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Abstract. Balancing Neumann-Neumann methods are extented to mixed formulations of the linear
elasticity system with discontinuous coeÆcients, discretized with mixed �nite or spectral elements
with discontinuous pressures. These domain decomposition methods implicitly eliminate the degrees
of freedom associated with the interior of each subdomain and solve iteratively the resulting saddle
point Schur complement using a hybrid preconditioner based on a coarse mixed elasticity problem and
local mixed elasticity problems with natural and essential boundary conditions. A polylogarithmic
bound in the local number of degrees of freedom is proven for the condition number of the precon-
ditioned operator in the constant coeÆcient case. Parallel and serial numerical experiments con�rm
the theoretical results, indicate that they still hold for systems with discontinuous coeÆcients, and
show that our algorithm is scalable, parallel, and robust with respect to material heterogeneities.
The results on heterogeneous general problems are also supported in part by our theory.
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1. Introduction. The purpose of this paper is to introduce and analyze a new
domain decomposition method for the symmetric, inde�nite linear systems of equa-
tions that arise when the equations of linear elasticity for almost incompressible and
heterogeneous materials are discretized by mixed �nite elements. Many problems in
elasticity can successfully be approximated by using displacement variables only but
such models su�er increasingly from locking when we approach the incompressible
limit. In such situations, the introduction of an additional pressure variable and a
mixed �nite element method is a well-known remedy.

We will use a balancing Neumann{Neumann domain decomposition method and
we note that this is an extension of our recent work on incompressible Stokes's equa-
tions [30]; the main results of this paper have also been reported without proofs in a
conference paper [17]. The Stokes and elasticity problems in mixed form have much
in common but both the algorithm and analysis have to be modi�ed, in particular,
when considering large variations in the material properties. The Neumann-Neumann
algorithms are iterative substructuring methods and like all of them, our method is
based on the implicit elimination of the degrees of freedom associated with the interior
of each subdomain. The resulting saddle point Schur complement is solved iteratively
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using a hybrid preconditioner based on a coarse mixed elasticity problem and local
mixed elasticity problems with natural and essential boundary conditions. We will
prove that our method is scalable and quasi-optimal in the constant coeÆcient case,
i.e., a polylogarithmic bound in the local number of degrees of freedom holds for the
condition number of the preconditioned operator. We will show numerically that these
good convergence properties also hold for heterogeneous materials with discontinuous
coeÆcients and that overall our algorithm is very eÆcient, parallel, and robust. The
results on general heterogeneous problems are also supported in part by our theory.

Neumann-Neumann methods were �rst introduced and analyzed for second order
elliptic problems; see Cowsar, Mandel, and Wheeler [11], Dryja and Widlund [12],
Mandel [24], Mandel and Brezina [25], and Pavarino [28]. More recently, this family
of methods has been extended to plate and shell problems, see Le Tallec, Mandel,
and Vidrascu [21], to convection-di�usion problems, see Achdou, Le Tallec, Nataf,
and Vidrascu [1] and Alart, Barboteu, Le Tallec, and Vidrascu [3], and to vector
�eld problems, see Toselli [37]. We also note that the connection between Neumann-
Neumann and FETI methods has been considered recently by Klawonn and Widlund
[20].

There is a considerable literature on domain decomposition methods for incom-
pressible Stokes equations. Iterative substructuring methods have been studied by
Ainsworth and Sherwin [2], Bramble and Pasciak [7], Casarin [9], Fischer and R�nquist
[15], Le Tallec and Patra [22], Marini and Quarteroni [26], Pasciak [27], Pavarino and
Widlund [29], Quarteroni [31], and R�nquist [33]. Overlapping Schwarz methods have
been considered by Fischer [13], Fischer, Miller, and Tufo [14], Gervasio [16], Klawonn
and Pavarino [18], and R�nquist [34].

For a general introduction to domain decomposition methods, we refer to Quar-
teroni and Valli [32] and Smith, Bj�rstad, and Gropp [35].

The remainder of this paper is organized as follows. We review mixed �nite el-
ement and spectral element methods in Section 2; we only consider methods with
discontinuous pressure spaces. In Section 3, we show how the saddle point problem
resulting from a mixed formulation can be reduced to a smaller saddle point problem,
which we then solve iteratively. We note that only one pressure degree of freedom
per subdomain remains after this reduction. The balancing Neumann{Neumann algo-
rithm is introduced in Section 4, where we also give a detailed description of the global
coarse model and the local problems which form the main building blocks of the pre-
conditioner. Additional auxiliary results and our main theorem are given in Section
5. In Section 6, we show how to modify our method to deal with arbitrary constant
Lam�e parameters in the di�erent subregions. Finally, in Section 7, we discuss the
implementation of our methods and two sets of numerical experiments, one parallel
and one serial. The �rst is for quite large lower order �nite element problems; these
results were obtained on a Beowulf cluster at the Argonne National Laboratory. The
second is for spectral elements and were carried out using Matlab. Our experiments
uniformly show very good performance.

2. Linear Elasticity and Mixed Discretizations. Let 
 � R
3 be a polyhe-

dral domain and let �0 be a nonempty subset of its boundary. Let V be the Sobolev
space V = fv 2 H1(
)3 : vj�0 = 0g.

The linear elasticity problem consists in �nding the displacement u 2 V of the
domain 
, �xed along �0, subject to a surface force of density g, along �1 = @
 n�0,
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and a body force f :

2�

Z



�(u) : �(v) dx+ �

Z



divu divv dx = < F;v > 8v 2 V:(1)

Here � and � are the Lam�e constants, �ij(u) =
1
2 (

@ui
@xj

+
@uj
@xi

) the linearized strain

tensor, and the inner products are de�ned as

�(u) : �(v) =

3X
i=1

3X
j=1

�ij(u)�ij(v); < F;v > =

Z



3X
i=1

fivi dx+

Z
�1

3X
i=1

givi ds:

In Sections 6 and 7 of this paper, we will consider the case of variable Lam�e parameters
and show that our algorithm is quite robust. The Lam�e parameters can alternatively
be expressed in terms of the Poisson ratio � and Young's modulus E:

� =
E�

(1 + �)(1� 2�)
; � =

E

2(1 + �)
:

When the material is almost incompressible, the Poisson ratio � approaches the
value 1=2, i.e., �=� = 2�=(1� 2�) approaches in�nity. In such cases, �nite or spectral
element discretizations of this pure displacement formulation will increasingly su�er
from locking phenomena and the resulting sti�ness matrices become increasingly ill-
conditioned. A well-known remedy is based on introducing the new variable p =
��divu 2 L2(
) = U; that we will call pressure, and replacing the pure displacement
problem with a mixed formulation: �nd (u; p) 2 V � U such that8>>><>>>:

2�

Z



�(u) : �(v) dx �
Z



divv p dx = < F;v > 8v 2 V

�
Z



divu q dx � 1=�

Z



pq dx = 0 8q 2 U ;
(2)

see Brezzi and Fortin [8]. In the case of homogeneous Dirichlet boundary conditions

for u on all of @
; we choose U = L20(
) = fq 2 L2(
) :
Z



qdx = 0g, since it can be

shown by the divergence theorem that the pressure will have zero mean value.
We could also consider more general saddle point problems with a penalty term:

�nd (u; p) 2 V � U such that8<:
�a(u;v) + b(v; p) = < F;v > 8v 2 V

b(u; q) � 1=� c(p; q) = 0 8q 2 U;
(3)

where a(�; �) is a continuous, coercive bilinear form, b(�; �) and c(�; �) are continuous
bilinear forms satisfying some additional hypotheses; see Brezzi and Fortin [8]. In our
speci�c case, we have

a(u;v) = 2

Z



�(u) : �(v) dx; b(v; q) = �
Z



divv q dx; c(p; q) =

Z



pq dx:

By letting �=�!1, we obtain the limiting problem for incompressible linear elastic-
ity or the classical Stokes system for an incompressible uid; alternatively, the Stokes

3



system is often written using the bilinear form a(u;v) = �

Z



ru : rv dx. A penalty

term, as in the compressible case, can also originate from stabilization techniques or
penalty formulations for Stokes problems.

We will also need to consider problems with natural boundary conditions on all
of @
,

2�

dX
j=1

1

2
(
@ui
@xj

+
@uj
@xi

)nj � pni = gi on @
; i = 1; : : : ; d ;(4)

derived by using Green's formula. In this case, as for the Laplace operator, the bilin-
ear form a(�; �) has a nontrivial nullspace ker(a) consisting of the constant velocities in
the Stokes case (a d-dimensional nullspace) and of the rigid body motions in the elas-
ticity case (a six-dimensional nullspace in three dimensions and a three-dimensional
nullspace in two dimensions). Therefore there is a compatibility condition between
the f and g; namely,Z




f � vdx+
Z
@


g � v ds = 0 8v 2 ker(a):

We note that if the boundary conditions are mixed (part essential and part natural),
then there is a unique solution without any compatibility conditions.

Using Korn's inequality on the subspace orthogonal to the rigid body motions,
we have the following equivalence between the Stokes and mixed elasticity bilinear
forms (see, e.g., Klawonn and Widlund [19] for a proof):

Lemma 2.1. There exists a constant c > 0 such that

ckrukL2(
) � k�(u)kL2(
) � krukL2(
); 8u 2 (H1(
))d; u ? ker(a):

Here k�(u)k2L2(
) =
R


�(u) : �(u)dx:

We will consider conforming discretizations of Stokes and mixed elasticity equa-
tions using �nite as well as spectral elements, all with discontinuous pressures. In
fact, our work could easily be extended to the case when the pressure is discontinuous
only across the boundaries of the subdomains.

2.1. Finite Element Methods with Discontinuous Pressures. We assume
that the domain 
 can be decomposed into N nonoverlapping subdomains 
i of
characteristic size H forming a hexahedral (quadrilateral) �nite element mesh �H ,
which is assumed to be shape regular but not necessarily quasi uniform. This coarse
triangulation is further re�ned into a �ne hexahedral (quadrilateral) �nite element
triangulation �h of characteristic size h. Among the many choices of mixed �nite
elements available for Stokes and mixed elasticity equations, we consider the following:

a) Q2(h)�Q0(h) mixed �nite elements: the displacement space V is discretized
by continuous, piecewise tri- or bi-quadratic displacements:

Vh = fv 2 V : vkjT 2 Q2(T ) 8T 2 �h; k = 1; 2; : : : ; dg ;

while the pressure space is discretized by discontinuous piecewise constant functions
on �h :

Uh = fq 2 U : qjT 2 Q0(T ) 8T 2 �hg :
4



This method satis�es the uniform inf-sup condition

sup
v2Vh

(divv; q)

a(v;v)1=2
� �hkqkL2 8q 2 Uh;(5)

with �h � c > 0 independent of h, but it leads to a nonoptimal error estimate; see
Brezzi and Fortin [8, chap. VI.4, p. 221].

b) Q2(h)�P1(h) mixed �nite elements: the displacement space is as before, while
the pressure space consists of piecewise linear discontinuous pressures:

Uh = fq 2 U : qjT 2 P1(T ) 8T 2 �hg :
These elements satisfy a uniform inf-sup condition (5) as well. There are also optimal
O(h2) error estimates for both displacements and pressures; see Brezzi and Fortin [8,
chap. VI, p. 216].

We note that while �nite element methods based on hexahedra and quadrilaterals
enjoy popularity, our theory applies equally well to stable mixed methods based on
tetrahedra or triangles .

2.2. Spectral Element Methods: Qn�Qn�2. Let 
ref be the reference cube
or square (�1; 1)d; d = 3; 2; and let Qn(
ref) be the set of polynomials on 
ref of
degree n in each variable. We assume that the domain 
 can be decomposed into
N nonoverlapping elements 
i, each of which is an image 
i = �i(
ref), with �i an
aÆne mapping. V is discretized, component by component, by continuous, piecewise
tensor product polynomials of degree n:

Vn = fv 2 V : vkj
i Æ �i 2 Qn(
ref); i = 1; 2; : : : ; N; k = 1; 2; : : : ; dg :
The pressure space is discretized by piecewise tensor product polynomials of degree
n� 2, which are discontinuous across the boundaries of the elements 
i:

Un = fq 2 U : qj
i Æ �i 2 Qn�2(
ref); i = 1; 2; : : : ; Ng :
These spectral elements are implemented using Gauss-Lobatto-Legendre (GLL(n))
quadrature, which also allows for the construction of a very convenient nodal tensor-
product basis for Vn. Denote by f�igni=0 the set of GLL(n) points of [�1; 1], and by
�i the quadrature weight associated with �i. Let li(x) be the Lagrange interpolating
polynomial of degree n that vanishes at all the GLL(n) nodes except at �i, where it
equals 1. Each element of Qn(
ref) is expanded in the GLL(n) basis, and each L

2� in-
ner product of two scalar components u and v is replaced, in the three-dimensional
case, by

(u; v)n;
 =

NX
s=1

nX
i;j;k=0

(u Æ �s)(�i; �j ; �k)(v Æ �s)(�i; �j ; �k)jJsj�i�j�k ;

where jJsj is the determinant of the Jacobian of �s. The mass matrix based on these
basis elements and GLL(n) quadrature are diagonal. Similarly, a very convenient basis
for Un consists of the tensor-product Lagrangian nodal basis functions associated with
the internal GLL(n) nodes, i.e., the endpoints �1 and +1 are excluded. We will call
these the pressure GLL(n) nodes.

The Qn �Qn�2 method satis�es a nonuniform inf-sup condition

sup
v2Vn

(divv; q)

a(v;v)1=2
� �nkqkL2 8q 2 Un ;(6)

5



where �n = Cn�(d�1)=2, d = 2; 3; and the constant C is independent of n and q;
see Maday, Meiron, Patera, and R�nquist [23] and Stenberg and Suri [36]. However,
numerical experiments, reported in [23], have also shown that for practical values of
n, e.g., n � 16, the inf-sup constant �n of the Qn�Qn�2 method decays much slower
than what might be expected from the theoretical bound.

An alternative, with a uniform bound on the inf-sup constant, is provided by the
Qn � Pn�1 method; see Bernardi and Maday [6]. However, this pressure space is less
convenient than Qn�2 as far as implementation is concerned.

2.3. The Discrete System. Let eV and eU be the discrete displacement and
pressure spaces. In the �nite element case, we write eV � eU = Vh � Uh, while in the
spectral element case we have eV� eU = Vn�Un. The discrete system obtained from
(3) using �nite or spectral elements is: �nd u 2 eV and p 2 eU such that8<:

�a(u;v) + b(v; p) = F(v) 8v 2 eV
b(u; q) � 1=� c(p; q) = 0 8q 2 eU;(7)

where we denote with the same letters the bilinear forms obtained using the appro-
priate quadrature rule described above.

On the benign subspace

( eV � eU)B = f(u; p) 2 eV � eU : b(u; q)� 1=� c(p; q) = 0 8q 2 eUg;
problem (7) is equivalent to the positive de�nite problem: �nd (u; p) 2 ( eV � eU)B
such that

�a(u;v) + 1=� c(p; q) = F(v) 8(v; q) 2 ( eV � eU)B :
In matrix form, equations (7) have the form

K

�
u

p

�
=

�
�A BT

B �1=� C
� �

u

p

�
=

�
b

0

�
:(8)

We will need the following two results, which give an explicit formula for the solution
of a saddle point problem with a penalty term and a stability result for its solution.
The �rst is proven by an explicit computation.

Lemma 2.2. Let A and C be positive de�nite matrices and, if � =1, let B have
full row rank. Then,�

�A BT

B �1=� C
��1

=

�
1=�(A�1 �A�1BTS�1BA�1) A�1BTS�1

S�1BA�1 ��S�1
�
;(9)

where S = BA�1BT + �=� C:

Lemma 2.3. Consider the discrete saddle point problem�
�A BT

B �1=� C
� �

u

p

�
=

�
f

g

�
;

where A and C are positive de�nite and, if � =1, B has full row rank. Let � � 0 be
the best inf-sup constant such that

pTBA�1BT p � �2pTCp 8p:
6



Then,

i) kukA � 1=�kfkA�1 +
1p

�2 + �=�
kgkC�1 ;

ii) kpkC � 1p
�2 + �=�

kfkA�1 +
�

�2 + �=�
kgkC�1 :

Proof. By the explicit formula (9) for the inverse of an invertible saddle point
problem, we have

u = 1=� (A�1 �A�1BTS�1BA�1)f +A�1BTS�1g;

p = S�1BA�1f � �S�1g;

and from the inf-sup condition, we have

S = BA�1BT + �=� C � (�2 + �=�) C:

(Here and in the following an inequality between matrices means an inequality be-
tween the associated quadratic forms). We note that kukA = kA1=2ukl2 and kpkC =
kC1=2pkl2 ; moreover kfkA�1 = kA�1=2fkl2 and kgkC�1 = kC�1=2gkl2 are the matrix
representation of the dual norms of f and g, respectively. Indeed,

sup
v

(fTv)2

vTAv
= sup

w

(fTA�1=2w)2

wTw
=

(fTA�1=2A�1=2f)2

fTA�1f
= fTA�1f ;

and similarly for kgkC�1 .
i) The A�norm of the displacement component is estimated by

kA1=2ukl2 � 1=�k(I �A�1=2BTS�1BA�1=2)A�1=2fkl2 + kA�1=2BTS�1gkl2 :(10)

The �rst term in (10) is bounded by 1=�kA�1=2fkl2 because from S�1 � (BA�1BT )�1

it follows that

0 � A�1=2BTS�1BA�1=2 � A�1=2BT (BA�1BT )�1BA�1=2 � I;

since the next to last expression is an orthogonal projection. The square of the second
term in (10) is estimated similarly by

kA�1=2BTS�1gk2l2 = gTS�1BA�1BTS�1g � gTS�1g

� 1

�2 + �=�
gTC�1g =

1

�2 + �=�
kgk2C�1 ;

and therefore i) follows.
ii) The C�norm of the pressure component is estimated by

kC1=2pkl2 � kC1=2S�1BA�1fkl2 + �kC1=2S�1gkl2 :(11)

The �rst term on the right in (11) is bounded by 1p
�2+�=�

kA�1=2fkl2 because

kC1=2S�1BA�1fk2l2 = fTA�1BTS�1CS�1BA�1f

� 1

�2 + �=�
fTA�1BTS�1BA�1f

� 1

�2 + �=�
fTA�1BT (BA�1BT )�1BA�1f � 1

�2 + �=�
fTA�1f ;
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we again use that the matrix A�1=2BT (BA�1BT )�1BA�1=2 is an orthogonal projec-
tion. The square of the second term on the right in (11) is estimated by

�2 kC1=2S�1gk2l2 = �2 gTS�1CS�1g � �2

�2 + �=�
gTS�1g �

� �

�2 + �=�

�2
gTC�1g;

and therefore ii) follows.

3. Substructuring for Saddle Point Problems. The domain 
 is decom-
posed into open, nonoverlapping hexahedral (quadrilateral) subdomains 
i and the
interface �; i.e.,


 = [Ni=1
i [ �:

Here � =
�SN

i=1 @
i

�
n @
: Each 
i typically consists of one, or a few, spectral

elements of degree n or of many �nite elements. We note that some versions of our
algorithm can be extended to a more general choice of subdomain shapes. We note,
in particular, that each 
i can be a union of a �nite number of shape regular, coarse
elements. At present, our technical tools do not allow us to give a full theory for cases
when the intersection between the boundaries of the subdomains fail to be smooth.

We denote by �h and @
h the set of nodes belonging to the interface � and @
,
respectively. The starting point of our algorithm is the implicit elimination of the
interior degrees of freedom, i.e., the interior displacement component and what we
will call the interior pressure component which has zero average over the individual
subdomains. This process, also known as static condensation, is carried out by solving
decoupled local saddle point problems on each subdomain 
i with Dirichlet boundary
conditions for the displacements given on @
i. We then obtain a saddle point Schur
complement problem for the interface displacements and a constant pressure in each
subdomain. This reduced problem will be solved by a preconditioned Krylov space
iteration, normally the preconditioned conjugate gradient method.

For simplicity, we will use the same letters to denote both functions and their
associated vector representations; the same convention will also be used for linear
operators and their associated matrix forms.

3.1. Substructuring in Matrix Form. In order to eliminate the interior de-
grees of freedom, we reorder the vector of unknowns as2664

uI
pI
u�
p0

3775
interior displacements
interior pressures with zero average
interface displacements
constant pressures in each 
i:

(12)

Then, after using the same permutation, the discrete system matrix can be written
as 24 KII KT

�I

K�I K��

35 =

2664
�AII BT

II �AT
�I 0

BII �1=� CII BI� 0
�A�I BT

I� �A�� BT
0

0 0 B0 �1=� C0

3775 ;
where the zero blocks are due to the interior displacements having zero ux across
the subdomain boundaries and the interior pressure having a zero average.
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Eliminating the interior unknowns uI and pI by static condensation, we obtain
the saddle point Schur complement system

S�;�

�
u�
p0

�
=

�
~b
0

�
;(13)

where

S�;� = K�� �K�IK
�1
II K

T
�I =(14)

=

�
�A�� BT

0

B0 �1=� C0

�
�
�
�A�I BT

I�

0 0

��
�AII BT

II

BII �1=�CII

��1 �
�AT

�I 0
BI� 0

�
=

�
�S�;�;� BT

0

B0 �1=� C0

�
;

and �
~b
0

�
=

�
b�
0

�
�
�
�A�I BT

I�

0 0

� �
�AII BT

II

BII �1=� CII

��1 �
bI
0

�
:

By using a second permutation that reorders the interior displacements and pres-
sures subdomain by subdomain, we �nd that K�1

II represents the solution of N decou-
pled saddle point problems, one for each subdomain and all uniquely solvable, with
Dirichlet data given on @
i :

K�1
II =

2664
K

(1)
II

�1
0

. . .

0 K
(N)
II

�1

3775 :
This matrix is associated with the discrete extension operator SH�;� described in the
next subsection.

The Schur complement S�;� does not need to be explicitly assembled since only its
action S�;�v on a vector v is needed in a Krylov iteration. This operation essentially
only requires the action of K�1

II on a vector, i.e., the solution of N decoupled saddle
point problems. In other words, S�;�v is computed by subassembling the actions of

the subdomain Schur complements S
(i)
�;� de�ned for 
i by

S
(i)
�;� = K

(i)
�� �K

(i)
�I (K

(i)
II )

�1K
(i)T

�I(15)

=

"
�A

(i)
�� B

(i)T

0

B
(i)
0 �1=� C(i)

0

#

�
"
�A

(i)
�I B

(i)T

I�

0 0

# "
�A

(i)
II B

(i)T

II

B
(i)
II �1=� C(i)

II

#�1 "
�A

(i)T

�I 0

B
(i)
I� 0

#

=

"
�S

(i)
�;�;� B

(i)T

0

B
(i)
0 �1=� C(i)

0

#
:
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Once

�
u�
p0

�
is known,

�
uI
pI

�
can be found by back-substitution:

�
uI
pI

�
=

�
�AII BT

II

BII �1=� CII

��1
(

�
bI
0

�
�
�
�AT

�I 0
BI� 0

� �
u�
p0

�
):

3.2. Substructuring in Variational Form. The substructuring procedure de-
scribed in the previous section is associated with the space decompositioneV � eU = �N

i=1Vi � Ui �V� � U0;

where the interior spaces are de�ned by

Vi = eV \H1
0 (
i) Ui = eU \ L20(
i);

and the spaces of interface displacements and coarse pressures, constant in each sub-
domain, are de�ned by

V� = SH�;�( eV) = fv 2 eV : vj
i = SH�;�(vj@
i ); i = 1; � � � ; Ng;

U0 = fq 2 eU : qj
i = constant; i = 1; � � � ; Ng:

Here SH�;� : eVj� �! eV; is the displacement component of the discrete saddle point
harmonic extension operator that maps an interface displacement u� 2 eVj� onto the

solution

�
~u
~p

�
of the following homogeneous saddle point problem, which can be

de�ned on each subdomain separately: �nd ~u 2 eV and ~p 2 eU such that on each 
i;8>>>><>>>>:
�ai(~u;v) + bi(v; ~p) = 0 8v 2 Vi

bi(~u; q) � 1=� ci(~p; q) = 0 8q 2 Ui

~u = u� on @
i:

(16)

The following comparison of the energy of the discrete saddle point harmonic ex-
tension operator and the discrete harmonic extensions H of each displacement com-
ponent separately is a generalization of the analogous comparison in the Stokes case
(see [7], [22], [9, 10], [2]).

Lemma 3.1. Given u� 2 eVj� , let H(u�) be its componentwise discrete harmonic

extension and let SH�;�(u�) =

�
~u
~p

�
be its discrete saddle point harmonic extension.

Then, 8u� 2 V� such that ~u ? ker(ai);�
1 +

p
dp

�2 + �=�

��2 � ~u
~p

� 2
�;�;i

� �krHu�k2L2(
i) � C

 � ~u
~p

� 2
�;�;i

;

where � is the inf-sup constant of the chosen mixed �nite element spaces ~Vi� ~Ui and
the �; �-norm is de�ned by � ~u

~p

� 2
�;�;i

= �ai(~u; ~u) + 1=� ci(~p; ~p):

10



Proof. The right inequality is an easy consequence of the minimal property of the
discrete harmonic extension and the lower bound of Lemma 2.1.

In order to prove the left inequality, we choose v = ~u�Hu� in (16) and obtain

�ai(~u; ~u) + bi(~u; ~p) = �ai(~u;Hu�) + bi(Hu�; ~p):
Therefore, since (divu; divu)L2(
i) � d (�(u) : �(u))L2(
i) = d=2 ai(u;u); (d = 2; 3),

�ai(~u; ~u) + 1=� ci(~p; ~p) �
�
�ai(~u; ~u)

1=2 +
p
d=2 k~pkL2(
i)

�
ai(Hu�;Hu�)1=2:(17)

We will now estimate k~pkL2(
i) by applying Lemma 2.3 ii) to the saddle point problem
with homogeneous boundary conditions satis�ed by (~u�Hu�; ~p). From (16), we �nd
that on each 
i8<:

�ai(~u�Hu�;v) + bi(v; ~p) = ��ai(Hu�;v) 8v 2 Vi

bi(~u�Hu�; q) � 1=� ci(~p; q) = �bi(Hu�; q) 8q 2 Ui:
(18)

Then Lemma 2.3 ii) yields

k~pkL2(
i) � 1p
�2 + �=�

sup
v2Vi

�ai(Hu�;v)
ai(v;v)1=2

+
�

�2 + �=�
sup
q2Ui

bi(Hu�; q)
kqkL2(
i)

�
�

1p
�2 + �=�

+

p
d=2

�2 + �=�

�
�ai(Hu�;Hu�)1=2:

Therefore, it follows from (17) that

�ai(~u; ~u) + 1=� ci(~p; ~p)

� �ai(~u; ~u)
1=2ai(Hu�;Hu�)1=2 +

� p
d=2p

�2 + �=�
+

d=2

�2 + �=�

�
�ai(Hu�;Hu�)

� 1=2 �ai(~u; ~u) +

�
1=2 +

p
d=2p

�2 + �=�
+

d=2

�2 + �=�

�
�ai(Hu�;Hu�):

By using the upper bound of Lemma 2.1, we then obtain

�ai(~u; ~u) + 1=� ci(~p; ~p) �
�
1 +

p
2dp

�2 + �=�
+

d

�2 + �=�

�
�krHu�k2L2(
i):

The lower bound of the lemma now follows by an elementary inequality.
If we de�ne an interface inner product by

s�;�(u�;v�) = a(SH�;�(u�);SH�;�(v�)) = uT�S�;�;�v�;

and by b0(u�; p0) and c0(p0; q0) the restrictions of the other bilinear forms to the
saddle point harmonic extensions and the coarse piecewise constant pressures, then
the variational formulation of the saddle point Schur complement problem (13) can
be given by: �nd u� 2 V� and p0 2 U0 such that,8<: �s�;�(u�;v�) + b0(v�; p0) = eF(v�) 8v� 2 V�

b0(u�; q0) � 1=� c0(p0; q0) = 0 8q0 2 U0:
(19)
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On the benign subspace (V� � U0)B de�ned by

(V� � U0)B = f(u�; p0) 2 V� � U0 : B0u� � 1=� C0p0 = 0g
= f(u�; p0) 2 V� � U0 : b0(u�; q0)� 1=� c0(p0; q0) = 0;8q0 2 U0g;

problem (19) is equivalent to the positive de�nite problem: �nd (u�; p0) 2 (V��U0)B
such that

�s�;�(u�;v�) + 1=� co(p0; q0) = eF(v�) 8(v�; q0) 2 (V� � U0)B :(20)

4. Balancing Neumann{Neumann Preconditioners. We will solve the sad-
dle point Schur complement problem

S�;�

�
u�
p0

�
=

�
�S�;�;� BT

0

B0 �1=� C0

��
u�
p0

�
=

�
~b
0

�
(21)

by a preconditioned Krylov space method such as GMRES or PCG. The latter can
be applied to this inde�nite problem because we will start and keep the iterates in
the subspace of benign functions.

The matrix form of the preconditioner is

Q�;� = QH + (I �QHS�;�)
NX
i=1

Qi(I � S�;�QH);

where the coarse operator QH and local operators Qi are de�ned below. The precon-
ditioned operator { the Schwarz operator { is then

T�;� = Q�;�S�;� = T0 + (I � T0)

NX
i=1

Ti(I � T0);

where T0 = QHS�;� and Ti = QiS�;�. The operators QH ; Qi; T0; and Ti also depend
on � and � but we leave them without subscripts in order to keep the notation simpler.
We note that Q�;� can also be written as a three-step preconditioner as in [30]. For
simplicity, we will use the same symbol (for example v�) for both the interface vector
and the function ofV� obtained by extension inside each subdomain using the discrete
saddle point harmonic extension operator SH�;�. In addition, we will avoid writing
explicitly �nite and spectral element interpolants; therefore, when writing a product
of functions (e.g., Æiv�) we mean the �nite or spectral element function with nodal
values equal to the product of those of the two functions.

This balancing Neumann-Neumann preconditioner T�;� is associated with further
decomposing the interface space V� � U0 as

V� � U0 = V0 � U0 +

NX
i=1

V�;i � U0;i:

Here, the coarse displacement space V0 is de�ned in terms of special functions Æyi ;
introduced below, and it is given by either one of the three following choices:

V0
0 =

n
v 2 V� : v 2

�
span

n
Æyi

o
multiplied by the functions of ker(a)

�o
;

V1
0 = V0

0 + span fnormal direction quadratic face (edge) bubble functionsg ;
V2

0 = V0
0 +

�
tri- (or bi-)linear coarse piecewise QH

1 functions
	
;

12



while the local spaces are de�ned by:

V�;i = fv 2 V� : v(x) = 0 8x 2 �h n @
i;hg; U0;i = spanf1g:
We could also consider richer coarse spaces obtained, e.g., by adding to V0

0 all the
functions of V� that are piecewise quadratic polynomials on �, as we did in our study
[30] of the Stokes case.

We now describe the coarse and local problems in more detail.
The coarse problem. Given a residual vector r, the coarse term QHr is the

solution of a coarse, global saddle point problem with a few displacement degrees of
freedom and one constant pressure per subdomain 
i:

QH = RT
HS

�1
0;�;�RH ;

where

RH =

�
LT0 0
0 I

�
;

and

S0;�;� = RHS�;�R
T
H =

�
�LT0 S�;�;�L0 LT0 B

T
0

B0L0 �1=� C0

�
:(22)

We will use the notation eS0;�;� = LT0 S�;�;�L0 for the leading block of S0;�;�: The
columns of the matrix L0 span the coarse space V0 and in order to de�ne them, we
need to de�ne the Neumann-Neumann counting functions Æi 2 V� associated with
each subdomain 
i and their pseudo inverses Æyi :

- Æi is zero at all nodes of �h n @
i;h while its value at any node on @
i equals
the number of subdomains shared by that node;

- the pseudo inverse Æyi is the function 1=Æi(x) for all nodes where Æi(x) 6= 0; and
it vanishes at all other points of �h [ @
h:

Then the columns of L0 are de�ned by one of the following three choices:
V0

0: the inverse counting functions Æ
y
i multiplied by the functions of ker(a);

V1
0: as inV

0
0 with the addition of the quadratic coarse face (edge) bubble functions

for the normal direction;
V2

0: as in V
0
0 with the addition of the continuous piecewise tri- or bi-linear func-

tions on the coarse mesh �H :
The �rst choice corresponds to the standard choice for second order scalar elliptic
problems and it provides a quite minimal coarse displacement space. It turns out to
be far from uniformly inf-sup stable and it therefore leads to a nonscalable algorithm
in the incompressible case. However, in the compressible case where �=� is bounded,
it still leads to a scalable algorithm; see our main theorem and the numerical results.
The �rst and second choices are enrichments of the �rst that turn out to be inf-sup
stable uniformly in N and �=�:

In order to avoid linearly dependent Æyi functions, and hence a singular coarse
space problem, we might have to drop all of the components of these functions for
one subdomain, depending on the coarse triangulation.

In variational terms, the coarse problem is de�ned as follows: given

�
u�
p0

�
2

V� � U0, de�ne

�
w�

q0

�
= T0

�
u�
p0

�
2 V0 � U0 as the solution of the coarse saddle
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point problem8<:
�s�;�(w�;v) + b0(v; q0) = �s�;�(u�;v) + b0(v; p0) 8v 2 V0

b0(w�; q) � 1=� c0(q0; q) = b0(u�; q) � 1=� c0(p0; q) 8q 2 U0;
or, 8<:

�s�;�(w� � u�;v) + b0(v; q0 � p0) = 0 8v 2 V0

b0(w� � u�; q) � 1=� c0(q0 � p0; q) = 0 8q 2 U0:
(23)

It follows immediately that T0 is a projection, i.e., T 2
0 = T0. Moreover, from the

second equation of (23), we see that

�
w� � u�
q0 � p0

�
is balanced, i.e., Range(I � T0) �

(V�; U0)B .
We prove in the next lemma that the coarse space correction is independent of

p0 and we can therefore drop the terms involving p0 in equation (23). This lemma
provides the displacement and pressure components of the coarse operator QHS�;� in
matrix form. The formulas follow by using Lemma 2.2 for the coarse matrix (22).

Lemma 4.1. Let eS0;�;� = LT0 S�;�;�L0 and let eS�;� = B0L0 eS�10;�;�L
T
0B

T
0 +�=� C0.

Then,

�
v�
q0

�
= (I � QHS�;�)

�
u�
p0

�
depends only on the displacement component

u� and equals

v� = (I � T u
0 )u�;

q0 = �T p
0 u�;

where

T u
0 = L0 eS�10;�;�L

T
0 S�;�;� � L0 eS�10;�;�L

T
0 B

T
0
eS�1�;�B0L0 eS�10;�;�L

T
0 S�;�;�

+L0 eS�10;�;�L
T
0 B

T
0
eS�1�;�B0;

T p
0 = �eS�1�;�B0L0 eS�10;�;�L

T
0 S�;�;� � � eS�1�;�B0:

We also note that equation (23) implies that hT0u; (I � T0) viS�;� = 0 for all u;v:
This, together with the fact that T0 is a projection, implies that T0 is symmetric with
respect to the bilinear form h�; �iS�;� , de�ned by��

u�
p0

�
;

�
v�
q0

��
S�;�

=

�
S�;�

�
u�
p0

�
;

�
v�
q0

��
:

Local problems. Each local operator Qi is based on the solution of a local
saddle point problem on 
i with a natural boundary condition on @
i n�0. This local
problem is singular for any subdomain 
i the boundary of which does not intersect
the Dirichlet boundary �0; all the rigid body motions are in the nullspace. Such a
subregion is called a oating subdomain. To avoid possible complications with singular
problems, we modify the local saddle point problems on the oating subdomains by
adding � times the displacement mass matrix to the local sti�ness matrix K(i). We
could also make these solutions unique by requiring that each displacement component
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is orthogonal to the nullspace of a(�; �); the right hand sides will always be compatible.
The matrix form of Qi is

Qi = RT
i

�
D�1
i 0
0 I

� "
�S

(i)
�;�;�;� B

(i)T

0

B
(i)
0 �1=� C(i)

0

#�1 �
D�1
i 0
0 I

�
Ri(24)

Here Ri are 0; 1 restriction matrices mapping V� � U0 into V�;i � U0;i and Di are
diagonal matrices representing multiplication by the counting functions Æi. Moreover,

S
(i)
�;�;� =

"
�S

(i)
�;�;�;� B

(i)T

0

B
(i)
0 �1=� C(i)

0

#

is the local saddle point Schur complement, associated with the subdomain 
i, of the
regularized local sti�ness matrix

K(i)
� =

266664
�A

(i)
II;� B

(i)T

II �A
(i)T

�I;� 0

B
(i)
II �1=� C(i)

II B
(i)
I� 0

�A
(i)
�I;� B

(i)T

I� �A
(i)
��;� B

(i)T

0

0 0 B
(i)
0 �1=� C(i)

0

377775 ;
where

A(i)
� = A(i) + �M (i):

Here M (i) is the local displacement mass matrix.
The local operators Qi will only be applied to residuals of benign displacement

�elds and thus the second residual component will vanish. We have also shown, in
Lemma 4.1, that the pressure components obtained in this step of the preconditioner
plays no further role when we next apply the operator (I�T0): Therefore, the identity
block I in the scaling matrix in (24) can equally well be replaced by zero.

In preparation for writing the local problems in variational form, we de�ne the
operator ~Ti : V� � U0 ! V�;i � U0;i as ~Ti = RiTi. The local problems are now

de�ned in variational terms: for w =

�
u�
p0

�
, ~Tiw =

�
~T u
i w
~T p
i w

�
2 V�;i � U0;i is the

solution of a local saddle point problem with natural boundary conditions given by
8vi 2 V�;i;8qi 2 U0;i,8<:

�s�;�;�;i(Æi ~T
u
i u�; Æivi) + b0;i(Æivi; ~T

p
i u�) = �s�;�(u�;vi) + b0(vi; p0)

b0;i(Æi ~T
u
i u�; qi)� 1=� c0;i( ~T

p
i u�; qi) = b0(u�; qi)� 1=� c0(p0; qi):

(25)

In the formula above,

s�;�;�;i(u�;v�) = a�;i(SH�;�;�;i(u�);SH�;�;�;i(v�));

a�;i(u;v) = ai(u;v) + �

Z

i

u � vdx;(26)

and SH�;�;�;i is the displacement component of the discrete saddle point harmonic
extension operator de�ned in terms of the regularized a�;i(�; �) displacement bilinear
form instead of the standard ai(�; �) form.
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We note that, since we need to apply local saddle point solvers only to elements
w 2 Range(I�T0) � (V� � U0)B , the right-hand side of the second equation in (25)
equals zero.

De�ning the space (V�;i � U0;i)B by

(V�;i � U0;i)B =

��
u

p

�
2 V�;i � U0;i

���� b0;i(Æiu; q) = 1

�
c0;i(p; q) 8q 2 U0;i

�
;

and assuming w 2 (V� � U0)B , we can restate the de�nition of ~Ti as follows: ~Tiw 2
(V�;i � U0;i)B and satis�es, 8

�
vi
qi

�
2 (V�;i � U0;i)B ,

�s�;�;�;i(Æi ~T
u
i w; Æivi) + 1=� c0;i( ~T

p
i w; qi) = �s�;�(u�;vi) + b0(vi; p0);(27)

or, ��
Æi ~T

u
i w

~T p
i w

�
;

�
Æivi
qi

��
�;�;�;i

=

�
w;

�
vi
qi

��
S�;�

:(28)

Here the inner-product h�; �i�;�;�;i is de�ned by the left-hand side of (27).

5. Analysis of the Method.

5.1. Auxiliary Results. We will work with the �; ��inner product��
u�
p0

�
;

�
v�
q0

��
�;�

= �s�;�(u�;v�) + 1=� c0(p0; q0):

On the benign subspace (V� � U0)B , this inner product coincides with the bilinear
form de�ned by S�;�, i.e.,��

u�
p0

�
;

�
v�
q0

��
�;�

=

��
u�
p0

�
;

�
v�
q0

��
S�;�

8
�
u�
p0

�
;

�
v�
q0

�
2 (V� � U0)B ;

since B0u� � 1=� C0p0 = B0v� � 1=� C0q0 = 0.

Lemma 5.1. Let

�
u�
p0

�
2 Range(I � T0) and let

�
v�
q0

�
be arbitrary. Then,

��
u�
p0

�
;

�
v�
q0

��
S�;�

=

��
u�
p0

�
; (I � T0)

�
v�
?

��
�;�

;

where ? is an arbitrary piecewise constant pressure vector.
Proof. By the symmetry of (I � T0) with respect to the S�;� bilinear form and

the fact that (I � T0) is a projection, we have��
u�
p0

�
;

�
v�
q0

��
S�;�

=

�
(I � T0)

�
u�
p0

�
;

�
v�
q0

��
S�;�

=

��
u�
p0

�
; (I � T0)

�
v�
q0

��
S�;�

=

��
u�
p0

�
; (I � T0)

�
v�
?

��
S�;�

;

where we can replace q0 with an arbitrary piecewise constant pressure vector denoted
by ? because, by Lemma 4.1, the result of the action of (I � T0) on a vector does
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not depend on its pressure component. Since now both arguments are benign, we can
switch to the �; ��inner product and the lemma follows.

In the proof of our main result, we need a bound on the norm to the coarse
correction operator. We note that this operator has norm 1 when restricted to the
space of benign functions but that it is applied to more general functions in our
algorithm.

The analog of the following lemma has been proven for Stokes' equations in [30,
Lemma 5.2]. Here, we will show that the incompressible case gives the worst bound
and that we therefore have a bound which is uniform in � and �:

Lemma 5.2. The coarse space V1
0 � U0 satis�es the inf-sup condition

sup
v�2V1

0

(divSH�;�(v�); q0)
2

a(SH�;�(v�);SH�;�(v�))
� �20kq0k2L2 8q0 2 U0;

with

�20 =

(
C

1+log(H=h) for �nite elements
C

1+logn for spectral elements;

where the constant C is independent of the Lam�e parameters.
Proof. We �rst note that the numerator of the expression in the lemma is inde-

pendent of � and � since, by the divergence theorem applied on each subdomain, we
have Z


i

divSH�;�(v�)q0dx =

Z
@
i

v� � n q0ds:

We will now show that the denominator increases with decreasing values of �=�: We
do so by considering S�;�;�: We have, by (14),

�S�;�;� = �A�� �
�
�A�I BT

I�

� � �AII BT
II

BII �1=�CII

��1 �
�AT

�I

BI�

�
;

where A��; AII ; CII are positive de�nite matrices. A direct computation shows that

S�;�;� = A�� �
�
A�I BT

I�

� � AII BT
II

BII ��=� CII

��1 �
AT
�I

BI�

�
:

Since the Lam�e parameters only enter in one of the matrices, we only have to
consider that matrix. Factoring it, we �nd,�

AII BT
II

BII ��=� CII

�
=

�
I 0

BIIA
�1
II I

� �
AII 0
0 �SII

� �
I A�1

II B
T
II

0 I

�
;

where SII = BIIA
�1
II B

T
II + �=� CII : Again only one of the matrices depend on the

Lam�e parameters. It is now easy to show that the denominator is at its maximum
in the incompressible limit. We can replace the denominator by that for the Stokes'
case, for which the result of the lemma already has been established in [30, Lemma
5.2]. This follows by noticing that

a(SH�;�(v�);SH�;�(v�)) � a(H(v�);H(v�)) � krHv�k2L2 :
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Our numerical results, reported in Section 7, indicate that a uniform inf-sup
condition does not hold for the �rst coarse space V0

0 � U0. The results for the third
coarse space V2

0�U0 are quite satisfactory although we do not have a full theory. We
note that the Q1 �Q0 elements by themselves are not inf-sup stable but that we are
using a richer velocity space which also includes the Æyi functions times basis elements
for the space of rigid body motions. We also work in the somewhat di�erent context
of saddle point harmonic extensions of traces on �:

Lemma 5.3. The coarse correction operator (I�T0) satis�es the stability estimate � (I � T u
0 )u�

�T p
0 u�

� 2
�;�

� ��2ku�k2S�;�;� ;

where

�2 = 2

�
2 +

p
d=2p

�20 + �=�

�2

;

and �0 is the inf-sup constant of the coarse space.
We note that �2 � C(1 + �=�) whatever the value of �0: We will establish such a

bound by a direct argument in the general case discussed in Section 6.
Proof. We apply the stability estimates of Lemma 2.3. Setting p0 = 0; the coarse

problem (23) can be rewritten as8<:
�s�;�(T

u
0 u�;v) + b0(v; T

p
0 u�) = �s�;�(u�;v) 8v 2 V0

b0(T
u
0 u�; q) � 1=� c0(T

p
0 u�; q) = b0(u�; q) 8q 2 U0:

We recall that the matrix form of the coarse operator is

T0 = QHS�;� = RT
HS

�1
0;�;�RHS�;�;

where S0;�;� is given by (22). Let

�
~u0
~p0

�
be the solution of S0;�;�

�
~u0
~p0

�
=

�
f0
g0

�
;

where the right hand side is given by

fT0 ~v = �s�;�(u�; L0~v) = �s�;�(u�;v)

gt0~q = b0(u�; ~q):

Then, T u
0 u� = L0~u0; T

p
0 u� = ~p0; and

k~u0k2
eS0;�;�

= ~uT0
eS0;�;�~u0 = ~uT0 L

T
0 S�;�;�L0~u0 = kL0~u0k2S�;�;� = kT u

0 u�k2S�;�;� ;
k~p0k2C0 = kT p

0 u�k2C0 :

Since,

kf0k2
eS�1
0;�;�

= sup
~v

(fT0 ~v)2

~vT eS0;�;�~v = sup
~v

�2s�;�(u�; L0~v)
2

~vT eS0;�;�~v � �2ku�k2S�;�;� ;

kg0k2C�1
0

= sup
~q

(gT0 ~q)
2

~qTC0~q
= sup

~q

b0(u�; ~q)
2

~qTC0~q
� kdivSH�;�(u�)k2L2 � d=2 ku�k2S�;�;� :
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We can then apply the estimates of Lemma 2.3 and obtain

kT u
0 u�kS�;�;� �

�
1 +

p
d=2p

�20 + �=�

�
ku�kS�;�;� ;

kT p
0 u�kC0 � �

�
1p

�20 + �=�
+

p
d=2

�20 + �=�

�
ku�kS�;�;� :

From the de�nition of the �; ��norm � (I � T u
0 )u�

�T p
0 u�

�2
�;�

= �k(I � T u
0 )u�k2S�;�;� + 1=�kT p

0u�k2C0 :

The lemma now follows by some elementary estimates.

5.2. Main Result. We are now ready to formulate our main theorem.
Theorem 5.4. On the benign subspace (V� � U0)B the balancing Neumann-

Neumann operator T�;� is symmetric, positive de�nite with respect to the �; ��inner
product, and

cond(T�;�) � C

�
2 +

p
d=2p

�20 + �=�

��
1 +

p
dp

�2 + �=�

�2

�;

where

� =

8<:
(1 + log(H=h))2 for �nite elements

(1 + logn)2 for spectral elements;

and �0 and � are the inf-sup constants of the coarse problem and the original discrete
saddle point problem, respectively. The constant C in the bound is uniform in the
parameter � used in the regularization of the local Neumann problems.

Proof. Let w =

�
u�
p0

�
be benign. Then, T0w as well as (I�T0)w are benign and

we can use either h�; �i�;� or h�; �iS�;� in our formulas. Since T0 is a h�; �i�;�-orthogonal
projection on the benign subspace, we �nd that

hT�;�w;wi�;�

= hT0w;wi�;� +
*
(I � T0)

X
i

Ti(I � T0)w;w

+
�;�

= kT0wk2�;� +
*X

i

Ti(I � T0)w; (I � T0)w

+
S�;�

(29)

= kwk2�;� � k(I � T0)wk2�;� +
*X

i

Ti(I � T0)w; (I � T0)w

+
S�;�

:

Our goal is to �nd lower and upper bounds for this expression in terms of kwk2�;�.
Lower bound: De�ne ~w =

�
~u�
~p0

�
= (I � T0)w. Since the pseudo inverses

Æyi of the counting functions de�ne a partition of unity, we have ~u� =
P

i ~ui with
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~ui = Æyi ~u� 2 V�;i. Let ~qi be such that

�
~ui
~qi

�
2 (V�;i � U0;i)B . From the de�nition

of the local problems (27), we have

�s�;�(~u�; ~u�) =
X
i

�s�;�(~u�; ~ui)

=
X
i

�s�;�;�;i(Æi ~T
u
i ~w; Æi~ui) +

X
i

1=� c0;i( ~T
p
i ~w; ~qi)�

X
i

b0(~ui; ~p0):

But
P

i b0(~ui; ~p0) = b0(~u�; ~p0) = 1=� c0(~p0; ~p0) because

�
~u�
~p0

�
is benign. Then,

k ~wk2�;� = �s�;�(~u�; ~u�) + 1=� c0(~p0; ~p0)

=
NX
i=1

h
�s�;�;�;i(Æi ~T

u
i ~w; Æi~ui) + 1=� c0;i( ~T

p
i ~w; ~qi)

i

=

NX
i=1

��
Æi ~T

u
i ~w

~T p
i ~w

�
;

�
Æi~ui
~qi

��
�;�;�;i

�
� NX

i=1

 � Æi ~T
u
i ~w

~T p
i ~w

�2
�;�;�;i

�1=2�X
i

 � Æi~ui
~qi

� 2
�;�;�;i

�1=2

:(30)

We note that Æi~ui = ÆiÆ
y
i ~u� = ~u�j@
i . From the de�nition of (V�;i � U0;i)B , we

have that b0;i (Æi~ui; ri) = 1=� c0;i (~qi; ri) 8ri 2 U0;i. Summing over i and recalling

that

�
~u�
~p0

�
is benign, we conclude that ~qi = ~p0j
i . The square of the second factor

in (30) can then be estimated as in [30]:

NX
i=1

 � Æi~ui
~qi

�2
�;�;�;i

=

 � ~u�
~p0

� 2
�;�;�

= �s�;�;�(~u�; ~u�) + 1=� c0(~p0; ~p0)(31)

�
�
1 +

�

�

�
�s�;�(~u�; ~u�) + 1=� c0(~p0; ~p0) �

�
1 +

�

�

�
k ~wk2�;� ;

where

� = inf
v�

a(SH�;�(v�);SH�;�(v�))

kSH�;�(v�)k2L2(
)
> 0:

The square of the �rst factor in (30) is estimated by using the de�nition (28) of the
local problems:X

i

 � Æi ~T
u
i ~w

~T p
i ~w

� 2
�;�;�;i

=
X
i

��
Æi ~T

u
i ~w

~T p
i ~w

�
;

�
Æi ~T

u
i ~w

~T p
i ~w

��
�;�;�;i

=
X
i

�
~w;

�
~T u
i ~w
~T p
i ~w

��
S�;�

=

*
(I � T0)w;

X
i

Ti(I � T0)w

+
S�;�

:(32)

Putting (30), (31), and (32) together, we obtain

k(I � T0)wk2�;� �
�
1 +

�

�

�*X
i

Ti(I � T0)w; (I � T0)w

+
S�;�

:(33)
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Finally, from (29) and (33),

hT�;�w;wi�;� � kwk2�;� �
�

�

*X
i

Ti(I � T0)w; (I � T0)w

+
S�;�

� kwk2�;� �
�

�
hT�;�w;wi�;� :

Therefore,

hT�;�w;wi�;� �
�
1 +

�

�

��1

kwk2�;� :

Upper bound: We recall that T0 restricted to the benign subspace is an or-
thogonal projection with respect to h�; �i�;�. Therefore, the only term we have to
control in (29) is hPi Ti(I � T0)w; (I � T0)wiS�;� . This expression will be bounded

from above in terms of the square of the norm of w. Since the norm of (I � T0)w is
less than or equal to that of w; we will assume, henceforth, that w 2 Range(I � T0):

Let pTi be the piecewise constant pressure so that

�
T u
i w

pTi

�
is benign; we remark

that both T u
i w and pTi are supported in 
i and the subdomains adjacent to it. By

Lemma 5.1, *X
i

Ti(I � T0)w; (I � T0)w

+
S�;�

=

*
w; (I � T0)

X
i

Tiw

+
S�;�

=

*
w; (I � T0)

X
i

�
T u
i w

T p
i w

�+
�;�

=

*
w;
X
i

�
T u
i w

pTi

�+
S�;�

=

*
w;
X
i

�
T u
i w

pTi

�+
�;�

(34)

� kwk�;�
X

i

�
T u
i w

pTi

�
�;�

and we are left with bounding the second factor from above. By a standard coloring

argument, it suÆces to bound the �; ��norm of just one term,

�
T u
i w

pTi

�
; of the sum.

By the comparison of the energy of the discrete saddle point and harmonic extensions
in Lemma 3.1, we have� T u

i w

pTi

� 2
�;�

�
�
1 +

p
dp

�2 + �=�

�2

�krH(T u
i w)k2L2(
):(35)

We then apply to each scalar component of H(T u
i w) the decomposition lemma for

the scalar Neumann-Neumann algorithm (see Dryja and Widlund [12, lemma 4] for
�nite elements and Pavarino [28, lemma 6.2] for spectral elements) and obtain

�krH(T u
i w)k2L2(
) � C��

�
krH�;i(ÆiT

u
i w)k2L2(
i) + �kH�;i(ÆiT

u
i w)k2L2(
i)

�
;
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where

� =

�
(1 + log(H=h))2 for �nite elements
(1 + logn)2 for spectral elements:

By using on each subdomain a variant of Lemma 3.1 for the regularized ��forms, we
can return to the discrete saddle point harmonic extension:

�
�
krH�;i(ÆiT

u
i w)k2L2(
i) + �kH�;i(ÆiT

u
i w)k2L2(
i)

�
� C�

�
ai(SH�;i(ÆiT

u
i w);SH�;i(ÆiT

u
i w)) + �kSH�;i(ÆiT

u
i w))k2L2(
i)

�
:

Hence,

�krH(T u
i w)k2L2(
) � C�

 � ÆiT
u
i w

T p
i w

�2
�;�;�;i

:(36)

From (35) and (36), we obtain � T u
i w

pTi

� 2
�;�

� C�

�
1 +

p
dp

�2 + �=�

�2 � ÆiT
u
i w

T p
i w

� 2
�;�;�;i

= C�

�
1 +

p
dp

�2 + �=�

�2

hw; TiwiS�;� (de�nition of the local problems)

= C�

�
1 +

p
dp

�2 + �=�

�2

hw; (I � T0)Tiwi�;� (Lemma 5.1)

� C�

�
1 +

p
dp

�2 + �=�

�2

kwk�;� k(I � T0)Tiwk�;� (Cauchy-Schwarz):

Lemma 5.3 now gives

k(I � T0)Tiwk2�;� � ��2kT u
i wk2S�;�;� :

Since �kT u
i wk2S�;�;� �

 � T u
i w

pTi

�2
�;�

, we then have

 � T u
i w

pTi

� 2
�;�

� C�

�
1 +

p
dp

�2 + �=�

�2

� kwk�;�
 � T u

i w

pTi

�
�;�

;

i.e.,  � T u
i w

pTi

� 
�;�

� C�

�
1 +

p
dp

�2 + �=�

�2

� kwk�;� ;

and �nally, from (34), we obtain*X
i

Ti(I � T0)w; (I � T0)w

+
S�;�

� C�

�
1 +

p
dp

�2 + �=�

�2

� kwk2�;� :
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The upper bound is derived from (29) by using the fact that kT0wk�;� � kwk�;� for
any benign w:

hT�;�w;wi�;� � C�

�
1 +

p
dp

�2 + �=�

�2

� kwk2�;�

The result on the condition number of T�;� now follows from the upper and lower
bounds derived above.

6. Heterogeneous Materials with Variable CoeÆcients. Our algorithm
can be extended to heterogeneous materials with di�erent Lam�e constants �i; �i in
the di�erent subdomains 
i:8>>>>>><>>>>>>:

2
NX
i=1

Z

i

�i �(u) : �(v) dx �
Z



divv p dx = < F;v > 8v 2 V

�
Z



divu q dx �
NX
i=1

Z

i

1=�i pq dx = 0 8q 2 U:

The global sti�ness matrix K is constructed by subassembling the contributions�
�iA

(i) B(i)T

B(i) �1=�i C(i)

�
from the individual substructures; cf. the discussion at the end of Subsection 3.1. A
saddle point Schur complement matrix can similarly be assembled from the matrices"

�iS
(i)
�;�;� B

(i)T

0

B
(i)
0 �1=�i C(i)

0

#
;

which are obtained by static condensation. The balancing Neumann-Neumann pre-
conditioner Q�;� for S�;� has the same form as before, but uses modi�ed local and
coarse spaces. As in the scalar elliptic case, the jumps in the coeÆcients �i are ac-
counted for by appropriately scaling the special counting functions Æi and their pseudo
inverses Æyi . As in [25], we now use the de�nition

Æyi (x) =
�i (x)P

j2Nx
�j (x)

;(37)

where  2 [1=2;1) and Nx is the set of indices of all the subdomains that have x on

their boundaries. The new Æi is the pseudo inverse of Æyi : As before, both Æi and Æ
y
i

vanish at all interface nodes outside @
i;h and are extended inside each subdomain

by discrete saddle point harmonic extensions. The pseudo inverses Æyi still form a
partition of unity. We have chosen  = 1 in our numerical experiments reported in
the next section.

The local and coarse problems are then de�ned formally as before but using the
modi�ed functions Æi and Æ

y
i . In particular, the coarse problem is now written as8>>>>>><>>>>>>:

NX
i=1

�is�;�;i(T
u
0 u�;v) + b0(v; T

p
0 u�) =

NX
i=1

�is�;�;i(u�;v) 8v 2 V0

b0(T
u
0 u�; q)�

NX
i=1

1=�i c0;i(T
p
0 u�; q) = b0(u�; q) 8q 2 U0:

(38)
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Our balancing Neumann-Neumann preconditioner is therefore well de�ned also in
the case of variable coeÆcients and our numerical experiments, reported in the next
section, indicate that indeed our preconditioner retains its excellent convergence rate
also for heterogeneous materials.

Unfortunately, we have not been able to completely extend our analysis to the case
of variable coeÆcients. While it is straightforward to check that all other parts of the
proof still works, we have not been able to extend Lemma 5.3 to the general case with
variable coeÆcients. We note that we do not know how to prove the uniform inf-sup
stability for the underlying �nite element discretization or for the continuous problem
for arbitrary heterogeneous coeÆcients and that is at the heart of our diÆculties.

We can nevertheless prove a weaker result by selecting the test functions v =
T u
0 u� and q = T p

0 u� in (38). We can now eliminate b0(T
u
0 u�; T

p
0 u�) and obtain,

NX
i=1

�is�;�;i(T
u
0 u�; T

u
0 u�) +

NX
i=1

1

�i
c0;i(T

p
0 u�; T

p
0 u�) =

=

NX
i=1

�is�;�;i(u�; T
u
0 u�)� b0(u�; T

p
0 u�):

Since kdivu�k2L2(
i) � (d=2)s�;�;i(u�;u�), we �nd by using elementary inequalities
that

NX
i=1

�is�;�;i(T
u
0 u�; T

u
0 u�) +

NX
i=1

1

�i
c0;i(T

p
0 u�; T

p
0 u�)

�
�
1 + (d=2)max

i
(�i=�i)

� NX
i=1

�is�;�;i(u�;u�):

Thus, we have a bound which is satisfactory only if the Poisson ratio � remains
bounded away from 1=2; cf. the remark before the proof of Lemma 5.3. The weaker
bound here reects the fact that we have not been able to estimate the inf-sup con-
stant of the coarse spaces in the case of greatly varying Lam�e parameters. We have
computed the norm of I�T0 in a number of cases and always found it to be less than
1:5; which would indicate that Lemma 5.3 might always be valid.

Another partial result can be obtained for the case when the �i vary moderately.
The proof to Lemma 5.3 can then be modi�ed; the resulting estimate will depend on
the ratio of the largest and smallest values of the �i:

7. Numerical Experiments and Implementation Details. In this section,
we will discuss a few practical aspects of the implementation of the method, before
presenting numerical results for both �nite and spectral element implementations of
our algorithm. The �nite element results were obtained in parallel experiments on a
Beowulf cluster using the parallel PETSc library; see [4], [5]. The spectral element
results were obtained in serial experiments on a Unix workstation using Matlab 5.3.

7.1. Avoiding a special basis for the pressure. In our discussion, we have
assumed that the basis functions for the pressure degrees of freedom can be divided
into two sets: functions with zero average and functions constant in each subdomain

i; see formula (12). Although our method requires a pressure space that admits such
a partition, it still can be implemented using a standard nodal basis for the pressure.
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In our actual implementation, we generate a sti�ness matrix eK using a standard
nodal basis, instead of the sti�ness matrixK of equation (8), and introduce a Lagrange
multiplier to enforce that the average of the pressure is zero. Furthermore, we never
assemble the entire matrix eK, but rather work with the local sti�ness matrices eK(i):

eK(i) =

264 �A(i) eB(i)
T

0eB(i) �1=� eC(i) w(i)

0 w(i)T 0

375 :(39)

Here, the matrices eB(i) and eC(i) di�er from B(i) and C(i) of Subsection 3.1, since a
standard basis for the pressure is used. The entries of the vector w(i) are the integrals
of the pressure basis functions. In each of the local matrices eK(i), we eliminate the
interior velocities, all the pressures and the Lagrange multiplier. This corresponds to
taking the Schur complement with respect to the (2,2)-block in the following matrix,
which is a reordering of (39):266664

�A
(i)
II

eB(i)
I

T
0 �A

(i)
I�eB(i)

I �1=� eC(i) w(i) eB(i)
�

0 w(i)T 0 0

�A
(i)
�I

eB(i)
�

T
0 �A

(i)
��

377775 :

We can show that the result of this static condensation is precisely �S
(i)
�;�;�, the

(1; 1)-block of S
(i)
�;�, as de�ned in (15). The remaining blocks of S

(i)
�;�, the vector B

(i)
0

and the scalar �1=� C(i)
0 , are computed using the formula:"

�A
(i)
�� B

(i)
0

T

B
(i)
0 �1=� C(i)

0

#
=

"
I

e(i)
T

#"
�A

(i)
��

eB(i)
�

T

eB(i)
� �1=� eC(i)

# �
I e(i)

�
:

Here the entries of the vector e(i) are the coeÆcients that express the constant pressure
on subdomain 
i in terms of the standard basis functions, i.e.,

enpX
k=1

e
(i)
k
e k = �
i ;

where
ne ko

k=1;:::;~np
is the regular pressure basis and �
i is the characteristic function

of the subdomain 
i.

7.2. Solution of the local problems. Our algorithm requires the solution of
local problems with essential boundary conditions (when computing the action of S�;�
on a vector) and natural or mixed boundary conditions (when computing the action of
Qi for oating and non-oating subdomains, respectively). These local problems are
of the same nature as the original problem, only much smaller. The problems involving
essential boundary conditions must be solved exactly, since their results are used for
the evaluation of the residual of the Schur complement problem. Those with natural
and mixed boundary conditions could, in principle, be solved approximately. In our
implementation, we have chosen to use a direct method (sparse LU factorization) in
all cases, which leaves us with the question of how to order equations and unknowns
in order to exploit sparsity.
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When handling incompressible local problems, the block eC(i) is zero. In this case,
the matrices of the problems with an essential boundary condition have the form:

264 �A
(i)
II

eB(i)
I

T
0eB(i)

I 0 w(i)

0 w(i)T 0

375 :
Our experience is that a combination of an o�-the-shelf reordering algorithm with an
o�-the-shelf sparse direct solver without pivoting for stability (as the one now provided
in PETSc) typically breaks down because of encountering a zero pivot. It is interesting
to note that factorization without any reordering also fails since the leading two-by-
two block is singular and that therefore the matrix does not admit a LU factorization.
One alternative, when using Q2 �Q0 elements, is simply to interchange the last two
rows and columns of the matrix since the resulting matrix can be factored without
pivoting. But the sparsity of the matrix is then not explored. Similar devices can be
developed for other �nite element methods. A better alternative, which we have used
in our parallel code, is to reorder for sparsity only the displacement equations and

unknowns, corresponding to the block �A
(i)
II , in addition to exchanging the last two

rows and columns. In the case of Q2 �Q0 elements, when about 89% of the dofs are
displacements (in two dimensions; 96% in three dimensions), this approach yields a
substantial gain in performance.

In the case of compressible materials, when eC(i) is positive de�nite, we have en-
countered no problem in using the o�-the-shelf reordering/factoring approach, which
yields much smaller �ll-in than when only the displacement variables are reordered as
described above.

The local problems with natural or mixed boundary conditions do not require
a Lagrange multiplier and there is no need to exchange the two rows and columns.
Moreover, arti�cial numerical compressibility could be introduced in these problems,
which would allow us to use an o�-the-shelf reordering/factoring approach.

One could also avoid the use of exact solvers, even for the local Dirichlet prob-
lems, at the expense of operating on the entire space, including interior displacements
and zero-average pressures; see [35, sect. 4.4, p. 141]. This requires two more local
solves per iteration and, in addition, we have to expect an increase in the number
of iterations. For the incompressible case, this might possibly be advantageous even
when using direct solvers, since it would allow us to introduce arti�cial compressibility
(and the use of eÆcient reordering algorithms) even for the problems with essential
boundary conditions.

7.3. Parallel results for elasticity and Q2 � Q0 mixed �nite elements.

In this section, we report on some results of parallel numerical experiments on the
Beowulf cluster Chiba City at Argonne National Laboratory (with 256 Dual Pentium
III processors). The algorithm has been implemented by the �rst author in C, using
the PETSc library. We report on results for compressible/almost-incompressible elas-
ticity only, although similar results have been obtained for incompressible elasticity
(and also Stokes and generalized Stokes equations), see [17].

The domain considered is the unit square and the boundary conditions are of
Dirichlet type. The Lam�e parameters are constant in each subdomain but are discon-
tinuous across the interface. This corresponds to a heterogeneous medium, which is
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Table 1

Parallel results for elasticity system (heterogeneous medium) and Q2�Q0 �nite elements: PCG
iteration counts and maximum eigenvalue of T�;� for the balancing Neumann-Neumann precondi-
tioner with coarse space V 2

0

Fixed number of subdomains N = 8� 8
CPU time (sec.)

mesh size local size # unkn. iter. eig max fact. total
160 � 160 20 � 20 230,000 12 4.06 1.4 18.0
320 � 320 40 � 40 920,000 13 4.65 18.2 40.9
480 � 480 60 � 60 2,080,000 14 4.99 84.2 126.3
640 � 640 80 � 80 3,690,000 14 5.22 260.8 345.3

Fixed local size 80� 80 elements (58,242 unknowns)
CPU time (sec.)

mesh size # subdom. # unkn. iter. eig max fact. total
320 � 320 4 � 4 920,000 12 5.18 258.0 321.4
480 � 480 6 � 6 2,080,000 13 5.21 253.7 317.4
640 � 640 8 � 8 3,690,000 14 5.22 260.8 345.3
800 � 800 10 � 10 5,770,000 14 5.14 262.8 356.7
1040 � 1040 13 � 13 9,740,000 14 4.93 261.2 363.9

Fig. 1. Parallel results for elasticity system (heterogeneous medium) and Q2 � Q0 �nite ele-
ments: PCG iteration counts and maximum eigenvalue of T�;� vs. local size H=h (left) and number
of subdomains N (right), from Table 1
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composed of a
p
N �p

N array of three di�erent materials in the following pattern:

s r s r � � � s r
r a r a � � � r a
s r s r � � � s r
r a r a � � � r a
...

...
...

...
. . .

...
...

s r s r � � � s r
r a r a � � � r a

;
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where

s = steel-like: �s = 8:20 �s = 10:00 �s = 0:275
a = aluminum-like: �a = 2:60 �a = 5:60 �a = 0:341
r = rubber-like: �r = 0:01 �r = 0:99 �r = 0:495

:

Note that the material r is almost incompressible, with a Poisson ratio close to 0:5.
The problem is discretized with Q2�Q0 �nite elements and the saddle point Schur

complement (21) is solved iteratively by PCG with our balancing Neumann-Neumann
preconditioner and the third coarse space V 2

0 = fscaled rigid body motionsg + QH
1 .

The initial guess is a random vector modi�ed so that the initial error is in the range
of (I � T0); the right hand side is a random, uniformly distributed vector, and the
stopping criterion is krkk2=kr0k2 � 10�6, where rk is the residual at the k�th iterate.

In the upper half of Table 1, we show results for decreasing mesh sizes for a case
of 64 subdomains. The condition number and the iteration count grow weakly as we
increase the size of the local problems, as can also be observed in the left part of
Figure 1. The last two columns of this table display CPU-time for these runs. The
last column gives the total time for the code to run, while the column labeled \fact."
gives the time spent on LU factorizations; there are three of them: two local, namely
a Dirichlet and a Neumann subdomain-level problem, and one global coarse problem.
We note that the cost of the factorizations grows rapidly and dominates the cost of
the computation. The lower part of Table 1 shows results for an increasing number of
subdomains of �xed size (about 58,000 degrees of freedom). The corresponding graph,
on the right in Figure 1, shows an almost horizontal tail, indicating independence of
the condition number and the iteration count on the number of subdomains. This is
numerical evidence that our main result, Theorem 5.4, remains valid in the case of
discontinuous coeÆcients. The fact that the factorization time remained constant for
the entire range of problem sizes tested (from 16 to 169 subdomains) indicates that
the cost associated with the factorization of the coarse problem is still tiny compared
with that of the local problems. One can expect this scenario to change if the number
of subdomains increases signi�cantly.

7.4. Serial results for elasticity and Qn�Qn�2 mixed spectral elements.

In this section, we report on serial numerical experiments, carried out in Matlab
5.3 on Unix workstations, for model mixed elasticity problems on the unit square or
the unit cube and with homogeneous Dirichlet boundary conditions. The problem
was discretized with Qn � Qn�2 spectral elements and the domain 
 divided intop
N �p

N square subdomains or N1=3 �N1=3 �N1=3 cubic subdomains. After the
implicit elimination of the interior unknowns, the saddle point Schur complement
system (21) is solved iteratively by PCG with our balancing Neumann-Neumann
preconditioner. The initial guess is always zero, the right hand side is random and
uniformly distributed, and the stopping criterion is krkk2=kr0k2 � 10�6, where rk is
the residual at the k�th iterate.

Homogeneous materials. We consider �rst the case of homogeneous materials
with �xed Lam�e constants over the whole domain 
. We report the results in two
tables corresponding to two of the coarse spaces introduced in Section 4, V0

0 in Table
2 and V1

0 in Table 3. In the upper half of each table the number of subdomains,
N = 3� 3; is �xed, while the spectral degree n is increased from 2 to 10; in the lower
half the spectral degree n = 4 is �xed and the number of subdomains N is increased
from 2�2 to 10�10. Each table reports the PCG iteration counts and, in brackets, the
maximum eigenvalue of the preconditioned operator T�;�; the minimum eigenvalue is
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Table 2

Serial results for elasticity system (homogeneous medium) and spectral elements: PCG itera-
tion counts and maximum eigenvalue of T�;� (in brackets) for the balancing Neumann-Neumann
preconditioner with coarse space V 0

0

Fixed number of subdomains N = 3� 3
spectral degree n Poisson ratio �

� = 0:3 � = 0:4 � = 0:49 � = 0:5
3 8 (2.40) 8 (2.38) 9 (2.86) 9 (3.51)
4 9 (2.72) 9 (2.51) 10 (3.51) 10 (4.56)
5 10 (3.43) 10 (3.17) 11 (4.18) 11 (5.84)
6 11 (4.04) 11 (3.69) 12 (4.69) 12 (6.67)
7 12 (4.64) 11 (4.24) 13 (5.11) 13 (7.62)
8 12 (5.21) 12 (4.75) 13 (5.66) 14 (8.44)
9 13 (5.74) 12 (5.24) 14 (5.93) 15 (9.20)
10 13 (6.21) 13 (5.70) 15 (6.56) 15 (10.03)

Fixed spectral degree n = 4
# of subdomains N Poisson ratio �

� = 0:3 � = 0:4 � = 0:49 � = 0:5
3 � 3 9 (2.72) 9 (2.51) 10 (3.51) 10 (4.56)
4 � 4 10 (2.75) 10 (2.52) 11 (3.92) 12 (5.23)
5 � 5 10 (2.77) 10 (2.52) 13 (6.07) 14 (10.82)
6 � 6 10 (2.67) 10 (2.53) 14 (6.20) 15 (11.11)
7 � 7 11 (2.79) 10 (2.53) 15 (8.05) 17 (20.22)
8 � 8 11 (2.71) 10 (2.54) 16 (7.98) 19 (19.42)
9 � 9 11 (2.80) 10 (2.54) 17 (9.40) 21 (32.76)
10 � 10 11 (2.79) 10 (2.54) 18 (9.24) 22 (30.12)

Fig. 2. Serial results for elasticity system (homogeneous medium) and spectral elements: PCG
iteration counts and maximum eigenvalue of T�;� vs. spectral degree n (left) and number of subdo-
mains N (right), from Table 2, coarse space V0
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always very close to 1 and therefore not reported. In each table, we consider, in four
di�erent columns, the four cases � = 0:3; 0:4; 0:49; 0:5, ranging from compressible to
incompressible materials. The results show, in agreement with the theory, that our
balancing Neumann-Neumann algorithm is quasi-optimal, i.e., there is only a weak
dependence on the spectral degree n, and scalable, i.e., there is no dependence on
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Table 3

Serial results for elasticity system (homogeneous medium) and spectral elements: PCG itera-
tion counts and maximum eigenvalue of T�;� (in brackets) for the balancing Neumann-Neumann
preconditioner with coarse space V 1

0

Fixed number of subdomains N = 3� 3
spectral degree n Poisson ratio �

� = 0:3 � = 0:4 � = 0:49 � = 0:5
3 8 (2.40) 8 (2.38) 8 (2.40) 9 (2.40)
4 9 (2.71) 9 (2.49) 9 (2.39) 9 (2.39)
5 10 (3.42) 10 (3.14) 10 (2.94) 10 (2.92)
6 11 (4.02) 11 (3.66) 11 (3.45) 11 (3.46)
7 11 (4.62) 11 (4.21) 12 (3.93) 12 (3.94)
8 12 (5.19) 12 (4.72) 13 (4.45) 12 (4.48)
9 13 (5.71) 12 (5.20) 13 (4.86) 13 (4.90)
10 12 (6.23) 13 (5.66) 14 (5.35) 14 (5.41)

Fixed spectral degree n = 4
# of subdomains N Poisson ratio �

� = 0:3 � = 0:4 � = 0:49 � = 0:5
9 9 (2.71) 9 (2.49) 9 (2.39) 9 (2.39)
16 10 (2.75) 10 (2.52) 10 (2.45) 10 (2.45)
25 10 (2.76) 10 (2.51) 10 (2.45) 10 (2.46)
36 11 (2.77) 10 (2.51) 10 (2.46) 10 (2.46)
49 10 (2.78) 10 (2.50) 10 (2.42) 10 (2.42)
64 11 (2.75) 10 (2.51) 10 (2.45) 10 (2.45)
81 11 (2.79) 10 (2.51) 10 (2.45) 10 (2.45)
100 11 (2.80) 10 (2.52) 10 (2.45) 10 (2.45)

Fig. 3. Serial results for elasticity system (homogeneous medium) and spectral elements: PCG
iteration counts and maximum eigenvalue of T�;� vs. spectral degree n (left) and number of subdo-
mains N (right), from Table 3, coarse space V1
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the number of subdomains N , for both coarse spaces. There are exceptions, with
the �rst coarse space V0

0 in the incompressible and almost incompressible cases; see
the last two columns of Table 2, lower part. This is due to the fact that V0

0 is not
uniformly inf-sup stable with respect to H and that therefore �0 approaches zero with
increasing N . In the compressible case, the non-zero factor �=� in Theorem 5.4 allows
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Table 4

Serial results for elasticity system (heterogeneous medium) and spectral elements: PCG itera-
tion counts and maximum eigenvalue of T�;� for the balancing Neumann-Neumann preconditioner.
Fixed number of subdomains N = 4� 4 and spectral degree n = 5.

V0
0 coarse space

exponent t in � # iterations eig max eig min estim. cond(K)
-3 11 3.48 1.0012 2.4�105
-2 11 3.53 1.0024 3.3�104
-1 12 3.73 1.0026 5.3�103
0 12 3.47 1.0017 1.7�104
1 12 3.46 1.0017 8.3�105
2 12 3.35 1.0016 7.2�107
3 11 3.47 1.0017 7.1�109
4 10 3.48 1.0003 7.1�1011
5 10 3.49 1.0001 7.1�1013
6 9 3.49 1.0000 7.1�1015

V1
0 coarse space

exponent t in � # iterations eig max eig min estim. cond(K)
-3 10 2.87 1.0011 2.4�105
-2 10 2.91 1.0018 3.3�104
-1 11 3.30 1.0018 5.3�103
0 12 3.41 1.0010 1.7�104
1 12 3.41 1.0009 8.3�105
2 12 3.33 1.0011 7.2�107
3 11 3.44 1.0016 7.1�109
4 11 3.46 1.0005 7.1�1011
5 11 3.46 1.0001 7.1�1013
6 10 3.46 1.0000 7.1�1015

us to still obtain an upper bound independent of N and therefore scalability, but in
the incompressible case �=� vanishes and we lose scalability. On the other hand, the
use of the inf-sup stable coarse space V1

0 yields a scalable algorithm independently of
the compressibility of the material; see Table 3.

Heterogeneous materials and 3D results. We next consider the case of a
heterogeneous material occupying a domain 
 divided into 4�4 subdomains and with
the following distribution of Lam�e coeÆcients:

� =

1 1 1 1
1 1 10 0:1
1 10 1 1
0:1 1 0:1 10

� =

1 10t 1 10t=3
3 � 10t 1=2 10t=5 2
1 10t=2 1=3 10t

10t 2=5 5 � 10t 3

where the exponent t assumes the values t = �3;�2; � � � ; 5; 6: We have set  = 1 in
the de�nition of the scaled Æi and Æ

y
i functions; cf. (37). This example does not reect

any physical model, but illustrates the robustness of our algorithm with respect to
variations of the Lam�e coeÆcients, that have jumps of many orders of magnitude
across subdomain boundaries. We have tried many additional combinations of com-
pressible and incompressible materials and have found our algorithm to be virtually
independent of these variations. This is clearly shown in the results of Table 4, where
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Fig. 4. 3D results: Distribution of the Lam�e coeÆcients � (left) and � (right) on a cubic domain
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Table 5

Serial results in 3D for elasticity system (homogeneous medium) and spectral elements: PCG
iteration counts and maximum eigenvalue of T�;� for the balancing Neumann-Neumann precondi-
tioner Fixed number of subdomains N = 3� 3 and spectral degree n = 4.

V0
0 coarse space

exponent t in � # iterations eig max eig min
-3 18 6.68 1.0003
-2 17 6.65 1.0017
-1 16 6.43 1.0039
0 15 5.16 1.0049
1 17 6.39 1.0048
2 18 7.10 1.0039
3 19 7.52 1.0029
4 19 7.58 1.0029
5 19 7.59 1.0030
6 19 7.59 1.0030

variations of up to ten orders of magnitude in the Lam�e coeÆcients cause a com-
parable increase in the condition number of the discrete problem (computed by the
Matlab function condest) but do not a�ect the performance of our algorithm or the
spectrum of the preconditioned operator.

Similar results have been obtained in three dimensions. Figure 4 shows the dis-
tribution of the Lam�e coeÆcients � (left) and � (right) on a cubic domain and the
exponent t assumes the values t = �3;�2; � � � ; 5; 6; as before. The results reported in
Table 5 show that also in three dimensions the performance of our algorithm and the
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spectrum of the preconditioned operator are independent of the jumps in the Lam�e
coeÆcients.
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