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We present a new fast multipole method for particle simulations. The main feature of our al-
gorithm is that is kernel independent, in the sense that no analytic expansions are used to represent
the far field. Instead we use equivalent densities, which we compute by solving small Dirichlet-type
boundary value problems. The translations from the sources to the induced potentials are acceler-
ated by singular value decomposition in 2D and fast Fourier transforms in 3D. We have tested the
new method on the single and double layer operators for the Laplacian, the modified Laplacian,
the Stokes, the modified Stokes, the Navier, and the modified Navier operators in two and three di-
mensions. Our numerical results indicate that our method compares very well with the best known
implementations of the analytic FMM method for both the Laplacian and modified Laplacian ker-
nels. Its advantage is the (relative) simplicity of the implementation and its immediate extension to
more general kernels.
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1. INTRODUCTION

Many methods in computational physics (e.g., vortex methods, molecular dynamics)
are based on the evolution of particle systems with pairwise interactions corresponding
to potentials related to the fundamental solution of elliptic partial differential equations
(PDEs). The most important among these kernels is the single-layer Laplacian. Other
kernels include the the kernels of Stokes and the Navier operators their modified versions
arising in unsteady problems, and their derivatives (double-layer and hypersingular ker-
nels).

Particle formulations result in dense linear algebraic systems because all pairwise in-
teractions have to be computed. This is a significant bottleneck since for N particles this
results in a O(N2) computation. In order to make large scale problems tractable it is es-
sential to efficiently compute these interactions. A number of algorithms were proposed
for this purpose. The fast multipole method (FMM) has been one of the most successful,
especially for nonuniform particle distributions.

In this paper we present a new kernel-independent FMM-like algorithm. Our algorithm
has the structure of the adaptive FMM [11], but requires kernel evaluations only, and does
not sacrifice the efficiency of the original algorithm. The crucial element of our approach
is to replace the analytic expansions and translations with equivalent density representa-
tions. These representations are computed by solving small integral equation exterior and

1This work is supported by the National Science Foundation’s Knowledge and Distributed Intelligence (KDI)
program through grant DMS-9980069.
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interior problems on discs (2D), spheres or cubes (3D). We demonstrate the efficiency of
our method in both 2D and 3D for many kernels: the single and double layer potentials of
the Laplacian, the modified Laplacian, the Navier, the Stokes, and their modified variants.
Our method has O(N) asymptotic complexity, and, like analytic FMM, works well for
nonuniform particle distributions.

Synopsis of the new method. The basic structure of our method follows [13], the
original fast multipole method, which we briefly review in Section 2. FMM consists of the
following steps:

1. generation of a hierarchical tree partitioning of the computational domain;

2. accumulation of the multipole expansions for the far field by a postorder traversal of
the tree;

3. translation of the multipole moments to the local expansions;

4. construction of local expansions by a preorder traversal of the tree;

5. evaluation of the far field action on the particles using local expansions;

6. evaluation of the near field interactions.

The same steps are used in our algorithm. However the multipole expansion construc-
tion is replaced by solving local exterior inverse problems. To represent the potential gen-
erated by particles inside a box, we use a continuous distribution of an equivalent density
on a surface enclosing the box, building on the idea introduced in [1]. To find this equiv-
alent density on the surface, we match its potential to the potential of the original sources
at a number of points in the far field. The translations are done by direct evaluation on the
far field, sparsified with SVD or FFT. During the preorder traversal of the tree, we evaluate
the far field on a surface enclosing a target box, and solve an interior Dirichlet-type inte-
gral equation to compute an equivalent density. Then we use this density to represent the
potential inside a target box.

Our method does not require implementation of analytic expansions for the kernel, it
only requires their existence, and uses exclusively kernel evaluations. Like FMM, our algo-
rithm is recursive and has an O(N) complexity. Additional properties like scale invariance
and rotational symmetries of kernels can be used to further accelerate the translation step,
as in the case of the standard FMM.

Related work. There are four basic classes of fast summation algorithms: (1) tree
codes like Barnes-Hut [2], (2) fast multipole methods and (3) regular grid fast convolution
methods like FFT 2. Our algorithm belongs to the second category. The description of the
original fast multipole algorithm can be found in [13], and [22]. Although the method is
highly successful in two dimensions, the three-dimensional version of the original method
was inefficient. Efficient extensions in three dimensions were realized only recently [7].
For these reasons many researchers tried to devise algorithms which were hybrids of tree
codes and FMM, in order to combine the high accuracy of FMM methods with the speed
and simplicity of tree codes. In addition extension of the FMM to more general kernels
like the modified Laplacian [12], the Stokes [9] , and the Navier [8, 15] operators can be

2This method is somewhat related to particle-particle (near field interaction) with particle-mesh algorithms.
Particle-mesh methods use fast PDE solvers on regular grids (multigrid) to evaluate the far field contributions. In
this paper we are not reviewing these methods since they are mostly useful for uniform particle distributions.
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quite cumbersome. Here we review only the algorithms that, in our view, could be used to
develop kernel independent methods.

The idea of using a set of equivalent sources was first introduced in [1]. In this pa-
per, the far field is represented as the solution to an exterior Dirichlet problem on a ball
surrounding the particles using the exact Green’s function for Laplacian. The method is
somewhat easier than FMM to implement, but requires knowledge of the Green’s function
for each kernel, which is may not be available in the general case.

In [3] instead of using the exact Green’s function a number of equivalent densities are
placed on a Cartesian grid in each source box; these densities are computed analytically by
matching a number of multipole moments in the multipole expansion series of the original
source densities. Another important feature of this method is the fact that the Cartesian grid
allows the use of FFT to accelerate the multipole to local-expansions translations. How-
ever the method is not kernel-independent since for different kernels different expansions
have to be constructed. The same idea is used in [19], but like in Anderson’s method the
densities are distributed over a ball containing the source box.

The idea of equivalent densities is also used in the precorrected FFT method, [20]. The
equivalent densities are distributed over a regular grid, so that the far field convolutions can
be computed with FFT instead of FMM. The term “precorrected” is related to the compu-
tation of the local interactions: the subtraction of the local influence of the equivalent den-
sities and the addition of the near field interactions. The regular grid sources are computed
by matching the field at selected checking points, usually located on a ball enclosing the
original sources. In [6], a precorrected FFT method is applied to the Helmholtz kernel, but
the equivalent sources are distributed along the faces of an enclosing cube, and three FFTs
along the coordinate system planes are used to compute the far interaction. FFT-based
methods are very efficient, often faster than FMM due to much smaller constants. For uni-
form distributions of particles FFT is likely to be preferable and it is kernel-independent.
However, in the case of highly irregular particle distributions FMM is more efficient.

A hybrid method for kernel independent matrix-vector multiplication algorithm was
proposed in [16] and [17]. Based on the fact that large blocks of the particle interaction
matrix are low rank, this method uses singular value decomposition to sample and sparsify
this blocks. It can be applied recursively and attains a O(N log N) complexity. We have
applied this method on the Stokes and Navier operators [4, 5] with very satisfactory results
in both accuracy and speed. One serious shortcoming of this method is the high setup
cost. For problems with static particle distributions this is not a concern, but it becomes a
bottleneck for problems with time evolving particles. The SVD approach was been further
explored in series of papers, [23], [24], and [10] to obtain a kernel-independent method
that has smaller setup costs. However, as the authors of these papers assert, the method
does not achieve the efficiency of FMM.

Another method for fast matrix multiplication is based on higher-order Taylor expan-
sions in Cartesian coordinates. This approach is not suitable for high accuracy compu-
tations because is computationally expensive (for pth-order accuracy it requires O(pd)
expansion terms) . However it is kernel-independent method (the higher-order expansions
can be easily obtained by differentiation). For example it has been successfully used to
accelerate problems with the Stokes kernel [21].

Yet another kernel-independent approach is based on wavelet decompositions, com-
bined with a Galerkin scheme. This approach is quite promising, since it has the same
complexity with FMM, and has built-in preconditioning. However, it is hard to compare
directly to FMM, as different trade-offs are made: FMM is a “bottom-up” approach, and
is relatively insensitive to the distribution of samples. Adaptive wavelet methods are “top-
down” but require samples to be located on a surface satisfying certain assumptions.
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Organization of the paper. In Section 2 we briefly review the classical FMM algo-
rithm for the two dimensional Laplacian. In Section 3 we present the new algorithm and
its implementation; in Section 4 we present a justification on the correctness of the algo-
rithm and in Section 5 we present numerical results for several different scalar and vector
kernels in two and three dimensions.

2. REVIEW OF THE FAST MULTIPOLE METHOD

Given N source densities {φi} located at N points {yi} in Rd (d = 2, 3), we want to
compute the potential {ui} at N points {xi} induced by a kernel G (single layer, double
layer or other kernels of a elliptic PDE) using the following relation 3:

ui = u(xi) =

N
∑

j=1

G(xi,yj)φ(yj) =

N
∑

j=1

Gijφj , i = 1, . . . , N.

Direct implementation of this summation gives an O(N 2) algorithm. For a large class of
kernels, FMM computes the same interactions in O(N) time. FMM is an approximate
algorithm, in the sense that the summation is not computed exactly. The constant in the
complexity estimate is related to the accuracy of the approximation.

We will use the single layer Laplacian kernel to describe FMM. In two dimensions
we have G(x,y) = − 1

2π log ρ, with r = x − y, and ρ = |r|. In the FMM context it is
convenient to use G(x,y) = Re(log(zx − zy)) where zx and zy are complex numbers
corresponding to x (target) and y (source) points on the plane. The idea of FMM is to
encode the potentials of a set of source densities using the multipole expansion and local
expansion at places far away from these sources. Suppose the source densities are sup-
ported in a disk centered at zc with radius r, then for all z outside the disk with radius
R (R > r), we can represent the potential at z from the source densities using a set of
coefficients {ak, 0 ≤ k ≤ p} where

u(z) = a0 log(z − zc) +

p
∑

k=1

ak

(z − zc)k
+ O(

rp

Rp
) (Multipole expansion). (1)

On the other hand, if the source densities are outside the disk with radius R, the potential
at a point z inside the disk with radius r can be represented using a set of coefficients
{ck, 0 ≤ k ≤ p} where

u(z) =

p
∑

k=0

ck(z − zc)
k + O(

rp

Rp
) (Local expansion). (2)

In both expansions, p is usually a small constant determining from the desired accuracy
of the result. The definitions of the coefficients are given in Appendix B.

FMM employs the above representations in a recursive way. The computational do-
main, a box large enough to contain all source and target points, is hierarchically parti-
tioned into a tree structure (a quadtree in 2D or an octtree in 3D). Each node of the tree
corresponds to geometric box (square or cube). The tree is constructed so that the leafs
contain no more than a prespecified number of points. For each box, the potential induced
by the its source densities is represented using multipole expansion, while the potential in-
duced by the sources from non-adjacent boxes is encoded in local expansion. The number

3We use x to refer to target locations and y to refer to source locations, but in general {xi} and {yi} can be
the same set of points.
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of expansion terms p is chosen so that, both expansions give an error which is less than a
prescribed threshold.

Not only these expansions (multipole and local) are efficient, efficient translations be-
tween these expansions are also available which make a O(N) complexity algorithm pos-
sible. In particular, the following types of translations are used:

M2M: The multipole to multipole translation transforms the multipole expansions of a
box’s children to its own multipole expansion.

M2L: The multipole to local translation transforms the multipole expansion of a box to
the local expansion of another non-adjacent box.

L2L: Finally, the local to local translation of the local expansion of a box’s parent to its
own local expansion. See Appendix B for the details of these translations.

M2M
M2L

L2L
  z

M

  z
S

  z
L

  z
T

FIG. 1 The multipole expansion at zS encodes the influence from the source densities (marked with
“+”) to the far field. The local expansion at zT encodes the influence from the far field to the target
points (marked with “∆”). M2M translation transforms between the multipole expansions of the
boxes in adjacent levels (zS to zM ), M2L translation transforms multipole expansion of a box to the
local expansion of non-adjacent boxes (zM to zL), and finally L2L translation transforms between
local expansions between adjacent levels (zL to zT ).

Using the tree structure, FMM consists of two basic steps. During the first step, the
upward pass, the tree is traversed in postorder4 to compute the multipole expansion for
each box. At the leafs, the multipole expansions are built following Equation (1) (this
procedure is also called the source to multipole (S2M) translation). At each non-leaf node,
the multipole expansion is shifted from its children using the M2M translation. In the
second step, the downwards pass, the tree is traversed in a preorder5 to compute the local
expansion. For each box B, the local expansion is the sum of two parts: first, the local-
to-local transformation collects the local expansion of B’s parent (the result condenses
the contribution from the sources in all the boxes which are not adjacent to B’s parent),
and secondly, the multipole-to-local transformation collects the multipole expansions of
the boxes which are the children of the neighbors of B’s parent but are not adjacent to
B. The sum of these two parts encodes all the contribution from the sources in the boxes
which are not adjacent to B itself. At the end, for each box, the far interaction, which is
evaluated using the local expansion at this box (this step is called the local to target (L2T)
translation), is combined with the near interaction evaluated by iterating over all the source
points in the neighborhood of the target box to obtain the potential (see Figure 1).

In three dimensions instead of Laurent series, the far field is represented by spherical
harmonics. There are several implementation details (mostly for the M2L transformation)
that are required for efficient implementation (especially in 3D) and that we do not mention

4The children of a box are visited before the box itself.
5The children of a box are visited after the box itself.
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here. Overall, however, the organization of the computation is the one we just described.
For the derivation of the expansions and a detailed discussion on error bounds and imple-
mentation details see [7] and [13].

3. THE NEW ALGORITHM

Our algorithm is designed to generalize FMM to second-order constant coefficient non-
oscillatory elliptic partial differential equations. Examples of such systems are given in the
Appendix A, where we also list the corresponding fundamental solution kernels. Such
kernels satisfy the underlying PDE everywhere but the singularity location (pole), and
are smooth away from the singularity. All problems under consideration admit a unique
solution for the interior/exterior Dirichlet problems. These are basic properties that we use
in order to develop our FMM approximation.

Our algorithm has the same structure with original FMM method. The differences are
how the densities are represented efficiently and how the M2M, M2L, and L2L transfor-
mations are computed. We first describe these representations and transformations, then
state the complete algorithm and we conclude with a discussion on efficient implementa-
tion. Below we summarize the notation we use in the description of the method; most of
the quantities are defined in Section 3.1.

B a box in the computation tree
NB the near range of the box B in R

d

FB the far range of the box B in R
d

IB
s the set of of indices of source points or densities in B

IB
t the set of indices of target points or potentials in B

yB,u the upward equivalent surface of B
φB,u the upward equivalent density of B
xB,u the upward check surface of B
uB,u the upward check potential of B

yB,d the downward equivalent surface of B
φB,d the downward equivalent density of B
xB,d the downward check surface of B
uB,d the downward check potential of B
p the degree of discretization for equivalent densities
s the maximum number of source (or target) points allowed in a leaf box
N the total number of source and target points
L the depth of the computation tree
M the total number of boxes in the computation tree

3.1. Density translations

Given a set of N points, we define the computational domain to a box large enough
to contain all points. Then we construct the hierarchical tree (quadtree in 2D and octtree
in 3D) so that each box contains no more than s points (s is a prescribed number). We
assume that some points are labeled as source and others as targets. Given a box 6 B in the
computation tree, we use IB

s and IB
t to denote the index sets of the source and target points

in B respectively. Sometimes, we also use IR
s and IR

t to denote these index sets in a region
6A box is a square in 2D and a cube in 3D
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R. The source densities {φi, i ∈ IB
s } at the source locations {yi, i ∈ IB

s } are given, and
we want to evaluate the potential {ui, i ∈ IB

t } at the target locations {xi, i ∈ IB
t }. If B is

a box centered at c and has side length 2r, then the box centered at c with side length 6r is
called the near range of B and is denoted by NB . R

d\NB is called the far range and is
denoted by FB . Note that in our definition, B is a part of NB .

Equivalent densities. We represent the potential in FB from the source densities
{φi, i ∈ IB

s } in B as the potential from a density distribution φB,u supported at prescribed
locations yB,u in NB (Figure 2). We call φB,u the upward equivalent density and yB,u

the upward equivalent surface. Results from potential theory put two restrictions on the
positions of yB,u (see [18], chapter 6). Firstly, to guarantee the smoothness of the potential
produced by φB,u, its support yB,u should not overlap with FB . Secondly, to guarantee
that φB,u is “powerful” enough to represent the potential produced by any source distribu-
tion in B, yB,u needs to enclose B. Therefore, in order to ensure the existence of φB,u,
yB,u is required to lie between B and FB . We use a circle in 2D and a sphere or cube in
3D for reasons explained later.

Since the potentials induced by the source densities and the upward equivalent density
both satisfy the underlying second order linear elliptic PDE, due to the uniqueness result
for the exterior Dirichlet problems, the two potentials are guaranteed to be equal in FB if
we can match them at the boundary of FB or any surface between FB and yB,u. We call
this surface the upward check surface and denoted it xB,u). We call the potential computed
on this surface the upward check potential and denote it by uB,u. These surfaces are also
chosen to be circle in 2D, a spheres or cubes in 3D. The potential φB,u should satisfy the
following equation for any x ∈ xB,u:

∫

yB,u

G(x,y)φB,u(y) dy =
∑

i∈IB
s

G(x,yi)φi. (3)

Similarly, we represent the potential in B from the source densities in FB as the po-
tential induced by a density distribution φB,d defined at prescribed location yB,d in NB

(Figure 2). We call φB,d the downward equivalent density and yB,d the downward equiva-
lent surface. To ensure the existence of φB,d, yB,d needs to be located between FB and B.
Since the potentials induced by both densities satisfy the underlying second order elliptic
PDE, using the uniqueness result of the interior Dirichlet problem of this PDE, we only
need to match the potentials on a surface (denoted by xB,d) between B and yB,d. We call
this surface downward check surface (denoted by uB,d) and the matched potential down-
ward check potential usually choose yB,d and xB,d both to be circles in 2D and spheres or
cubes in 3D. The potential yB,d satisfies the following equation for any x ∈ xB,d:

∫

yB,d

G(x,y)φB,d(y) dy =
∑

i∈IFB
s

G(x,yi)φi. (4)

In general inverting the integral equations (3) and (4) for a general right-hand side is an
ill-conditioned problem since it is an ill-posed infinite dimensional problem. In Section 4
we explain why we still can solve these equations for this specific choice of right-hand
sides.

M2M translation. For every leaf box B in the computation tree, the computation
of the upward equivalent density φB,u from the source densities uses equation (3). The
procedure of M2M translation is similar (Figure 3). To translate the upward equivalent
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(1)

(2)

(1)

(2)

upward / downward equivalent surface
upward / downward check surface
source points

FIG. 2 The equivalent/check surfaces in 2D. Left: Given the potential generated by the source
densities inside a box located at the points marked with “+”, we represent it by using the upward
equivalent density located at the upward equivalent surface. The equivalent surface is shown as the
solid circle enclosing the box. The upward check potentials induced by the sources and the upward
equivalent density are matched at the upward check surface (the dashed circle). Right: To represent
the potential in the box generated by the source in the far range, we use the downward equivalent
density located at the downward equivalent surface. The downward equivalent potentials induced by
both sources are matched at the upward check surface. In both plots, the discretization points of the
equivalent and check surfaces are equally spaced and marked with “•” and “◦” respectively. For both
upward or downward steps, the computation of the equivalent density includes two steps shown by
arrows in each plot: (1) the evaluation of the check potential using the original source, and (2) the
inversion of the integral equation to obtain the equivalent density.

density from a box A to its parent box B, we solve the following equation for φB,u for all
x ∈ xB,u

M2M:
∫

yB,u

G(x,y)φB,u(y) dy =

∫

yA,u

G(x,y)φA,u(y) dy or φB,u = UφA,u,

(5)
where U denotes the M2M translation operator. To ensure the existence of φB,u for B,
yB,u must enclose yA,u for any of its children A.

M2L translation. Once the upward equivalent density has been computed for each
box, M2L translation computes the downward equivalent density (Figure 3). Suppose A is
a box in FB . The M2L translation is similar to equation (4), and we solve the following
equation to find φB,d: for all x ∈ xB,d

M2L:
∫

yB,d

G(x,y)φB,d(y) dy =

∫

yA,u

G(x,y)φA,u(y) dy or φB,d = TφA,u,

(6)
where T denotes the M2L translation operator. To ensure the existence of φB,d, yB,d must
be disjoint from yA,u for all A in FB .

L2L translation. The L2L translation computes the downward equivalent density of
a box B from that of its parent A (Figure 3). The procedure is again similar to equation
(4). For all x ∈ xB,d, the potential φB,d satisfies

L2L:
∫

yB,d

G(x,y)φB,d(y) dy =

∫

yA,d

G(x,y)φA,d(y) dy or φB,d = DφA,d, (7)
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where D denotes the L2L translation operator. To ensure the existence of φB,d, yB,d must
lie in yA,d.

(1)

(2)

(1)
(2)

(1)

(2)

upward / downward equivalent surface
upward / downward check surface

FIG. 3 Three translations in 2D. Left: M2M translation. To compute the upward equivalent den-
sity of the large square, we evaluate the (upward check) potential at the dashed circle using its child
box’s upward equivalent density at the small solid circle (this operation is marked with arrow (1)),
and invert the integral equation to get its upward equivalent density at the large solid circle (marked
with arrow (2)). Middle: M2L translation transforms the upward equivalent density of the left box
(surrounded by one circle) to the downward equivalent density of the right box (surrounded by two
circles). We first evaluate the downward check potential at the dashed circle using the upward equiv-
alent density (located at the small solid circle) (marked with (1)), and then invert the equation to
obtain the downward equivalent density at the downward equivalent surface — the large solid circle
(marked with (2)). Right: L2L translation transforms the downward equivalent density of the large
box to its child — the the small box.
In all three figures, the discretization points for the equivalent surface are marked with “•” and the
ones for check surface are marked with “◦”.

Equations (5), (6) and (7) corresponding to M2M, M2L and L2L translations are all
ill-conditioned for a general right-hand side. However, in the special case of right-hand
sides that we use the equations happen to be well-conditioned. (see Section 4).

Summary. We have described two density representations and three translations used
to convert between these equivalent densities. The two equivalent densities correspond to
the multipole and local expansions in FMM, while the three translations replace the three
transformations in FMM.

In order to guarantee the existence of the equivalent densities the equivalent and check
surfaces have to satisfy certain restrictions. We summarize them as follows: for each box
B
• yB,u and xB,u lie between B and FB ; xB,u encloses yB,u;
• yB,d and xB,d lie between B and FB ; yB,d encloses xB,d;
• yB,u encloses yA,u for any descendant box A,
• yB,u is disjoint from yA,d for all A in FB ,
• yB,d lies inside yA,d, where A is B’s parent.

3.2. Discretization

Equations (3), (5), (6), and (7) need to be discretized. In our implementation we use the
Nyström’s discretization. Alternatively, Galerkin or collocation methods could be used.
In 2D we choose circular equivalent and check surfaces. We use the trapezoidal rule to
discretize the integral equations; in this manner we obtain super-algebraically convergent
quadratures. In 3D this is no longer possible: to the best of our knowledge, there is no
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simple quadrature rules for functions defined on spheres that converge super-algebraically.
Instead, we use cubes as the equivalent and check surfaces (Figure 4 and 5), and construct
quadratures of fixed order on the faces of the cubes. In Section 3.4 we explain how this
approach facilitates fast M2L translations, and in Section 5 we show that the accuracy in
3D is not too different from the 2D case.

Surface discretization, 2D case. For a box B centered at c with side length 2r, all the
related surfaces are circles centered at c. The upward equivalent surface yB,u has radius√

2r + ε for some small number ε (The correction ε is introduced so that yB,u do not
overlap with the sources in B). The upward check surface xB,u has radius (4−

√
2)r − ε.

The downward equivalent surface yB,d has radius (4 −
√

2)r − ε. Finally, the downward
check surface xB,d has radius

√
2r + ε (Figure 2 and 3). All circles are discretized with

p equally spaced quadrature points with equal quadrature weights. This simple rule is
known to have super-algebraic convergence. The accuracy of our method is determined by
the choice of p. Note that our choice of the surfaces satisfies all the restrictions at the end
of Section 3.1. We could have chosen the upward/downward check surface to be identical
with the upward/downward equivalent surface. However in this case we would need more
complex quadrature rules that can be used to integrate singular kernels.

Surface discretization, 3D case. For a box B centered at c with side length 2r, all the
related surfaces are the boundaries of cubes centered at c. The upward equivalent surface
yB,u is the boundary of a box with side length 2r + ε. The upward check surface xB,u is
the boundary of a box with side length 6r − ε. The downward equivalent surface yB,d is
the same as xB,u. Finally, the downward check surface xB,d is the same as yB,u (Figure
4 and 5). For every surface, the quadrature points are distributed evenly on six faces, and
on every face, the points are distributed on an evenly spaced 2D Cartesian grid. Under this
distribution, the quadrature points at the corner of the box are shared by three faces, and
those at the edge of the box are shared by two faces. We can also view these quadrature
points as the boundary nodes of a 3D regular Cartesian grid. Same as 2D case, we use p
to denote the total number of quadrature points on the surface of the box 7. We choose the
quadrature weights in such a way that, on every face, the quadrature rule integrates low
order 2D polynomials exactly.

In our experiments, good quadrature results are observed since all the kernels are
smooth away from the singularity. Note that, by choosing these surfaces in this way, we
meet all the restrictions at the end of Section 3.1.

Discrete Formulation. We use {yB,u
i , 1 ≤ i ≤ p} to represent the discretization

points for yB,u and {φB,u
i , 1 ≤ i ≤ p} the potential at these discretization points. We also

use the same notation convention for the discretization of xB,u, uB,u, yB,d, φB,d, xB,d

and uB,d. Suppose further that wB,u
i and wB,d

i for i = 1, · · · , p are the quadrature weights
for yB,u and yB,d. The discretized versions of equations (3),(5), (6) and (7) can be written
as: For every j = 1, · · · , p

7Note that, in 3D FMM, p is the order of the multipole/local expansion, therefore, p
2 is the actual number of

coefficients used in the expansion
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(1)

(2)

(1)

(2)

upward / downward equivalent surface
upward / downward check surface
source points

FIG. 4 The equivalent/check surfaces in 3D. We show the cross-sections in one direction. Left: the
upward equivalent density. Right: the downward equivalent density. In both plots, the innermost
square stands for the box. The equivalent and check surfaces are both discretized using the boundary
nodes of a regular Cartesian grid. The nodes for the equivalent surfaces are marked with “•” and
those for the check surfaces with “◦”.

(1)

(2)

(1)

(2)
(1)

(2)

upward / downward equivalent surface
upward / downward check surface

FIG. 5 Three translations in 3D. We only show the cross-sections. Left: M2M translation. Middle:
M2L translation. Right: L2L translation. 3D translations are similar to 2D. There are two differences
(1) equivalent/check surfaces are now cubes and (2) discretization points are the boundary nodes of
a regular Cartesian grid. Note that for M2L translation the discretization points of upward equivalent
surface and downward check surface are from the same Cartesian grid, therefore it can be speed up
with FFT (interior nodes are padded with zero density).

S2M:
p
∑

i=1

G(xB,u
j ,yB,u

i )wB,u
i φB,u

i =
∑

i∈IB
s

G(xB,u
j ,yi)φi, (8)

M2M:
p
∑

i=1

G(xB,u
j ,yB,u

i )wB,u
i φB,u

i =

p
∑

i=1

G(xB,u
j ,yA,u

i )wA,u
i φA,u

i , (9)

M2L:
p
∑

i=1

G(xB,d
j ,yB,d

i )wB,d
i φB,d

i =

p
∑

i=1

G(xB,d
j ,yA,u

i )wA,u
i φA,u

i , (10)

L2L:
p
∑

i=1

G(xB,d
j ,yB,d

i )wB,d
i φB,d

i =

p
∑

i=1

G(xB,d
j ,yA,d

i )wA,d
i φA,d

i . (11)

We have mentioned in Section 3.1 that equations (3),(5), (6) and (7) are ill-conditioned.
Regularization schemes are required when we solve the equivalent densities in equations
(8) to (11). Our approach to solving this system is described in detail in Section 4.1.
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3.3. The complete algorithm

In this section we describe the algorithm in detail. First we give some definitions related
to the algorithm. Our definitions closely follow Greengard [11].

Definitions. Neighbors are adjacent boxes in the same level. For uniform distributions
of particles, a uniformly refined grid is used. In this case the neighbor list LB

N of a box
B is the set of all neighbors of B and B itself. For a box away from the boundaries, the
neighbor list contains 9 boxes in 2D or 27 boxes in 3D. These boxes are all contained in
NB .

The interaction list LB
I is the set of children of the neighbors of B’s parent which are

not B’s neighbors. Again, ignoring the boundary effects, this list contains 27 boxes in 2D
and 189 boxes in 3D. These boxes are all contained in FB .

If the particle distribution is uniform a regular grid can be used; however we are pri-
marily interested in non-uniform particle distributions. In this case an adaptively refined
grid is needed. The grid is recursively refined until the number of points in each leaf box is
less than a fixed number s. Following the adaptive FMM algorithm, we give the following
definitions (Figure 6).

For a leaf box B, the U list LB
U contains B itself and the leaf boxes which are adjacent

to B. For a non-leaf box, the U list is empty.
The V list LB

V is the set of the children of the neighbors of the parent of B which are
not adjacent to B.

If B is a leaf box, the W list LB
W consists of all the descendants of B’s neighbors whose

parents are adjacent to B, but who are not adjacent to B themselves. For a non-leaf box,
the W list is empty.

The X list LB
X consists of all boxes A such that B ∈ LC

W .

V

V

V

V

V V

V V

X

V

V

U

U

W W

U
W W

U U

WW

W
WW

WU

B U

X

U

U U

V V

V

V

V

V

FIG. 6 Lists LB
U , LB

V , LB
W and LB

X of box B.

For a leaf box B, LB
U is similar to LB

N in the uniform case, and LB
V is similar to

LB
I . There is also a conjugate relation on these four lists. Suppose that A and B are

two boxes.
• If A is in LB

U , then B is in LA
U .

• If A is in LB
V , then B is in LA

V .
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• If A is in LB
W , then B is in LA

X .
• If A is in LB

X , then B is in LA
W .

For a box B, the U ,V ,W and X lists contain all boxes whose contribution needs to
be processed by B itself. The contribution from more distant boxes are considered by
B’s ancestors. For a box U in LB

U , a direct computation of the interaction of U ’s source
points with B’s target points is necessary since U and B are adjacent. For a box V in LB

V ,
we compute the interaction from V to B using M2L translation since two boxes are well-
separated. For a box W in LB

W , we can evaluate the potential directly at B’s target points
using the upwards equivalent density of W , as B is in the far range of W . Finally, for a
box X in LB

X , since B is still in the near range of X , we represent the potential from X to
B by first evaluating the potential at the downwards check surface at B and then invert it
to the downwards equivalent density φB,d. The pseudocode is given in Algorithm 1.

Algorithm 1 adaptive case
ASSUME

N is the total number of points
s is the maximum number of points allowed in leaf box

STEP 1 TREE CONSTRUCTION
for each box B in preorder traversal of the tree do

subdivide B if B has more than s points in it
end for
for each box B in preorder traversal of the tree do

construct LB
U , LB

V , LB
W and LB

X for B
end for

STEP 2 UPWARDS PASS
for each leaf box B in postorder traversal of the tree do

evaluate uB,u at xB,u using {φi, i ∈ IB
s }

solve for φB,u at yB,u that matches uB,u at xB,u (Equation (3))
end for
for each non-leaf box B in postorder traversal of the tree do

add to uB,u at xB,u the contribution from φC,u for each child C of B
solve for φB,u at yB,u that matches uB,u at xB,u (Equation (5))

end for

STEP 3 DOWNWARDS PASS
for each non-root box B in preorder traversal of the tree do

add to uB,d at xB,d the contribution from φV,u for each box V in LB
V

add to uB,d at xB,d the contribution from {φi, i ∈ IX
s } for each box X in LB

X

add to uB,d at xB,d the contribution from φP,d, where P is the parent of B
solve for φB,d at yB,d that matches uB,d at xB,d (Equation (6) and (7))

end for
for each leaf box B in preorder traversal of the tree do

add to {ui, i ∈ IB
t } the contribution from φB,d

add to {ui, i ∈ IB
t } the contribution from {φi, i ∈ IU

s } for each box U in LB
U

add to {ui, i ∈ IB
t } the contribution from φW,u for each box W in LB

W

end for
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3.4. Implementation Issues

In the previous section we described the overall structure of the algorithms. For clarity
some implementation details were omitted. These details, however, are very important
for an efficient implementation of any FMM method. The most important issues are the
efficient acceleration of the M2L computation, and the overall memory management.

Another aspect of our discussion is the distinction between the setup phase and the
fast summation phase. Many times the particle distributions come from discretization of
integral equations; then, given a fixed spatial particle distribution, the summation is car-
ried many times (i.e. the matrix vector multiplication within an iterative solver such as
GMRES). Many issues that we discuss here are related to efficient multiple evaluations.

Acceleration techniques. In our analysis, we consider only the uniform particle dis-
tribution and uniform grids. While analysis of adaptive refinement is possible it requires
assumptions on particle distribution. The most expensive part of our algorithm is M2L
translations: the evaluation of the contribution to uB,d of a target box B from φA,u where
A is a source box in the interaction list of B.

We denote the size of the interaction list by I . For a single box, the complexity of the
M2L translation is O(I · p2). The M2M and L2L translations are applied only once for
each box and their contribution to the overall algorithm is not as important. Thus, the M2L
part needs to be efficiently implemented since it is one of the two most expensive parts of
the algorithm. (The other bottleneck is the computation of particle-to-particle and dense
interactions).

SVD-based acceleration (2D). In 2D, we use an SVD-based acceleration technique.
We first assemble the matrix M of the interaction from yA,u to xB,d. We observe that
M is numerically low rank. The number of the significant singular values of M is small
compared to the dimension of M , and all the rest singular values are less than the accuracy
required by the pairwise interaction evaluation. Suppose USVT = M is the SVD of M.
We can store only the columns of U and V which correspond to the dominant singular
values of S and discard the rest. This approach gives us an efficient representation of M.
In 3D this approach does not yield satisfactory results. Although M2L operators are low
rank, in practice the cutoff number of equivalent density points in which the compression
is effective, is very large. For this reason an FFT-based approach is preferable.

FFT-based acceleration (3D). Suppose box A is in the interaction list of box B. As
mentioned in Section 3.2, yA,u is chosen to be the boundary of A, and the integration
points are the nodes of a Cartesian grid which are on the boundary of of A. The same is
true for xB,d. Therefore, by assigning zero density to the grid points in the interior of B we
can view the evaluation of the potential uB,d from the density φA,u as a 3D convolution.
This convolution can be evaluated efficiently by FFT. Since we use 3D convolutions, there
are O(p3/2) instead of p densities and targets in each M2L translation. For each box, we
carry out FFT and inverse FFT only once, to obtain a O(p3/2 log(p)) complexity. The
convolution (pointwise vector multiplication) is applied I times for each box, with O(I ·
p3/2) complexity.

In [14] and [7] exponential representation, an intermediate representation between
multipole and local expansions is introduced. Based on this new representation, a diag-
onal transformation is used to transfer between exponential expansions efficiently. This
technique cuts down the complexity to O(I · p), which is asymptotically superior to the
O(I · p3/2) complexity of our FFT based acceleration technique. On the other hand,
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the translation to exponential representation involves the computation of some nontriv-
ial kernel-dependent quadrature weights, while our FFT based technique only involves
potential evaluations and thus is kernel independent.

Storage compression. Since the M2M, M2L and L2L translations are used repeat-
edly, we precompute and store the matrices of these operators. Three storage compression
techniques are used to reduce the memory usage.

Homogeneity. Many common kernels are homogeneous: if we scale the distance
between the source point and the target point by a factor α, the potential at the target is
amplified by a factor αk , where k is a constant. For example, the 3D Laplace single layer
kernel, S(x,y) = 1

4π
1
r , has this property. Since the integration points of the equivalent

densities of a box are fixed relative to the box, the translation operators between different
levels of the computation tree only differ by a constant, usually a power of 2. Hence,
instead of storing the matrices for each level, we store only the matrices for a single level.
Modified kernels, like modified Laplace, modified Stokes and modified Navier equations,
do not have this property.

Symmetry. In 2D the integration points are equally spaced on a circle; in 3D the in-
tegration points of the equivalent densities are chosen to be the nodes of a regular Cartesian
grid. In both cases they are symmetric with respect to the x, y and z axes. For example,
if we flip the positive x direction to be the negative x direction, the positions of the set of
the integration points do not change, even though two integration points might swap their
positions. Consider the M2M translation. Suppose B is the parent box of two different
boxes C1 and C2 and we need to evaluate the potential uB,u at xB,u, the contribution from
φC1,u at yC1,u and from φC2,u at yC2,u. Suppose we already have the matrix of the oper-
ator from yC1,u to xB,u. In order to evaluate the contribution from φC2,u at xB,u, we first
perform a change of coordinates to move yC2,u to yC1,u, and then evaluate the contribu-
tion using the operator from yC1,u to xB,u. The we perform another change of coordinates
to move yC1,u back to yC2,u. The same techniques can be carried out for M2L and L2L
translations.

The above procedure is only correct in the case of a scalar density and a scalar poten-
tial. In the cases with vector or tensor densities and potentials, the change of coordinates
not only affects the support of the density or potential, but it also modifies their values.
Therefore, a rescaling step is necessary after each change of coordinates. A general trans-
lation using symmetry involves five steps: (a) forward change of coordinates, (b) rescaling
of density, (c) translation using stored matrix, (d) rescaling of potential, and (e) backward
change of coordinates. This technique works for all the kernels considered in this paper,
and gives us a compression factor of eight in 3D and four in 2D.

Lazy computation. In the case of nonuniform density distribution, the depth of the
computation tree can be quite large. However, not all the M2L translations are actually
needed in the computation. Therefore, in our algorithm, the matrix representation of a
M2L translation is only computed where it is actually needed by some box. This lazy
computation strategy results in significant savings on memory usage in nonuniform density
distributions, and modified kernels.

Complexity. For simplicity, we give the complexities of our method and FMM in [7]
for 3D uniform particle distribution. The analysis of the adaptive algorithm is essentially
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the same, but more involved and requires assumptions about the particle distribtion. The
number of boxes M is approximately N/s. We use p to denote the number of coefficients.

Step Our method FMM
S2M translation O(Np + Mp2) O(Np)

M2M translation O(Mp2) O(Mp3/2)

M2L translation O(Mp3/2 log p + 189Mp3/2) O(20Mp3/2 + 189Mp)

L2L translation O(Mp2) O(Mp3/2)
L2T translation O(Np) O(Np)

Near Interaction O(27Ns) O(27Ns)

The constants in the complexity estimates are approximately the same for all trans-
lations; 189 is the number of the M2L boxes and 27 is the number of boxes in the near
interaction. In practice, s is of the same order as p. Therefore, the S2M and L2T steps
of both methods are of the same order O(Np). Our M2L translation is also of the same
order as that of [7]. The M2M and L2L steps have higher complexity in our method, due
to the fact that no acceleration techniques are applied in these two steps. However, in all
experiments in Section 5, we observe that this does not slow down our method significantly
since these steps are applied once for each box.

4. ERROR ANALYSIS

Given the direct interaction operator G between a source box B with a well-separated
target box A, both at the refinement level l, we examine the error related to the FMM
approximation Gh. For uniform distributions l ≈ log4(N/s). We describe the factor-
ization of G that corresponds to computing the interaction using our algorithm under the
assumption that all integrations are carried out exactly. We also show why the local inverse
problems are well posed.

FMM factorization. FMM can be viewed as a factorization of the operator G:

uA = GφB = DlDl−1 . . . Dm+1 T Um+1 . . . Ul−1Ul = (Πm+1
i=l Di)T (Πl

i=m+1Ui)φB .
(12)

Here uA =
∫

yu(B) GφB,u dy is the potential at a target box A, φB is the density at the
source box B and m is the level at which M2L translations is applied. s Ui represents the
M2M (upward pass) transformation for a box at level i, Di represents the L2L transforma-
tion (downward pass), and T is M2L (the far field) translation.

It is straightforward to check the validity of (12). The validity of every M2M transfor-
mation operator Ui, given by (5), is based on three facts. First, we can solve a well-posed
inverse problem to construct the equivalent density φB,u that matches the exact potential
on the check surface xc. We discuss the well-posedness of computing φB,u further below
in this section. Second,

∫

yu(B)
GφB,u dy satisfies the underlying PDE everywhere in FB .

Third, we have uniqueness of the Dirichlet problem on the exterior of xc. For example, for
the Laplacian this problem is given by −∆u = 0 in exterior(xc), u = pc on xc, and has
analogous form for the other kernels we consider in this paper. Therefore Ui can be used
to compute φB,u which results in an exact representation of uA. Operators T and Di are
constructed similarly to Ui; the only difference is that they require the uniqueness of the
interior Dirichlet problem.
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Quadrature error. The error associated an approximate integral evaluation:

u− ũ =

∫

G(x,y)φ −
∑

i

wiG(x,yi)φi,

is the quadrature error. In 2D we use the trapezoidal rule on the circle which is super-
algebraically convergent. To our knowledge, in 3D there is no simple integration rule on
the sphere that will result in similar high order accuracy; standard polynomial accuracy
algorithms must be used. This is an important difference with the analytic FMM, which
guarantees exponential convergence (on the number of multipole terms) for the far field
approximation. Nonetheless, in our numerical experiments we did not observe noticeable
differences between the 2D and 3D version.

4.1. M2M and L2L operators

In general, one can show that (5) does have a solution if the right hand side is in L2(xc)
(see [18], chapter 18). However, due to ill-posedness the problem becomes increasingly ill-
conditioned, and spectral cutoff or regularization are necessary in order to obtain a solution.

In our case, however, the problem is well-posed because the right-hand side is in
C∞(xc) and has Fourier coefficients that decay faster than the corresponding singular
values of the integral operator. To illustrate this idea we analyze the single layer potential
for the Laplacian operator. 8

Logarithmic kernel for the 2D Laplacian. Suppose the source surface, the equivalent
density surface and the check surface, on which we match the source and equivalent density
potentials, are concentric circles with radii 0 ≤ ρs ≤ ρe ≤ ρc.

We solve
∫

yu(B) G(x,y)φu(y) dy(x) = uc(x). Standard logarithm expansion and
simple algebraic manipulations yield

log |x − y| = log |x| +
∞
∑

k=−∞,k 6=0

(−1)k

|k|

( |y|
|x|

)|k|

eikθxe−ikθy ,

where θx and θy are the polar coordinate angles of the position vectors x and y respec-
tively. We assume that the source density has zero mean and we drop the log |x| term. The
orthogonality of the trigonometric functions on L2(0, 2π) indicates that the above expres-
sion is a diagonalization of the single layer, and by positive definiteness we can identify its
singular values with the eigenvalues.

Since |x| = ρc ≥ |y| = ρe, the singular values decay exponentially: the problem of
determining φu from uc is not continuous on uc. In fact, based on the SVD decomposition
we can write the inverse as

φu =
1

2πρe

∑

k

|k|
(−1)k

(

ρc

ρe

)|k|

eikθy

∫

γ

e−ikθxuc(θx)ρc dγ,

and small perturbations on the high frequency components of uc get exponentially ampli-
fied. In our problem however, uc is not arbitrary. Here uc is

∫

y(B)
G(x,y)φ(y) dy(x). In

8We could have taken the location of the check points to coincide with the location the equivalent densities.
In this case (5) is a well-posed boundary integral equation. But this approach is kernel-dependent since the limit
boundary values depend on the specific kernel (e.g., double layer has jumps, single layer is continuous).

17



this case φu is given by

φu =
1

2πρe

∑

k

(

ρs

ρe

)|k|

eikθy

∫

γ

e−ikθy ρsφ dγ.

If φ is sufficiently smooth, the modes of φu have exponentially decaying coefficients, and
therefore the problem is well-posed.

For general kernels we can write the above computations using the SVD decomposition
of an integral operator

Geφ
u(γc) = Gsφ(γc), UeSeV

T
e φu = UsSsV

T
s φ

φu = VeS
−1
e UT

e UsSsV
T
s φ, φu = VeS

−1
e SsV

T
s φ.

For analytic kernels the Fourier modes again decay exponentially since ρs < ρe $. Here
we have used UT

e Us = I . This only true for concentric balls; this assumption causes no
loss of generality since we can replace the original source density on a enclosing ball by
solving a well-posed boundary integral equation. We conclude that the mapping from φ to
φu is bounded.

Discretization and regularization. Although the infinite dimensional problem is well-
conditioned, we can not directly invert compact kernels which are discretized by Nyström’s
method [18]. One alternative is to use Nyström’s method with Tikhonov regularization (i.e.
ppenalize the L2 norm of φu). We have combined this approach with spectral cutoff. For
ill-posed problems the penalty parameter is chosen to filter out the noise. In our case
“noise” is floating point error and high frequency aliasing. We have chosen value of the
penalty parameter to be the desired accuracy of the overall computation. This approach
has worked robustly for all the kernels we have considered in this paper.

5. NUMERICAL RESULTS

In this section we present numerical results for our method. First, we examine the
accuracy of the equivalent density approximation. Second, we present results on the overall
accuracy of the method.

5.1. Accuracy on the equivalent density approximation

In this section we present results that indicate that our equivalent density approxima-
tions give good accuracy in both two and three dimensions.

For two and three dimensions we show the results of three kernels: the Laplace single
layer kernel, the modified Stokes double layer kernel and the Navier single layer kernel
(Figure 7 and 8). For each kernel, the left plot is the accuracy of the upward equivalent
density approximation, and the right one is the accuracy of the downward equivalent den-
sity approximation. For the upward equivalent density, we give the error for points in the
exterior of the source box in the region corresponding to the interaction list of the box. For
the downward equivalent density we give the error in the interior of the box. In all plots,
the side length of the box is 2; we calculate the error by taking the maximum norm over a
sphere centered at the center of the box. The abscissa of a plot is the radius of the sphere,
and the ordinate is the logarithm of the error.
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2D case. Figure 7 shows the error of the equivalent density approximation for the 2D
Laplace single layer kernel, the 2D modified Stokes double layer kernel and the 2D Navier
single layer kernel. In all three cases, the source density is located close to one of the box
corners.

Although not reported here, we have generated similar plots for all kernels given in
Section A. All results exhibited similar accuracy. 9

We do not have an analytic error bound like the FMM algorithm for the Laplace equa-
tion. However, Figure 7 shows that our scheme gives comparable accuracy. As discussed
in Section 4 this is due to the fast decay of the far field. For a box B, in the far range
FB , the main contribution to the potential comes from the low frequency part of the den-
sities in B, while the contribution from the high frequency part decays extremely fast. By
using equally spaced points on circles, we can approximate the low frequency part of the
densities with very high accuracy.

3D case. Figure 8 shows the equivalent density approximation errors for the 3D
Laplace single layer kernel, the 3D modified Stokes double layer kernel and the 3D Navier
single layer kernel. In each case, the source density is placed close to one of the box
corners.

5.2. Overall approximation error

In this section we give wall-clock time and memory requirements for several kernels.
All experiments were performed on a Sun Ultra 80 workstation with a 450 MHz CPU. In
3D case, the FFTW package is used for FFT computation. Our code has been implemented
in C++.

In our experiments we assume that the source points and the target points coincide. We
use three sets of density distributions in the cube with range [−1, 1] in each dimension.
The first set is a distribution on a sphere, which is typically nonuniform. The second set is
a uniform distribution of density in a cube. The last set has densities only at one of the box
corners. The objective of this set of points is to check the stability of multiple M2M and
L2L transformations of our method. For all density distributions the densities are chosen
randomly from [0, 1]. The three data sets for the 3D case are shown in Figure 9.

We organize the table in a way similar to [7].
The columns of every table represent the following quantities.

N : the number of points used in computation (we use the same number of source and
target points).

L : the number of levels of the computation tree.

M : the number of boxes in the computation tree.

p : the number of discretization points used in the equivalent density approximations. In
2D examples, we use 16, 24, and 32 points. In 3D examples, we choose the dis-
cretization points to be the boundary nodes of volume Cartesian grids of size 4×4×4,
6×6×6, 8×8×8. These numbers correspond to 56, 152 and 296 points respectively.

s : the maximum number of points allowed in a leaf box of the computation tree.
9In some plots for 2D case, the 32-point error curve has larger error than the 24-point error curve. This

is related to the spectral cutoff: we use a value of about 10e-12 when solving the inverse problem and this
complicates direct comparisons as we increase p.
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Modified double-layer Stokes, λ = 1.
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Single-layer Navier.

FIG. 7 Results of the equivalent density approximation in 2D. Left: the error of the upward equiva-
lent density approximation. Right: the error of the downward equivalent density approximation. The
abscissa of the plots is the radius of the sphere, and the ordinate is the logarithm of the error. The
solid curve is the maximum norm of the potential. The remaining three curves are the maximum
norm error for 16-, 24- and 32-point approximation of the equivalent densities. For modified Stokes,
we tested λ from 1e-3 to 1e+3 and obtained similar error plots. For λ greater than 1e+3, far field
interaction is negligible.

Storage: the memory used to store M2M, M2L, and L2L translations.

Tfmm : the running time of our algorithm.

Tdir : the running time of the direct evaluation. For each table, only the number in the first
line is actually tested, all other numbers are obtained by extrapolation. The error is
computed in relative 2-norm. We randomly select k points x1,x2, · · · ,xk, evaluate
the potential ui using our algorithm and the potential ũi using direct evaluation at
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FIG. 8 Results of the equivalent density approximation in 3D. For each plot, the solid curve gives
the maximum norm of the potential. The rest three curves give the maximum norm error where
the equivalent density is approximated with 56, 152 and 296 points. These numbers correspond to
discretization points that are the boundary nodes of volume Cartesian grids of size 4×4×4, 6×6×6,
8 × 8 × 8 (per box).

these k points. The error is estimated using the formula from [7]:

E =

(

∑k
i=1 |ui − ũi|2
∑k

i=1 |ũi|2

)1/2

,

where k is chosen to be 40 in all experiments.

Below, we report the results on the first two data sets (nonuniform nd uniform distribu-
tion) for five different kernels:

• 2D Laplace single layer kernel (Table 1),
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FIG. 9 Three data sets in 3D: Left: densities distributed on the unit sphere, Middle: densities dis-
tributed uniform in the unit cube, Right: densities distributed at the eight corners of the unit cube.

• 3D Laplace single layer kernel (Table 2),

• 3D Modified Laplace single layer kernel (Table 3),

• 3D Modified Stokes double layer kernel (Table 4),

• 3D Navier single layer kernel (Table 5).

Our results from 2D are quite satisfactory since we can compute interactions between
1.5 million particles in 4 digits of accuracy on less than 7 minutes, as we can see in Table
1. We discuss relative performance of our method in greater detail in in the 3D case since
this is more difficult to implement efficiently. We compare with results from two papers:
the single-layer 3D Laplacian results of Cheng, Greengard, and Rokhlin [7] and modified
single-layer 3D Laplacian results of Greengard and Huang [12].

In the first paper the authors use a 167 MHz Sun workstation and in the second a 440
MHz Sun workstation. As mentioned before we are using a 450 Sun. For the purposes of
comparison, we use the total number of CPU cycles in millions per grid point. We compute
this number as

η =
Tfmm × CPU

N
.

ηa and η are the numbers of cycles per particle for the analytic FMM and and for our
algorithm respectively. This is a only rough estimate that does not take into account the
difference in chip architecture (e.g., memory bus clock), different floating point precision
of the calculations (most calculations in the first paper were performed in single precision,
all our results are in double precision), and different input densities.

First, we compare Table 2 with Tables IV, V, and VI of [7]. For the three digit accuracy
(Table IV) the average ηa is 0.07 for single precision. Our method achieves an η equal
to 0.11 (in double digit accuracy), approximately a factor of 1.5 slower. Similar conclu-
sions hold for the 6-digit accuracy results(Table V), for which the analytic FMM achieves
ηa = 0.15 in single precision, whereas our method achieves η = 0.23 in double precision.
For the modified single layer Laplacian we compare the 6-digit accuracy entries (Table I,
[12]), with Table 3 (uniform distribution in a cube). In this case ηa = 0.3 and η = 0.4,
which is slightly better than 1.5; the actual difference in performance is even less, since
we achieving about one additional digit of accuracy (average error 7× 107 for the analytic
FMM compared an average of 7 × 108 in our case).

Another reason our method is slower might be related to the dense interactions. In order
to save storage we do not precompute them, and we have found that this slows down our
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N L M p s Storage (Mb) Tfmm (sec) Tdir (sec) Error
32768 10 2989 16 40 1.52e+00 1.53e+00 1.71e+02 2.80e-06

131072 12 11857 16 40 1.91e+00 5.85e+00 2.74e+03 1.24e-06
524288 14 47241 16 40 2.30e+00 2.36e+01 4.39e+04 1.51e-06

2097152 16 190601 16 40 2.69e+00 9.32e+01 7.02e+05 2.80e-06
32768 9 1597 24 60 2.97e+00 1.92e+00 1.71e+02 2.68e-08

131072 12 6505 24 60 3.94e+00 7.47e+00 2.74e+03 2.84e-08
524288 14 26073 24 60 5.10e+00 2.97e+01 4.39e+04 3.36e-08

2097152 16 104129 24 60 5.98e+00 1.24e+02 7.02e+05 2.24e-08
32768 9 1493 32 80 5.28e+00 2.23e+00 1.71e+02 1.89e-10

131072 11 5953 32 80 6.84e+00 1.03e+01 2.74e+03 1.77e-10
524288 13 23825 32 80 8.41e+00 4.04e+01 4.39e+04 7.05e-10

2097152 15 95425 32 80 9.97e+00 1.49e+02 7.02e+05 6.03e-10

The particles are uniformly distributed on the perimeter of a circle.

N L M p s Storage (Mb) Tfmm (sec) Tdir (sec) Error
32768 8 2837 16 40 1.14e+00 1.45e+00 1.71e+02 5.72e-07

131072 10 12245 16 40 1.53e+00 5.26e+00 2.74e+03 3.71e-07
524288 12 47829 16 40 1.92e+00 2.16e+01 4.39e+04 4.46e-07

2097152 14 189717 16 40 2.31e+00 8.89e+01 7.02e+05 5.24e-07
32768 7 1557 24 60 2.13e+00 1.78e+00 1.71e+02 2.05e-09

131072 9 5909 24 60 3.01e+00 7.21e+00 2.74e+03 2.50e-09
524288 11 25557 24 60 3.88e+00 2.75e+01 4.39e+04 1.64e-09

2097152 14 104085 24 60 4.85e+00 1.07e+02 7.02e+05 1.48e-09
32768 7 1557 32 80 3.78e+00 2.12e+00 1.71e+02 2.83e-11

131072 9 5269 32 80 5.34e+00 8.81e+00 2.74e+03 2.87e-11
524288 11 23893 32 80 6.91e+00 3.54e+01 4.39e+04 2.17e-11

2097152 13 95253 32 80 8.47e+00 1.34e+02 7.02e+05 6.50e-11

The particles are uniformly distributed inside a cube.

TABLE 1
Performance for particles interacting via the single-layer Laplacian in 2D.

method by a factor of 2 to 4. The most time consuming part is computing the 1/
√

(r · r)
term, which we have found impossible to optimize either with lookup tables or with special
vector routines available from most vendors. For large problems that require several sum-
mations for the same particle partitions further running time improvements can be achieved
by precomputing and storing all dense interactions. The memory requirements in this case
can be substantial.

In conclusion, it appears that our method compares reasonably well with the analytic
FMM by being a factor of 1.5 or less slower. On the other hand extending our code from
Laplacian to the modified Laplacian was very easy, we just had to implement a different
kernel evaluation. Inspecting the results for the other kernels we can confirm the O(N)
complexity of our method and the convergence to the exact sum as we increase the number
of quadrature points.

In all experiments, we store only the linear operators for M2M, M2L and L2L transla-
tions, since these operators are applied repetitively in a single pairwise interaction evalu-
ation. The dense interactions between adjacent boxes are not stored. The storage number
reported in all tables considers only the memory used by M2M, M2L and L2L operators,
while the storage used to store the densities and potentials (which scales linearly with re-
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N L M p s Storage (Mb) Tfmm (sec) Tdir (sec) Error
24576 6 1377 56 60 1.72e+00 5.72e+00 9.74e+01 2.12e-05
98304 7 5049 56 60 1.72e+00 2.38e+01 1.56e+03 3.21e-05

393216 8 19065 56 60 1.72e+00 9.51e+01 2.49e+04 6.08e-05
1572864 9 76185 56 60 1.72e+00 3.82e+02 3.99e+05 6.03e-05

24576 5 585 152 150 5.90e+00 1.16e+01 9.74e+01 3.34e-07
98304 6 2289 152 150 5.90e+00 4.76e+01 1.56e+03 5.86e-08

393216 7 11193 152 150 5.90e+00 2.18e+02 2.49e+04 2.45e-07
1572864 9 44145 152 150 5.90e+00 8.35e+02 3.99e+05 3.08e-07

24576 4 273 296 250 1.47e+01 1.81e+01 9.74e+01 1.59e-09
98304 6 1449 296 250 1.47e+01 8.15e+01 1.56e+03 1.40e-09

393216 7 5073 296 250 1.47e+01 3.41e+02 2.49e+04 1.10e-09
1572864 8 19161 296 250 1.47e+01 1.38e+03 3.99e+05 2.81e-09

The particles are distributed on the surface of a sphere.

N L M p s Storage (Mb) Tfmm (sec) Tdir (sec) Error
24576 4 585 56 60 1.72e+00 6.40e+00 9.74e+01 6.64e-06
98304 5 3657 56 60 1.72e+00 3.11e+01 1.56e+03 1.27e-05

393216 7 28233 56 60 1.72e+00 1.30e+02 2.49e+04 5.00e-05
1572864 8 88137 56 60 1.72e+00 4.08e+02 3.99e+05 5.84e-05

24576 4 585 152 150 5.90e+00 1.60e+01 9.74e+01 1.54e-08
98304 5 3657 152 150 5.90e+00 9.28e+01 1.56e+03 4.70e-08

393216 6 14409 152 150 5.90e+00 3.18e+02 2.49e+04 1.10e-07
1572864 7 37449 152 150 5.90e+00 8.47e+02 3.99e+05 2.13e-07

24576 4 585 296 250 1.47e+01 3.65e+01 9.74e+01 5.25e-10
98304 4 585 296 250 1.47e+01 1.11e+02 1.56e+03 4.57e-10

393216 5 3657 296 250 1.47e+01 4.31e+02 2.49e+04 6.85e-10
1572864 6 17481 296 250 1.47e+01 1.46e+03 3.99e+05 1.46e-09

The particles are uniformly distributed inside a cube.

TABLE 2
Performance for particles interacting via the single layer Laplacian in 3D.

spect to the number of points and boxes) is not included. This explains why for the results
of homogeneous kernels (Tables 2 and 5), the storage numbers remain small and do not
scale with the number of points and the number of levels.

Stability of M2M and L2L. Here we test the stability of the M2M and L2L translations
of our algorithm using the last data set which only has density distribution at the corners
of the cube. Table 6 shows the result on this data set with 2D Laplace single layer kernel.
Table 7 reports the errors with 3D Laplace single layer kernel.

6. CONCLUSIONS AND FUTURE WORK

We have presented a new kernel-independent fast multipole method, which generalizes
FMM to a broad class elliptic kernels while attaining an algorithmic complexity (including
constants) which is on par with the analytic FMM. Here we summarize the main features
of our algorithm.

• Our algorithm has the same structure as the original adaptive FMM method.
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N L M p s Storage (Mb) Tfmm (sec) Tdir (sec) Error
6144 5 441 56 60 4.55e+00 1.97e+00 1.15e+01 3.55e-05

24576 6 1377 56 60 6.27e+00 8.24e+00 1.83e+02 7.71e-05
98304 7 5049 56 60 8.29e+00 3.33e+01 2.94e+03 3.11e-05

393216 8 19065 56 60 1.00e+01 1.28e+02 4.70e+04 8.22e-05
6144 4 225 152 150 1.08e+01 4.38e+00 1.15e+01 2.48e-07

24576 5 585 152 150 1.57e+01 1.99e+01 1.83e+02 9.55e-08
98304 6 2289 152 150 2.26e+01 7.58e+01 2.94e+03 3.18e-07

393216 7 11193 152 150 2.85e+01 3.39e+02 4.70e+04 3.63e-07
6144 3 57 296 250 1.18e+01 6.90e+00 1.15e+01 2.50e-09

24576 4 273 296 250 2.64e+01 3.00e+01 1.83e+02 1.88e-09
98304 6 1449 296 250 5.30e+01 1.23e+02 2.94e+03 1.96e-09

393216 7 5073 296 250 6.99e+01 5.35e+02 4.70e+04 3.71e-09

The particles are distributed on the surface of a sphere.

N L M p s Storage (Mb) Tfmm (sec) Tdir (sec) Error
6144 4 585 56 60 3.35e+00 3.72e+00 1.15e+01 5.28e-06

24576 4 585 56 60 3.35e+00 1.06e+01 1.83e+02 2.29e-05
98304 5 3657 56 60 5.07e+00 4.25e+01 2.94e+03 3.98e-05

393216 7 28233 56 60 8.14e+00 1.64e+02 4.70e+04 4.88e-05
6144 3 73 152 150 5.38e+00 4.09e+00 1.15e+01 2.10e-08

24576 4 585 152 150 1.13e+01 2.11e+01 1.83e+02 9.86e-08
98304 5 3657 152 150 1.72e+01 1.08e+02 2.94e+03 7.23e-08

393216 6 14409 152 150 2.31e+01 4.14e+02 4.70e+04 4.57e-08
6144 3 73 296 250 1.29e+01 5.87e+00 1.15e+01 7.15e-10

24576 4 585 296 250 2.75e+01 4.39e+01 1.83e+02 6.02e-10
98304 4 585 296 250 2.75e+01 1.98e+02 2.94e+03 4.28e-10

393216 5 3657 296 250 4.22e+01 6.65e+02 4.70e+04 8.24e-10

The particles are uniformly distributed in a cube.

TABLE 3
Performance of our method for particles interacting via the modified single layer Laplacian in 3D.

• We have demonstrated that the method performs well for single and double lay-
ers, the Laplacian, the modified Laplacian, the Stokes, the modified Stokes, and the
Navier kernels in two and three dimensions. By providing just a kernel evaluation
routine our method is immediately applicable, as long as the kernel is associated
with a non-oscillatory second-order elliptic PDEs.

• Comparisons of the running times between our method and the best known FMM
implementations, and for same accuracy levels, indicate that our approach was suc-
cessful in efficiently extending FMM to other kernels.

• To our knowledge, our results are the first fast summation computations for the mod-
ified Stokes and Navier operators.

• Our method is also directly applicable for derivatives of the kernels we have pre-
sented here. Indeed, we have tested our method on the hypersingular kernels result-
ing from taking the stresses of the double layer Stokes and Navier equations.

• The M2L translations in our method are suboptimal. In 3D, the analytic exponential
translations require O(p), whereas our method requires O(p3/2), with p being the
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N L M p s Storage (Mb) Tfmm (sec) Tdir (sec) Error
6144 5 441 56 60 8.18e+01 2.65e+01 1.04e+02 9.56e-04

24576 6 1377 56 60 1.13e+02 1.02e+02 1.66e+03 1.45e-03
98304 7 5049 56 60 1.49e+02 3.91e+02 2.66e+04 1.47e-03
6144 4 225 152 150 2.00e+02 7.59e+01 1.04e+02 5.66e-06

24576 5 585 152 150 2.92e+02 2.39e+02 1.66e+03 6.90e-06
98304 6 2289 152 150 4.20e+02 1.01e+03 2.66e+04 1.06e-05
6144 3 57 296 250 2.16e+02 6.44e+01 1.04e+02 8.77e-08

24576 4 273 296 250 4.89e+02 3.59e+02 1.66e+03 1.67e-07
98304 6 1449 296 250 9.87e+02 1.69e+03 2.66e+04 1.88e-07

The particles are distributed on the surface of a sphere.

N L M p s Storage (Mb) Tfmm (sec) Tdir (sec) Error
6144 4 585 56 60 6.03e+01 6.97e+01 1.04e+02 5.32e-04

24576 4 585 56 60 6.03e+01 1.23e+02 1.66e+03 5.01e-04
98304 5 3657 56 60 9.13e+01 6.09e+02 2.66e+04 7.00e-04
6144 3 73 152 150 9.87e+01 4.35e+01 1.04e+02 1.77e-06

24576 4 585 152 150 2.09e+02 3.57e+02 1.66e+03 2.96e-06
98304 5 3657 152 150 3.19e+02 2.04e+03 2.66e+04 9.32e-06
6144 3 73 296 250 2.36e+02 7.63e+01 1.04e+02 3.71e-08

24576 4 585 296 250 5.09e+02 8.28e+02 1.66e+03 8.02e-08
98304 4 585 296 250 5.09e+02 2.01e+03 2.66e+04 9.88e-08

The particles are uniformly distributed in a cube.

TABLE 4
Performance of our method for particles interacting via the modified double layer Stokes kernel in

3D.

number of moments in FMM, and the number of discretization points in our method.

• Our method does not have the precise error estimates that come with the original
FMM; derivations in Section 4 can be extended to obtain such estimates, but this is
non-trivial. Unlike FMM our technique introduces error associated with M2M and
L2L transformations.

In this paper we have focused on second order constant coefficient PDEs with non-
oscillatory solutions. However, our method is not restricted to such systems. It should be
straightforward to generalize it to higher order systems like the biharmonic equation. In
such cases the Dirichlet problem involves first and second derivatives of the underlying
field. We can either differentiate the kernel to obtain the derivatives or use a set of two
check-point surfaces. We plan to explore this approach in the future.

Another class of problems is related to second order PDEs with oscillatory solutions
or Helmholtz-type problems. For low frequencies we have performed preliminary tests
(on the M2M and L2L transformations) that indicate that our method works as is. An
implementation for this class of problems, adding the kernels and support for complex
numbers, is under way.

Finally let us mention that our method has been fully parallelized using MPI. Algorith-
mic details and numerical results will be presented in a future paper.

APPENDIX A: KERNELS
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N L M p s Storage (Mb) Tfmm (sec) Tdir (sec) Error
6144 5 441 56 60 1.55e+01 1.29e+01 5.91e+01 8.54e-05

24576 6 1377 56 60 1.55e+01 4.93e+01 9.46e+02 6.71e-05
98304 7 5049 56 60 1.55e+01 1.98e+02 1.51e+04 6.32e-05
6144 4 225 152 150 5.50e+01 3.29e+01 5.91e+01 1.07e-06

24576 5 585 152 150 5.50e+01 1.10e+02 9.46e+02 1.66e-06
98304 6 2289 152 150 5.50e+01 4.59e+02 1.51e+04 1.02e-06
6144 3 57 296 250 1.08e+02 3.28e+01 5.91e+01 7.30e-09

24576 4 273 296 250 1.36e+02 1.82e+02 9.46e+02 8.51e-09
98304 6 1449 296 250 1.36e+02 8.51e+02 1.51e+04 8.73e-09

The particles are distributed on the surface of a sphere.

N L M p s Storage (Mb) Tfmm (sec) Tdir (sec) Error
6144 4 585 56 60 1.55e+01 3.41e+01 5.91e+01 3.70e-05

24576 4 585 56 60 1.55e+01 6.65e+01 9.46e+02 4.82e-05
98304 5 3657 56 60 1.55e+01 3.13e+02 1.51e+04 6.68e-05
6144 3 73 152 150 4.94e+01 2.19e+01 5.91e+01 1.81e-07

24576 4 585 152 150 5.50e+01 1.62e+02 9.46e+02 3.50e-07
98304 5 3657 152 150 5.50e+01 9.48e+02 1.51e+04 4.86e-07
6144 3 73 296 250 1.18e+02 3.78e+01 5.91e+01 2.56e-09

24576 4 585 296 250 1.36e+02 4.22e+02 9.46e+02 3.58e-09
98304 4 585 296 250 1.36e+02 1.00e+03 1.51e+04 4.39e-09

The particles are uniformly distributed in a cube.

TABLE 5
Performance of our method for particles interacting via the single layer Navier kernel in 3D.

N L M p s Storage (Mb) Tfmm (sec) Tdir (sec) Error
524288 18 47449 16 40 2.17e+00 2.17e+01 4.39e+04 4.46e-06
524288 18 26041 24 60 4.54e+00 2.63e+01 4.39e+04 1.20e-08
524288 17 23833 32 80 7.91e+00 3.50e+01 4.39e+04 1.04e-10

TABLE 6
Performance of our method for a the 2D single layer Laplacian. In this experiment the particles are
distributed over the boundaries of four circles. These circles are quite small compared the size of

the (square) computational domain, and located near to the four corners of the domain. In this way
the tree is “forced” to have several levels (up to 18). We use this experiment to test the numerical

stability of our M2M and L2L translations.

In this section, we give a summary of the elliptic partial differential equations (PDE)
studied in this paper and their relevant kernels. In the formulas below, y is the location of
the singularity, x is the location the evaluation point, n a unit vector (usually the normal
direction at y), r = x − y and r = |r|, denoting the length or r. S stands for single layer
and D for double layer.

Laplace Equation.
−∆u = 0,
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N L M p s Storage (Mb) Tfmm (sec) Tdir (sec) Error
196608 12 11057 56 60 1.72e+00 4.58e+01 6.23e+03 1.75e-05
196608 11 4721 152 150 5.90e+00 1.04e+02 6.23e+03 1.20e-07
196608 10 2225 296 250 1.47e+01 1.50e+02 6.23e+03 1.53e-09

TABLE 7
Performance of our method for a the 3D single layer Laplacian. In this experiment the particles are
distributed over the boundaries of eight spheres. These spheres are quite small compared the size of

the (cubic) computational domain, and located near to the eight corners of the box.
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Modified Laplace Equation.
αu − ∆u = 0,
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Stokes Equation (Incompressible creeping flows).

−µ∆u + ∇p = 0, Div u = 0
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Modified Stokes Equation (Unsteady incompressible creeping flows).

αu − µ∆u + ∇p = 0, Div u = 0

S(x,y) =
1

µ
(GI + H(r ⊗ r)) ,
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Navier Equation (Elastostatics).

−µ∆u − µ

1− 2ν
∇ · Div u = 0
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(

3−4ν
16π(1−ν)

1
r + 1

16π(1−ν)
(r⊗r)

r3

)

(3D)
,

D(x,y) =







1−2ν
4π(1−ν)

(

− ((r·n)I+n⊗r)
r2 + (r⊗n)

r2 − 2
1−2ν

(r·n)(r⊗r)
r4

)

(2D)
1−2ν

8π(1−ν)

(

− ((r·n)I+n⊗r)
r3 + (r⊗n)

r3 − 3
1−2ν

(r·n)(r⊗r)
r5

)

(3D)
.

Modified Navier Equation (Elastodynamics).

αu − µ∆u − µ

1 − 2ν
∇ · Div u = 0

S(x,y) =
1

µ
(GI + H(r ⊗ r)) ,

D(x,y) = A ((r · n)I + n⊗ r) + B(r ⊗ n) + C(r · n)(r ⊗ r),

where
G = η2f − frr + (β + 1 − d)

fr

r
,

H = β
frr

r2
− β

fr

r3
,

A = −1

r
frrr +

2β + 1 − d

r2
frr + (

η2

r
− 2β + 1 − d

r3
)fr,

B =
γ(β − 1)

r
frrr +

2β + γ(β − 1)(d − 1)

r2
frr + (

γη2

r
− 2β + γ(β − 1)(d − 1)

r3
)fr,

C =
2β

r3
frrr −

6β

r4
frr +

6β

r5
fr,

and

f =

{

1
2π(λ2−η2) (k0(ηr) − k0(λr)) (2D)

1
4π(λ2−η2) (

1
r e−ηr − 1

r e−λr) (3D)
,

λ =

√

α

µ
, η =

√

1 − 2ν

2(1− ν)
· α

µ
, β =

1

2(1 − ν)
, γ =

2ν

1 − 2ν
.

APPENDIX B: COEFFICIENTS OF FAST MULTIPOLE METHOD

We give the coefficients of the FMM for 2D single layer Laplacian. Figure 1 illustrates
the relative positions of the symbols used in the following equations.
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Multipole expansion. Suppose the m source densities {φj} located at {zj}, with |zj−
zC | < r, then for any |z − zC | > R, the induced potential u(z) can be approximated by:

u(z) = a0 log(z − zC) +

p
∑

k=1

ak

(z − zC)k
+ O(

rp

Rp
) (13)

where {ak, 0 ≤ k ≤ p} satisfies

a0 =

m
∑

j=1

φj and ak =

m
∑

j=1

−φi(zi − zC)k

k
.

Local expansion. Suppose the m source densities {φj} located at {zj}, with |zj −
zC | > R, then for any |z − zC | < r, the induced potential u(z) can be approximated by:

u(z) =

p
∑

k=0

ck(z − zC)k + O(
rp

Rp
) (14)

where {ck, 0 ≤ k ≤ p} satisfies

c0 =

m
∑

j=1

φj log(zC − zj) and cl =

m
∑

j=1

−φj

l · (zj − zC)l
.

M2M translation. Suppose zC is the center of a box and zM is the center of its parent.
Suppose further {ak} is the multipole expansion at zC , then the multipole expansion at zM

can be written as:

u(z) = b0 log(z − zM ) +

p
∑

l=1

bl

(z − zM )l
+ O(ε), (15)

where {bk, 0 ≤ k ≤ p} satisfies

b0 = a0 and bl = −a0(zC − zM )l

l
+

l
∑

k=1

ak(zC − zM )l−k

(

l − 1

k − 1

)

.

M2L translation. Suppose zM and zL are the centers of two non-adjacent boxes on
the same level, {bk} is multipole expansion at zM . Then the local exp-anion at zL trans-
formed from {bk} is:

u(z) =

p
∑

l=0

cl(z − zL)l + O(ε), (16)

where {ck, 0 ≤ k ≤ p} satisfies

c0 = b0 log(zL − zM ) +

p
∑

k=1

bk

(zM − zL)k
(−1)k

cl = − b0

l · (zM − zL)l
+

1

(zM − zL)l

p
∑

k=1

bk

(zM − zL)k

(

l + k − 1

k − 1

)

(−1)k.
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L2L translation. Suppose zT is the center of a box and zL the center of its parent.
Suppose further {cl} is the local expansion at zL, then the local expansion at zT can be
written as

u(z) =

p
∑

l=0

dl(z − zT )l + O(ε), (17)

where {dk, 0 ≤ k ≤ p} satisfies

dl =

p
∑

k=l

ck

(

k

l

)

(zT − zL)(k−l).
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