl. In order
to do so, we use a technique from [7], namely parameterize the orthogonal matriz @ by

an exponential transformation. Specifically, we shall replace X, y and Z by, respectively,
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X+ AX,y+ Ay and Z + AZ, and we shall replace () by
1
QeS:Q(I+S+§SQ+---)

where S is skew-symmetric (so that e is orthogonal). The Newton step is then derived by
approximating e¢® by I 4+ §, while the predictor-corrector method uses additional terms of
the expansion. Let B; = QT A;Q, and let H = -, yiB;) — QT CQ. Linearizing, we see
that Newton’s method applied to these equations is the following. Here the variables are
AX, Ay, AZ and the skew symmetric matrix 5; remember B;, X, y, Z and ) are fixed at
their current values, and that X, Z are diagonal.

(11) BZ'OAX—I—(BZ'S—SBZ')OX = b,— BjeX, t=1,....m
(12) O AyB)+HS-SH+AZ = -H-7

1=1
(13) XAZ+ZAX = pl—-XZ

As usual, we can eliminate AX or AZ using (13). Equation (11) can be rewritten
B;e AX +tr (XB; — BiX)S =b; — B; e X,

The usual block Gauss elimination to reduce the linear system to size m by m is applicable,
provided we can efficiently solve systems of the form

HS-SH+AZ=M

for the skew-symmetric matrix 5 and the diagonal matrix AZ, given a symmetric matrix
right-hand side M. This is a linear system of @ equations in @ variables which
has an interesting structure which we have not seen before, but which may well have
arisen in other applications. It has the character of a Lyapunov equation and can be
solved in approximately O(n®) operations using a spectral decomposition of H followed
by the factorization of the Hadamard product matrix PT o PT| where P is an orthogonal
eigenvector matrix for H.

Once AX, Ay, AZ and S are computed, a simple ratio test determines primal and
dual steplengths for the diagonal matrices AX and AZ. The step Ay is scaled by the dual
steplength. We use the geometric mean of the primal and dual steplengths to scale 5. We
also incorporate Mehrotra’s predictor-corrector modification, which can be applied without
difficulty in the context of the new method.

An implementation of the new primal-dual method in Matlab shows fast local
convergence. Results for a typical random problem with n = 15 and m = 50, starting
with nearly feasible points, are shown in Table 1. The number of primal variables in this
problem is @ = 120. The second and third columns in the table show primal and dual
infeasibility, i.e. the norm of the residual of the two equations in (10). The last column
displays the duality gap tr X Z. Primal and dual feasibility is achieved only in the limit,
because of the nonlinear variable ¢ in (10). The factors of 100 in the final convergence rate
are a consequence of using 7 = 0.99. Faster convergence can be achieved by taking steps
closer to the boundary. Various methods can be used to reduce p. We use the rule used

by [10] at first, switching to the predictor-corrector rule when primal and dual infeasibility
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Iteration | Primal Infeas. | Dual Infeas. | Duality Gap
1 2.784e-02 8.129¢-03 1.198e+01
2 2.169e-02 7.881e-03 9.560e4-00
3 1.332e-02 6.700e-03 7.628e4-00
4 8.417e-03 5.601e-03 6.084e+4-00
5 1.660e+00 5.529e-01 5.768e-01
6 6.138e-02 6.726e-02 4.644e-01
7 3.944e-04 3.141e-03 3.697e-01
8 1.484e-04 9.674e-03 6.716e-03
9 4.209e-08 5.356e-04 8.068e-05
10 4.217e-12 5.524e-06 8.071e-07

TABLE 1

Sample Convergence of New Primal-Dual Method for SDP

drop below a threshold value 0.01. This explains the irregular behavior at iteration 5, where
the switch took place in this case.

We think the new method has great potential, but many questions need to be studied.

In particular, the issues of global convergence and of exploiting sparsity in the data have
not been addressed as yet.
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