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Abstract. Low order finite element discretizations of the linear elasticity system suffer increasingly
from locking effects and ill-conditioning, when the material approaches the incompressible limit, if
only the displacement variable are used. Mixed finite elements using both displacement and pressure
variables provide a well-known remedy, but they yield larger and indefinite discrete systems for which
the design of scalable and efficient iterative solvers is challenging. Two-level overlapping Schwarz
preconditioner for the almost incompressible system of linear elasticity, discretized by mixed finite
elements with discontinuous pressures, are constructed and analyzed. The preconditioned systems
are accelerated either by a GMRES (generalized minimum residual) method applied to the resulting
discrete saddle point problem or by a PCG (preconditioned conjugate gradient) method applied to
a positive definite, although extremely ill-conditioned, reformulation of the problem obtained by
eliminating all pressure variables on the element level. A novel theoretical analysis of the algorithm
for the positive definite reformulation is given by extending some earlier results by Dohrmann and
Widlund. The main result of the paper is a bound on the condition number of the algorithm which is
cubic in the relative overlap and grows logarithmically with the number of elements across individual
subdomains but is otherwise independent of the number of subdomains, their diameters and mesh
sizes, and the incompressibility of the material and possible discontinuities of the material parameters
across the subdomain interfaces. Numerical results in the plane confirm the theory and also indicate
that an analogous result should hold for the saddle point formulation, as well as for spectral element
discretizations.
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1. Introduction. Finite element discretizations of linear elasticity problems,
using only displacement variables, suffer increasingly from locking effects and ill-
conditioning when materials approach the incompressible limit. A well-known remedy
is to use mixed finite elements with both displacement and pressure variables, but this
approach yields larger and indefinite discrete systems for which the design of scalable
and efficient iterative solvers is quite challenging. In this paper, we construct and
analyze overlapping Schwarz preconditioners for the almost incompressible elasticity
system discretized by Qh2 −Ph1 mixed finite elements with discontinuous pressures on
hexagonal elements both on the fine and the coarse level. The resulting discrete sad-
dle point problem can be solved iteratively by GMRES with an overlapping Schwarz
preconditioner based on solving local and coarse saddle point problems involving both
displacements and pressures. Alternatively, since we use discontinuous pressure fields,
we can eliminate the pressure variables on the element level and return to a positive
definite, although extremely ill-conditioned, problem for which we can use PCG with
a classical overlapping Schwarz preconditioner based on local and coarse positive def-
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inite problems involving only the displacements.

We provide a full analysis for the positive definite approach, by exploring tools
and results developed by Dohrmann and Widlund [9, 10] and Dryja, Sarkis and Wid-
lund [13]. We believe that our theoretical result is the first for overlapping Schwarz
methods of this kind which use conventional coarse problems rather than the more
exotic spaces of Dohrmann and Widlund. Those spaces were borrowed from iterative
substructuring methods; cf. [34, Chapter 5]. A key idea in the proof is to reduce the
analysis to subspaces which satisfy a no-net flux condition across the interface between
the subdomains. In fact, we will work with functions that satisfy this condition across
each subdomain face which form the interface. Our main result is a bound on the
condition number which is cubic in the relative overlap and grows logarithmically with
the number of elements across individual subdomains but is otherwise independent of
the number of subdomains, their diameters and mesh sizes, and the incompressibil-
ity of the material. Our result is also independent of possible discontinuities of the
material parameters across the subdomain interfaces under an assumption of quasi-
monotonicity, which was not required in the earlier work by Dohrmann and Widlund.
Our analysis does not cover the approach based on a saddle point formulation but
numerical results indicate that analogous results should hold even in that case.

The use of two-level overlapping Schwarz methods for saddle point problems,
such as the mixed elasticity and Stokes systems, has previously been explored by
Klawonn and Pavarino [21, 22]. These algorithms have been used, e.g., in computa-
tional fluid dynamics [18, 19], fluid-structure interaction [1], and isogeometric analysis
[3]. In earlier work by Fischer [14], overlapping Schwarz methods have been stud-
ied for the pressure operator of the incompressible Navier-Stokes system discretized
with spectral elements. Earlier studies on nonoverlapping domain decomposition al-
gorithms for mixed elasticity and Stokes systems have focused on Wirebasket and
Balancing Neumann-Neumann methods, see [29, 30, 17], [2], and on FETI-DP and
BDDC methods for the incompressible limit, see [7], [24, 25], [23], [31], [20], [26, 35].
Some of these studies have already considered the positive definite reduction of the
mixed almost incompressible elasticity system, namely [16], [2], [31], using Balancing
Neumann-Neumann and BDDC methods, see also [9, 10] which use standard and
hybrid overlapping Schwarz methods.

We note that while the positive definite reduction cannot be applied in the incom-
pressible limit, we still could build a preconditioner for the Stokes system by using
a preconditioner for a slightly compressible problem. We also note that in the more
challenging case of continuous pressure approximations, some FETI-DP type algo-
rithms have been developed and analyzed in pioneering work by Li and Tu [26, 35].
Dohrmann also has a version of the algorithm of [9] which performs virtually the same
for discontinuous and continuous pressure approximations; so far a supporting theory
is lacking.

Our algorithms apply equally well to hp and spectral element discretizations with
discontinuous pressures. Indeed, we have also considered mixed spectral elements of
the Qn − Qn−2 family, based on Gauss-Lobatto-Legendre quadrature and a nodal
basis (see Bernardi and Maday [4]) and have found analogous numerical results; see
Section 6. We remark that alternative preconditioners for almost incompressible ma-
terials might be developed directly for the pure displacement formulation when hp
and spectral element methods are employed, since these higher order discretizations
are known to eliminate locking without resorting to mixed formulations, see e.g. [32].

The rest of the paper is organized as follows. The almost incompressible elas-
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ticity system and its mixed finite element discretization is introduced in Section 2.
Overlapping Schwarz methods for the positive definite reformulation are introduced
in Section 3, while analogous methods for the mixed formulation are given in Section
4. The theoretical analysis of our method for the positive definite formulation is pro-
vided in Section 5. Numerical results in the plane for both formulations are presented
in Section 6.

2. Almost incompressible elasticity and mixed finite elements.

2.1. The continuous problem. We consider a domain Ω ⊂ Rd, d = 2, 3, de-
composed into N nonoverlapping subdomains Ωi of diameter Hi, and forming a coarse
finite element partition τH of Ω,

Ω =

N⋃
i=1

Ωi. (2.1)

Let H = maxiHi be the characteristic diameter of the subdomains and ∂ΩD a
nonempty subset of ∂Ω. To simplify our discussion, we will only consider the case of
∂ΩD = ∂Ω and we will also assume that the solution vanishes on ∂Ω. The interface
of the domain decomposition (2.1) is given by

Γ =

(
N⋃
i=1

∂Ωi

)
\ ∂Ω.

In the next subsection, we will further partition each subdomain into many shape-
regular finite elements. We will assume that the nodes match across the interface
between the subdomains.

We consider a mixed formulation of linear elasticity for almost incompressible
materials as, e.g., in [5]: find (u, p) ∈ V × U such that

2

∫
Ω

µ ε(u) : ε(v) dx −
∫

Ω

div v p dx = 〈F,v〉 ∀v ∈ V ,

−
∫

Ω

div u q dx −
∫

Ω

1

λ
pq dx = 0 ∀q ∈ U.

(2.2)

The displacement and pressure spaces are given by

V := {v ∈ H1(Ω)d : v|∂ΩD
= 0}, U := L2

0(Ω) := {p ∈ L2(Ω),

∫
Ω

pdx = 0.}

F represents the applied forces and µ(x) and λ(x) are the Lamé parameters of the
material that, for simplicity, are assumed to be constant in each subdomain Ωi, i.e.
µ = µi and λ = λi in Ωi. These parameters can be expressed in terms of the local
Poisson ratio νi and Young’s modulus Ei as

µi :=
Ei

2(1 + νi)
, λi :=

Eiνi
(1 + νi)(1− 2νi)

. (2.3)

The material of a subdomain approaches the incompressible limit when νi → 1/2.
Factoring out the constants µi and 1

λi
, we can define local bilinear forms in terms of
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integrals over the subdomains Ωi and obtain

a(u,v) =

N∑
i=1

µiai(u,v) := 2

N∑
i=1

µi

∫
Ωi

ε(u) : ε(v) dx, (2.4)

c(p, q) =

N∑
i=1

1

λi
ci(p, q) :=

N∑
i=1

1

λi

∫
Ωi

p q dx, (2.5)

b(v, q) =

N∑
i=1

bi(v, q) := −
N∑
i=1

∫
Ωi

divv q dx. (2.6)

Thus, the global problem (2.2) can be obtained by assembling contributions to the
bilinear forms from those of the subdomains.

2.2. Qh2 − Ph1 mixed finite elements with discontinuous pressures. We
consider a fine triangulation τh of Ω obtained as a refinement of the coarse triangula-
tion τH and discretize the continuous saddle point problem with Qh2 −Ph1 mixed finite
elements. The displacement space consists of continuous, vector-valued, piecewise bi-
or tri-quadratic functions:

V h := {v ∈ V : v|T ∈ (Qh2 (T ))d ∀T ∈ τh},

while the pressure space consists of discontinuous, scalar, piecewise linear functions
with a zero average:

Uh := {q ∈ U : q|T ∈ Ph1 (T ) ∀T ∈ τh} .

The two spaces are defined on the same quadrilateral or hexahedral mesh. This mixed
finite element method satisfies a uniform inf-sup condition:

sup
v∈V h

bi(v, q)

ai(v,v)1/2
≥ βci(q, q)1/2 ∀q ∈ Uh, β > 0. (2.7)

For a proof of this result see Girault and Raviart [15, pp. 156–158].
We have also considered mixed spectral elements of the Qn−Qn−2 family, based

on Gauss-Lobatto-Legendre quadrature and a nodal basis (see Bernardi and Maday
[4]), and found analogous numerical results. In this paper, we will focus on the Qh2−Ph1
finite element case.

2.3. The discrete system and its positive definite reformulation. The
discrete system obtained from mixed finite elements is assembled from the saddle
point matrices of the subdomains Ωi :[

µiAi BTi
Bi − 1

λi
Ci

]
, (2.8)

where µiAi, Bi, and 1/λi Ci are the matrices associated with the local bilinear forms
µiai(·, ·), bi(·, ·), and 1/λici(·, ·) defined in (2.4), (2.5), and (2.6), respectively.

Since we are using discontinuous pressures, all pressure degrees of freedom can be
eliminated, element by element, to obtain reduced positive definite stiffness matrices

Āi := µiAi + λiB
T
i C
−1
i Bi, (2.9)
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that can be subassembled into a global, positive definite stiffness matrix Ā. We denote
the bilinear form associated to Ā by

ā(u,v) = uT Āv.

The load vector of the full system can similarly be assembled from contributions from
the subdomains. For further details see [9, Sections 2 and 3]. We note that we have
to develop estimates using the bilinear forms āi(uh,vh) in all our analysis and that
they contain terms with the potentially huge factors λi. To control these terms, we
will, when developing the theory, estimate āi(uh −u0,uh −u0) instead of āi(u0,u0)
while making sure that the fluxes across the subdomain boundaries vanish:∫

∂Ωi

wh · n ds = 0 where wh := uh − u0.

Here u0 := IHuh, where IH is an interpolant mapping onto a coarse space; see further
Subsection 5.2. This no-net flux condition allows for a divergence free extension of the
boundary data and we are then able to use [9, Lemma 3.3] to good effect obtaining
the key estimate

āi(wh,wh) ≤ 4µi(1 +
d/2

µi/λi + β2
)ai(wh,wh). (2.10)

Here β is the inf-sup parameter of the mixed finite element pair of spaces.

3. Overlapping Schwarz methods for the positive definite reformula-
tion. We extend each subdomain Ωi to a subdomain Ω′i, which will overlap other
extended subdomains, by adding one or several layers of elements outside ∂Ωi. We
will denote the minimal thickness of Ω′i \Ωi by δi. To each of the Ω′i, we then associate
a local space

Vi = V h(Ω′i) ∩H1
0 (Ω′i)

and a bilinear form ã′i(ui,vi). Since we will only consider algorithms for which the
local problems are solved exactly, we find that ã′i(ui,vi) := ā(RTi ui, R

T
i vi) where RTi :

Vi → V h, simply extends any element of Vi by zero outside Ω′i. We can also represent
this bilinear form in terms of the principal minor Ā′i of the matrix Ā associated with
the degrees of freedom of the space Vi.

We also define a coarse space V0 on the coarse subdomain mesh τH by

V0 = V H := {v ∈ V : v|Ωi ∈ (QH2 (Ωi))
d ∀Ωi ∈ τH}.

We will also use a coarse embedding operator RT0 : V0 → V h; RT0 v0 is simply the
V h−interpolant of v0 ∈ V0.

The discrete space V h can then be decomposed into a coarse and many local
spaces as follows:

V h = RT0 V0 +

N∑
i=1

RTi Vi.

We next define local and coarse (for i = 0) operators P̃i : V h → Vi by

ã′(P̃iu,vi) = ā(u, RTi vi) ∀vi ∈ Vi.
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Given that we are using exact solvers for all the subspaces, we find that Pi := RTi P̃i :
V h → V h, are all projections; cf. [34, Section 2.2]. Our two-level Overlapping Addi-
tive Schwarz (OAS) operator is then given by

POAS := P0 +

N∑
i=1

Pi. (3.1)

The matrix form of this operator is POAS = BOASĀ, where Ā is the stiffness matrix
of the positive definite reformulation and BOAS the Additive Schwarz preconditioner

BOAS = RT0 Ā
−1
0 R0 +

N∑
i=1

RTi Ā
′−1
i Ri. (3.2)

Here, Ā′i = RiĀR
T
i are the local stiffness matrices associated with the subspace Vi

and Ā0 = R0ĀR
T
0 the coarse stiffness matrix. We can also define multiplicative and

hybrid Schwarz preconditioners BOMS , BOHS as in [34, Section 2.2]. In some of our
experiments, we will also consider one-level additive algorithms simply obtained by
dropping in (3.1) the coarse term P0, which originates from the coarse space V0.

4. Overlapping Schwarz methods for the mixed formulation. A related
but different Overlapping Schwarz preconditioner can be constructed directly from
the mixed formulation of the almost incompressible elasticity system. To this end, we
define the local pressure spaces

Ui := {q ∈ Uh :

∫
Ω′

i

q = 0 and q|T = 0 ∀T ∈ τh : T ∩ (∂Ω′i \ ∂Ω) 6= ∅}.

We note that in order to satisfy the inf-sup condition of the local problems, the
displacement space Vi should be sufficiently rich in relation to the pressure space
Ui; given that we are working with overlapping subdomains, we have some flexibility
when choosing the pressure spaces. Other variants of local pressure spaces could
be considered as in [21, 28]; our choice in this paper corresponds to Version 2 in
[21, 28]. This flexibility in choosing the local pressure spaces makes the saddle point
preconditioner quite different from the positive definite preconditioner of the previous
section.

A coarse pressure space is defined on the coarse subdomain mesh τH by

U0 = UH = {q0 ∈ U : q0|Ωi ∈ PH1 (Ωi) ∀Ωi ∈ τH}.

Given local and coarse (for i = 0) embedding operators Rpi
T

: Ui → Uh, i =
0, 1, .., N , we can then decompose the discrete space V h × Uh into local and coarse
spaces as

V h × Uh =

N∑
i=0

(RTi Vi ×R
p
i
T
Ui).

Define the local (for i ≥ 1) operators P̃mi =

[
P̃ui
P̃ pi

]
: V h × Uh → Vi × Ui by

{
a′i(P̃

u
i u,v) + b′i(v, P̃

p
i p) = a(u, RTi v) + b(RTi v, p) ∀v ∈ Vi,

b′i(P̃
u
i u, q)− c′i(P̃

p
i p, q) = b(u, Rpi

T
q)− c(p,Rpi

T
q) ∀q ∈ Ui,

(4.1)
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where the bilinear forms on the left hand sides are defined by integrals over Ω′i.

The operators for the coarse space is defined similarly. Defining Pmi :=

[
Pui
P pi

]
=[

RTi P̃
u
i

Rpi
T
P̃ pi

]
, i = 0, 1, .., N , our two-level Overlapping Additive Schwarz (OAS) oper-

ator formally has the same structure as before

PmOAS = Pm0 +

N∑
i=1

Pmi . (4.2)

Its matrix form is PmOAS = BmOASA
m, with the mixed elasticity stiffness matrix Am

obtained by subassembling the local matrices (2.8) and with the mixed preconditioner

BmOAS =
[
RT0 R

p
0
T
]
Am0
−1

[
R0

Rp0

]
+

N∑
i=1

[
RTi R

p
i
T
] [

µiA
′
i B′i

T

B′i − 1
λi
C ′i

]−1 [
Ri
Rpi

]
, (4.3)

where Am0 =

[
R0

Rp0

]
Am

[
RT0 R

p
0
T
]
. We remark that this preconditioner leads to

a system with complex eigenvalues in spite of the symmetry of both the original
system and the preconditioner. The symmetry cannot be recovered as in the case
of the previous section because now the preconditioner and the original system are
indefinite. Therefore, in general, we no longer can employ the conjugate gradient
method but must resort to a more general Krylov space method such as GMRES, see
e.g. [34, Section C.6]. As before, we can also define multiplicative and hybrid Schwarz
preconditioners BmOMS , BmOHS for the saddle point formulation.

5. Condition number bounds. We will now establish a scalable condition
number bound for the overlapping Schwarz methods defined in Section 3 for the
positive definite formulation. We recall that our coarse space is based on a coarse
triangulation into cubic subdomains and that the coarse displacement space equals
(QH2 )3; we will only consider the three-dimensional case when developing the theory.
Our results extend immediately to mixed finite element methods based on tetrahedra
provided that the pressure space is based on discontinuous functions. We note that
it is important for our arguments that there is at least one interior node for the
displacement variable on each subdomain face.

We note that for scalar elliptic problems, technical tools were developed in [34,
Subsection 3.5] for a case where the coarse space triangulation can cut through the
mesh cells of the fine triangulation. In [34, Subsection 8.2], some of that work was ex-
tended to problems of compressible linear elasticity. All that work concerned constant
coefficients only. In our current work, we will only assume that the Lamé parameters
are constant in each subdomain Ωi and that the set of Lamé parameters {µi}N1 satis-
fies a quasi-monotonicity condition; see Assumptions 1 and 2 below. Just as in [9, 10],
we will be able to hide, in a certain sense, the term of āi(uh,vh) with the potentially
very large factor λi.

5.1. The assumptions and the main result. The following assumption was
introduced in [13, Section 5] in work on multi-level Schwarz algorithms for scalar
elliptic problems; the role of the coefficient function for these elliptic problems will be
played by the set of Lamé parameters {µi} for the case at hand.

Assumption 1. For each subdomain vertex V, let NV be the set of subdomains
which have this vertex in common. Let imaxV be the index of the subdomain in NV
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with the largest µi. For any subdomain Ωi in NV , there should exist a path, passing
exclusively through subdomain faces of this set of subdomains, from Ωi to ΩmaxV such
that the values of the Lamé parameter µj are monotonely increasing along the path.

For any subdomain vertex V on ∂Ω, the boundary of Ω, we assume, additionally,
that the subdomain of NV with the largest Lamé parameter µi has a face which is a
subset of ∂Ω.

We note that we can relax these conditions, at the expense of an additional factor
in the final result, by allowing a modest decrease when we pass from one subdomain
to the next along the paths.

In turns out that we can also relax Assumption 1 in another way and we will
adopt the following assumption:

Assumption 2. Consider the same paths as in the previous assumption but relax
the condition assuming only that for any subdomain Ωj along the path from Ωi to
ΩmaxV , the Lamé parameter satisfies µj ≥ µi.

It will be important that the union Ω̂i of the subdomains and subdomain faces
for all such paths associated with all the subdomain vertices of a single subdomain
form a domain for which Poincaré’s and Korn’s inequalities can be used; it is there-
fore important that the paths, introduced in the assumptions, always pass from one
subdomain to another through a subdomain face.

Our main result concerns the case when the pressure variable has been eliminated
as in Section 3.

Theorem 5.1. Let the set of Lamé parameters {µi} be quasimonotone in the
sense of Assumption 2. Then the condition number of the additive Schwarz operator
Pad defined in (3.1) satisfies

κ(Pad) ≤ C(H/δ)3(1 + log(H/δ))(1 + log(H/h)),

where C is a constant independent of the number of subdomains, their diameters
and mesh sizes, and which depends only on the number of colors required for the
overlapping subdomains and the shape regularity of the elements and subdomains.

Here, as is customary, H/δ := maxiHi/δi and H/h := maxiHi/hi where Hi, hi
denote the diameter and mesh size of Ωi and δi measures the overlap of Ω′i and its
next neighbors.

Thus, our bound will essentially be proportional to (H/δ)3, just as in [9, 10]. Two
of these factors originating from the inf-sup parameter and the inequality (2.10) and
one from the bound in (5.13); for a further discussion of these matters, see [9].

Given that we are analyzing an overlapping Schwarz method, for which we can
use exact solvers for the coarse and local subspaces, the only main challenge is to
develop a bound on the parameter C2

0 as in [34, Assumption 2.2]:

ā(RT0 u0, R
T
0 u0) +

N∑
i=1

ā′i(R
T
i ui, R

T
i ui) ≤ C2

0 ā(u,u), (5.1)

for some decomposition u =
∑N
i=0R

T
i ui. We recall that the local bilinear forms ā′i(·, ·)

have been defined in Section 3 by confining the integration to the set Ω′i. We will bound
separately the coarse and local components of (5.1).

5.2. A bound for the coarse component. An element of the QH2 finite ele-
ment method in three dimensions has 27 nodes located at the subdomain vertices, at
the midpoints of the subdomain edges, at the middle of the six faces of the cube, and at
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the center of the element. Associated with each of these nodes are three displacement
components. We will now construct the coarse space component u0 of the Schwarz
subspace decomposition of (5.1) and estimate its norm indirectly by estimating the
norm of wh := uh − u0 in terms of the norm of uh.

The element u0 is defined in two steps; the second will make the flux of wh vanish
across each subdomain boundary, which will allow for a divergence free extension into
the interior of each subdomain. In this second step only the nodal values at the center
of the subdomain faces are changed; using just one parameter for each subdomain
face, we will make the flux of wh across that face vanish. We will use the notation
IHuh := u0 with the operator IH linear. We will develop such an interpolation
operator which also works well for non-zero values on the boundary of Ω.

Given an arbitrary element uh, the value of u0 at a subdomain vertex V in the
interior of Ω is given by the best L2(ΩmaxV )-approximation of uh, by vector-valued
functions with trilinear components; after having computed this function, we simply
evaluate it at V. For a subdomain vertex on ∂Ω, we instead use the best approximation
with respect to L2(F), using the restriction of the same space of tri-linear functions
to F . Here, F := ∂ΩmaxV ∩ ∂Ω.

The nodal values of the coarse components at the nodes that are not at vertices
of the coarse elements are obtained by QH1 −interpolation, component by component,
using the values at the subdomain vertices. We denote the resulting function by ũ0.
This function, which belongs to (QH2 )3, is finally corrected by changing the nodal
values of the normal displacements at the center of all coarse element faces. The new
values are chosen so that the integral of the normal component of wh over any of
these faces will vanish. Thus, we determine a correction term δu0 by the condition∫

F
wh · ndA =

∫
F

(uh − ũ0 − δu0) · ndA = 0. (5.2)

Here F is any subdomain face of ∂Ωi and n a vector normal to F . The face correction
term (δu0) for this face equals αFφc(x)n, where φc is the nodal basis function of
QH2 associated with that node, which equals 1 at the center of the face, and which
vanishes at all other nodes of the coarse triangulation. It is easy to see that

∫
F φc(x)dA

is proportional to |F| and that |φc|2H1(Ωi)
≤ C|F|1/2 ≤ CHi. To estimate αF , we use

equation (5.2), Cauchy-Schwarz’s inequality, and an elementary trace theorem

‖f‖2L2(F) ≤ CHi‖f‖2H1(Ωi)
, where ‖f‖2H1(Ωi)

:= |f |2H1(Ωi)
+H−2

i ‖f‖
2
L2(Ωi)

; (5.3)

cf., e.g., [27]. We obtain the estimate ‖δu0‖2H1(Ωi)
≤ C‖uh − ũ0‖2H1(Ωi)

using that

‖φc‖2L2(Ωi)
≤ CH3

i . We will show below that ‖uh − ũ0‖H1(Ωi) ≤ C‖uh‖H1(Ωi).
It is easy to see that ũ0 = r if uh = r for any element r ∈ RB, the space of rigid

body modes. This follows from the fact that each component of a rigid body mode is
a trilinear function. We also note that RB is the null space of the elasticity operator
in the absence of boundary conditions. Thus, the null space condition is satisfied; cf.
[33]. It is also true that IHr = r since uh− ũ0 will vanish already after the first step
of our interpolation procedure if uh ∈ RB. Therefore, the correction in the second
step will also vanish.

We now turn to establishing the bound of uh − ũ0 in terms of uh. Using the
definition of ũ0 and following [13], we find that for a subdomain vertex V, in the
interior of the domain Ω, we have

H3
i |(ũ0 − r)(V)|2 ≤ C‖uh − r‖2L2(Ωmax

V ). (5.4)
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To see this, we recall that V is a node on the boundary of ΩmaxV . The trilinear, vector-
valued function that approximates uh − r in this subdomain has a L2(ΩmaxV )−norm
that is bounded from above by that of uh−r. In addition, the square of its nodal value
at V, times H3

i , can be bounded by the square of the L2-norm of that linear function
given that the mass matrix for the coarse, finite dimensional space is well-conditioned
and its elements are on the order of H3

i .
We then find that for a subdomain with all its vertices in the interior of Ω,

µi|IH(uh − r)|2H1(Ωi)
≤ CµiH−2

i

∑
V∈Ω̄i

‖uh − r‖2L2(Ωmax
V ). (5.5)

This follows from (5.4) and a trivial estimate of the energy of the coarse basis func-
tions. The right-hand side of this inequality can be estimated after adding non-
negative terms, the squares of semi-norms, by

Cµi
∑
V∈Ω̄i

‖uh − r‖2H1(Ωmax
V ) ≤ Cµi‖uh − r‖2

H1(Ω̂i)
.

Here Ω̂i is the union of all the subdomains of all the paths, of Assumptions 1 and 2,
of the subdomain vertices of Ωi.

For a subdomain vertex that lies on ∂Ω, we will use the trace theorem (5.3) to
estimate H−1

i ‖uh − r‖2L2(F) in terms of ‖uh − r‖2H1(Ωmax
V ).

The contribution from such a subdomain vertex can indeed be estimated by
H−1
i ‖uh− r‖2L2(F). Thus, the vector-valued function v(x), with bilinear components,

which is the best approximation of uh − r in the L2(F)-sense, satisfies ‖v‖L2(F) ≤
‖uh − r‖L2(F). By an argument about a mass matrix, now for functions of two in-
dependent variables, we find that H2

i |v(V)|2 ≤ C‖uh − r‖2L2(F). We next multiply
this vertex value by the coarse nodal basis function of that vertex and compute the
energy of the resulting function, which can be bounded by CH−1

i ‖uh− r‖2L2(F). The

trace theorem (5.3) then gives us the bound C‖uh − r‖2H1(Ωmax
V ) of the same form as

for the interior subdomain vertices.
We note that we have already shown how to estimate the correction term δu0 in

terms of uh−ũ0. We can therefore conclude that µi‖wh‖2H1(Ωi)
≤ Cµi‖uh−r‖2H1(Ω̂i)

.

In order to establish a bound for āi(uh − u0,uh − u0), we will revisit and revise
arguments in [9]. Since IHr = r, ∀r ∈ RB, we find that u0 − r = IH(uh − r) and
that wh = uh − r − IH(uh − r). We will use the shift with r when using a Korn’s
inequality

inf
r∈RB

‖uh − r‖H1(Ω̂i)
≤ C

∑
Ωj⊂Ω̂i

aj(uh,uh); (5.6)

cf. [9, Lemma 5.2]. We note that by Assumption 2, the Lamé parameters of all the

subdomains which form Ω̂i are at least equal to µi and that Ω̂i allow us to use a Korn
inequality; we note that we can find a path from any subdomain of Ω̂i to any other
such subdomain via Ωi passing only through subdomain faces. Then [9, Lemma 5.2]
provide a bound in terms of aj(uh,uh).

inf
r∈RB

µi‖IH(uh − r)‖2H1(Ωi)
≤ Cµi

∑
Ωj⊂Ω̂i

aj(uh,uh) ≤ C
∑

Ωj⊂Ω̂i

µjaj(uh,uh). (5.7)
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Since wh satisfies the no-net-flux condition, we can now use equation (2.10) to estimate
āi(wh,wh) by µiai(wh,wh), which in turn can be estimated by the left hand side of
(5.7) and finally by the right hand side of (5.7). Thus,

āi(wh,wh) ≤ C
∑

Ωj⊂Ω̂i

µjaj(uh,uh). (5.8)

Finally, we note that, trivially, µjaj(uh,uh) ≤ āj(uh,uh).
We also note that in contrast to the construction in [9], wh will generally not van-

ish at the subdomain vertices. However, using [34, Formula (4.16)] and an elementary
estimate of the energy of the nodal basis functions, we find that the energy of the
component associated with a subdomain vertex can be bounded in a satisfactory way;
see further the next subsection.

5.3. Local bounds. In the analysis of the local components ui ∈ Vi, into which
wh will be decomposed, we can follow the analysis in [9, Section 5.3] quite closely.
There will be very few complications and we will be able to follow the strategy of [9]
of doing analysis on one subdomain at a time until the very end when we have to
bring in our estimate of āi(wh,wh), which is based on (5.8). In fact, we will find that
some of our arguments are simpler than those in [9].

In the analysis, we will first localize wh to the faces and edges of the subdomain
Ωi, find and estimate correction terms which will make each of these local terms have
no net flux, and then use these local terms to construct contributions from Ωi to Vi
and the subspaces Vj associated with the subdomains which intersect Ωi.

We note that in the beginning of [9, Section 5.3], we had to examine the con-
struction of u0 quite closely in order to avoid introducing an additional, unnecessary
factor (1 + log(H/h)). Given that we have established a uniform bound for the norm
of wh in Subsection 5.2, this will not be necessary. Since wh generally will not vanish
at the subdomain vertices, we have to modify our argument slightly when we con-
sider certain edge terms. This is accomplished by a simple modification of the cut-off
functions associated with the subdomain edges.

Before we turn to the analysis of the local terms, we will recall a result on the
effect of the aspect ratios of domains on the inf-sup parameter. We also will borrow a
bound, from [9, Lemma 5.4], for certain face cutoff functions ϑδFij which are supported
in the closure of the set

Ξij := (Ωi ∪ F ij ∪ Ωj) ∩ (Ω′i ∩ Ω′j). (5.9)

In addition, for each edge Ej` ⊂ ∂Ωi, common to two faces F ij and F i` of Ωi, we
will consider a modified edge cutoff function, ϑ̄δEj` ; it represents, in fact, a small
modification of the function ϑδEj` introduced in [9, Subsection 5.3]. This function is
supported in the closure of the set

Ψj` :=
⋂

m∈Ij`

Ω′m, (5.10)

which is the intersection of the extensions Ω′m of all subdomains Ωm, which have the
edge Ej` in common with Ωi. Here the set of subdomain indices, denoted by Ij`, also
includes i.

Bounds over these two sets of domains, which have aspect ratios of order Hi/δi,
will affect the estimates of the ui ∈ Vi, i ≥ 1, in the decomposition which results
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in our estimate of C2
0 . In contrast, these aspect ratios do not enter the bound of the

coarse space component u0 since all estimates required in Section 5.2 are for entire
subdomains which, by assumption, are shape regular.

The effect of the aspect ratio has been considered in the literature, in particular,
by Dobrowolski [6]. These matters are discussed at some length in [9] where it is
shown that the inf-sup constant of a domain such as Ξij will decrease in proportion to
δi/Hi. Using inequality (2.10) in an almost incompressible case will then contribute
a factor (Hi/δi)

2 to our bound of C2
0 .

A standard tool in the theory for iterative substructuring problems is provided
by [34, Lemma 4.24]

|Ih(ϑFiju)|2H1(Ωi)
≤ C(1 + log(Hi/hi))

2‖u‖2H1(Ωi)
. (5.11)

Here ϑFij is an explicitly constructed function, which equals 1 at all nodes interior to
the face F ij . We also have the bound

|ϑFij |2H1(Ωi)
≤ C(1 + log(Hi/hi))Hi; (5.12)

see [34, Lemma 4.25]. In our analysis of the local terms, we need similar bounds but
for the intersection of Ωi with Ω′j , the extension of the other subdomain Ωj , which

has a face F ij in common with Ωi. Just as in [9], we will use a face cutoff function
ϑδFij which is different from ϑFij in two respects. Instead of having the value 1 at
all nodes of F ij , it will equal dist(x, ∂F ij)/δi, at any node x ∈ F ij within a distance
δi of the boundary of the face; at all other nodes on F ij the nodal values remain 1.
We note that this function thus resembles a regular face cutoff function on a coarser
mesh with elements of size δi. In addition, we will restrict the support of this cutoff
function to the closure of Ξij . The bound on the right-hand side of (5.11) must then
be multiplied by a factor Hi/δi. On the other hand, one of the factors (1+log(Hi/hi))
in (5.11) can be replaced by (1 + log(Hi/δi)).

Lemma 5.2. There exists a face cutoff function ϑδFij , with values at the nodes of
F ij as just specified, which vanishes at all the nodes on the rest of the boundary of
Ωi ∩ Ω′j , and which satisfies

|Ih(ϑδFiju)|2H1(Ωi∩Ω′
j) ≤ C(Hi/δi)(1 + log(Hi/δi))(1 + log(Hi/hi))‖u‖2H1(Ωi)

. (5.13)

For a proof of this result see [9, Lemma 5.4].
The modified edge function ϑ̄δEj` is supported in the closure of a δi-neighborhood

of the subdomain edge Ej` and in the closure of Ψj`. The ϑ̄δEj` of all the edges of Ωi
and the ϑδFj` of all the faces of the subdomain should form a partition of unity when
restricted to ∂Ωi. It is straightforward to construct such edge functions which satisfy
|∇ϑ̄δEj` | ≤ C/δi. By introducing cylindrical coordinates, with the edge as the z-axis,
and using [34, Corollary 4.20], we can prove the following; cf. [9, Lemma 5.5].

Lemma 5.3. There exist edge cutoff functions ϑ̄δEj` supported in the closure of
Ψj`, which, together with the face cutoff functions ϑδFik form a partition of unity on
∂Ωi and which satisfies

|Ih(ϑ̄δEj`u)|2H1(Ψj`) ≤ C(1 + log(Hi/hi))‖u‖2H1(Ωi)
. (5.14)

We note that a proof, cited in the proof of this result, from [34, Lemma 4.16], is not
satisfactory but that a good proof now is provided in [11, Lemma 3.1].
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saddle point saddle point
GMRES-OAS(2) GMRES-OHS(2)

ν it. err. it. err.
0.4 16 5.8e-6 14 2.3e-6
0.49 18 3.8e-6 15 3.6e-6
0.499 18 6.5e-6 15 4.4e-6
0.4999 18 6.7e-6 15 4.5e-6
0.49999 18 6.8e-6 15 4.5e-6
0.499999 18 6.8e-6 15 4.5e-6

Table 6.1
Saddle point formulation. GMRES with two-level additive (OAS) and hybrid (OHS) precon-

ditioners. Iteration counts and iteration errors for an increasing Poisson ratio ν → 1
2

. Fixed
N = 3× 3, H/h = 4, overlap δ = h.

Just as in [9, Subsection 5.3], these face and edge functions are used in order to
partition wh into functions that are supported in the closure of individual overlapping
subdomains Ω′j . However, while wh, by construction, has a zero net flux across all
subdomain faces, this is no longer the case with the local functions just constructed.
We therefore have to introduce correction terms and here we can follow [9] very
closely. For each face F ij , we thus obtain a modified face function wFij and for
each subdomain edge E i` a modified edge function wEi` . All of these functions have
zero net flux across the subdomain boundary ∂Ωi. In addition, these functions satisfy
the same bounds as those of Lemmas 5.2 and 5.3. The sum of these face and edge
functions also equals wh on the interface.

What remains is to partition wi, the restriction of wh to Ωi, into contributions
to the local subspace Vi and the subspaces associated with the subdomains which
have a face or edge in common with Ωi. Here we can exactly use the recipes of [9,
Subsection 5.3]. Thus, we begin the construction of the restriction of ui ∈ Vi to Ωi
by subtracting (1/2)wFij from wi and adding the same function to the restriction
of uj ∈ Vj to the same subdomain Ωi. By using the same recipe for the neighboring
subdomain Ωj we obtain an element in Vi. A similar partitioning is also made of the
edge functions wEi` ; for details see [9, Subsection 5.3].

The conclusion of the proof of our main theorem can also very closely be modeled
on that earlier work; see also the discussion at the end of Subsection 5.2.

6. Numerical results. In this section, we report on results of numerical tests
in 2D with the Overlapping Additive Schwarz (OAS) preconditioners for the almost
incompressible elasticity system as defined in Section 3 for the positive definite for-
mulation and in Section 4 for the mixed formulation. Our problem is discretized
with Qh2 − Ph1 mixed finite elements with the mesh size h. Analogous results have
been obtained with Qn(h)−Qn−2(h) spectral elements with polynomial degree n and
with GLL numerical quadrature. At the end of this section, we report on only a few
selected results for increasing polynomial degree n and Poisson ratio ν.

The domain is decomposed into N overlapping subdomains of characteristic size
H and the overlap size δ is the minimal thickness of the extension Ω′i \ Ωi of each
subdomain Ωi. The resulting linear system is solved by the GMRES method for the
saddle point formulation and by the PCG method for the positive definite reformu-
lation where the pressure has been eliminated. In all cases, we use one- or two-level
overlapping Schwarz preconditioners as defined in Sections 3 and 4. The restart num-
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pos. definite formulation pos. definite formulation
PCG-OAS(2) PCG-OHS(2)

ν it. err. cond.=λmax/λmin it. err. cond.=λmax/λmin
0.4 17 6.2e-7 5.61=4.788/0.854 14 4.1e-7 4.69=3.996/0.853
0.49 22 5.9e-7 10.88=4.822/0.443 17 3.2e-7 6.22=3.999/0.643
0.499 28 2.0e-7 23.31=4.842/0.208 25 1.2e-7 15.79=4.000/0.253
0.4999 36 5.8e-8 42.89=4.856/0.113 31 6.1e-8 29.88=4.000/0.134
0.49999 37 2.8e-8 47.68=4.859/0.102 32 5.2e-8 38.44=4.000/0.104
0.499999 38 1.1e-8 48.22=4.860/0.101 33 1.7e-8 39.61=4.000/0.101

Table 6.2
Positive definite formulation. PCG with two-level preconditioners: additive (OAS(2)) and

hybrid (OHS(2)). Iteration counts, iteration errors, condition numbers and extreme eigenvalues for
an increasing Poisson ratio ν → 1

2
. Fixed N = 3× 3, H/h = 4, overlap δ = h.

ber of the GMRES method is set to be 200. We have run our Matlab program on a
Linux PC, using a zero initial guess and a stopping criterion of a 10−6 reduction of the
residual norm. In each test, we report the iteration counts (it.), the iteration errors
(err.), i.e., the difference between the iterative solution and the solution obtained by
using Matlab default direct solver and for PCG we also report the condition number
(cond.) of the preconditioned operator defined as the ratio of its extreme eigenvalues
λmax/λmin.

Robustness of OAS(2) and OHS(2) for almost incompressible materi-
als. We first consider the saddle point formulation solved by GMRES with two-level
additive (OAS) and hybrid (OHS) preconditioners. The system is discretized with
a fixed number N = 3 × 3 of subdomains, the ratio H/h = 4, and and an overlap
δ = h. Table 6.1 reports the iteration counts and errors of this saddle point system.
The results clearly show the robustness of both OAS(2) and OHS(2) preconditioners
when the Poisson ratio ν approaches the incompressible limit ν = 1

2 , with a slightly
better performance of the hybrid OHS(2) preconditioner.

Analogous results are shown in Table 6.2 for the positive definite formulation
solved by PCG with two-level additive (OAS) and hybrid (OHS) preconditioners. Now
we also report the condition numbers and extreme eigenvalues of the preconditioned
operator. Again, the OHS(2) preconditioner has a slightly better performance due
mostly to an smaller, largest eigenvalue.

Scalability of OAS(2). We then investigate the scalability of our overlap-
ping Schwarz preconditioners. In Table 6.3, we consider both the two-level GMRES-
OAS(2) and one-level GMRES-OAS(1) algorithms, applied to both the saddle point
(top) and positive definite (bottom) formulations, for increasing number of subdo-
mains N and a fixed H/h = 5, ν = 0.4999. In each case, we consider both a minimal
overlap of δ = h and a larger overlap of δ = 2h. The results show that the GMRES-
OAS(2) iteration count is bounded from above by a constant independent of N , clearly
showing the scalability of the proposed preconditioners, while the one-level algorithm
GMRES-OAS(1) is not scalable since its iteration count grows with N . Increasing the
overlap size yields a considerable improvement for the positive definite formulation,
but only a marginal improvement for the saddle point formulation. An analogous
scalability test is reported in Table 6.4 for PCG-OAS(2) applied to the positive def-
inite formulation with fixed H/h = 5, ν = 0.4999, overlap δ = h (left) and δ = 2h
(right), for N increasing up to 10 × 10 subdomains. We also report the condition
numbers and extreme eigenvalues of the preconditioned operator.
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saddle point, GMRES-OAS(2) saddle point, GMRES-OAS(1)
δ = h δ = 2h δ = h δ = 2h

N it. err. it. err. it. err. it. err.
2× 2 16 4.8e-6 16 3.9e-6 19 6.6e-6 17 3.0e-6
3× 3 19 5.5e-6 18 7.1e-6 29 1.4e-5 23 1.3e-5
4× 4 20 7.7e-6 19 1.0e-5 39 1.9e-5 30 1.7e-5
5× 5 20 1.1e-5 20 1.2e-5 50 3.2e-5 37 1.5e-5
6× 6 21 7.4e-6 20 1.8e-5 63 3.7e-5 45 2.8e-5

pos. definite, GMRES-OAS(2) pos. definite, GMRES-OAS(1)
2× 2 24 1.4e-6 16 9.3e-7 21 8.8e-7 14 9.5e-7
3× 3 39 2.5e-6 22 1.1e-6 35 1.9e-6 21 4.2e-7
4× 4 44 7.5e-6 25 3.8e-6 61 1.6e-5 29 4.1e-6
5× 5 43 3.1e-5 24 4.3e-6 84 3.4e-5 41 4.0e-6
6× 6 43 1.7e-5 24 4.5e-6 115 2.0e-5 53 6.6e-6

Table 6.3
Scalability of GMRES-OAS(2), saddle point and positive definite formulations. Iteration counts

and iteration errors for an increasing number of subdomains N. Fixed H/h = 5, ν = 0.4999.

positive definite formulation, PCG-OAS(2)
δ = h δ = 2h

N it. err. cond.=λmax/λmin it. err. cond.=λmax/λmin
2× 2 28 1.6e-8 63.99=4.655/0.073 19 9.1e-8 13.77=4.914/0.357
3× 3 43 1.1e-7 68.82=4.767/0.069 26 3.0e-7 15.74=4.970/0.316
4× 4 55 2.8e-7 63.91=4.794/0.075 30 1.4e-7 16.62=4.984/0.300
5× 5 56 2.8e-7 62.31=4.804/0.077 30 1.7e-7 15.87=4.987/0.314
6× 6 57 2.3e-7 61.40=4.809/0.078 30 2.0e-7 15.06=4.987/0.331
7× 7 57 3.5e-7 60.17=4.810/0.080 30 2.8e-7 15.43=4.989/0.323
8× 8 57 3.3e-7 57.95=4.811/0.083 30 2.2e-7 15.44=4.990/0.323
9× 9 58 3.2e-7 56.75=4.813/0.085 30 2.9e-7 15.11=4.991/0.330

10× 10 57 4.5e-7 58.79=4.814/0.082 30 4.1e-7 15.16=4.992/0.329
Table 6.4

Scalability of PCG-OAS(2), positive definite formulation. Iteration counts, iteration errors,
condition numbers and extreme eigenvalues for increasing number of subdomains N . Fixed H/h =
5, ν = 0.4999.
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Fig. 6.1. Plot of cond. from Table 6.4.
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positive definite formulation, PCG-OAS(2)
δ = h δ = 2h

H/h it. err. cond.=λmax/λmin it. err. cond.=λmax/λmin
4 16 1.3e-6 5.36=4.781/0.892 16 7.7e-7 4.95=4.976/1.005
5 17 1.1e-6 5.83=4.671/0.801 16 7.6e-7 4.94=4.942/0.999
6 17 1.3e-6 6.32=4.573/0.724 16 1.5e-6 4.97=4.894/0.984
7 18 1.9e-6 6.93=4.491/0.648 16 2.0e-6 5.16=4.839/0.939
8 18 3.2e-6 7.48=4.423/0.591 16 3.2e-6 5.37=4.782/0.891

16 23 8.9e-6 12.82=4.159/0.324 18 7.8e-6 7.51=4.425/0.589
24 27 1.2e-5 17.85=4.080/0.229 21 1.1e-5 9.82=4.250/0.433
32 30 2.5e-5 22.47=4.047/0.180 23 2.6e-5 12.36=4.160/0.337

Table 6.5
H/h-dependence of PCG-OAS(2), positive definite formulation. Iteration counts, iteration

errors, condition numbers and extreme eigenvalues for increasing H/h. Fixed N = 3× 3, ν = 0.3.

positive definite formulation, PCG-OAS(2)
δ = h δ = 2h

H/h it. err. cond.=λmax/λmin it. err. cond.=λmax/λmin
4 36 5.8e-8 42.89=4.856/1.1e-1 22 1.3e-7 9.87=4.985/5.1e-1
5 43 1.1e-7 68.82=4.767/6.9e-2 26 3.0e-8 15.74=4.970/3.2e-1
6 50 1.6e-7 99.11=4.684/4.7e-2 28 1.3e-7 23.12=4.936/2.1e-1
7 57 2.8e-7 131.34=4.608/3.5e-2 33 1.3e-7 32.20=4.897/1.5e.1
8 64 2.7e-7 163.19=4.542/2.8e-2 37 1.6e-7 42.95=4.854/1.1e-1

16 117 1.4e-6 509.50=4.240/8.3e-3 64 8.8e-7 163.28=4.542/2.8e-2
24 144 3.5e-6 751.03=4.130/5.5e-3 87 4.1e-6 321.18=4.350/1.4e-2
32 163 8.3e-6 850.42=4.080/4.8e-3 109 4.5e-6 509.62=4.240/8.3e-3

Table 6.6
H/h-dependence of PCG-OAS(2), positive definite formulation. Iteration counts, iteration

errors, condition numbers and extreme eigenvalues for increasing H/h. Fixed N = 3×3, ν = 0.4999.
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Fig. 6.2. Plot of PCG-OAS(2) condition numbers from Table 6.5 with ν = 0.3 (left) and from
Table 6.6 with ν = 0.4999 (right).
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positive definite formulation, PCG-OAS(2)
ν = 0.3 ν = 0.4999

H/δ it. cond.=λmax/λmin it. cond.=λmax/λmin
5.33 16 5.57=4.530/0.814 27 74.3=4.624/6.23e-2
6.40 17 5.92=4.437/0.750 31 112.1=4.535/4.05e-2
8.00 18 7.11=4.333/0.610 34 180.5=4.429/2.45e-2

10.67 20 8.97=4.222/0.470 45 305.0=4.305/1.41e-2
16.00 22 12.34=4.116/0.334 64 496.1=4.172/8.43e-3
21.33 25 15.74=4.070/0.259 80 590.7=4.108/7.00e-3
32.00 28 22.47=4.033/0.180 108 839.9=4.053/4.80e-3
42.67 31 29.22=4.019/0.138 158 1831.1=4.031/2.20e-3
64.00 36 42.75=4.009/0.094 229 4985.1=4.014/8.05e-4

128.00 47 83.37=4.002/0.048 475 22907.0=4.004/1.75e-4
Table 6.7

H/δ-dependence of PCG-OAS(2), positive definite formulation. Iteration counts, condition
numbers and extreme eigenvalues for increasing H/δ. Fixed N = 2 × 2, H/h = 128, ν = 0.3 (left),
ν = 0.4999 (right).
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Fig. 6.3. Plot of PCG-OAS(2) condition numbers from Table 6.7.

All the results clearly show the scalability of PCG-OAS(2), in agreement with our
main bound of Theorem 5.1. The condition numbers from this table are also plotted
in Fig. 6.1 as a function of N .

OAS(2) dependence on H/h. We now investigate the OAS(2) dependence on
the ratio H/h for the positive definite formulation, considering both a compressible
material with ν = 0.3 in Table 6.5 and an almost incompressible material with ν =
0.4999 in Table 6.6. The number of subdomains is fixed to N = 3×3, the overlap size
is either δ = h (left) or δ = 2h (right), while the ratio H/h increases from 4 to 32. The
PCG-OAS(2) condition numbers from both tables are also plotted in Fig. 6.2. The
results indicate a growth of the condition number that in the compressible case seems
to be linear in H/h. In the almost incompressible case, the condition numbers are
much larger and their growth seems to be more than linear in H/h, even if for small
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GMRES-unpr. GMRES-OAS(2) PCG-OAS(2)
saddle pt. saddle pt. pos. def. pos. def.

ν it. err. it. err. it. err. it. err. cond.=λmax/λmin
central jump test

0.3 3+92 6e-2 15 5e-6 13 7e-9 17 9e-11 5.43=4.83/0.89
0.4 3+99 0.34 16 4e-6 13 6e-9 17 9e-11 5.44=4.83/0.89
0.49 4+108 1.8 17 1e-5 15 9e-9 20 2e-10 8.37=4.88/0.58
0.499 4+110 2.1 17 1e-5 17 8e-9 24 3e-11 11.02=4.90/0.45
0.4999 4+110 2.1 17 2e-5 17 2e-8 25 3e-11 11.58=4.91/0.42
0.49999 4+110 2.1 17 2e-5 17 1e-8 25 3e-11 11.65=4.91/0.42

checkerboard test
8+116 2.5 17 1e-5 21 5e-9 31 1e-11 11.63=4.89/0.42

Table 6.8
Qh

2 − Ph
1 elements: discontinuous material parameters. OAS(2) iteration counts (number of

restarts + number of iterations), iteration errors, (and also cond. and extreme eigenvalues for
PCG-OAS(2)) for central jump and random jump tests. Fixed N = 4× 4, H/h = 4, overlap δ = h.

overlap δ = h the growth slows down for the larger values of H/h = 24 and 32. In
all cases, this growth is due to the minimum eigenvalues decreasing toward zero when
H/h increases. Also in all cases, a larger overlap improves the results considerably.

OAS(2) dependence on H/δ. In order to check our main bound in Theorem
5.1 predicting a (H/δ)3 growth of the condition number, we have investigated the
effect of increasing the ratio H/δ while fixing N = 4 and H/h = 128. The results
are reported in Table 6.7 and also plotted in Fig. 6.3 and appear to confirm the
theoretical (H/δ)3 bound in the almost incompressible case, while the bound appear
to be only linear in H/δ in the compressible case.

OAS(2) robustness with respect to discontinuous material parameters.
In Table 6.8, we consider two tests with discontinuous material parameters. The first,
called ”central jump” (top part of the table), consists of a square domain with 4× 4
subdomains, where the Poisson ratio ν equals the value given in the left column of
the table in the 2 × 2 central subdomains, while ν = 0.3 in the remaining subdo-
mains. In the second test, called ”checkerboard”, the Poisson ratio is a piecewise
constant function on each subdomain, with values varying randomly between 0.3 and
0.49999. From left to right, the table reports the iteration counts (number of restarts
+ number of iterations, so that e.g. 3 + 29 means 3 · 200 + 29 iterations) and iter-
ation errors of the unpreconditioned GMRES, GMRES-OAS(2) for the saddle point
formulation, GMRES-OAS(2) for the positive definite formulation and PCG-OAS(2)
for the positive definite formulation, where we report also the condition number and
extreme eigenvalues. The results clearly show the OAS(2) robustness with respect to
the jumps in the Poisson ratio in both the central jump and checkerboard tests, while
the unpreconditioned GMRES does not converge in spite of large iteration counts
with several restarts.

Qn − Qn−2 spectral elements: PCG-OAS(2) dependence on n and dis-
continuous material parameters. Finally, we remark that analogous results have
been obtained with Qn−Qn−2 spectral element discretizations. Here, we only briefly
report in Table 6.9 on the independence of the iteration count for PCG-OAS(2) of the
polynomial degree n when the overlap size is at least one element. This is as expected
from our previous studies on Schwarz preconditioners for spectral elements. Table
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positive definite formulation, PCG-OAS(2)
δ = h δ = 2h

n it. err. cond.=λmax/λmin it. err. cond.=λmax/λmin
3 37 6e-8 42.83=4.85/0.113 22 2e-7 9.87=4.99/0.506
4 37 1e-7 42.97=4.85/0.113 22 2e-7 9.88=4.99/0.505
5 36 2e-7 42.96=4.85/0.113 22 2e-7 9.86=4.98/0.505
6 36 5e-7 42.96=4.85/0.113 22 3e-7 9.88=4.99/0.505

Table 6.9
Qn − Qn−2 spectral elements: n-dependence of PCG-OAS(2), positive definite formulation.

Iteration counts, iteration errors, condition numbers and extreme eigenvalues for increasing poly-
nomial degree n. Fixed N = 3× 3, H/h = 4, ν = 0.4999.

GMRES-unpr. GMRES-OAS(2) PCG-OAS(2)
saddle pt. saddle pt. pos. def. pos. def.

ν it. err. it. err. it. err. it. err. cond.=λmax/λmin
central jump test

0.3 1+132 3e-3 14 3e-7 13 5e-10 16 1e-10 5.41=4.81/0.89
0.4 2+87 4e-3 15 6e-7 13 2e-10 16 1e-10 5.48=4.82/0.74
0.49 4+81 1e-2 18 6e-6 14 4e-10 18 2e-10 6.50=4.84/0.74
0.499 4+94 2e-2 18 1e-6 17 2e-10 20 1e-10 8.17=4.91/0.60
0.4999 4+97 2e-2 18 2e-6 17 5e-10 22 7e-11 9.27=7.56/0.53
0.49999 4+98 1e-2 18 2e-6 17 6e-10 25 1e-11 9.98=4.93/0.49

checkerboard test
10+0 1e-1 18 2e-6 19 3e-10 26 3e-11 11.52=4.90/0.42

Table 6.10
Qn − Qn−2 spectral elements: discontinuous material parameters. OAS(2) iteration counts

(number of restarts + number of iterations), iteration errors, (and also cond. and extreme eigenval-
ues for PCG-OAS(2)) for central jump and random jump tests. Fixed n = 2, N = 4 × 4, H/h = 4,
overlap δ = h.

6.10 shows the robustness of the OAS(2) algorithm in central jump and checkerboard
tests, with results remarkably similar to the results of Table 6.8 for Qh2 −Ph1 elements.
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