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Brief 
 

‘Through cooperation deception arises. To beat deception, cooperation is required.’ 
 

We aim to study cooperation and deception in a system with multiple agents through utility 
and signaling. We start with the classic standard for cooperation namely the ‘Prisoner’s 
Dilemma’ and then we move on to the ‘Iterated Prisoner’s Dilemma’ which we treat as an 
iterated version of a signaling Game. This is because the previous actions of an agent are a 
signal to the opponent about the agent’s type. We then move on to Bio-mimicry and 
deception where we study dynamics and interesting phenomena that arise due to signaling 
between Predator and Prey. Cooperation and deception are two sides of a coin and it is 
imperative to understand both of them as we develop better and more efficient Artificial 
Intelligence systems. 
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Introduction 
 
In today's world where humanity has barely scratched the surface of Artificial Intelligence(AI), 
there is a need for efficient mechanisms that can incentivize, analyze, and verify the evolution 
of AI. There will be drastic impacts on the structure of society with the evolution of AI. AI will 
be constantly breaking new frontiers with great impacts on human life. From simple 
ecosystems to complex interactions we can optimize conditions of survival and evolution. 
 
In the eternal war to strive for optimality and relevance, the world can be envisioned a huge 
system of interactions which can be modeled as games. When each agent competes for 
optimality we do not see an optimal system but an evolving system that can take any random 
turn. We see many fascinating and sometimes counter-intuitive developments. 
 
As nature has already shown and has beautifully been put by Richard Dawkins in ‘The Selfish 
gene’, agents tend to be selfish. Through the passage of time surprisingly this selfish world 
gives rise to cooperation as we see the emergence of altruistic traits. Consider two different 
species. Species A where every agent is selfish and acts based on personal utility. Species B 
with a  sense of community where agents share their resources. During times of prosperity 
because of the presence of excess resources, we see that through natural selection members 
of species A become stronger over time. But during special times like the case of resources 
being grouped in scarce regions we see that only a small percentage of species A will find 
resources and survive. On the contrary in harsh situations even if a smaller fraction of species 
B finds the same resources because of sharing, a significantly larger amount of species B will 
survive. All in all, species B has an evolutionary advantage on the whole despite members of 
species A having an evolutionary advantage on the individual level. 
 
This sense of cooperation and trust has been ingrained in humans to a pretty deep extent. 
We learn to trust Banks, Government, and our fellow citizens from small transactions to large 
policies and even when it comes to situations where lives are at stake. Due to the ability of 
reproduction and the emergent phenomena of natural selection, this sense of cooperation 
has been genetically hardcoded in us and is one of the frontrunner qualities in helping us build 
civilization and advance. But, in the case of AI, these agents are not limited by concepts of 
survival and death, and thus to learn cooperation is a very difficult task. With a lack of 
complete information and also due to the presence of huge amounts of randomness in this 
world, it is very hard to encode the notion of cooperation. So to create this urge for 
cooperation we need to understand structures and encodings for cooperation to occur. We 
further study this with the help of the iconic Prisoner’s Dilemma which is the standard for 
cooperation. We specifically consider a more natural and relevant version called the Iterated 
Prisoner’s Dilemma. 
 
In the above system, there is an innate requirement of trust to form a community. An agent 
will only want to form a community with those they can trust and identify. This results in the 
emergence of signals to identify other agents. A signal is a message from Player A to player B 
indicating or conveying information about their type. As these signals arise there will be 
malicious agents that find it in their best interest to be deceptive. It is highly improbable that 
there is no deception at all. Deception is a very natural phenomenon that emerges just like 
cooperation. We thus study emergent 'cooperation' and with it 'deception' as they are two 
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sides of the same coin. This involves creating better mechanisms and systems that enable 
cooperation while understanding the dynamics in the presence of deception. This thesis aims 
to understand cooperation and deception through the dynamics of a few simple games. This 
will help us create incentivize and verify rapidly changing technology. We also cover a wide 
range of signaling dynamics from Iterative signaling(IPD) to emergent phenomena of learning 
agents in the presence of evolving signals. 

 

Some examples are as follows. Consider two competitors attacking each other’s websites 
through bots. We can understand the dynamics of such situations and figure out the optimal 
strategy for each company. This has been shown in the ‘Dynamics of Predator-Prey model in 
the presence of mimicry’. Another example is that of fake currency and spambots. How to 
create effective mechanisms that are more robust and resilient to attacks can be studied 
through signaling games and understanding of equilibria that arise. We can also understand 
strange emergent phenomena that cannot be explained through conventional means. We 
also look at some sub-optimal signaling conventions because of the existence of a pooling 
equilibrium. 

Basic Theory and Definitions 
 

Agent 
 
We will constantly refer to agents through the thesis. A very general agent can be 
considered to consists of the following attributes. 

• Body : this can refer to architecture or genetic makeup that can evolve. Moore’s Law 
can be considered to affect the body of an agent. 

• Mind : Consists of the learning and action making system. This makes decisions and 
updates beliefs. 

• Memory : Store history and experiences. Accessed by the mind. 

• Actions : This consists of taking actions and sending signals 

• Senses : Perception that receives signals.  
 

Signaling Game 
 
A Signaling Game plays out as follows 

1. Sender(S) has a type t. 
2. Sender(S) send a signal/message to Receiver(R). 
3. Receiver(R) receives the message. 
4. Receiver(R) takes action based on his/her belief about Sender(S). 
5. Receiver(R) gets a payoff/reward based on his action and type of Sender(S) 

 
We now look at some common Bayesian equilibrium in Signaling Games. 
 
Pooling Equilibrium : Senders with different types all choose the same message. This means 
that the sender's message does not give any information to the receiver, so the receiver's 
beliefs are not updated after seeing the message. 
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Separating Equilibrium : senders with different types always choose different messages. This 
means that the sender's message always reveals the sender's type, so the receiver's beliefs 
become deterministic after seeing the message. 
Hybrid Equilibrium : Sender randomizes between Pooling and Separating 
 
After a signaling convention is set. A malicious agent will realize that it is better to send the 
same signal as a Good agent. But technology might not allow so. There is also a cost attributed 
to every signal. We shall explore this in later sections. 
 

Prisoner’s Dilemma (PD) 
Consider the standard game of Prisoner’s Dilemma 

Two criminals A and B are imprisoned. Each prisoner is given the opportunity either to betray 
the other by testifying that the other committed the crime, or to cooperate with the other by 
remaining silent. The possible outcomes are: 

• If A and B each  betray the other, each of them serves two years in prison 

• If A betrays B but B remains silent, A will be set free and B will serve three years in prison 
(and vice versa) 

• If A and B both remain silent, both of them will serve only one year in prison (on the lesser 
charge). 

 
More generally it is represented by a matrix as follows. 
 

Table 1 : Payoff Matrix for Prisoner’s Dilemma 

 Cooperate Defect 
Cooperate (R,R) (S,T) 

Defect (T,S) (P,P) 
 

The payoffs R, S, T, P denote the Reward for mutual cooperation, Sucker’s Payoff, Temptation 
to defect, Punishment for mutual defection. The following conditions hold. 
T > R > P > S 
The ‘dilemma’ faced by the prisoner’s here is that, whatever the other does, it is better off 
confessing than remaining silent. Thus resulting in a worse off situation than the case where 
both remained silent. 
 
Defection is the dominant strategy. The Nash Equilibrium is mutual defection. 
 

Iterated Prisoner’s Dilemma (IPD) 
We now consider the Iterated Prisoner’s Dilemma 

If two players play prisoner's dilemma more than once in succession and they remember 
previous actions of their opponent and change their strategy accordingly, the game is called 
iterated prisoner's dilemma. This game is essentially an iterated a signaling game. Each player 
knows the move played by the opponent in the previous turns. This history of moves played 
essentially is a signal from the opponent. This gives information about the type of the 
opponent. Additionally, we enforce that 2R > S + T. This is to prevent alternating cooperation 
and defection giving a greater reward than mutual cooperation. 
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If the game is repeated a finite number of times. The optimal strategy in the last move is to 
mutually Defect. Inductively we can see that the Nash Equilibrium is to Defect every round. 
For cooperation to emerge the number of rounds must be unknown. 
 
 

Stochastic Iterated Prisoner’s Dilemma 
In an encounter between player X and player Y, X 's strategy is specified by a set of 
probabilities P of cooperating with Y. P is a function of the outcomes of their previous 
encounters or some subset thereof. 
 
If P is a function of only their most recent n encounters, it is called a "memory-n" strategy. A 
memory-1 strategy is then specified by four cooperation probabilities: P = {PCC,PCD,PDC,PDD} , 
where Pab is the probability that X will cooperate in the present encounter given that the 
previous encounter was characterized by (ab) where X played a and Y played b in the previous 
turn. In our experiments we shall further delve into this. 
 

Some standard agents 
 
Always Defects(ALLD) 
ALLD always defects irrespective of what the opponent does. 
As a memory-1 strategy it can be written as [0,0,0,0]. 
 
Always Cooperates(ALLC) 
ALLC always cooperates irrespective of what the opponent does. 
As a memory-1 strategy it can be written as [1,1,1,1]. 
 
Tit-for-Tat(TFT) 
TFT always cooperates on the first move and mimics the previous move of the opponent for 
the remaining moves. 
As a memory-1 strategy it can be written as [1,0,1,0]. 
 
Random 
This agent cooperates with probability p and defects with probability 1-p. 
As a memory-1 strategy it can be written as [p,p,p,p]. 
 
Some other famous variations 
GRIM : Cooperates till the opponent defects, then onwards always defects. 
TFTT : Tit-for-two-Tat, Retaliates with defection only after two consecutive defections 
TTFT :  Retaliates with two defections for every defection of opponent 
STFT : TFT that starts with a defection. 
PAVLOV : Win-stay lose-shift strategy  
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Literature Survey 
 
The Evolution of Cooperation | Book authored by Robert Axelrod[14] 
The book is the most cited work in Political Science literature. It develops the basis and 
requirements for cooperation. 
 
The Iterated prisoner’s Dilemma 20 years on | Book[1] 
This book is a collection of cutting edge advancements in Iterated Prisoners Dilemma 
Tournaments and Games in the early 21st century. 
 
Axelrod’s tournament| Tournament conducted annually 
In the 1980’s Axelrod ran an IPD tournament inviting agents for the same. We can see a 
multitude of agents from basic rules to learning and signaling agents. A tournament is run 
every year and multiple new agents are listed. 
 
Iterated Prisoner’s Dilemma and Evolutionary game Theory| Paper[2] 
Describes successful strategies for a tournament as Nice, Retaliating, Forgiving and Clear. Also 
describes a whole slew of strategies. Gives a basic introduction to generating strategies 
through Genetic Algorithms and also describes evolutionary and replicator dynamics of 
certain strategies. 
 
Learning IPD through Co-evolution | Paper[3] 
Introduces the concept of co-evolution of multiple agents. Multiple agents undergo evolution 
together and various parameters like noise is tested. Introduction of agents to N-Player IPD. 
 
How to Design a Strategy to Win an IPD Tournament | Paper[4] 
Describes a method here an agent can learn to detect an opponent through the first few 
moves and respond accordingly. 
 
Evolving continuous behaviors in the Iterated Prisoners’ Dilemma | Paper[10] 
Cooperation through Evolution. Use Finite Automata and Feed Forward Perceptron. 
 
Multiagent Reinforcement Learning int the Iterated Prisoners’ Dilemma | Paper[7] 
Use Q-Learning to develop an agent that can play against Tit-for-Tat and another Q-Learner. 
 
Invincible Strategies for Iterated Prisoner’s Dilemma | Paper[8] 
Use the stationary distribution of Memory-1 strategies to define invincible strategies. 
 
No Strategy can win in the repeated Prisoners Dilemma| Paper[6] 
Describes invasion and how every strategy can be overturned by the correct set of mutants 
 
Modelling the commons as a game with vector payoffs | Paper[16] 
It is a novel attempt to introduce a concept of vector payoff so as to implement Cobb Douglas 
Utility that not only maximizes personal interest but also the community interests. The result 
was that a all defect Nash Equilibrium was no longer the Nash Equilibrium. Instead it was a 
partially cooperative strategy that was the new Nash Equilibrium. 
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The Game 
 

Replicator Equations 
Replicator Equations is a model where the fitness function is determined by the population 
distribution instead of being fixed. 
 
The vector x = (x1,…xn) denotes the distribution of types in the population. 
The payoff matrix A encodes all the fitness information. This is because type xi will interact 
with type xj in proportion to its proportion in the population, and in these interactions the 
payoff will be Aij. 

Although populations are finite, the discrete case is computationally intensive. Given a large 
enough sample it will be the same in the limit. 

The rate of change of a type of population is 
𝒅𝒙𝒊

𝒅𝒕
= 𝒙𝒊((𝑨𝒙)𝒊 − 𝒙

𝑻𝑨𝒙) 

 
Where (𝑨𝒙)𝒊 is the expected payoff and 𝒙𝑻𝑨𝒙 is the average fitness of the entire population. 
 
The change in ratio of proportions with time can be shown to is : 

𝒅

𝒅𝒕
(
𝒙𝒊
𝒙𝒋
) =  

𝒙𝒊
𝒙𝒋
((𝑨𝒙)𝒊 − (𝑨𝒙)𝒋) 

This shows that the change in ratio is entirely driven by the difference in fitness between 
types. 

 

Equilibrium 
 
We consider a dynamic system where a group of agents are constantly interacting and 
replicating with respect to the payoff matrix A. We reach a non-trivial equilibrium condition 
when the fitness of each type is exactly the same. Thus effectively the rate of change of the 
type of population is zero. Trivially the rate of change also becomes zero when one population 
dies out and the other population takes full control. 
 
 
We consider a world of agents with days and nights alternating. Each day food keeps 
spawning and the agents go looking for food. Every piece of food is contested by two agents 
randomly chosen from the population. Every agent of a particular species/type does the exact 
same thing when they encounter another agent. 
 
Every night all agents consume one unit of food. If an agent does not get 1 unit of food it dies. 
If it is lucky and gets more than one unit it replicates perfectly with the excess food at the cost 
of 1 unit each. 
 
We now look at the following worlds with replicating agents.  
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Case 1 
There are two types of agents, Dove and Hawk in the population. The Dove always cooperates(shares food) 
while the Hawk always defects(fights for the food). 
For any interaction between two agents we consider a standard game of PD with the payoff matrix as follows. 
(k > 0) 
  

Table 2 : Payoff Matrix for Dove Hawk Game Case 1 
 C D 

C 1/2, 1/2 0, 1 

D 1, 0 ½ - k, ½ - k 

 
 
Let d, h denote the proportion of population of Doves and Hawks respectively. 

Expected payoff of a Dove = 𝑑 (
1

2
) + ℎ(0) 

Expected payoff of a Hawk= 𝑑(1) + ℎ (
1

2
− 𝑘) 

At equilibrium the expected payoff is the same, thus: 

𝒅(
𝟏

𝟐
) + 𝒉(𝟎) = 𝒅(𝟏) + 𝒉 (

𝟏

𝟐
− 𝒌) 

𝒅 = 𝟏 −
𝟏

𝟐𝒌
           𝒉 =   

𝟏

𝟐𝒌
 

 
Figure 1 shows the Proportion of Dove and Hawk during equilibrium. 
When k =1, at equilibrium the fitness of Doves and Hawks are both 

𝒙𝑻𝑨𝒙 = (
1

2

1

2
)(

1

2
0

1 −
1

2

)(

1

2
1

2

) = 
1

4
 

 
Case 2 
There are two types of agents, Dove and Hawk in the population. The Dove always cooperates(shares food) 
while the Hawk always defects(fights for the food). 
For any interaction between two agents we consider a standard game of PD with the payoff matrix as follows. 
(𝑘2 > 0, 𝑘1 ≥ 0) 

Table 3 : Payoff Matrix for Dove Hawk Game Case 2 
 C D 

C 1/2, 1/2 k1, 1 - k1 

D 1 - k1, k1 ½ - k2, ½ - k2 

 
Solving similarly as above, during equilibrium we have 

𝒅 =
𝟐𝒌𝟐 + 𝟐𝒌𝟏 − 𝟏

𝟐𝒌𝟐
           𝒉 =   

𝟏 − 𝟐𝒌𝟏
𝟐𝒌𝟐

 

Consider Figure 2. In the region below the line 𝒌𝟐 +𝒌𝟏 < ½ during equilibrium the Dove population dies out and 
only Hawks remain. 

  

d=1, h=0 

d=0, h=1 

d<h 
d>h 

d=h 

  Dove 
  Hawk 

Figure 1: Plot of population vs k at equilibrium 

Figure 2: Plot of population ratios at equilibrium for given k1 and k2 
in a k1 vs k2 
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Case 3 
We consider three types of agents namely Dove, Hawk and a Crow. The Dove always cooperates(shares food), 
the Hawk always defects(fights for the food) and the Crow cooperates with Doves and other Crows but defects 
with Hawks. 
 
Every interaction is given by the payoff matrix Table 1. 
Let d,h,c be the proportion of population of Doves, hawks and Crows respectively. 

𝒅 + 𝒉 + 𝒄 = 𝟏 

Expected Payoff for Dove D = 𝒅 (
𝟏

𝟐
)+ 𝒉(𝒌𝟏 ) + 𝒄 (

𝟏

𝟐
) 

Expected Payoff for Hawk H= 𝒅(𝟏 − 𝒌𝟏) + 𝒉 (
𝟏

𝟐
− 𝒌𝟐 ) + 𝒄 (

𝟏

𝟐
− 𝒌𝟐) 

Expected Payoff for Crow C= 𝒅 (
𝟏

𝟐
) + 𝒉 (

𝟏

𝟐
− 𝒌𝟐 ) + 𝒄 (

𝟏

𝟐
) 

 
At equilibrium the expected payoff for all agents is the same. 

• D=C =>  𝒌𝟐 + 𝒌𝟏 = 𝟏/𝟐 

• N=H => 𝒅(𝟏/𝟐 − 𝒌𝟏) = 𝒄(𝒌𝟐) 

• D=H => 𝒅 (
𝟏

𝟐
− 𝒌𝟏) = 𝒉( 𝒌𝟐 +𝒌𝟏 − 𝟏/𝟐 ) + 𝒄(𝒌𝟐) 

 
Solving we get the following strict conditions for equilibrium. 

𝒅 = 𝒄 
 𝒌𝟐 +𝒌𝟏 = 𝟏/𝟐 

So in a world with 𝒌𝟐 +𝒌𝟏 =
𝟏

𝟐
 , we reach an equilibrium with Doves and Crows at the same population. But 

 𝒌𝟐 + 𝒌𝟏 =
𝟏

𝟐
 implies that Sucker payoff = Punishment Payoff. So technically there is no longer incentive to cheat. 

Hence we can conclude that no equilibrium where all three species survive exists. Figure 3 shows the equilibrium 
region given the ratios of Doves and Crows. The ratio of Hawks is precisely  𝒉 = 𝟏 − 𝒅 − 𝒄. 
 

 
 

 
The payoff matrix for the replicator equation will be 

A = 

(

 
 

𝟏

𝟐
𝒌𝟏

𝟏

𝟐

𝟏 − 𝒌𝟏
𝟏

𝟐
− 𝒌𝟐

𝟏

𝟐
− 𝒌𝟐

𝟏

𝟐

𝟏

𝟐
− 𝒌𝟐

𝟏

𝟐 )

 
 

 

 
When 𝒌𝟏 is 0 as in Case 1 => Doves and Crows increase at the same rate till Hawks die out. 
 
At equilibrium fitness of every agent type is : 𝑥 +(1 − 2𝑥)( 𝒌𝟏) 

A = (

𝟏

𝟐
𝒌𝟏

𝟏

𝟐

𝟏 − 𝒌𝟏 𝒌𝟏 𝒌𝟏
𝟏

𝟐
𝒌𝟏

𝟏

𝟐

) xT=  (
𝑥

1 − 2𝑥
𝑥

) 

equillibrium  

Figure 3: Plot of equilibrium region given population ratio of Doves and Crows  
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The Game 
 
In the above cases if we consider the PD to be an IPD instead. This implying that every 
interaction of two agents is an IPD as opposed to a standard PD. It can be noticed that the 
Dove-Crow-Hawk interaction in a PD is very similar to a ALLC-TFT-ALLD interaction in an IPD 
in the limit. 
 
We can now define our system which is similar to the world we saw with Doves, Hawks and 
Crows. 
 
We have a population of agents P each having a Strategy, a Consumption rate (c) and a way 
to replicate with an associated cost (r). 
The world continuously alternates between Day and Night. 
Every day M boxes spawn. Each box contains N units of food. 
Every box is contested by two randomly drawn agents from P. This is done through a game of 
IPD where each round corresponds to one unit of food. 
Finally once all the boxes have been distributed, it is Night time. 
Each night every agent has 3 possible actions which are as follows 

• Death : If c > Total food collected 

• Reproduce and Survive : If c+r < Total food collected 

• Just survive : c <Total food collected < c+r 
Each day an agent can participate in multiple contests for food if it is lucky to be chosen. All 
unused food is stored to be used the next day. 
 
In short the system in consideration is a group of agents where interactions are defined as 
IPD’s. The agents learn and evolve to form an interesting dynamic system. 
 

Memory Agents 
The agent used throughout the paper will be a memory agent that is limited by the amount 
of history that can be accessed. 
An M(a,b) agent is one that remembers the last a moves it made and the last b moves it’s 
opponent made during an IPD. 
 

Consider an IPD of n rounds between agent Mx(ax,bx) and My(ay,by). 
Let the moves of Mx(ax,bx) be x1, x2, … xn and the moves of My(ay,by) be y1, y2, … yn. 
 
Then in the i’th iteration of the game. 
The move/strategy of Mx will be a function of (xi-ax -1, … xi -1, yi-bx -1, … yi -1) 
The move/strategy of My will be a function of (yi-ay -1, … yi -1, xi-by -1, … xi -1) 

 
A Stochastic M(a,b)  or SM(a,b) encodes an array of probabilities of cooperating for different 
possible situations of historical moves. It’s strategy consists of  an array of length 2a+b, each  
cell corresponding to one of the possible historical states. 
If we assume an error-free world, a game between stochastic agents devolves to a simple 
Markov chain of historical states. The stationary distribution gives us the expected payoff in 
the limit. One drawback is that these agents cannot learn strategies like GRIM(Cooperate till 
opponent Defects, then always Defect) which require either full history or a dedicated 
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variable to store special information. This shall be further explored in later sections with the 
introduction of extra memory to keep track of special features. 
 
Example 
An M(1,1) agent will use only the moves of the previous turn to make the next move. 
A Stochastic M(1,1) agent encodes it’s strategy into a vector (p1,p2,p3,p4). 
Here, p1 denotes the probability of cooperating when ‘CC’ has been played in the previous 
move. Similarly, p2 denotes the probability of cooperating when ‘CD’ has been played, and p1 
denotes the probability of cooperating when ‘DC’ has been played, and p1 denotes the 
probability of cooperating when ‘DD’ has been played. 
 
With the SM(1,1) encoding of [‘CC’,’CD’,’DC’,’DD’]: 
An ALLC(Always cooperate) agent will have an SM(1,1) encoding of (1,1,1,1). 
An ALLD(Always defect) agent will have an SM(1,1) encoding of (0,0,0,0). 
A TFT(Tit-for-Tat) agent will have an SM(1,1) encoding of (1,0,1,0). 
A PAVLOV(Win-Stay Lose-Shift) agent will have an SM(1,1) encoding of (1,0,0,1) 
A Random agent will have an SM(1,1) encoding of (0.5,0.5,0.5,0.5) 
 
During an IPD between two SM(1,1) agents namely P and Q the states form a Markov chain. 
Let the strategy vectors of the agents be (p1,p2,p3,p4) and (q1,q2,q3,q4). The possible states are 
‘CC’, ‘CD’, ‘DC’, ‘DD’ where the first literal corresponds to P’s move and the second literal  in 
the state corresponds to Q’s move. 
 
Suppose P and Q played C and C respectively in the (i-1)’th round of the IPD. Then the 
probability of P, Q playing D, D the next round is (1 - p1) or 𝑝1̅̅̅ and (1 - q1) or 𝑞1̅̅̅ respectively. 
Since the moves of P and Q are independent of each other the probability of going to state 
‘DD’ from ‘CC’ is (1 - p1)(1 - q1) or 𝑝1̅̅̅𝑞1̅̅̅. 
 
The transition matrix thus becomes the following. 

 

(

𝑝1𝑞1 𝑝1𝑞1̅̅̅ 𝑝1̅̅̅𝑞1 𝑝1̅̅̅𝑞1̅̅̅
𝑝2𝑞2 𝑝2𝑞2̅̅ ̅ 𝑝2̅̅ ̅𝑞2 𝑝2̅̅ ̅𝑞2̅̅ ̅
𝑝3𝑞3 𝑝3𝑞3̅̅ ̅ 𝑝3̅̅ ̅𝑞3 𝑝3̅̅ ̅𝑞3̅̅ ̅
𝑝4𝑞4 𝑝4𝑞4̅̅ ̅ 𝑝4̅̅ ̅𝑞4 𝑝4̅̅ ̅𝑞4̅̅ ̅

) 

 
 
Example 
Code link : https://github.com/inavamsi/Thesis/tree/master/Markov%20Chain 
We consider two simple SM(0,1) agents. 
 
SM(0,1) corresponds to an encoding of [‘C’,’D’]. Just the last move of the opponent. 
This is less powerful than SM(1,1) as standard strategies like PAVLOV cannot be encoded. 
Nevertheless, we can encode the other standard agents like the following. 
ALLD corresponds to (0,0) encoding. 

ALLC corresponds to (1,1) 
TFT corresponds to (1,0) encoding 

https://github.com/inavamsi/Thesis/tree/master/Markov%20Chain


 14 

 
Given the encoding of two agents P = [pC, pD] and Q = [qC, qD]. The 
corresponding Markov chain can be encoded as transitions of space S = 
{sCC, sCD , sDC , sDD} where sij denotes a state where the previous moves made 
by the agents P and Q are ‘i’ and ‘j’ respectively. 
The probability of a transition between two states is given by. 

p(sCC|sij) =  𝑝𝑖𝑞𝑗  p(sCD|sij) =  𝑝𝑖 �̅�𝑗 

p(sDC|sij) =  �̅�𝑖𝑞𝑗 p(sDD|sij) =  �̅�𝑖�̅�𝑗  

 
Figure 4 shows the regions of high cooperation and defection between two 
SM(0,1) agents, who are encoded on the x,z and y,z planes respectively. 
Green corresponds to a stationary distribution where ‘CC’ is over 0.8 and Red 
corresponds to a stationary distribution where ‘DD’ is over 0.8. Although it 
seems that cooperation is much more likely than defection. It should be noted 
that there exist other agents that behave with other tendencies. Green region 
contains all ALLC-ALLC and ALLC-TFT integrations while the red region 
contains ALLD-ALLD and ALLD-TFT interactions. 
 
If we consider error where with 𝜀 probability the decision of an agent is the opposite of what 
was intended. The transition matrix changes as follows. 

p(sCC|sij) =  𝑝𝑖𝑞𝑗𝜀̅
2 + 𝑝𝑖 �̅�𝑗𝜀𝜀̅

 + �̅�𝑖𝑞𝑗𝜀𝜀̅
 + �̅�𝑖�̅�𝑗𝜀

2
 

 
Example 
Consider an IPD between two SM(0,2) agents. 
P and Q encode  strategies as (p1,p2,p3,p4) and (q1,q2,q3,q4) respectively. Note that the states 
here correspond to the last two moves of the opponent. 
So SM(0,2) corresponds to an encoding of [‘CC’,’CD’,’DC’,’DD’]. 
Standard Agents are encoded as following. 
ALLC encodes as (1,1,1,1). 
ALLD encodes as (0,0,0,0). 
TFT encodes as (1,1,0,0). 

TTFT encodes as (1,0,0,0). 
TFTT encodes as (1,1,1,0). 

Although this encoding is more powerful in some aspects compared to SM(1,1) it cannot 
encode agents like PAVLOV which require knowing one’s own history. 
 
A state will be represented as (‘CC’,’DC’) where the first two literals belong to encoding of P 
and the last two literals belong to player Q. Thus the first(last) two literals correspond to the 
last two moves of player Q(P). Note that a state (‘CC’,’DC’) can possibly only got to one of four 
states which are (‘CC’,’DC’), (‘CC’,’CD’), (‘CD,’DC’), (‘CD’,’CD’). 
A transition of states in a  Markov Chain of states will be as follows. Let Pi and Qi denote the 
moves of PA and Q in round I of the IPD. 
(Qi-2Qi-1,Pi-2Pi-1) → (Qi-1Qi,Pi-1Pi) with probability (Qi-2Qi-1 → Qi) (Pi-2Pi-1 → Pi) 
So, the state (‘CC’,’CD’) will go to the state (‘CC’,’DD’) with probability p1q2. 
 

  

Figure 4 : Regions of 
Cooperation(Green) 
and Defection(Red).  
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Agent Estimation and Optimal action in Noisy environment 
 
Trying to optimize payoff in a signaling game goes hand in hand with estimating the type of 
the opponent. In an IPD the type is determined by strategy. We use Bayes rule to estimate 
the  optimal move given that we are not a  stochastic agent (Agent A). 
 
Consider a population of Random, ALLC, ALLD and TFT with population proportion r, c, d, t 
respectively.  
 
Agent A plays an IPD of ‘n’ rounds with a randomly sampled agent B.  The moves are (a1,b1) … 

(an,bn) where ai and bi are either ‘C’ or ‘D’. Let 𝜀 <
1

2
 be the error probability which is the 

probability of ‘C’ getting switched ‘D’ or vice-versa. 
 
The prior probability of types(strategies)  is  

𝑃(𝐵 = 𝑅𝑎𝑛𝑑𝑜𝑚) = 𝑟, 𝑃(𝐵 = 𝐴𝑙𝑙𝐶) = 𝑐, 𝑃(𝐵 = 𝐴𝐿𝐿𝐷) = 𝑑,𝑃(𝐵 = 𝑇𝐹𝑇) = 𝑡 
Let 𝛿(𝑥, 𝑦) = 1 𝑖𝑓 𝑥 == 𝑦 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 
After 𝑗 moves, 

𝑃(𝑎1𝑏1…𝑎𝑗𝑏𝑗|𝐵 = 𝑅𝑎𝑛𝑑𝑜𝑚) =
1

2𝑛
  

𝑃(𝑎1𝑏1…𝑎𝑗𝑏𝑗|𝐵 = 𝐴𝐿𝐿𝐶) =∏(1 − 𝜀)𝛿(𝑎𝑖,"𝐶")

𝑗

𝑖=1

𝜀𝛿(𝑎𝑖,"𝐷") 

𝑃(𝑎1𝑏1…𝑎𝑗𝑏𝑗|𝐵 = 𝐴𝐿𝐿𝐷) =∏(1 − 𝜀)𝛿(𝑎𝑖,"𝐷")
𝑗

𝑖=1

𝜀𝛿(𝑎𝑖,"𝐶") 

𝑃(𝑎1𝑏1…𝑎𝑗𝑏𝑗|𝐵 = 𝑇𝐹𝑇) =∏(1 − 𝜀)𝛿(𝑎𝑖−1,𝑏𝑖)

𝑗

𝑖=2

𝜀1−𝛿(𝑎𝑖−1,𝑏𝑖) 

 
Using Bayes Rule we can calculate,  

𝑃(𝐵 = 𝑎𝑔𝑒𝑛𝑡|𝑎1𝑏1…𝑎𝑗𝑏𝑗) =
𝑃(𝑎1𝑏1…𝑎𝑗𝑏𝑗|𝐵 = 𝑎𝑔𝑒𝑛𝑡)𝑃(𝐵 = 𝑎𝑔𝑒𝑛𝑡)

𝑃(𝑎1𝑏1…𝑎𝑗𝑏𝑗)
 

 
We can ignore the common denominator and consider the ratio of numerators. 
 
Now after 𝑗 rounds, the probability of B playing ‘C’ in the following round can be represented 
as the following. 

𝑃(𝑏𝑗+1 =
′ 𝐶′|𝑎1𝑏1…𝑎𝑗𝑏𝑗) = ∑𝑃(𝐵 = 𝑎𝑔𝑒𝑛𝑡|𝑎1𝑏1…𝑎𝑗𝑏𝑗)𝑃(′𝐶

′|𝐵 = 𝑎𝑔𝑒𝑛𝑡) 

Where by definition, 
𝑃(′𝐶′|𝐵 = 𝐴𝐿𝐿𝐶) = 1 
 𝑃(′𝐶′|𝐵 = 𝐴𝐿𝐿𝐷) = 0) 

(′𝐶′|𝐵 = 𝑅𝑎𝑛𝑑𝑜𝑚) =
1

2
 

𝑃(′𝐶′|𝐵 = 𝑇𝐹𝑇) = (1 − 𝜀)𝛿(𝑏𝑗 ,"𝐶")𝜀1−𝛿(𝑏𝑗,"𝐶") 
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But, A cannot play optimally by maximizing reward for round n+1.  Based on the remaining 
number of moves 𝑛 − 𝑗.  
 

Since we assumed 𝜀 <
1

2
 

Let 𝑅(𝑎𝑔𝑒𝑛𝑡) denote the expected payoff if played optimally in the remaining 𝑛 − 𝑗 moves if 
B(opponent) is agent. Let 𝑇(𝑎, 𝑏) denote the payoff due to move a and b. We use 𝐸(𝑎, 𝑏) to 
denote the Expected payoff due to A wanting to play a and B wanting to play b.. 

𝐸(𝑎, 𝑏) =  𝑇(𝑎, 𝑏)(1 − 𝜀)2 + 𝑇(𝑎, 𝑏)𝜀(1 − 𝜀) + 𝑇(𝑎, 𝑏)(1 − 𝜀)𝜀 + 𝑇(𝑎, 𝑏)𝜀2 

 
If B(opponent) is one of ALLC, Random, ALLD agent then it would be optimal  to Defect(D) till 
the end. The expected payoffs if played optimally till the end of the game would be as follows. 
 
1

𝑛
𝑅(𝐵 = 𝐴𝐿𝐿𝐶) = 𝐸(′𝐷′, ′𝐶′)

= 𝑇(′𝐶′,′ 𝐶′)𝜀(1 − 𝜀) + 𝑇(′𝐶′,′𝐷′)𝜀2 + 𝑇(′𝐷′,′ 𝐶′)(1 − 𝜀)2

+ 𝑇(′𝐷′,′𝐷′)(1 − 𝜀)𝜀 
1

𝑛
𝑅(𝐵 = 𝐴𝐿𝐿𝐷) = 𝐸(′𝐷′,′𝐷′) 

1

𝑛
𝑅(𝐵 = 𝑅𝑎𝑛𝑑𝑜𝑚)

= 𝑇(′𝐶′,′ 𝐶′)
𝜀

2
+  𝑇(′𝐶′,′ 𝐷′)

𝜀

2
+ 𝑇(′𝐷′,′ 𝐶′)

(1 − 𝜀)

2
+ 𝑇(′𝐷′,′ 𝐷′)

(1 − 𝜀)

2
 

 
The optimal move against TFT is a lot more tricky to estimate. But if we assume 𝑇(𝑎, 𝑏) to 
follow all the rules of IPD payoff then the optimal move would be to ‘C’ till 𝑛 − 𝑗 − 1 move 
and then ‘D’ on the last move. This can be proved inductively. 
 
On the last move A will get 𝑅(𝐵 = 𝐴𝐿𝐿𝐶) if ‘C’ was played in the second last move or A will 
get 𝑅(𝐵 = 𝐴𝐿𝐿𝐷) if ‘D’ was played in the second last move.  
 

𝑅(𝐵 = 𝑇𝐹𝑇|𝑏𝑗 =  ′𝐶′) = 𝐸(′𝐶
′, ′𝐶′) + (1 − 𝜀)(𝑛 − 𝑗 − 2)(𝑇(′𝐶 ′ , ′𝐶′)(1 − 𝜀) + 𝑇(′𝐶 ′, 𝐷 

′ ′)(𝜀)) +

 (𝜀)(𝑛 − 𝑗 − 1)(𝑇(′𝐷′ , ′𝐷′)(1 − 𝜀) + 𝑇(′𝐷′, 𝐶 
′ ′)(𝜀)) + 𝑅(𝐴𝑙𝑙𝐶)  

𝑅(𝐵 = 𝑇𝐹𝑇|𝑏𝑗 =  ′𝐷′) = 𝐸(′𝐶
′, ′𝐷′) + (1 − 𝜀)(𝑛 − 𝑗 − 2)(𝑇(′𝐶 ′ , ′𝐶′)(1 − 𝜀) + 𝑇(′𝐶 ′, 𝐷 

′ ′)(𝜀)) +

 (𝜀)(𝑛 − 𝑗 − 1)(𝑇(′𝐷′ , ′𝐷′)(1 − 𝜀) + 𝑇(′𝐷′, 𝐶 
′ ′)(𝜀)) + 𝑅(𝐴𝑙𝑙𝐶)  

 

𝑅(𝐵 = 𝑇𝐹𝑇) = (1 − 𝜀)𝛿(𝑏𝑗 , ′𝐶′)𝑅(𝐵 = 𝑇𝐹𝑇|𝑏𝑗 =  ′𝐶′)

+ (𝜀)𝛿(𝑏𝑗 , ′𝐷
′)(𝐵 = 𝑇𝐹𝑇|𝑏𝑗 =  ′𝐷′) 

 
 

On move 𝑗 + 1 , to maximize expected total payoff we choose ‘C’ if 

𝑃(𝐵 = 𝑇𝐹𝑇|𝑎1𝑏1…𝑎𝑗𝑏𝑗)𝑅(𝐵 = 𝑇𝐹𝑇) >  𝑃(𝐵 = 𝐴𝐿𝐿𝐶|𝑎1𝑏1…𝑎𝑗𝑏𝑗)𝑅(𝐵 = 𝐴𝐿𝐿𝐶) +

𝑃(𝐵 = 𝐴𝐿𝐿𝐷|𝑎1𝑏1…𝑎𝑗𝑏𝑗)𝑅(𝐵 = 𝐴𝐿𝐿𝐷) + 𝑃(𝐵 = 𝑅𝑎𝑛𝑑𝑜𝑚|𝑎1𝑏1…𝑎𝑗𝑏𝑗)𝑅(𝐵 =

𝑅𝑎𝑛𝑑𝑜𝑚). Otherwise we choose ‘D’. 
 
This is the general framework to choose optimal action through Bayesian estimation in a 
multi-agent iterated signaling game with error. In the case of an unbounded game we add a 
discounting parameter 𝛾 to discount future reward.  
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Brief on Approaches 
 
The intention is to study the emergence of cooperation and thus understand the underlying 
structure of the system in cooperation. We go through a series of experiments where we 
continually evolve and improve the structure of agents so they can cooperate better. 
 
The general timeline of the experiments is as follows. The gradual process of improving the 
structure of an agent and system is shown as simple chart below.  
 
  

Rules 
Agents that are guided 
by simple static rules 
such as ALLC, ALLD and 
Random 

Branched Tree 
The strategy of the agents are 
treated as a rooted tree. An 
artificial structure if enforced to 
improve and support cooperation. 

 

Chromosomes 
Agents that encode 
strategies into a list of 
parameters with 
certain structure.  

 

Variable Properties 
Agents that can encode past 
information into a fixed 
amount of parameters. 

Multilayer Perceptron 
Inspired by Gene Regulatory 
Networks we create a network to 
encode strategies into a network 
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Tournaments and Replication without Mutation (Approach 1) 
 

Tournaments 
A tournament in a non-replication system where a group of starter agents contest to 
determine the final winner. Just like Axelrod’s Tournament as shown in the Literature Review 
Section. 
 
Despite not helping us evolve new agents or understand cooperation, tournaments allow us 
to grasp basic structures of interaction. 
 
We start with a standard Round Robin tournament to see how different agents fare when 
pitted in an open field. Each player plays every other player in each round. For the sake of 
understanding we simply look at some standard agents. 
 
Code : https://github.com/inavamsi/Thesis/tree/master/Tournament 
 
The above code outputs the winner of all possible tournaments given a list of agents. 
Here are a few results. 
 

TFT TFTT STFT PAVLOV ALLC → STFT 

ALLD Random GRIM TFTT STFT PAVLOV ALLC → ALLD 

Random GRIM TFTT STFT PAVLOV ALLC → PAVLOV 

ALLD GRIM TFTT STFT PAVLOV ALLC → ALLD 

GRIM TFTT STFT PAVLOV ALLC → PAVLOV 

ALLD Random TFTT STFT PAVLOV ALLC → ALLD 

Random TFTT STFT PAVLOV ALLC → Random 

ALLD TFTT STFT PAVLOV ALLC → ALLD 

TFTT STFT PAVLOV ALLC → STFT 

ALLD Random GRIM TFT TTFT STFT PAVLOV ALLC → TFT 

Random GRIM TFT TTFT STFT PAVLOV ALLC → TFT 

 

 
An interesting thing to note is that the existence of a certain agent causes a significant 
influence on the dynamic between other agents. A stable population cannot be disturbed by 
an agent but with the help of a third agent an invasion can occur. This will be properly 
discussed in the next section with the help of Evolutionary Stable Strategies. 
 
A classic example of cooperation is as follows. Individually ALLD always wins but with the 
existence of two cooperating agents in the population, the cooperating agents are better off. 

ALLD TFTT -> ALLD 
ALLD TFT -> ALLD 
ALLD TFT TFTT -> TFT 

 
As an additional experiment this data was trained on a 3 layer Neural network. 
Code: https://github.com/inavamsi/Thesis/blob/master/tournament_nn.py 

https://github.com/inavamsi/Thesis/tree/master/Tournament
https://github.com/inavamsi/Thesis/blob/master/tournament_nn.py
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The best accuracy was around 70% as plotted in Figure 5. 
In most tournaments, certain dominant species win most of the time. This results in a lot of 
similar outputs, possibly leading to this very high success rate.  

Figure 5 : Plot of Accuracy vs Epochs 
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Replicator Equations 
 
As described in the section ‘The Game’ we have a set of agents. These agents interact and do 
one of three things every night – Live, Die, Replicate. 
 
Code:https://github.com/inavamsi/Thesis/tree/master/Replication-
Standard%20Agents%20No%20Mutation 
 
From table 1, when k=1, Dove and Hawk population will be the same. This is a simulation is 
shown in Figure 6. It can also be easily represented as a predator prey model. 

 
 

A replication game of multiple agents will result in the death of undesirables and a 
cooperative equilibrium. For example Figure 7 shows a population with all agents.  

 
 

But this is one of the multiple stochastic routes and not repeatable due to a discrete 
population and quite a bit of randomness. We should be observing the same in the limit. The 
perfect way is to solve a system of replicator equations as we did before. We could also 
increase the sample size and take an average over multiple worlds. 

 
 

Figure 8 shows a larger population averaged over 30 worlds. We can clearly see that this is 
very accurate representation as there is a very stable equilibrium. Agents that defect without 
provocation are directly pruned out. Once these agents are gone there are no defection 
because of the lack of provocation and the remaining population stay in equilibrium. 
 
A simple calculation will yield the same results. It is trivial to show the equilibria after Day 40. 
For the other days a direct replicator equation will give us the rate of change of population at 
every instant which can be verified easily. The tiny perturbations we see in the living species 
is just noise during random selection. In the limit these will be straight horizontal lines.  

Figure 6 : Dove Hawk Population timeline 

Figure 7 : Population timeline 8 agents 
 

Figure 8 : Population timeline 8 agents averaged over 30 worlds 
 

https://github.com/inavamsi/Thesis/tree/master/Replication-Standard%20Agents%20No%20Mutation
https://github.com/inavamsi/Thesis/tree/master/Replication-Standard%20Agents%20No%20Mutation


 21 

Asexual Replication with mutation (Approach 2.1) 
 
Agents 
We will use SM agents that were defined earlier. The agents will replicate as before with the 
addition of mutation. We consider Gaussian noise 𝑁(0, 𝜎) of standard deviation 𝜎. 
 
At this stage we do not consider a mutation in the amount of memory. But this will be dealt 
with later on. Consider the parent SMp(a,b) agent and kid SMk(a,b) agent with the encoding 
(p1,p2 … pn) and (k1,k2 … kn) respectively, where n = 2a+b. 
Then the following relation holds. 

𝒌𝒊 = 𝐦𝐚𝐱(𝟎 ,𝐦𝐢𝐧(𝟏,𝒑𝒊 +𝑵(𝟎, 𝝈)))    ∀𝑖 ∈ {1…𝑛} 

Note that 𝑘𝑖  represents the probability of cooperating given a certain state and thus is 
bounded by [0,1]. This relation represents the mutation from parent to child. 
 

Simulation 
 
We shall now see a few examples of evolution of the simple SM(0,1) agents. 
The encoding of an SM(0,1) agent is of the form [‘C’,’D’] which refers to the probability of 
cooperating when the opponent’s last move was C or D respectively. 
 
If we plot these agents(Figure 10) with the first probability of the y axis and 
the second one on the x axis, we can observe the evolution of agents over 
time. 
As shown in Figure 9, the top right corner will correspond to agents behaving 
very much like ALLC while the bottom left corresponds to agents which 
behave very similarly to ALLD. Agents in the center are Random agents and 
the top left corner corresponds to TFT agents. 
 
We shall see a simple simulation with a bunch of randomly generated agents(not Random). 

 

 
 
 

The final result is basically a bunch of agents very similar to ALLD. This is a classic example of 
the overwhelming power of ALLD agents. But this does not imply that all evolution results in 
ALLD. 

Figure 9 : Regions of similarity  
for different agents 

 

Figure 10 : The plot of randomly initialized SM(0,1) agents over time. 
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With special structure, the final agents do not always devolve to a state of complete 
defection. A standard case is starting with just agents that are strictly retaliatory. Implying 
that the probability of cooperating when opponent defects is 0. Such SM(0,1) agents can be 
encoded as (p,0). We shall see what happens in Figure 11. 

 

 

 
 
 

Although taking over 900 generations we can surprisingly see that these agents not only tend 
towards TFT and corporate, but after reaching that state the system tends towards a less 
retaliatory state as a whole. It is also obviously clear as to why the total population in the 
second case is higher than the first case despite both situations being given the same amount 
of resources. 
 
These experiments are repeatable and despite not giving the exact same result every-time, in 
the limit the results tend to be the same. In this implementation changing the number of 
worlds tends the system towards the limit at a cost of high computation. 
 
Analyzing these structures will help us understand and better develop mechanisms and the 
necessary structure for cooperation. We shall see how this happens in the later Sections. 
 
 

Invasion 
 
Parrondo’s Paradox : ‘A combination of losing strategies can become a winning strategy’. 
 
An evolutionarily stable strategy (ESS) is a strategy (or set of strategies) which, if adopted by 
a population in a given environment, is impenetrable, meaning that it cannot be invaded by 
any alternative strategy (or strategies) that are initially rare. 
 

(S, S) is a Nash equilibrium in a two player game if and only if this is true for both players and 
for all T≠S: 

E(S,S) ≥ E(T,S) 

 

Figure 11 : The plot of randomly initialized retaliating SM(0,1) agents over time. 

 

https://en.wikipedia.org/wiki/Strategy_(game_theory)
https://en.wikipedia.org/wiki/Population_genetics
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Maynard Smith and Price specify two conditions for a strategy S to be an ESS. For all T≠S, 
either 

E(S,S) > E(T,S), or  [ E(S,S) = E(T,S) and E(S,T) > E(T,T) ] 

There is also an alternative, stronger definition of ESS, due to Thomas. This definition requires 
that for all T≠S 

E(S,S) ≥ E(T,S), and E(S,T) > E(T,T) 

 
The two definitions are not equivalent. Considering the Maynard Price definition it is evidently 
seen that E(ALLD,ALLD)>E(ALLD,TFT) because of the first move and it thus ALLD is ESS but with 
respect to Thomas definition E(ALLD,TFT) ≱ E(TFT,TFT) and it thus ALLD is not ESS. 
 
The second definition makes more sense in our case. 
Figure 12 shows how TFT invades a population of ALLD 

 
 
 

What we saw was a case of direct invasion, where TFT was directly able to invade ALLD. 
 
A population of TFT can never be invaded directly by ALLD agents. But if there are enough 
ALLC agents also present the ALLD agents can invade through the ALLC agents. This is called 
indirect invasion. 
 
Figure 13 shows the variations due to starting configuration. 

 
 
 

In the first case, with only TFT and ALLD agents, there is no chance of ALLD agents invading. 
But with the introduction of ALLC agents it all changes and ALLD can indirectly invade a 
population of TFT agents. Although the probability of ALLD agents invading in this specific 
situation is low, it is still possible. 
 
It can be assumed that the TFT agent is most evolutionary stable. This is not the case as seen 
below. We see a population drift to more non cooperative zones. As shown in Figure 14, this 
was the case given a large enough time frame.  

Figure 12 : Timeline of TFT invading ALLD 

 

Figure 13 : Timeline of agents with different ratios of starting population of ALLD, TFT, ALLC. 
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Even in the case of multiple mutation rates, we notice that there is an optimal mutation rate 
which gives best survival chances. But in the following case the optimal agents most of the 
time evolved to ALLD agents when given random starting conditions. As shown in Figure 15, 
we can see that the chances of cooperation are pretty grim as the required amount of 
mutation rate for the jump to cooperative agents is pretty high. And the high mutation rate 
agents die out really fast due to the inadequacy of proper adaptation. 

 
 
 
Also in subsequent sections there will be interesting cases of indirect invasions where ALLD 
can invade TFTT with the help of other agents that that arise due to mutation. Here is an 
example that will be discussed in the next section. 
In figure 16 we consider a population of SM(0,1) agents. It can be seen that TFTT(Yellow) gets 
periodically invaded by ALLD(Blue) with the help of other rare agents present in the 
population. 

  

Figure 14 : Drift of TFT agents to ALLD 

 

Figure 15 : Timeline of different stochastic memory(SM) agents 

 

Figure 16 : Timeline of SM(0,1) agents closest to corresponding one of 16 
vectors  
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Other Parameters 
We can ask the following questions. 

• When to replicate? 

• Should I share resources with my kid? 

• What if we create new parameter that can capture more information like discounted 
history? 

• What should the mutation rate be? 
 
When to replicate ? 
One obvious way to replicate is immediately when resources are available, but sometimes it 
would be wiser to wait and hold on to resources. Then replicate once a certain amount in 
present. There is a tradeoff between ensuring one survival or replicating to ensure increased 
advantage. This is shown in the example below. 
 
Waiting to gather more resources does not penalize an agent that does better early on but in 
the case of cooperating agents the number of agents of the same species matters. As seen 
before, A lone TFT does not have any survival advantage but as more TFT’s are added the 
advantage becomes apparent. 
 
Example 
Code: https://github.com/inavamsi/Thesis/tree/master/Replication_with_mutation 
SM(1,1) agent with mutation rate N(0,0.1). 
Blue is ALLD, Yellow is TTFT and Green is TFT, Red is TFTT. In figure 17, we can see regions of 
cooperation arising with ALLD and the TTFT(less forgiving than TFT) being most dominant. 

 
 
 
When we introduce an added security of at least one day of savings before reproduction the 
result as shown in Figure 18, does not look very different. 

 
 
 

The difference becomes apparent when we increase the amount of savings. In Figure 19 are 
four timelines for 0,3, 5 and 7 times savings. There is more stability and the evolution is more 
gradual. This is a sort of an elitist approach where only the best of the best reproduce. 

Figure 17 : Timeline of SM(1,1) agents closest to corresponding one of 16 vectors with immediate 
reproduction.  

 

Figure 18 : Timeline of SM(1,1) agents closest to corresponding one of 16 vectors with reproduction after savings.  

 

https://github.com/inavamsi/Thesis/tree/master/Replication_with_mutation
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Splitting resources with kids. 
A new problem arises as too how much resources should be given to the child so that the 
child has time to mature to adapt to the surroundings, but the tradeoff is that most children 
are going to be suboptimal and sharing resources will be  a waste. All these parameters can 
be added as chromosomes(parameters) to find optimal agents. A more interesting way is to 
model this as a Stochastic Multi armed Bandit problem where the agent learns over time 
which process to proceed with. But that also has many challenges and is not in the scope of 
this paper. 
 
 
Discounted History 
Since an agent with higher memory should do better in the long run, we introduce a 
parameter which stores the discounted history of the agent and the opponent. A discount 
value of 0 translates to an SM(1,1). 
 
And it can be noticed that it is preferred to have a low level of discounted history in the long 
run. This is clear as the ecosystem on the whole is constantly changing . It is interesting to see 
that optimal discount value is very close to an SM(1,1) agent although an SM(1,1) agent 
performs subpar when compared to it. 
Code: https://github.com/inavamsi/Thesis/tree/master/Replication_with_mutation 

 
  

Figure 19 : Timeline of SM(0,1) agents closest to corresponding one of 16 vectors with different amount of savings before 
reproduction.  

 

Figure 20 : Timeline of SM(1,1) agents for different discounted 
values  

 

https://github.com/inavamsi/Thesis/tree/master/Replication_with_mutation
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Mutation Rate and effects 
We have considered a Gaussian distribution with mean zero for error during mutation. 
 
Mutation rate is again a tradeoff between converging faster to an optimal solution vs escaping 
local maxima. The simplest way out is to use Genetic algorithms and this is discussed in the 
next section. 
 
When the experiment was repeated with multiple rate of mutations for SM(1,1) agents a very 
peculiar phenomena can be observed. There is no deterministic result even when the sample 
space and size were increased. Also there is a sudden emergence of cooperation and as a 
critical point is reached. It is evident that cooperation takes place as the total population size 
can only be sustained with cooperation given the available number of resources. This shows 
that mutation rate instills a sense of community. All species with the same mutation rate 
reach a dynamic equilibrium. 
 

 
 

 
This method seems to be perfect giving a good structure for cooperation and a lot of 
unexplored space like discounted history and mutation rate to explore. But there is a large 
problem. A large anomaly is noticed as shown below. 
Code: https://github.com/inavamsi/Thesis/tree/master/Memory 
As seen in Figure 22, we consider a huge population size. Counterintuitively, SM(2,0) agents 
come out on top followed by SM(0,1) agents. 

 
 
 

This  was also the case when we considered in a smaller number of species, namely SM(2,0)  
comes out on top over SM(1,1). In Figure 23, we average over 200 worlds and notice that this 
is a recurrent phenomenon. 

 
 

 
Agents that know their own history do better than agents than agents that know the 
opponent. This is because agents that only know themselves can easily devolve to ALLD type 

Figure 21 : Timeline of SM(1,1) agents with different mutation 
rates.  

 

Figure 22 : Timeline of SM(m,n) agents with different amounts of memory. 

 

Figure 23 : Timeline of SM(2,0) and SM(1,1) agents with different amounts of memory averaged over 200 worlds. 

 

https://github.com/inavamsi/Thesis/tree/master/Memory
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strategies while other agents require a lot more time to prune their huge number of 
parameters. This is a critical problem and requires a better approach which is discussed 
further sections. 
 
Note : We have considered a Gaussian distribution with mean zero during mutation. To get a 
sense of the dynamics, it is perfectly fine to use the gaussian distribution but if we want to 
model existing occurrences and predict the future we have to realize that most mutations are 
suboptimal and some extreme mutations die out thus we might have to look at distributions 
with  a fatter or thinner tail. One would be Student-T distribution.  
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Genetic Algorithms (Approach 2.2) 
 
The previous approach does pretty well but is riddled with flaws. So now we explore the 
system with from the view of Genetic algorithms where reproduction is a result of more than 
one agent. 
 
There are multiple ways to explore genetic algorithms. The following is one of the ways. 
Chromosome: The strategy encoding remains the same for the SM agents. 
Mating : Instead of replicating, we choose two agents and take the bitwise average of their 
encodings with a certain amount of mutation. 
Death :  Every round we kill of the a percentage of the least fit agents. Each day we reset all 
scores back to 0 as the entire ecosystem has changed. 
 
Code: https://github.com/inavamsi/Thesis/tree/master/GA 
As shown in Figure 24, we notice that the results and also underlying structure are very 
different from the case of mutation with replication. 

 
 

 
There is a lot less variation as compared to the previous cases. Most agents die out and only 
ALLD and TTFT survive and dance. 
 
But in the case of discounted history as shown in Figure 25, we see a very different structure 
and the lack of importance to discounting. There are no associations that can be drawn. 

 
 

 
Coming to the most important point. We will have to see if the anomaly of ‘knowing myself 
is better than knowing opponent’ has been rectified. The timeline is plotted in Figure 26. 

 
 

Figure 24 : Population timeline with reproduction by mating of two individuals. 

 

Figure 25 : Population timeline with discounted history. 

 

Figure 26 : Population timeline different agents with different sizes of memory history. 

 

https://github.com/inavamsi/Thesis/tree/master/GA
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We face the same problem as before, there are too many parameters for effective fitting and 
thus more complex agents get pruned really quickly. The SM(0,3) agents die out really fast 
and do not have time to adapt. 
 

Everything GA 
This has not been fully implemented. 
 
The idea is to create a complete Genetic algorithm setup where agents can evolve to 
accommodate more memory. Also this structure will have chromosomes for every parameter 
form rate of mutation discounted history. This is to perfectly emulate nature as we evolved 
from a bunch of simple molecules.  

 
The reason for failure of both approaches is the fundamental lack of structure. There is a 
requirement of structure in the strategy. To solve this we take inspiration from gene 
regulatory networks and this is shown in the following section.  
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Network(Approach 3) 
 
What we learnt was the need for structure in our encoding. The naïve approach would be to 
create associations between parameters of our existing encoding. It also has to be robust and 
to a certain degree immune to noise. An obvious result would imply that each parameter 
should be associated more than once so that a letdown on one association will not hamper 
the result greatly. 
 

A Naive Network 
 
The first canonical approach to convert a string to more structured setting is directly 
weighting the results. 
 
So we define a model as follows. The first layer is an input string of 1’s(C) and 0’s(D) 
representing the concatenated history that is accessible by the agent. We create another 
layer which is created by a weighted sum of the previous layer. We continue till we get a 
single result. This is the probability of cooperating or playing C. 
 
This can be thought of as  perceptron without bias. The weights are normalized and bounded 
in the range [0,1]. 
 
Consider an M(a,b) agent. Let n =a+b, then we define an RM[1](a,b) agent as follows. 

 

𝑦 =  ∑ 𝑥𝑖𝑤𝑖
𝑖 ∈{1…𝑛}

 

𝑥𝑖 = {
1,    𝑖𝑓 𝐶 𝑤𝑎𝑠 𝑝𝑙𝑎𝑦𝑒𝑑 𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑟𝑜𝑢𝑛𝑑 𝑏𝑦 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑝𝑙𝑎𝑦𝑒𝑟
0,    𝑖𝑓 𝐷 𝑤𝑎𝑠 𝑝𝑙𝑎𝑦𝑒𝑑 𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑟𝑜𝑢𝑛𝑑 𝑏𝑦 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑝𝑙𝑎𝑦𝑒𝑟

} 

0 ≤ 𝑤𝑖 ≤ 1 , ∑ 𝑤𝑖𝑖 ∈{1…𝑛} = 1 

 
So an RML(a,b) agent takes a string of length a+b as input and has length(L) layers with each 
layer i having L[i] nodes, where L[i] corresponds to the i’th layer. 
Example RM[3,2](2,2) where y is probability of playing C. 

 
 
Why would such a weak model be chosen when we could directly use a more powerful 
perceptron model. It is as follows. 

• Given an RML(a,b) agent. 
The total amount of weights is n*L(1) + ∑ 𝐿(𝑖) ∗ 𝐿(𝑖 + 1) 

𝑖 ∈{1…𝑙𝑒𝑛(𝐿)−1}  + L(length(L)). 
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Although not by much it has a lower number of parameters than a similar multi-layer 
perceptron. 

• An all ‘C’ input will result in a ‘C’ output because the weights are normalized and 
bounded by [0,1]. Thus allowing us to prune out ALLD and irrational agents. A one 
layer RM[](0,1) agent is effectively a TFT agent. This kind of forces a level of 
cooperation by structure itself. 

 
Code: https://github.com/inavamsi/Thesis/tree/master/Tree_no_bias 
One improvement is that among M(0,1), M(0,2) and M(0,3) agents. The more powerful 
RML(0,3) agents do better as required, which was not the case in previous models. In Figure 
27 we consider a variety of L ={[2],[3],[2,2],[3,2]} so as to forgo bias. 

 
 
 

It is no surprise that for L=[3,2] the RM(0,1) model wins as clearly there are too many 
parameters to prune and the mutation rate is not enough. Here the RML(0,1) is a TFT and 
doing better is a very good sign as compared to previous approaches as the agent easily can 
devolve to an ALLD agent. 
 
 
This seems like a better model but it has its drawbacks. This model does not have to ability to 
adapt to the required extent. Also we face the same problem as the predecessors where an 
agent knowing itself is better off. This is shown in Figure 28. 
 

 
 
 

The agent is not robust enough so less powerful agents dominate. As clearly seen an M(1,1) 
agent dominates in the presence of M(1,2) and M(0,3) agents. 
 

Figure 27 : Population timeline with different RM agents. 

 

Figure 28 : Population timeline with different RM agents. 

 

https://github.com/inavamsi/Thesis/tree/master/Tree_no_bias
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We see the anomaly more clearly when we consider an population of RML(2,0), RML(1,1) and 
RML(0,2), agents. On Figure 29, we consider a variety of L ={[2],[3],[2,2],[3,2]}so as to forgo 
bias. In all cases we see the RML(2,0) dominating and surviving at the end. 
 

   

 
  

Figure 29 : Population timeline with different RM agents. 
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Perceptron memory 
Taking inspiration from gene regulatory networks we consider a perceptron model for the 
strategy encoding where a single layer perceptron is defined as below. We denote this agent 
as PML(a,b). 
 
We have an additional parameter called bias on every node. Instead of a weighted sum we 
have a threshold function, which is 1 only of the weighted sum is greater than the bias. This 
is exactly how gene regulatory networks work. There is a required amount of threshold for 
activation. 

 

𝑦 = {
1, 𝑏 + ∑ 𝑥𝑖𝑤𝑖

𝑖 ∈{1…𝑛}

 > 0 

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

 } 

𝑥𝑖 = {
1,    𝑖𝑓 𝐶 𝑤𝑎𝑠 𝑝𝑙𝑎𝑦𝑒𝑑 𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑟𝑜𝑢𝑛𝑑 𝑏𝑦 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑝𝑙𝑎𝑦𝑒𝑟
0,    𝑖𝑓 𝐷 𝑤𝑎𝑠 𝑝𝑙𝑎𝑦𝑒𝑑 𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑟𝑜𝑢𝑛𝑑 𝑏𝑦 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑝𝑙𝑎𝑦𝑒𝑟

} 

−1 ≤ 𝑏 ≤ 1 ,−1 ≤ 𝑤𝑖 ≤ 1 , ∑ 𝑤𝑖𝑖 ∈{1…𝑛} = 1 

 
Code : https://github.com/inavamsi/Thesis/tree/master/Perceptron 
Compared the previous model to the weights which can now be anywhere from [-1,1] and 
are not normalized. Although there is not a forced sense of cooperation we can see this model 
performing as required as shown in Figure 30. 

 

 

 
 

 
Figure 30 : Population timeline with different PM agents over multiple worlds. 

 

https://github.com/inavamsi/Thesis/tree/master/Perceptron
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Also the anomaly of ‘knowing self-history being better than opponent history’ is not 
seen(Figure 31) in the perceptron agent. It is not evident as to the more optimal one between 
an PM(0,2) agent or an PM(1,1) agent as there is a lot of context involved. But definitely an 
PM(2,0) should not be optimal or else cooperation is not possible.  

 
 

 

Costly signaling 
 
We assign a cost for more complex structures which results in more complex signals. 
 
One every important aspect is the increased amount of energy for an agent that remembers 
more and also has to do more computation(because of more complicated strategy encoding) 
for deciding a move. 
 
We have to determine limits of penalty that can be given to agents for the above reasons. 
The limits up to which the equilibrium is maintained and no anomalies are present. What can 
also be called as the cost of being more complex. The brain was initially a huge vulnerable 
organ that took a huge portion of the energy and thus was initially a big liability in a harsh 
survivor world. This cost paid off in the long run. So the system should place importance on 
energy but also has to be flexible enough to allow long term changes which have high chances 
of being suppressed initially. 
 
We consider a percentage increase in energy as to how much memory is being used for the 
encoding. A 1% energy cost implies n% increase in energy consumption where n is the number 
of nodes. In figure 32, we can see clearly that more complex agents do better but as energy 
consumption increases smaller agents obviously do better. This is a proper tradeoff between 
consumption, complexity, overfitting and rate of learning. 
Code: https://github.com/inavamsi/Thesis/tree/master/Energy%20Consumption 
 

 
  

Figure 31 : Population timeline with PM agents with different sizes of history. 

 

Figure 32 : Population timeline with PM agents with different costs of signaling. 

 

https://github.com/inavamsi/Thesis/tree/master/Energy%20Consumption
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Comparing Agents 
 
We now have a huge variety of agents. We would like to see how complexity affects the ability 
of an agent to be a cooperative agent. 
 
A standard measure of cooperation ability of an agent can be done with a measure of how 
well it can behave as a simple TFT agent. 
 
Let us consider a PM[](0,1) agent. 

It has one weight and one bias. So given input c its output will be {
1,   𝑐 ∙ 𝑤 + 𝑏 > 0
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

To behave as a TFT agent, on input 1(C) output should be 1(C) and on input 0(D) output 
should be (D). This gives us two equations. 

𝑤 + 𝑏 > 0 
𝑏 > 0 

For both equations to hold true we need to have the following conditions. 
𝑤 > 0 
𝑏 > 0 
|𝑤| > |𝑏| 

 
Probability of a PM[](0,1) agent to behave like a TFT = P(𝑤 > 0) ∙P(𝑏 > 0) ∙P(|𝑤| > |𝑏|) 
= ½*½*½= 1/8 
So in a randomly initialized population of PM[](0,1) agents, 1/8th of them will behave 
like TFT. 

 
Let us consider a PM[](1,1) agent. (Same for PM[](0,2)) 
It has two weights and one bias. 
To behave like a TFT the following conditions have to hold. 

𝑤1 + 𝑤2 + 𝑏 > 0 
𝑤2 + 𝑏 > 0 
𝑤1 + 𝑏 ≤ 0 
𝑏 ≤ 0 

This translates to a probability ~0.041. 
 
Code: https://github.com/inavamsi/Thesis/tree/master/Comparing%20Agents 

Table 4.1 : Comparing cooperation capability of different PM agents 

Layer 
List L 

Probability of being like TFT 
PML(0,1) PML(1,1) PML(0,2) 

[] 0.125 0.0416 0.0424 

[2] 0.0498 0.0159 0.0155 
[3] 0.062 0.01858 0.01892 

[2,2] 0.0113 0.00391 0.00361 
[3,2] 0.0141 0.00456 0.00482 

[4] 0.0714 0.0215 0.0210 

[3,3] 0.0146 0.0042 0.0043 

[3,2,2] 0.378 0.00118 0.00106 

[2,2,2] 0.283 0.000863 0.000853 

https://github.com/inavamsi/Thesis/tree/master/Comparing%20Agents
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For an SM agent the probability of acting like a TFT agent is 0. This is because only exact 
encodings will result in a specific agent. To do a proper comparison we consider a threshold 
of how close the agents are to a TFT agent. The results are shown in table 4.2 
 

Table 4.2 : Comparing cooperation capability of different agents given threshold 
Agent Probability of being like TFT 

Threshold 
=100% 

Threshold 
=99% 

Threshold 
=90% 

SM(0,1) 0 0.00025 0.02715 

SM(1,1) 0 0.00001 0.01849 
SM(0,2) 0 0.00001 0.0488 

RM[2](0,1) 1 1 1 
RM[2](1,1) 0.0208 0.0273 0.705 

RM[2](0,2) 0.01386 0.05761 0.9976 

PM[2](0,1) 0.0486 0.04977 0.05 
PM[2](1,1) 0.01629 0.0162 0.032 

PM[2](0,2) 0.01627 0.01719 0.04593 
 
 
These numbers clearly show how much more effective RM and PM agents are compared to 
SM agents. 
Although these numbers for 100% threshold looks small, we have to realize that the number 
of types of cooperative agents blow up. Keeping track of all these types will give us a more 
significant amount. For example an SM(0,2) agent can encode both TFTT and TTFT agents 
while SM(0,1) cannot. 
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Recommender-Verifier (Approach 4) 
 
What we have done so far is effectively pruning and supporting agents of undesired and 
desired qualities respectively by adding rules and regulations. This can be done more 
effectively by using a Verifier who constrict the search space. We constantly introduce new 
agents with the help of mutations, this can be carried out by a recommender who keeps 
recommending new agents and enlarge the search space. 
This is effectively a Recommender-Verifier system where Recommenders keep adding new 
agents and verifiers keep pruning the undesirable ones. As the system grows bad 
recommenders and verifiers are also pruned out of the system. 
 

Global Reputation 
We consider a set group of standard agents with a global oversight. The global spectator 
updates the rankings of players by viewing each match and updating global reputation of 
corresponding players using some inherent rules. 
 
Every agent can access the global reputation and decide to play or not play. If they choose 
not to play they have to pay a penalty while the other agent gets some compensation. 
 
Consider the following experiment, 
Code: https://github.com/inavamsi/Thesis/tree/master/Reputation 
We take a population of standard agents. We let them play around for a few days till the 
reputation stabilizes to an equilibrium. We notice distinct reputation for each agent using 
different verifiers. 
For example when we use a population of [ALLC, ALLD, GRIM, TFT, TFTT, TTFT, STFT]. We 
encode 4 rules for the global spectator, namely ["Naive Cooperation", "Strict", "Good 
Behavior", "Retaliating"]. Each rule supports a specific type of behavior in the agents. 
 
This can be used to find the properties of agents that have complex encodings like an agent 
with Perceptron encoding of strategy. A rule encoding of [0,0,0,1] supports all retaliating 
agents like STFT and ALLD and will give them a high reputation as shown in Figure 33.

 
 

 
If rule encoding of [0, 0, 0.42, 0.58] results in a beautiful separation of agents into 3 groups as 
shown in Figure 34. 
 

 

Figure 33 : Plot of Reputation against time 

Figure 34 : Plot of Reputation against time 

https://github.com/inavamsi/Thesis/tree/master/Reputation
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Community Utility 
 
We have tried multiple methods to enforce a notion of community and cooperation. A simple 
method is to encode a notion of community by introducing community utility. This methods 
entails using the Cobb-Douglas utility function to incentivize cooperation in one-shot non 
iterative Games.[9] 
 
Consider the following two player Game 1 represented in Table 5. 
 

Table 5: Scalar Payoff Matrix for Game 1 

 Cooperate Defect 

Cooperate 2,2 1,3 
Defect 3,1 1,1 

 
The one-shot game Nash Equilibrium is (Defect, Defect). Any finitely bounded repeated 
version of this game also results in the same Nash Equilibrium as one can just backtrack from 
the last step. The unbounded repeated game has two Nah Equilibrium, Alternating between 
(Cooperate, Defect)-(Defect, Cooperate) or just (Cooperate, Cooperate). 
 
The paper ‘Modelling the commons as a game with vector payoffs’[9], encodes a notion of 
community using the Cobb-Douglas utility function and treating reward as a vector payoff of 
your reward and yours opponent’s reward. The resulting payoff matrix is shown in Table 6. 
 

Table 6: Modified Vector Payoff matrix of Table 5 
 Cooperate Defect 

Cooperate [2,2],[2,2] [1,3],[3,1] 

Defect [3,1],[1,3] [1,1],[1,1] 
 
Cobb-Douglas Utility : u(v1,v2) = 𝑘 ∙ 𝑣1

𝛼 ∙ 𝑣2
1−𝛼 

Where 

• 𝑘 is a constant 

• 𝑣1
  is the reward 

• 𝑣2
  is the reputation multiplier 

• 𝛼 ∈ (0,1) 
 

Considering the following utility function u(v1,v2) = 𝑣1
0.6 ∙ 𝑣2

0.4, the Table 6 payoff matrix 
becomes Table 7 payoff matrix. 
 

Table 7: Modified Payoff matrix of Table 6 using Cobb-Douglas Utility function 
 Cooperate Defect 

Cooperate 2,2 1.552, 1.933 

Defect 1.933, 1.552 1,1 
The Nash Equilibrium becomes (Cooperate, Cooperate). 
 
Now, consider the following two player game with payoff matrix represented by Table 8. 
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Table 8: Payoff Matrix for Game 2 
 
 
 
 
We can modify the scalar payoff into a vector payoff that encodes long-term benefit, 
community, and reputation. Let us consider a reputation multiplier and modify the game. 
Suppose Cooperating increases reputation by 20% while defecting decreases reputation by 
20% we encode the payoff as shown in Table 9. 
 

Table 9: Modified Vector Payoff matrix of Table 8 
 
 
 
 

Considering the following utility function u(v1,v2) = 𝑣1
0.7 ∙ 𝑣2

0.3, the Table 9 vector payoff matrix 
becomes the Table 10 Payoff matrix. 
 

Table 10: Modified Payoff matrix of Table 9 using Cobb-Douglas Utility function 
 
 
 
 
It can be clearly seen that the Nash Equilibrium is again (Cooperate, Cooperate). We can thus 
induce a notion of community. 
 
This is yet another way in which we can induce cooperative behavior.  

 Cooperate Defect 

Cooperate 1,1 0.9,1.1 

Defect 1.1,0.9 0.9,0.9 

 Cooperate Defect 

Cooperate [1,1.2],[1,1.2], [0.9,1.2],[1.1,0.8] 
Defect [1.1,0.8],[0.9,1.2] [0.9,1.2], [0.9,1.2] 

 Cooperate Defect 
Cooperate 1.037, 1.037 0.95, 1.032 

Defect 1.032, 0.95 0.95, 0.95 
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Deceptive Signaling between Predator and Prey 
 
We first explore a refinement of Muller’s math model for two prey unfavorable to the 
predator. Two additional papers have been added in the following sections which describes 
deceptive signaling through mimicry in a predator prey model. 
 
Revised Muller’s mathematical model 
Muller describes a simple model describing the ratio in which two mimicking prey species are 
consumed before the predator learns that they are unfavorable. We look at it from a different 
perspective. 
 
Dynamics of a Predator-Prey model in the presence of Mimicry 
This paper describes the dynamics of a predator prey system int the presence of mimicry. We 
have introduced a novel framework using utility to describe mimicry. 
 
Some Interesting Phenomena in Biomimicry 
This paper describes Interesting hypothetical mathematically feasible scenarios that are but 
may or may not be biologically feasible. This paper extends over the shortcomings of the 
first paper and introduced prey evolution and multiarmed bandit predators. 
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Mullers mathematical model revised 
 
Muller’s Mathematical model 
Müller presumed that the predators had to attack n unprofitable prey in a summer to 
experience and learn their warning coloration. Calling a1 and a2 the total numbers of two 
unprofitable prey species, then, Müller argued, if the species are completely unalike they each 
lose n individuals. 

However, if they resemble each other, then species 1 loses 
𝑎1𝑛

𝑎1+𝑎2
 individuals, and species 2 

loses 
𝑎2𝑛

𝑎1+𝑎2
 individuals. Species 1 therefore gains n-

𝑎1𝑛

𝑎1+𝑎2
 = 

𝑎2𝑛

𝑎1+𝑎2
 and species 2 similarly 

gains 
𝑎1𝑛

𝑎1+𝑎2
 in absolute numbers of individuals not killed. 

The proportional gain compared to the total population of species 1 is g1 = 
𝑎2𝑛

𝑎1(𝑎1+𝑎2)
 and 

similarly for species 2 is g2 = 
𝑎1𝑛

𝑎2(𝑎1+𝑎2)
, giving the per head fitness gain of the mimicry when 

the predators have been fully educated. 
 
Revised Model 
We consider a signaling game between the predator and prey. Every prey sends a signal and 
the predator receives the signal. Based on prior knowledge, the predator chooses to consume 
the prey. On consumption the predator updates knowledge on the respective signal. We 
consider a signaling spectrum 𝑆 = [0, 𝐿] ⊂ 𝑅. Every prey sends a signal in the range [0, 𝐿]. If 
we combine all the signals from a particular species it forms the signal distribution of the 
species. 
 
We consider two species namely A1 and A2 with population sizes 𝑎1 and 𝑎2. 
 
As stated in Muller’s mathematical model, both species are unfavorable to the predator. We 
assume that the predator needs to consume n prey from a range of length 𝑡 ([s0, s0 + 𝑡] ⊂ 𝑆 
where s0 ∈ [0, 𝐿 − 𝑡] ) signals to learn that the range is unfavorable. This implies that the total 
number of prey that will be consumed to learn that signal in the range [0, 𝐿] is unfavorable is 
𝐿∙𝑛

𝑡
. 

 
Every prey of a species does not produce the exact same signal as there is bound to be 
variation due to mutation. Let the signal distribution functions of the signals of species A1 and 
A2 be 𝑓1 and 𝑓2 respectively. We consider the two species to be mimicking if there is an overlap 
between the distributions 𝑓1 and 𝑓2.  See figure for reference. 
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Given that a predator requires to kill n individuals before it learns to avoid a signaling range 
of length 𝑡. 
To find expected number of deaths for a specific species we do the following. 
 

Fraction of prey of species A1 consumed at a given signal =
𝑃(𝑝∈𝐴1|𝑠)

𝑃(𝑝∈𝐴1|𝑠)+𝑃(𝑝∈𝐴2|𝑠)
= 

𝑓1(𝑠)

𝑓1(𝑠)+𝑓2(𝑠)
 

 
Let total number of prey of species A1 and A2 consumed be 𝑛1 and 𝑛2 respectively. 

Total number of prey consumed in length 𝑑𝑠 is 
𝑑𝑠∙𝑛

𝑡
. 

𝑛1 = ∫
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓2(𝑠)

𝑛

𝑡
𝑑𝑠 

𝐿

0

, 𝑛2 = ∫
𝑓2(𝑠)

𝑓2(𝑠) + 𝑓1(𝑠)

𝑛

𝑡
𝑑𝑠 ,

𝐿

0

         𝑛1 + 𝑛2 = 1 

 
 
Note: Real signal distributions are discrete due to innate thresholds and gene regulatory 
networks. This is an approximation in the limit given a large number of prey over a large 
feasible signaling range. 
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Dynamics of a Predator-Prey model in the presence of Mimicry 
 

Abstract 

This paper presents a novel idea of understanding toxicity and nutritional value of a prey to a predator 

with utility. Furthermore, we introduce the notion of prey mimicry in a multi predator - multi prey 

system. We identify and analyze the stability of equilibrium that arise as a result of the one or more 

predators inability to distinguish between certain prey. 

Keywords: Mimicry, Predator-Prey, Lotka-Volterra Equations, Equilibrium, Stability, Toxic prey 

 
INTRODUCTION 

The dynamics between predator and prey is a fascinating subject. This subject has been 
extensively studied and formalized. We introduce the notion of prey toxicity and mimicry and 
study the resulting dynamics. This can easily be extended to other fields and sciences. A classic 
example would be the dynamics behind counterfeit currency which is essentially a toxic mimic 
to real currency. 

We assume a simple system with multiple predators and prey. Each prey species can either 
be toxic or nutritious to a predator. A rational predator will always consume the nutritious 
prey and avoid the toxic prey. The predator needs to be able to distinguish between the 
different prey species. 

To distinguish between prey of different species, the predator uses the signal sent by the 
prey. The signal can be anything from color, smell, sound or even a dance pattern. So a red 
toxic species can easily be distinguished from a blue nutritious species. But in the case where 
both prey send the same signal to a predator, they cannot be distinguished by the predator. 
The predator essentially treats them as a single prey and this can be considered as mimicry. 

Interestingly, mimicry depends on the point of view. For example, two prey can both be Red 
in color but produce different sounds. So a predator that hunts using just visual signals will 
not be able to distinguish between the two. Whereas the predator the hunts using acoustic 
signals will be able to distinguish between the two prey. Furthermore, a prey can be toxic to 
certain predators but nutritious to others. The toxicity and nutritional values is encoded as 
utility of the prey to the predator. We specifically explore the dynamics of this example in 
further sections. 

The concept of mimicry becomes trivial without the presence of toxicity. To sum up, we 
aim to study the interesting dynamics of a predator prey system with the presence of mimicry 
and toxicity. 

Generalized Lotka-Volterra equations for multi predator – multi prey model 
In general for a multi predator-multi prey model we consider the following assumptions. 
1. The prey population finds ample food at all times. 
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2. The food supply of the predator population depends entirely on the size of the prey 

population. 

3. The rate of change of population is proportional to its size. 

4. During the process, the environment does not change in favor of one species, and genetic 

adaptation is inconsequential. 

5. Predators have limitless appetite. 

6. In the absence of prey the predators exponentially decay. 

7. There is no competition between the prey. 

8. Every prey species has a fixed utility for every predator species. 

We consider n prey where each prey is denoted by xi, i ∈{1...n}. We consider m predators 

where each predator is denoted by yj, j ∈{1...m}. 

 

 

 

 

 

• 𝜖ij ∈{0, 1} is an indicator variable indicating whether xi is a prey for predator yj. 

• αi > 0 corresponds to growth rate of prey xi 

• 𝛽ij > 0 denotes the number of interactions or rate of predation between prey xi and 

predator yj 

• uij denote the utility of prey xi to predator yj. This can be scaled as required 

• δj > 0 denote the loss/death rate of predator yj 

If uij > 0 then prey xi is nutritious to predator yj and is beneficial. If uij < 0 then prey xi is toxic 
to predator yj and is fatal. 

If a predator yj can distinguish between a toxic xt and a nutritious xn. Then 𝜖nj > 0, while 𝜖tj = 

0. Optimally, the predator should choose to not consume the toxic prey. The interesting case 
is when the nutritious prey xn mimics toxic prey xt. If a prey xi is toxic to predator xj then we 
consider that 𝜖ij = 0. This gets interesting when the predator cannot distinguish between a 
toxic prey and a nutritious prey. This is also known as Batesian mimicry. 

Mimicry in a simple two predator- two prey model 
We consider two prey A and B. We also consider two predators 
P and Q. We assume the same exponential growth rate for both prey (α = αA = αB), the same 
rate of interactions for every pair of predator and prey 

(𝛽 = 𝛽AP = 𝛽AQ = 𝛽BP = 𝛽BQ) and the same exponential loss/death rate for both predators 

(δ = δP = δQ) 
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A. Single Predator - Two Prey 
Consider an ecosystem with only one type of predator P (Q = 0). A is nutritious to predator P 
(uAP > 0) while prey B is toxic to predator P (uBP < 0). 

Case 1:If A and B can be distinguished by the predator P. 

𝜖AP = 1, 𝜖BP = 0 

 

Fig. 1. Prey B grows exponentially while A and P follow the standard single predator - single 
prey model. 

Case 2:If A mimics toxic B and cannot be distinguished by the predator P. 
𝜖AP = 1, 𝜖BP = 1 

Case 2.1: If uAPA + uBPB ≥0 

 

Fig. 2. Effectively a one predator - one prey model. 

This can be treated as single predator single prey model with the utility of the single prey 
being the expected utility which is (uAPA+uBPB)/(A+B). 
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As the predator cannot distinguish between the two prey species it sees a single signal which 
can be attributed to an expected reward or utility. 

Given that the growth rate of A and B is the same, if 𝛽AP ≠ 𝛽BP then the prey species with 
higher rate of interaction goes extinct. This is a standard result of one predator - two prey 
model. 

Case 2.2: If uAPA + uBPB <0 

 

Fig. 3. Predator dies out and then prey grows exponentially. 

The rate of change of predators is negative. Thus both predators decay and die out while 
the prey under no predation grow exponentially. 

Equilibrium In an equilibrium or a fixed point of the system all the derivatives are zero. 

 
The fixed points are (A, B, P) = (0, 0, 0) and (x, y, ) such that uAPx + uBPy = δ/𝛽. To check 

for stability of the fixed points we check whether the real part of all eigen values of the 
Jacobian are negative. 

 
 

α is an eigenvalue and is positive hence this is not a stable fixed point. This shows that 
(0,0,0,0) is not stable even in the generalized version. 
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We see that λ3 = λ(−αδ). One of the eigenvalues is 0 and thus the equilibrium is non-
hyperbolic and thus not robust.[13] 

B. Two Predator - Two Prey 
We look at a few examples of mimicry in this model. 

• Prey A and B are distinctly identifiable by both the predators P and Q. 

• Prey A and B can be distinguished by predator P but not by Q (or vice versa). 

• Prey A and B can’t be distinguished by either predator P or 

Q. 

When a predator yj can distinctly identify a prey xi and the corresponding utility uij is negative 
then clearly 𝜖ij = 0. 

In the trivial case where both prey have positive utility to both predators. The model 
follows a standard two predator-two prey model. In the case that both prey have negative 
utility to both predators. Both predators die out. 
Note: Below are a few cases in each condition. Other cases are a result of change in labels. 

Consider all epsilon values to be 1 by default. 

The indicator variables can be interpreted as following. 1. If 𝜖ij = 0 and 𝜖i’j = 0 then predator 
yj will go extinct. The final model is essentially a one predator - one prey model. 

2. If 𝜖ij = 0 and 𝜖ij0 = 0 then prey xi will grow exponentially. 

The final model is essentially a one predator - one prey model. 

3. If 𝜖ij = 0 and 𝜖i’j’ = 0 and i≠i' and j≠j’, then the model is essentially two independent one 

predator - one prey model. 

4. If predator yj cannot distinguish between xi and xi’  then 

𝜖ij = 𝜖i’j = 0 if Eu ≤ 0 

𝜖ij = 𝜖i’j = 1 if Eu > 0 

Where Eu =(uijxi + uij’xi’)/(xi+xi’)  is the expected utility predator yj gets from the mimicry ring. 

Table 1. Prey A and B are distinctly identifiable by both the predators P and Q. 

UAP UBP UAQ UBQ 
Indicator 

+ + + - 𝜖BQ = 0 

+ + - - 𝜖AQ = 0, 𝜖BQ = 0 

+ - + - 𝜖BP = 0, 𝜖BQ = 0 

+ - - + 𝜖AQ = 0, 𝜖BP = 0 
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+ - - - 𝜖AQ = 0, 𝜖BQ = 0 

 

 

 

Table 2. Prey A and B can be distinguished by predator P but not by Q (or vice versa). 

UAP UBP UAQ UBQ 
Indicator 

+ + + - Depends on expected 

utility 

+ + - - 𝜖AQ = 0, 𝜖BQ = 0 

+ - + - Not fixed 

+ - - + Not fixed 

+ - - - 𝜖BP = 0, 𝜖AQ = 0, 𝜖BQ = 0 

 

Table 3. Prey A and B cannot be distinguished by either predator P or Q. 

UAP UBP UAQ UBQ 
Indicator 

+ + + - Depends on expected 

utility 

+ + - - 𝜖AQ = 0, 𝜖BQ = 0 

+ - + - Depends on expected 

utility 

+ - - - 𝜖AQ = 0, 𝜖BQ = 0 

 
C. Special Cases of Two Predator - Two Prey 
The interesting situation occurs in Table 2 case 3 and 4 labelled as ’Not fixed’. 
We take a look at case 3 defined as follows. Prey A and B can be distinguished by predator P 
but not by Q. 

In case 3, the utilities are as follows. uAP > 0, uBP < 0, uAQ > 0, uBQ < 0. 

In case 4, the utilities are as follows. uAP > 0, uBP < 0, uAQ < 0, uBQ > 0 

Predator P can distinguish between prey A and B and thus will never choose to consume B 
as utility is negative. On the other hand predator Q has no choice but to consume whatever 
prey it encounters to survive. 

We assume the following e’s. It trivially reduces in other cases as seen before. 𝜖AP = 1, 𝜖BP 
= 0, 𝜖AQ = 1, 𝜖BQ = 1 

In a equilibrium or a fixed point of the system all the derivatives are zero. The trivial fixed 

point is (A, B, P, Q) = (0, 0, 0, 0). The other fixed point is when P = 0 and thus exactly the same 
as Case 2 of one predator - two prey model mentioned before. 

It is impossible for both predator and prey species to all be alive in an equilibrium, this is 

because A will be predated more than B as long as P is non zero. 
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Generalizing mimicry in a two predator – two prey model 

 
Equilibrium There are multiple fixed points or equilibrium but we want to focus on the 

equilibrium where none of the prey and none of the predators go extinct. 

There is only one fixed point at which all A, B, P, Q ≠ 0. The fixed point is (a,b,p,q) where, 

 

The Jacobian will be as follows. 

 
 

We consider the special cases we saw in the previous section. All other cases devolve to 
simpler models. 

Prey A and B can be distinguished by predator P but not by Q. The utilities are as follows. 
We consider static indicator variables. Thus 𝜖AP = 1, 𝜖BP = 0, 𝜖AQ = 1, 𝜖BQ = 1 The fixed 
point becomes (a,b,p,q) where 
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There exists a positive eigenvalue for the Jacobian matrix if uAPuAQuBQ < 0. Thus this is an 
unstable equilibrium. 

We can conclude that there is no stable equilibrium in a two predator - two prey model 
where each predator has one toxic and one non-toxic prey when one predator can 
distinguish between the two while the other cannot. 
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Example: We consider an equilibrium/fixed point. By perturbing the parameters we see that 
it is not a stable equilibrium. This has been shown in Fig.4 and Fig5. 

 
 

Section Conclusion 
  We have presented a formal framework for analyzing dynamics of the signaling game 

between predator and prey using utility. 

We have also shown that there is no stable equilibrium in a two predator-two prey system 
when one predator can distinguish between the two prey while the other cannot. With the 
additional condition that at least one prey to toxic to each predator. 

Discussion 
We have assumed a non-evolving system where the predator does not continually learn 
and evolve as well, although at a slower pace. A possible solution to the learning capability 
of a predator is a dynamic indicator variable which has been discussed below. 

This will be discussed in a following paper which treats signals and utility as related 

quantities and allows for their evolution through the natural selection of the predator. 

A. Generalizing to m predator n prey mimicry 
When a predator yj can distinctly identify a prey xi and the corresponding utility uij is 
negative then clearly 𝛽ij = 0. On the other hand if a predator yj cannot distinguish between 
some prey species xs, s ∈ S ⊆{1...n}. The predator views this chunk as a single unit and the 
utility will be the expected utility from the entire chunk. The expected utility is  
𝐸[𝑢𝑦𝑗(𝑥𝑠)] = ∑ 𝛽𝑠𝑗𝑢𝑠𝑗𝑠∈𝑆 𝑥𝑠. 

Then ∀𝑠 ∈ 𝑆 we have, {
𝜖𝑠𝑗 = 0 𝑖𝑓 𝐸[𝑢𝑦𝑗(𝑥𝑠)] ≤  0 

𝜖𝑠𝑗 = 1 𝑖𝑓 𝐸[𝑢𝑦𝑗(𝑥𝑠)] >  0
 

The problem starts here as the expected utility is dynamically changing with time as 
other predators interact with specific subsets of the population. 

 
B. Dynamic Indicator Variable e∈ [0, 1] 

We consider a dynamic epsilon value that continuously changes with the expected utility. 
This will effectively allow the predator to be rational and choose a signal only if it is getting 
a positive utility from it. And similar to natural predators as utility approaches 0, the 
indicator variable approaches 0. For this we use an activation function 



 

 53 

We look at some standard activation functions. 

 

 

But these functions still have significant indicators when utility is negative. Thus we can 
scale and translate these functions to behave as shown in Fig. 7. 

 

Fig. 7. The function is 𝑓(𝑥) =
1

2
+
𝑡𝑎𝑛−1(100(𝑥−0.1))

𝜋
               

               
As utility becomes negative the predator will drastically reduce the amount of prey 
consumed. We consider the small value to be the exploration parameter to constantly 
check the utility it would receive. Thus for Mimicry our indicator variable will look like the 
following if A and B are not distinguishable by Q. 

𝜖AQ = 𝜖BQ =  
1

2
+
𝑡𝑎𝑛−1(𝑘−

𝑢𝐴𝑄𝐴+𝑢𝐵𝑄𝐵

𝐴+𝐵
−𝑥0)

𝜋
                                          

 
C. Example of practical use for Artificial Intelligence 

  Two competing companies A and B have people visiting their websites. Each company 
invests money into advertising/services to those that visit their website. Both companies 
create bots to bring down their competitors. It is beneficial is the recipient was human, 
but resources wasted if the recipient was a bot.  

A bot which is the malicious agent will try to solve the captcha to pass off as a human. The 
websites will get bad utility from a bot and thus create better captcha which are harder 
for bots to crack. This resembles a coevolutionary chase between predator and prey. The 
bot is trying to mimic the human introducing the element of mimicry. This perfectly mirrors 
two predators(Companies) consuming prey(visitors). Some prey are toxic(bots) and some 
nutritious(humans). Their ability to distinguish between the signals(Captcha/Turing test) 
changes with time as they learn.  

If we know the dynamics one can easily analyze the amount of money a company must 
spend on creating bots for competitors or how much one must invest into a captcha 
system. We specifically study the dynamics of such predator-prey models in the following 
part. 
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Some interesting scenarios in Bio-mimicry 
 

Abstract 
This paper presents a novel idea of looking at bio-mimicry from the perspective of utility. Every 

prey has a signal and utility to the predator. Multi-armed bandit predators with zero prior 
information are introduced into the ecosystem. As a result of exploration and exploitation the 
predators naturally select the prey that result in the evolution of those signals. This produces a 
variety of interesting phenomena which are presented. 

Introduction 
Standard predator - prey models treat predators and prey as non-evolving, non-learning 
entities. In reality, over time both predators and prey start a co-evolutionary chase which is 
fueled by continual evolution and learning. A simple example is when the predators consume 
the slower prey which are the easiest to catch. The remaining prey population is faster on 
average and succeeding generations will be faster. As a result of quicker prey the slower 
predators are pruned out which over time results in faster predators. 
 

We focus on situations where prey can evolve to be more toxic which should result in 
more resistant predators. The scope of this paper is the cases where the lifespan of a predator 
covers a significantly large number of generations of prey. This will result in the predator not 
being able to evolve fast enough to gain immunity to the toxic prey. So naturally predators 
have a learning mechanism and thus learn and continually adapt over time. When a predator 
eats a prey they update their inner beliefs about the prey based on the effect the prey has on 
the predator. To accomplish this we treat the predator as a learning agent who uses 
reinforcement learning to update their policy of choosing to eat or not eat a prey from the 
same species when encountering it again in the future. 

 
One lacking requirement is the ability of the predator to distinguish between multiple prey 

so that they can update the respective belief. To distinguish they use the signal corresponding 
to the prey. A signal can be visual, acoustic or even a smell. A red bird will essentially be 
sending a different visual signal from a blue bird. 

 

Breaking it down, the predators receive a signal and based on their prior beliefs, they 
choose to consume the prey that sent the signal. It gets interesting when two different species 
evolve to send the same signal. Effectively the predator cannot distinguish between the two 
and will thus share a common belief with respect to the common signal. 

 
We also see a fascinating variety of phenomena arising due to difference in value the 

predator has to the different species. We effectively model this using utility. The utility of a 
toxic prey to a predator will be negative. Furthermore the utility function encodes preference 
and is exactly what we need to model the behavior of evolving predators and prey. In regards 
to two mimicking species that share a common signal, the utility the predator associates to 
the signal will be the expected utility from the two species in question. 

 
To keep it simple, we analyze the following simple system. We consider a signaling game 

with multiple species of Predator and Prey. The prey(Lifespan of Mayfly ≈24hours) has a 
relatively small lifespan compared to the predator(Lifespan of Common Toad ≈12years). This 
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way the prey can undergo mutations in its signal and adapt while the predator can only learn 
about the prey but cannot change genetically in the short period. As the signals of the prey 
mutate and evolve there will be convergence and divergence of signals of different species. 
We try to understand the conditions and extent of mimicry with respect to the utility value of 
different prey species to the predator. The predators will all be multi-armed bandit agents. 
We look at a few interesting phenomena that arise as a mathematical consequence of our 
assumptions. 

Consider the following example where this can be applied in the field of Artificial Intelligence. 
Two competing companies A and B have people visiting their websites. Each company invests 
money into advertising/services to those that visit their website. Both companies create bots 
to bring down their competitors. It is beneficial is the recipient was human, but resources 
wasted if the recipient was a bot. 

A bot which is the malicious agent will try to solve the captcha to pass off as a human. The 
websites will get bad utility from a bot and thus create better captcha which are harder for 
bots to crack. This resembles a coevolutionary chase between predator and prey. The bot is 
trying to mimic the human introducing the element of mimicry. This perfectly mirrors two 
predators(Companies) consuming prey(visitors). Some prey are toxic(bots) and some 
nutritious(humans). Their ability to distinguish between the signals(Captcha/Turing test) 
changes with time as they learn. 

If we know the dynamics one can easily analyze the amount of money a company must spend 
on creating bots for competitors or how much one must invest into a captcha system. We 
specifically study the dynamics of such predator-prey models in the following part. 

New work 
Bio-mimicry has scarcely been interpreted using a formal mathematical framework of utility. 
Another novel idea is using multi-armed bandit predators that can continuously learn and 
update the non-stationary distribution of signals. 
 

Most of the following phenomena explained below are mathematically feasible scenarios. 

Some like ’Mimicry can be bad to both species’ are original and hypothetical scenarios that 

may or may not have biological feasibility. 

Model 

Ecosystem 
The ecosystem consists of multiple prey and multiple predators. On a given day a predator 
encounters some number of prey. Each prey gives out a respective signal. Based on the 
predators prior knowledge it chooses to consume a prey of a specific signal. After eating the 
prey, based on the utility it got from the prey it updates its information about the signal. This 
continues over time leading to a variety of phenomena. 
 

It is to be noted that the prey mutate and evolve over each generation but the predator 
whose lifespan is significantly larger than the prey continuously learns and update sits 
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knowledge. As naturally seen, the predator comes across a randomly sampled set of prey and 
has to choose one prey of them. 

 
There are two types of ecosystems we can focus on. In the first the prey also compete with 

each other for resources. In the second one the prey have a reproduction rate and can 
indefinitely grow if there is no predation. Both ecosystems have very distinct properties and 
showcase very different phenomena under similar conditions. We mainly focus on the 
indefinite growth in the examples seen in this paper. signaling range. 

Prey 
Every prey has the following properties which will be defined below. 

• Gene Vector which encodes toxicity, evasion rate, etc. 

• Signal 

• Mutation rate 

• Reproduction rate 

Species Prey divided into species. Every prey of a specific species share common traits such 
as reproduction rate, mutation rate and genetic constraints. In the paper each species will be 
represented by a different color. 

Gene vector, Signal and Utility to Predator Every prey has some genetic values which we can 
encode as a gene vector. The gene vector contains is bound by the genetic constraints of the 
prey species. A natural analogy is the set of chromosomes. The set of genes in the gene vector 
determines a variety of things from how the prey looks to its speed of evasion from the 
predator. It essentially is analogous to a change in chemical composition which changes the 
taste, toxicity and nutritional value to the predator. To sum it up, the gene vector determines 
the signal the prey sends and also the utility a predator receives from consuming the 
respective prey. 
 

We consider a signaling range bounded in the range [L,R]. Let g be the signal function that 
takes gene vector as input and returns signal. 

 
Example 1: Consider two prey species A and B. Let the gene vector of A be [2,1] and the 

gene vector of B be [1,2]. Suppose g([x,y]) = x+y is the signaling mechanism of both species, 
then prey both A and B give out the same signal 3. Given a predator P with utility function 
f([x,y]) = x2−y, it can be seen that the utility of A to the predator is 3 while the utility of B to 
the predator is -2 which implies that B is toxic to the predator P. P cannot distinguish between 
the A and B as it receives the same signal 3. 

 
Example2: Consider two prey species A and B. Let the gene vector of A be [2,1] and the 

gene vector of B be [1,2]. Suppose g([x,y]) = 2x + y is the signaling mechanism of the species 
A and g([x,y]) = x+y is the signaling mechanism of the species B. Then prey of A signal 5 while 
B signals 3. Given a predator P with utility function f([x,y]) = x2 − y, it can be seen that the 
utility of A to the predator is 3 while the utility of B to the predator is -2 which implies that B 
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is toxic to the predator P. P can clearly distinguish between the two prey and will learn that 
signal 5 corresponds to a good prey while signal 3 corresponds to bad prey. 

 
Since the signal is the only thing visible to the predator, we look specifically at parts of the 

gene vector affected by the signal. For the sake of simplicity we assume that the signaling 
function(g) to be a injective function. This implies that the gene vector can be inferred from 
the signal. As the signaling function is injective, we can assume that the utility to the predator 
which depends on gene vector depends on the signal. We thus use the notation uAP(s) which 
refers to the utility of prey A with signal s to the predator P. 

When we say constant utility we imply that the mutations in the gene vector result in 
changes in signal but not in utility for the predator. An example would be that the change in 
the first gene could make a prey more red in color but the first gene does not affect the 
toxicity or taste of the prey to predator in any way and thus does not influence utility. 

If utility to predator is proportional to gene vector which in turn is proportional to signal, 
then utility will increase with increasing signal. Signal can be appropriately scaled along with 
mutation rate. 

Mutation Every prey species has a natural system that has evolved with some constraints. 
There is a cost attributed to most changes. Some changes affect reproduction rate, some 
affect color, some affect speed or toxicity and other evasion. This is a result of mutations in 
the gene vector. Effectively mutations in the gene vector result in new signals and utilities. 
 

Mutations can be Gaussian, which implies that the most of the mutations will be 
concentrated around the point of origin with a very small probability of large mutations. We 
consider a simplified version where mutations are restricted to the current signal and the 
neighboring two signals. Given mutation rate p, then the probability of signal s mutating to s-
1 or s+1 is p, while the probability of staying at s in 1 - 2p. 

For example, if we consider u(s) = s then it means that a mutation in the gene vector will 
result in a change in s and a proportional change in utility. 

Signaling distribution Every prey has a signal. So a prey species will have a signaling 
distribution which is a collection of signals from all the prey of the species. As the species are 
naturally selected the signal distribution changes shape. this will be described in detail below. 

Predator 
A predator has the following properties. 

• Prior Knowledge 

• Learning system and related parameters 

• Signal perception function 

• Utility function 

• Consumption rate 
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Species We also have multiple species of predators each with their own learning 
systems, utility and perception. 

Utility The utility function takes in the gene vector of prey as input and return utility to 
predator for consuming prey as output. As defined in the Prey section, we use the notation 
uAP(s) which refers to the utility of prey A with signal s to the predator P. 

Signal from predator perspective There are multiple prey species, each with their own signal 
distribution. The predator only sees the combined distribution of signals. 

 

Fig 1: This is the signal the Predator sees. 

 

Fig 2: This is the actual signal distribution of two separate prey species. 

Signal perception function In higher dimensions, predators see a projection of the signal onto 
a smaller space. For example given a 2 dimensional signal s = (s1,s2) of a prey species A, a 
predator P that sees only the first dimension will not be able to distinguish (10,3) and (10,20) 
but it will be able to distinguish between (10,3) and (5,3). To encode this property we use a 
signal perception function. A real world example is that off color blind predators. Another 
example is a species that can has a weak smell and weak eyesight and thus distinguishes a 
prey as a function of both. 

So a signal perception function f(s1,s2) = s1+s2 will not be able to distinguish between 
(10,20) and (25,5). This essentially reduces a 2 dimensional signal to a one dimensional signal. 
This is sometimes more efficient due to the cost of evolving more complex senses or a more 
robust learning system. 
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Consumption Rate This refers to the number of prey the predator needs to consume at a 
given day. This can be easily modified to required amount of utility per day. 

Learning and Prior Knowledge We assume that a new predator with no prior knowledge is 
introduced into a new environment where it has to learn the utilities from the signal. 

Due to evolution, the signal distributions is non-stationary and utility corresponding to a 
signal keeps changing. Thus the predator needs to forget over time and thus needs a 
discounting parameter. Clearly neighboring signals will have similar utilities for simple 
functions. Thus the predator needs to update its learning from a specific signal to surrounding 
signals as well. Finally we need a predator that explores for new opportunities but also 
exploits as is naturally seen. 

UCB Bandit We consider a standard discounted UCB agent with a bandit for every signal in 
the range [L,R]. During update, the bandits of surrounding signals are also updated. The 
predator chooses the signal s that maximizes the following value. 

 

Where, 

• µs is the discounted average utility gotten so far from signal s and its neighbors. 

• α is a scaling constant 

• n is the total number of prey consumed so far 

• ns corresponds to the number of prey of signal s consumed so far 

Traditional UCB where we update the corresponding arm is really slow to learn and not robust 

enough in the presence of discounting. To solve this we have modified the update rule to 

update all neighbors in a gaussian manner. Closer neighbors are highly affected by update 

and farther neighbors have a negligible effect. 

Signal Drift 
As predators start exploring different signals they learn the corresponding utility over time 
and start exploiting signals of high utility. This is essentially natural selection and results in 
the drift of the signal distribution for the particular prey species. But there are various 
conditions that result in the magnitude and direction of the drift. We look at the major ones. 

There are two main types of signal drift. Signal drift of a prey species due to a signaling 
range corresponding to a lower utility. The other one being signal drift due to a signaling range 
with lower expected utility. Depending on the ecosystem one may dominate over the other 
producing interesting phenomena. 
Signal Drift due to lower self-utility 
Consider a prey species A with constant utility to predator P, meaning that the utility does not 
change with signal. For example a prey could change its voice frequency but its utility to the 
predator might not change at all. This will result in the predator uniformly sampling the prey 
as it prefers every signal exactly the same. 
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Fig 3: Signal distribution over a 600 generations plotted at different time intervals. The 
distribution gets flatter and fatter over time. Int this specific example, the rate of 
consumption by predators is exactly equal to the reproduction rate so the total number of 
prey at any given generation is approximately 30000. 

We model utility as a function of signal. Given a signal distribution for the prey species, 
the prey species mutate and slowly change the signaling distribution. The predator will choose 
signals that induce a higher utility in the prey. This results in the movement of the signaling 
distribution in the other direction. An example is shown of such a adrift is shown below. We 
consider a prey with utility proportional to the signal resulting in a left shift because the utility 
on the left will be lower. 

 

Fig 4: Signal distribution over a 600 generations plotted at different time intervals. We see 
that the signal distribution shifts left as right has higher utility. 
 

An uniform movement in on direction specifically happens in increasing or decreasing 
functions. If the utility which is a function of signal is not monotonic(increasing or decreasing) 
then the prey population will greedily descend in the direction of lower utility. An example 
has been shown with a non-monotonic utility function. 

 

Fig 5: Signal distribution over a 600 generations plotted at different time intervals. The utility 
function is u(s) = k − (s − 30)2 see that the signal distribution splits at the point s=30. 

Signal drift due to lower expected utility 
Consider two prey species A, B and a Predator P. 
A(Blue) :Constant high utility to P B(Green) :Constant low utility to P 
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Over generations, due to exploiting of prey with highest utility by predator we see a 
natural shift in the signaling range of the population.  

 

Fig 6: Signal distribution over a 1000 generations plotted at different time intervals. 

 

Fig 7: Population time series over the 1000 generations during drift. In this specific example, 
the total consumption of predator is higher than the growth rate of prey species combined. 
This results in a decline of total population over time. 
 

The predator preys on the signaling range with maximum utility. Thus signals that are 
produced by only the species with high utility will be the prime targets for the predator. On 
exploitation the prey species with high utility will naturally evolve to signaling range that is 
shared with a prey species of lower utility. The predator will learn that the common signaling 
range and associate it with the expected utility. Over generations, a drift in the signal is 
achieved. 

In the same notion, a prey species with low utility will drift away from prey species with 
higher utility. But this will be slower than the drift in case of a prey species with high utility. 

Interesting Phenomena in 1-Dimensional signaling 
We consider a one dimensional gene vector for the prey which corresponds to a one 
dimensional signal. All species can signal on a band from L to R. 

Pooling Equilibrium 
This phenomena occurs when multiple prey species pool together which results in the 
predator not being able to distinguish between any of the species. This is an equilibrium as 
no species can be naturally selected and thus there is no induced drift. 

Consider 3 prey species A, B, C and Predator P. 
A (Blue): constant high utility to P 

B (Green): constant low utility to P 

C (Red): constant medium utility to p 
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uBP(s) < uCP(s) < uAP(s) 

αB = αC = αA 

 

Fig 8: Signal distribution over a 2000 generations plotted at different time intervals. 

The pooling equilibrium is stable. This is because any change in the signal distribution of a 
single species will change the distribution of expected utility. This effectively will trigger a drift 
of all prey species such that the equilibrium is maintained. 

Polymorphic Mimicry 
This phenomena is the splitting of a single peaked signal distribution of a prey species to a 

multipeak distribution. This can easily be seen in the case of non monotonic functions. 

Interestingly it is possible to generate the same phenomena using only simple linear 

monotonic functions. 

We consider a situation where prey choose a trade-off between reproduction rate and 
toxicity. Higher toxicity implies a lower reproduction rate but also a lower utility to the 
predator. 

Consider 3 prey species A, B, C and Predator P. 
A (Blue): Toxicity is high, utility to predator P is low and reproduction rate is low 

B (Green):Toxicity is low, utility to predator P is high and reproduction rate is high 

C (Red): Toxicity is moderate, utility to predator P is moderate and reproduction rate is 

moderate 

uBP(s) > uCP(s) > uAPP(s) 

αB < αC < αA 

In the scenario where prey species B would have gone extinct. Instead we observe that in 
the presence of mimicry not only does prey species B thrive at the end but also its signal splits 
into two peaks. 
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Fig 9: Signal distribution over a 1000 generations plotted at a period of every 200 generations. 

 

Fig 10: Population time series of prey over 1000 generations 

Mimicry can be bad to both species 
We show a situation where the mimicry of A and B results in mutual extinction. In the control 
ecosystem where the other does not exist, they actually thrive. 

Consider 3 prey species A, B, C and Predator P. 

A (Blue): Utility to predator P is negatively correlated to signal : (uAP(s) = a0 − a1s) 

B (Green): Utility to predator is constant and rate of mutation is insignificant : (uBP(s) = b0) 

C (Red): Utility to predator is correlated to signal : (uCP(s) = c0 + c1s) 

Since utility of A is negatively correlated with signal it drifts towards the right(R) because 

the predator exploits A of lower signal. Since utility of C is correlated with signal it drifts 

towards the left(L) because the predator selects species C of higher signal. Since, utility of B is 

constant there is no drift but instead just a flattening of the signal distribution. 

Case 1: An ecosystem with only prey species A and B A is naturally selected towards a signal 
of lower utility and thus drifts right(R). Initially the utility of A is higher and thus the 
corresponding signals are exploited but as A drifts right its utility decreases till a tipping point 
where its utility equals the utility of the agents of species B. As a result we see an initial drop 
in population for A followed by recovery. 
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The turning point is when a critical chunk of species A drifts past to signal higher than

. Thus effectively resulting in a lower utility for the predator. A rational predator will 
make the choice to choose signals corresponding to B compared to A. 

 

Fig 11: Signal distribution over a 1800 generations. 

Case 2: An ecosystem with only prey species B and C This is very similar to the previous case. 
C is naturally selected towards a signal of lower utility and thus drifts left(L). Initially the utility 
of C is higher and thus the corresponding signals are exploited but as C drifts left its utility 
decreases till a tipping point where its utility equals the utility of the agents of species B. As a 
result we see an initial drop in population for C followed by recovery. The turning point is 

when a critical chunk of species A drifts past to signal lower than . 

 

Fig 12: Signal distribution over a 1800 generations. 

Case 3: An ecosystem with all prey species A,B,C As a result of the pooling equilibrium formed 
by the signals of A and C. The predator P cannot distinguish between the signals of A and C 
and thus cannot naturally select them. 

At the point of pooling, if the expected utility of the signals in the pooling equilibrium is 
lesser than the utility of the signals of prey species B. This leads to exploitation and thus 
eventually extinction. 
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Fig 13: Signal distribution over a 1800 generations. 

We consider a simple case where uAP(s) = 3 − 0.05s,uBP(s) = 1.3,uC(S) = 0.05s and initial 
distributions mean at points 25 for A and 35 for C. s = 30 will be the mean of the pooling 
equilibrium between A and C after drifting. This is because initially both A and C have the 
same utility and are thus selected together The expected utility of any signal in this pooling 
equilibrium will be 3/2. This is greater than the utility of prey B and thus the pooling 
equilibrium will be exploited till extinction. 

Above was a very specific example, but can be easily generalized to show that a pooling 
equilibrium can form and thus stop natural selection towards a lower utility, effectively 
leading to extinction. This is mainly because of the lack of freedom in the 1-Dimensional 
signaling space. 

Oscillating Mimicry 
Oscillating mimicry where signals of two species is constantly oscillating, is not possible when 
we consider a one dimensional gene vector, identity signal function(g) and a fixed predator 
population. This is due the formation of a pooling equilibrium. 

Interesting Phenomena in 2-Dimensional signaling 
2-Dimensional signaling opens up a whole new world phenomena. In 1-Dimensional signaling 
due to a lack of freedom we are restricted to certain type of phenomena. here we present 
just a basic idea of how far we can go. 

Drift in 2-Dimensions 
Drift in higher dimensions is similar to 1-dimensional case except with more freedom. The 
drift is determined by the Signal perception function, utility function of predator and genetic 
vector of prey. 

Consider a prey species A and a predator P. A has a genetic constraint that it cannot 
reproduce if its genes are too different from the rest. This stops the signaling distribution from 
spreading out in all directions. The predator P can see signals only along the line s1 − s2 = k 
because of the signal perception function f(s1,s2) = s1 +s2. Furthermore a utility function 
uAP(s1,s2) = s1 +s2 results in a diagonally left-down drift for the prey species A. 
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Fig 14: Signal distribution over a 5500 generations plotted at different times. 

If both Red and Blue are toxic, then by continuously introducing new predators into the 
system we observe that Red and Blue converge towards a common signal. This is also known 
as Mullerian mimicry. The reason is shown in the previous section ‘Revised Mullerian 
Mathematical Model’. 

Fig 15: Mullerian mimicry between Red and Blue after continuously introducing new 
predators. The prey in the common region are feasted on lower. 

Switching directions 
In the presence of two prey species and two predator species, we can create very interesting 
phenomena which involve changes in drift direction. This is not possible in 1-Dimensional 
signaling due to the creation of a Pooling Equilibrium. 

Consider two prey species A, B and two predator species P and Q. Let the predators and 
prey have the following functions. 

• P signal perception function : f(s1,s2) = s1. This means that P can distinguish only the x 

coordinate of the signal. 

• Q signal perception function : f(s1,s2) = s2. this means that Q can only distinguish the y 

coordinate of the signal. 

• The signaling function of A as a function of the gene vector : g(v1,v2) = (v2,−v1) 

• The signaling function of B as a function of the gene vector : g(v1,v2) = (−v1,−v1) 

• The utility function of P as a function of gene vector : u(v1,v2) ∝ v1 + v2 

• The utility function of Q as a function of gene vector : u(v1,v2) ∝ v1 − v2 

The above functions result in the following utility functions. 
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• uAP(s1,s2) ∝ s1 − s2 

• uAQ(s1,s2) ∝−s1 − s2 

• uBP(s1,s2) ∝−s1 − s2 

• uBQ(s1,s2) ∝−s1 + s2 

Starting at the appropriate positions with correct scaling parameters such that A is diagonally 
left-up of B. If initially uAP > uBP and uBQ > uAQ, then A will drift left while B will drift down. After 
a point when uAP = uBP and uBQ = uAQ, the predators start gaining interest in the other prey 
which they were not predating originally. Slowly the predators reduce the predating of their 
original prey and begin predating the other prey. This will result in A drifting upward and B 
drifting right. So A initially starts drifting left, followed gradual change in direction towards a 
drift upward. Similarly B initially drift downward and gradually shifts to drifting right. 
 
Section Concluding Remarks 

In most of the phenomena we have focused on using only linear functions. Although this 
may not be the case, it only shows that a simple set of linear rules can result in complex 
mechanisms like ’The Game of Life’. If we introduce higher degree or more complex functions 
we will be able to construct even more fascinating phenomena for bio-mimicry. Furthermore 
if we increase the dimension of signaling and the nature of genetic constraints, we can explore 
an even wider variety of phenomena. 
 

This paper gives us a broad framework to understanding the existence of multiple 

mathematically feasible phenomena. This can easily be extended to a the dynamics between 

multiple agents that can systematically be described as Learning predators and evolving prey. 

A standard example where this can be used is in understanding the introduction of 
Artificial intelligence or learning systems into new ecosystems. Another example is that of 
fake currency which mimics real currency. If we design a set of learning bots that learn to 
remove fake currency from a system. The bots learn over time and utility is precisely that of 
removing fake currency and not real currency. Fake currency can be modelled as prey. If fake 
currency is left unchecked it will be misused and there will be more malicious agents pumping 
it into the economy without the fear of getting caught. Furthermore too much fake currency 
also does not work and this represents prey-prey competition. If we identify enough fake 
currency we can narrow down the source which is similar to lowering reproduction in prey 
due to a smaller population. 

 
Multiple systems can effectively be modeled using this framework. We can test out a 

plethora of interesting phenomena and potentially learn to stop them if required, with 
minimal changes. 
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Conclusion 
 

The thesis started with understanding the dynamics of AI cooperation and deception 
through signaling games. This is required to better understand the changes AI will bring into 
society. We have thus presented certain basic games and their dynamics as we so that we 
can help build a more effective and efficient tomorrow. 
 
Throughout the thesis, we have presented quite a few novel ideas which solve or help us 
better understand the dynamics behind cooperation and deception. We have looked at 
cooperation through replicator equations, invasive strategies, and evolutionarily stable 
strategies. We have created simple frameworks like optimal play in a noisy environment of 
standard IPD agents, to slightly more complicated frameworks like predator-prey multi-
dimensional signaling. We have tried many approaches from reputation, genetic algorithms, 
perceptron memory,  community utility, each with their benefits. We have introduced 
deception through biomimicry, learning predators, and evolving prey. This lays a foundation 
that can be translated into multiple real-world problems we face in the new age of AI.  
 
As mentioned multiple times, cooperation and deception go hand in hand. It is imperative 
to understand these dynamics if we want a more effective future in the presence of 
changing technology. 
 

Future Work 
 

1. Harsanyi and Aumann have described hierarchies of belief and common knowledge. 
We aim to extend signaling games to an inductive setup and understand the 
dynamics of said system. 
 

2. Use generators to generate visual pattern signals. Then use predators equipped with 
convolutional neural nets to receive visual signals. Thus, study Mullerian mimicry of 
butterflies as studied by muller using reinforcement agents that can see(Computer 
Vision). 
 

3. Dynamics of intra-specie signaling to share information and communicate. 
 

4. Dynamics of changing system where Predators and Prey both evolve and learn. 
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