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Abstract

Population genetics has seen a renewed interest since the completion

of the human genome project. With the availability of rapidly growing

volumes of genomic data, the scientific and medical communities have

been optimistic that better understanding of human diseases as well as

their treatment were imminent. Many population genomic models and

association studies have been designed (or redesigned) to address these

problems. For instance, the genome-wide association studies (GWAS) had

raised hopes for finding disease markers, personalized medicine and ratio-

nal drug design. Yet, as of today, they have not yielded results that live

up to their promise and have only led to a frustrating disappointment.

Intrigued, but not deterred by these challenges, this dissertation visits the

different aspects of these problems. In the first part, we will review the dif-

ferent models and theories of population genetics that are now challenged.

We will propose our own implementation of a model to test different hy-

potheses. This effort will hopefully help us in understanding whether the

research community expectations were unreasonably too high or if we had

ignored a crucial piece of information.

When discussing association studies, we must not forget that we rely on

data that are produced by sequencing technologies, so far available. We

have to ensure that the quality of this data is reasonably good for GWAS.

Unfortunately, as the reader will see in the second part, despite the exis-

tence of a diverse set of sequencing technologies, none of them can produce

haplotypes with phasing, which appears to be the most important type of

sequence data needed for association studies. To address this challenge, I
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propose a novel approach for a sequencing technology, called SMASH that

allows us to create the quality and type of haplotypic genome sequences

necessary for efficient population genetics.
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Introduction

This thesis addresses two important problems in today’s computational biology.

First is the problem of population genetics and more precisely, how to make

sense of genomic sequences. The large amount of data containing useful genetic

information could someday allow us to treat diseases and develop personalized

medicine, which is one of the most exciting challenges of the new century. How-

ever, since the human genome was first fully sequenced, few usable results have

been found. Different strategies have been proposed but none of them has been

reliable enough to provide a breakthrough in genetic therapy. This raises the

question of where the obstacles to genetic medicine may lie. Have the hypothe-

ses, theories and models proposed been wrong or at least incomplete or might the

problems encountered be due to the quality of the data on which we are currently

running experiments?

This point will lead to the second topic addressed in this dissertation; namely

sequence quality. An essential limiting factor for any population study is the

quality of the sequences we want to use to run our models or test our theories

which is why having quality sequences is an extremely important matter. As

we approach the tenth anniversary of the completion of sequencing of first hu-
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man genome, sequencing technologies have become less and less expensive, but it

seems that the quality of the sequences we obtain from those technologies is not

good enough to lead significant population studies. In the ten years since we first

sequenced the human genome, the problem of sequencing the human genome has

not have been fully solved. Genome sequencing is a very complex problem and it

is interesting to see how it has been tackled and if we can improve it. You need

to learn to walk before you can run, which in our case would imply that you need

to have good quality data before you can study them.

In this introduction, I will present the different challenges posed by these two

problems; how to make sense of genomic sequences and how to improve the qual-

ity of the sequences we get. I will also present the reasoning behind some solutions

that this thesis will present for these problems.

Motivation

As stated earlier, being able to find alleles responsible for diseases, isolate them,

understand their relationships to one another and finally propose an approach to

treat those diseases are some of contemporary genetics’ most exciting challenges.

Why is sequencing so important? Sequencing a genome is more a tool than a goal

in itself. Using this raw string of letters tool, we are able to compare sequences to

each other and gather important data about human variation. On the other hand,

it is futile to study genomic features without good genomic data. This is why

the two problems addressed here are so intertwined. Sequencing genomes and

studying them are important in many ways in biology and medicine. The study
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of genomes has myriad applications. It allows us to have a better understanding

of evolution by comparing genomes of different species. It can also allow us to

understand regular traits or diseases by comparing the genomes of wild-type and

mutants, patients and normals. Another goal of genomic study is to be able to

automatically find regions of the genome that have a particular significance such

as genes, splicing sites, regulatory regions, etc, greatly cutting the cost of those

operations. We can also study the behavior of the genome as a whole and have

a better understanding of intergenic regions.

This is a tiny list, far from exhaustive, of the different possibilities that those

problems offer to solve and I cannot imagine the invaluable breakthrough there

could be if only one of those problems could be better elucidated by the present

thesis.

Contributions

The present thesis will contribute in two different ways.

1. A new approach and design to sequence whole genomes called Single Molecule

Approach to Sequencing by Hybridization (SMASH). This design will al-

low us to sequence haplotypes in an inexpensive way. While relying on a

technology known to be NP-complete, the combination of this approach

and another technology allow us to tame the complexity of the problem.

This work builds on the earlier unpublished work with Anantharaman, Lim,

Reed and Mishra.

3



2. A Wright-Fisher model that will let us try different hypotheses about pop-

ulations with common features such as mutations and recombinations but

also more advanced ones such as scenario of population size fluctuation and

type of mutations followed (e.g. lethal, selectively neutral, giving heterozy-

gous advantage).

Outline

The first three chapters will address population genetics. While the first chapter

is more of an introduction to the different existing population models and different

characteristics of interest inside the genome, the second chapter will introduce

the model developed in this thesis; namely, the common disease common variant

(CDCV) hypothesis and what our model is capable of inferring. The third chapter

will discuss whole genome association studies, their successes and problems, and

will highlight what we think might be a reason why those studies have been more

or less futile so far, given the unavailability of haplotype sequences. Knowing

this, chapter four will present different sequencing technologies and algorithms

associated with them. Finally, chapter five will introduce our new approach to

sequencing, SMASH and will show why this might be a major advance in the

field of sequencing.
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Motivations

The main idea motivating this thesis is to find a way to design effective genome-

wide association studies (GWAS). We wished to address various problems hin-

dering association studies that have been performed to date with disappointing

results. Some simple models such as the common disease common variant hy-

pothesis was hoped to simplify the analysis, but CDCV hypothesis still remains

controversial and does not work well for reasons that will be discussed in later

chapters. We sought to use in silico/simulation based model to design effective

GWAS.

The casecontrol design study has been the most widely applied strategy of asso-

ciation study for characterizing genetic contributions to disease. The advantages

of this design are it can be done quickly with a large number of cases and con-

trols and the cases can be efficiently genotyped and compared to the controls.

On the other hand this approach is prone to bias, especially when it comes to

selecting individual for the control population as the selection process often leads

to associations that are due to some population stratification rather than a real

association for the disease. Another type of design would be to use cohorts. This

approach would allow the study to be significantly less biased but the resources
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both financial and time-wise make cohort studies hard to implement. Yet an-

other design is to use family-based controls. This strategy is totally immune to

population stratification but is highly sensitive to genotyping errors and can be

hard to implement in the case of a late onset disease. Another side effect of this

approach is the loss of statistical power to detect genuine allelic association. The

different designs of those GWAS also rely on assumption about the variants that

are supposed to be found, such as SNPs and on the type of data that underlie

these studies (e.g., data obtained through technologies that give genotypes as-

sembled from short reads).

Results found using GWAS have been encouraging and disappointing in the same

time for complex traits. While a set of SNPs can be found to be statistically sig-

nificant, individually and in aggregate those SNPs seem to only account for a

small proportion of genetic variance. Interpreting the low predictive power of the

variants has been called the missing heritability problem. The obstacles encoun-

tered with the missing heritability problem overlap somewhat with the problems

encountered in GWAS (difficulties defining phenotypes, population stratification,

common variations that are left out such as CNV or gap in SNPs coverage).

The power of GWA studies can be greatly increased if augmented with the knowl-

edge of haplotypes and more specifically, phased haplotypes. Associations that

were impossible to detect without phased haplotypes could become detectable.

Even more complicated phase-dependent interactions of variants in linkage equi-

librium have also been suggested as possible causes of missing heritability. But

the current true haplotypes cannot be obtained accurately and even with errors,
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the cost, whether it is money for the experiment or the computational cost to

phase the haplotypes, is largely prohibitive. For those reasons, the significance

of phased haplotypes and the gain of statistical power of GWAS using them is

yet to be determined but rare variations are now accepted as being an important

actor in common as well as rare diseases.

Current studies ignore the phase of DNA. While some projects have included

haplotype in their analyses, they have generally assessed linkage disequilibrium

without directly examining the precise layout of genes on two homologous chromo-

somes. It is more difficult to sequence a human genome with phased haplotypes

than it is to simply have the overall sequence, without worrying about the origin

of said sequence; i.e. which one of the pair of homologous chromosomes that

sequence belongs to. In some cases, however, it is crucial to understand which

copy of the chromosome carries a particular variant.

Allele-specific expression, for example, is when the copy of a gene on one copy of

a chromosome is expressed while the copy on the other chromosome (the trans

copy) is suppressed. It has been estimated that 1-5% of human genes are affected

by allele-specific expression.

One mechanism for differential expression of the two alleles is that a transcription

factor binds preferentially to a sequence on one chromosome copy over another,

due primarily to differences in sequence. These sequences are, in turn, heritable,

therefore one parent can pass along an allele that will be more highly expressed

than that of the other parent.

Another mechanism for allele specific expression is epigenetic changes or changes
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that affect phenotype which come from a source other than the sequence of bases

on a strand of DNA. Methylation of chromosomal regions is one common form of

epigenetic suppression of genes. Some methylation patterns are based on which

parent a chromosome comes from (i.e. for certain regions of the genome, an indi-

vidual will always express the maternal copy, and for other regions, the paternal

copy). Other methylation patterns, however, appear to be the result of interac-

tions betweens single nucleotide polymorphisms (SNPs) that occur both within

one copy of a chromosome (cis acting) and between SNPs on different chromo-

somes (trans-acting). In the case that a SNP interaction affects methylation

patterns on an allele-specific basis, the result is known allele-specific methyla-

tion.It has been suggested that allele-specific methylation may play a role in

type-2 diabetes.

Copy number of genes can play a role in expression, and knowledge of true hapo-

types can help in understanding the effect of cis-acting copies of a gene, or por-

tions of a gene. For example, one copy of a gene for which an individual is

heterozygous may be amplified in a cancerous state. Understanding the effects of

this gene may require understanding its effects on the cis strand, thus knowledge

of the sequence of that same strand of DNA.

Compound heterozygosity is a term used to describe two homologous copies of

a region that have unique variants, but the variants occur at different locations

within that region. In the situation of compound heterozygosity, the combined

effect of these variants is different than what would result from having the vari-

ants on one single copy of the region. Because of this, understanding compound
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heterozygosity and determining the risk of an individual for a disease in which

compound heterozygosity plays a role, requires assessment of haplotype phasing.

Diseases affected by compound heterozygosity include cerebral palsy, a glycogen

storage disorder, and hyperphenylalinemia, among others. Compound heterozy-

gosity may also play a role in cancer, where the effect of a deleterious mutation

in one copy of a chromosome is potentiated by a mutation in the same region,

but at a different location in the homologous chromosome.

Phase information also appears to be important for population genetics stud-

ies, as it has been found that greater differentiation of populations, and thus

resolution of differences between populations can be found when haplotypes are

included in the study. Similarly, phase information can enhance studies examin-

ing evolutionary patterns.

To design efficient GWAS, the present thesis aimed to try out different GWAS

designs and show which ones are the best. This process starts by creating an

accurate data set using a coalescent or Wright-Fisher approach to model diseases

and selection and by carefully implementing and designing good algorithms, data

structures and optimizations scheme (such as parallelization) to do so. With this

model in hand, we could then try different designs of GWAS based on genotypes,

family trees, haplotypes, number of individuals, etc and assess their effectiveness.

Assuming that the addition of phased haplotypes will give a significant boost to

the power of those studies, we will then need to design an effective sequencing

technology that will sequence whole haplotype genomes in order to feed real data

to our population model. Finally, we would like to enable a realistic experiment
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(e.g. Wellcome Trust Case Control).

Unfortunately, the scope of this project was too ambitious given the constraint of

time and resources I had as a PhD student in a small bioinformatics laboratory.

The following subset of goals has been achieved:

1. A new approach and design to sequence whole genomes called Single Molecule

Approach to Sequencing by Hybridization (SMASH). This design will al-

low us to sequence haplotypes in an inexpensive way. While relying on a

technology known to be NP-complete, the combination of this approach

and another technology allow us to tame the complexity of the problem.

This work builds on the earlier unpublished work with Anantharaman, Lim,

Reed and Mishra.

2. A Wright-Fisher model that will let us test different hypotheses about pop-

ulations (and their diseases) with common features such as mutations and

recombinations but also more advanced ones such as scenario of popula-

tion size fluctuation and type of mutations followed (e.g. lethal, selectively

neutral, giving heterozygous advantage).
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Chapter 1

Population Genetics

1.1 Models

1.1.1 Wright-Fisher

This model was found independently and almost simultaneously by Fisher [50]

and Wright [100] although Fisher had come very close almost a decade earlier.

Let us consider the simplest possible case, which is founded on several simplifying

assumptions. We envision a diploid population of size N which could have been

also modeled as a haploid population of size 2N . Further, we assume discrete and

non-overlapping generations. In other words, we assume that reproduction and

death are simultaneous for all individuals within the population. This assump-

tion, while appearing very unrealistic, does not affect the asymptotic properties

in any substantial way. We are going to focus on the case where the population

size is constant. Important values of our model will be different if we instead

assume a fluctuating population size (growing, shrinking, or both). We are also
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going to assume that all individuals are equally fit. It is convenient to study

a simple model albeit unrealistic. Fortunately, this hypothesis can be relaxed

easily. Similarly, we will assume no recombination or mutation, an assumption

which can also be relaxed. Finally, the mating process within this population is

assumed to be random (panmictic), in other words there is no population struc-

ture.

Thus, in this simplest form, the model does not permit any mutation or recom-

bination and there is no selective force between two alleles A and a at the same

locus. We are going to pay attention to the number X of A alleles (or genes).

Obviously, X ∈ {0, 1, 2, ..., 2N}. At each generation g, the number X will be

noted X(g). To derive a generation g + 1 from a generation g, each gene (allele)

gives birth to some number of offspring (which are the exact copies of itself)

and dies immediately after that, thus living only one generation. X(g + 1) is

therefore a binomial random variable with index 2N and parameter (probability

of success) X(g)
2N

. So, if X(g) = i, the probability pij that X(g+1) = j is given by:

pij =
(
2N
j

)
( i

2N
)j(1− i

2N
)2N−j

Here we are studying a very simple definition of the model to see the effects of

stochastic variations in gene frequencies without any complications but the model

can, of course, be enriched by adding different mechanisms such as mutations or

selection.

If we go back to our simple model, we can make few easy observations. Since
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there is no mutation, the states X = 0 and X = 2N are absorbing. Without the

possibility of mutating, once an allele has disappeared, it cannot reappear (here,

with X = 0, the population will have allele a) and conversely, once the allele is

present in everybody, the next generation, being a sample of the current gener-

ation, has to have the allele (here, the population will have allele A). We could

rephrase this statement by saying that, whatever the value of X(0), eventually

X will fall into one of the two absorbing states. That translates mathematically

to limg→∞X(g) = 0.

We can study the probability of absorption in such a model. The probability

of extinction (when X = 0) given that there were initially i alleles A in our

population can be seen as limg→∞(X(g) = 0|X(0) = i). An easy way to study

the probability of absorption or fixation is to use the expectation value of our

variable. The constancy of expectation gives us:

E(X(g)) = E[E(X(g)|X(g − 1))] = E(X(g − 1)) = ... = E(X(0)) = i

We know that E(X(g)) = 0.ui,0 + 2N(1− ui,0) where ui,0 is the probability of

going from i alleles to 0. Therefore, we have

0.ui,0 + 2N(1− ui,0) = i⇒ ui,0 = 1− i
2N

By following the same reasoning, we can compute the probability of fixation

(when X = 2N) given that there were initially i alleles A in our population

13



0.(1− ui,2N) + 2N.ui,0) = i⇒ ui,2N = i
2N

We could have thought of this value more literally by saying that eventually,

every gene in the population is descended from one unique gene in the first gen-

eration. The probability that such a gene is A is simply the fraction of A genes

in the initial population.

Another value of interest with this model is the mean time until absorption. It

is a very complicated value to compute precisely and we will only compute an

approximation of it. One value that is simple to compute is the mean time to

absorption when there is just one allele of type A in our first generation. Starting

in state X(0) = 1, we will compute the expected number of visits to a state j

we make before we reach a state of absorption (0 or 2N). We denote the mean

number of generations to absorption in 0 or 2N , given that we started with one

allele A as t1. We need to sum up the expected number of such visits for all j,

avoiding states 0 and 2N

t1 =
∑2N−1

j=1 t1,j

where t1,j is the mean number of times that the number of A alleles takes

the value of j. Again, both Wright and Fisher found that t1,j ≈ 2
j
. Since∑N

i=1
1
i

= log(N) + γ where γ is the Euler’s constant, we find that

t1 =
∑2N−1

j=1 t1,j =
∑2N−1

j=1
2
j

= 2
∑2N−1

j=1
1
j

= 2(log(2N − 1) + γ)
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As stated earlier, we could find solutions for a more general i but in practice,

simple expressions for those solutions have not yet been found and may never be

found. We can, however, compute an approximation for ti. We use the first step

analysis where we start from a state i and in the first step visit some intermediate

state k. We define M = 2N, i/M = x, k/M = x+ δx and ti = t(x). We can write

ti =
∑M

k=0 piktk + 1

as

t(x) =
∑
P (x→ x+ δx)t(x+ δx) + 1 = E(t(x+ δx)) + 1

Now, by applying the Taylor’s series to t(x) we have

t(x) ≈ t(x) + E(δx)t(x)′ + 1
2
E(δx)2t(x)′′ + 1

Using the fact that the expectation of the binomial random variable is E(X) =

np, we have

E(x+ δx) = E( j
M

) = E(j)
M

=
M× i

M

M
= i

M

Since x = i
M

and E(x) = x, we can say that E(δx) = 0 and therefore

E(δx)t(x)′ = 0. Now we will compute E(δx)2. In our case, E(δx)2 = V ar(δx)
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since V ar(δx) = E(δx)2 − [E(δx)]2 and [E(δx)]2 = 0 as just shown.

V ar(x+ δx) = V ar( j
2N

) = V ar(j)
4N2 =

2N i
2N

(1− i
2N

)

4N2 = x(1−x)
2N

By plugging in this result to our expression of t(x), we have

t(x) ≈ t(x) + 1
2
x(1−x)

2N
t(x)′′ + 1

x(1− x)t(x)′′ ≈ −4N

The solution to this equation, subject to the boundary conditions t(0) =

t(1) = 0 is

t(x) = −4N

∫ ∫
1

x(1− x)

t(x) = −4N

∫
ln(x) + ln(1− x)

t(x) = −4N((xln(x)− x) + ((1− x)ln(1− x)− (1− x)))

t(x) =≈ −4N(x log x+ (1− x) log(1− x))

This computation is called the diffusion approximation to the mean absorption

time. If we initially start with one allele A which is equivalent to x = 1
2N

, the

mean time to absorption is t(x) ≈ 2 + 2 log(2N). If we started with a population

with as many genes A as a, that is with x = 1
2
, the mean time is t(x) ≈ 2.8N

which is clearly longer than for the case with one mutant.
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1.1.2 Moran

The main difference between the Wright-Fisher model we have just described and

the Moran model [74] is the fact that we allow overlapping generations in the

Moran model. Here, an individual is chosen randomly to reproduce and another

one is chosen to die (it could be the parent chosen to reproduce but not the

offspring). The offspring now lives in a population belonging to his parent’s gen-

eration. Because it does not make much sense to talk about generations in this

model, each time an individual is chosen to reproduce and another one to die, it

will increment a variable t. This process of choosing a reproducing and a dying

individual is called a birth and death process. We will consider a population of

2N haploids who could have either the allele A or the allele a and, as in the

Wright-Fisher model, ignore selection or mutation.

We define X to be a random variable which represents the number of times the

allele A is present within the population. It is of interest to calculate transition

probabilities for the implied Markov chain. Suppose that in a population at a

time t, which corresponds to the state Xt in the underlying Markov chain, the

number of times allele A is present is i. Then, at time t+ 1, the number of copies

of allele A can be either j = i + 1 if an individual with allele A is chosen to re-

produce and an individual with allele a is chosen to die, j = i−1 if an individual

with allele a is chosen to reproduce and an individual with allele A is chosen to

die or j = i if an individual with allele A (resp. a) is chosen to reproduce and an

individual with allele A (resp. a) is chosen to die. The probability of going from

i to i+ 1 is
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pi,i+1 = i
2N
× 2N−i

2N

With a similar reasoning, the probability of going from i to i− 1 is

pi,i−1 = i
2N
× 2N−i

2N

And the probability of staying with i A alleles is

pi,i = ( i
2N
× i

2N
) + (2N−i

2N
× 2N−i

2N
) = i2+(2N−i)2

4N2

Those transition probabilities can define a matrix which is a continuant since

pi,j = 0 if |i − j| > 1. Therefore, we can use the theory on continuant matrix

to explicitly find the probability of fixation and the mean time of absorption.

We can use concepts from the processes of birth and death to calculate these

quantities.The birth and death process is a special case of the continuous time

Markov process where the states represent the current size of a population and

where the transitions are limited to births and deaths. When a birth occurs,

the state goes from i to i + 1 defined by the birth rate λi = pi,i+1. Similarly,

when a death occurs, the state goes from i to i − 1 defined by the death rate

µi = pi,i−1. We define ρi = λ1×λ2×...×λi

µ1×µ2×...×µi
. Since λi = µi in the Moran model, we

have ρi = 1. Hence, the probability of absorption, whether it is is state 0 or 2N is

ui =
Pi−1

k=0 ρkP2N−1
k=0 ρk
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ui = i
2N

In the same fashion, we can compute the mean time to absorption. We can

calculate the mean number of times the system is in a state j given that it started

in a state i as

ti,j =
(1−ui)

Pj−1
k=0 ρk

ρj−1µj
for j = 1, ..., i

ti,j =
(1− i

2N
)

Pj−1
k=0 1

1× 2N−j
2N
× j

2N

ti,j = (2N−i)×2N
2N−j

And for j = i+ 1, ..., 2N − 1

ti,j =
ui

P2N−1
k=j ρk

ρjλj

ti,j =
( i
2N

)
P2N−1

k=j 1

1× 2N−j
2N
× j

2N

ti,j = i×2N
2N−j

Combining those two results, we can now compute the mean time to absorp-

tion

ti =
∑2N−1

j=1 ti,j

ti =
∑i

j=1(
(1−ui)

Pj−1
k=0 ρk

ρj−1µj
) +

∑2N−1
j=i+1(

ui
P2N−1

k=j ρk

ρjλj
)

ti =
∑i

j=1
(2N−i)×2N

2N−j +
∑2N−1

j=i+1
i×2N
2N−j

ti = (2N − i)2N
∑i

j=1
1

2N−j + 2Ni
∑2N−1

j=i+1
1
j
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The fact that the Wright-Fisher model works generation-by-generation makes

it an efficient model for computer scientists. It is easier to code and consumes

less computational resources than the Moran model. On the other hand, the

mathematical computations one may wish to perform are easier and more exact

with the Moran model than the Wright-Fisher. For example, while we had to find

an approximation for the mean time to absorption in the Wright-Fisher model,

the computation is relatively simple and exact with the Moran model.

1.1.3 Coalescence

Both the Wright-Fisher model and the Moran model look forward in time. They

try to predict which alleles will eventually fix or become extinct and how long

it will take. The coalescence looks backward in time. The first to introduce

the idea of following a pair of genes back to their common ancestor is Gustave

Malécot [70] in 1942. Coalescence examines a concept known as time to most

recent common ancestor (TMRCA). This answers the question; if we pick two

genes from a Wright-Fisher population, how long has it been on average since the

two genes departed from their most recent common ancestor (MRCA)? Instead

of making a predictive statement as with the previous models, we are now mak-

ing a historical statement. In 1966, Harris [53] and Lewontin and Hubby [66]

extended the question to samples larger than two. Let’s say we pick four genes

from a Wright-Fisher population. We can ask the same question, how long ago

did the genes in the sample share a common ancestor? Alternatively, we could

ask; how many samples do we need to be reasonably sure of sampling the MRCA
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of the entire population? The work of Ewens [48] and Watterson [96] were

also stepping stones for the coalescent theory. In 1982, Kingman [58], [59] and

[60] finally proved the existence of the coalescent process and showed that the

n-coalescent or the coalescent for the sample of n genes holds for a wide variety

of populations.

What is the probability for two genes to have a common ancestor j generations

back in time? First, the probability that two genes choose the same parent the

previous generation is 1
2N

for a population made of 2N individuals. The first

one choose freely but the second one has to choose the same parent. Therefore,

the probability that two genes have a common ancestor j generations back in

time is (1 − 1
2N

)j−1 1
2N

since samples from different generations are independent

of each other. With the same reasoning, we can compute the probability for k

genes to find a common ancestor. Actually, it is easy to compute the probability

that k genes have k different parents (no coalescence event). The first can choose

freely, then the second has to choose a different parent within a pool of 2N − 1

individuals, the third can only choose among 2N − 2 individuals and so on. It

gives us

2N−1
2N

2N−2
2N

...2N−k+1
2N

=
∏k−1

i=1 (1− i
2N

) = 1−
∑k−1

i=1
i

2N
+ o( 1

N2 ) = 1−
(
k
2

)
1

2N
+ o( 1

N2 )

Here the o( 1
N2 ) is negligible since n is much smaller than N . This approxima-

tion means that we may discard the possibility for two pairs of genes to find a

common ancestor in the same generation. So, with n much smaller than N , the

probability that none of the k genes found a common ancestor is
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1−
(
k
2

)
1

2N

And therefore, the probability of a coalescent event to occur is

(
k
2

)
1

2N

It is now easy to see the probability that two genes out of k find a common

ancestor j generations ago is

P (T jk ) ≈ (1−
(
k
2

)
1

2N
)j−1

(
k
2

)
1

2N

Here, the time was discrete. We can easily change to a continuous time pro-

cess. Usually, the scale is made so that one unit of time is equivalent to the

average time for two genes to coalesce (which is 2N generations as shown above).

Let t = j
2N

where j is the time measured in generations. The waiting time Tk for

k genes to have k− 1 ancestors in the continuous representation is exponentially

distributed, Tk ∼ exp(
(
k
2

)
) and so

P (Tk ≤ t) = 1− e(
k
2)t

Here, we have given an introduction to different models of evolution of popu-

lations. We have made rather strong assumptions that do not reflect the reality

of life. Obviously, those models have been studied deeply and developed further.
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Concepts of biological relevance have been added, ‘such as mutation, recombi-

nation, selection, linkage disequilibrium, population size fluctuations, population

structure and so on in order to reflect a more realistic view of life. The model we

have developed and that will be presented later in this dissertation will have those

features implemented but here, we are looking at some paradigms we can find in

population genetics models and a glimpse of the questions they can answer.

1.2 Making sense out of sequence?

One of the goals of population genetics is to explain the role of variations within

the sequence in order to explain cause, prevalence and nature of human diseases.

The idea is to connect the variations observed in sequences with different pheno-

types. There are different type of variations such as insertions and deletions, mini

and micro-satellites. The most common variation is the single nucleotide poly-

morphism (called SNP and pronounced snip). Along with linkage disequilibrium,

a concept discussed below, SNPs are often used to define haplotypes.

1.2.1 Single Nucleotide Polymorphisms

Polymorphism in a sequence differs from a mutation only by an arbitrary defini-

tion. Often, if the variations (the different alleles) within the general population

are observed at a frequency bigger than 1%, they are called polymorphisms while

if the occur at a lower frequency, we refer to them as mutations. The most

common polymorphism is the SNP. Most of the time, the SNPs have two differ-

ent alleles, one major (more frequent) and one minor (less frequent). The most
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common type of SNPs are transitions where purines are replaced by purines and

pyrimidines by pyrimidines (T to C or A to G). Because the human is diploid,

for each locus of a SNP, the individual can be either homozygous for the major

allele (AA), heterozygous (Aa) or homozygous for the minor allele (aa). C to T

SNPs are the most common in the human genome.

There are many ways to discover SNPs. When high throughput data became

available, SNPs were discovered by aligning different clone overlaps of genomic

DNA [85] and cDNA sequences [91], [6] and [79] or by reduced representation

shotgun sequencing [85] and [2]. A vast number of SNPs have been detected

with these technologies but their characteristics (allele, genotype and population

frequencies) could not be determined by these strategies alone. Another problem

was many of the SNPs identified by these methods could not be validated using

an alternative method [81] or a different population [101]. This inconsistency

suggests either that they are rare variants or that they are artifacts from the

sequencing or cloning technologies.

As we have seen, a lot of effort has been spent on identifying and characterizing

SNPs. Their abundance in the genome is thought to make them the perfect tar-

get in the construction of very high resolution genetic maps in humans. However,

when it comes to disease association studies, this abundance does not necessarily

guarantee an accurate detection of causal genetic variants. There is a high degree

of correlation among SNPs which makes it hard to determine which of the SNPs

are causal for the phenotype associated with it [83], [102]. Still, the possibility

of being genotyped in a large scale has put their discovery and characterization
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high among the priorities of the Human Genome Project [11].

About 9 million SNPs have been discovered so far. In the human genome, SNPs

occur roughly every 200 base pairs [87]. Some of those SNPs are rare, meaning

they occur only once (singletons) or twice (doubletons) in a human population

sample consisting of several hundred people. SNPs that occur more often (≥ 5%)

are described as common variants. Those common SNPs are at the heart of one

of the most controversial theories in contemporary population genetics: the com-

mon disease-common variant hypothesis (CDCV) [63], [80]. We will study this

theory and test it later in this document.

1.2.2 Linkage Disequilibrium

As we have seen with SNPs, their study alone is not quite sufficient to detect

the precise location of alleles responsible for phenotypes. We know that alleles

on the genome are not independent of each other and therefore, studying their

non-random association might be crucial to have a better understanding of regu-

lar phenotypes or diseases. This type of association between two or more loci is

referred to as linkage disequilibrium (LD). The first to introduce this terminology

were Kojima and Lewontin [67]. Linkage disequilibrium is very important be-

cause it affects and is affected by many factors. Using LD, we can get information

about past events like recombination but also have a better idea of the breeding

system, population divisions and histories. The study of linkage disequilibrium

might also shed light on selection.

There are many definitions of LD but they all rely on the same quantity D. Be-
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tween alleles at two loci, DAB is defined as

DAB = pAB − pApB

with pAB being the frequency of gametes carrying the pair of alleles A and B

at two loci and pA, pB being the frequencies of those alleles. At first, the term

gamete was used for allowing the loci to be on different chromosomes but the

most common application now is with two loci on the same chromosome. In this

case, the pair AB is called a haplotype and pAB refers to the haplotype frequency.

We will see the importance of haplotype later in this document. As stated ear-

lier, many different definitions of LD are used. Lewontin defined D′ to be the

ratio of D to its maximum possible absolute value [65]. D′ = 1 when one of

the four haplotypes is absent, regardless of the haplotype frequency. Another

value that is often used is r2 = D2

pA(1−pA)pB(1−pB)
. r2 is a correlation coefficient

of 1 or 0 (all or nothing) indicator variables indicating the presence of A and B.

To try if a particular allele is associated with a genetic disease, δA = pA + D
pB

is used [4]. If D = 0, there is linkage equilibrium (LE) which means alleles

are independent of one another. Linkage equilibrium has some similarities with

the Hardy-Weinberg equilibrium (HWE) in that they both imply that alleles at

different loci are randomly associated. The HWE is established in one generation

of random mating, whatever the gene frequencies were. If there is a shift from

HWE, this means something unusual might be happening, whether it is selection,

inbreeding or just genotyping mistakes. LE and HWE also differ from each other

because HWE needs just one generation to be set while D decreases depending

on the recombination frequency between two loci. Anyhow, LE will be reached,
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but usually after multiple generations unless some other factors intervene such

as selection, gene flow, mutation or genetic drift. This is why it is so interesting

to study linkage disequilibrium because it gives some insight about past events.
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Chapter 2

Simulations

2.1 Implementation of our Model

As introduced in the first chapter, there are two main paradigms for popula-

tion models, backward or forward in time, coalescence illustrating the former

and Wright-Fisher the later. The Wright-Fisher model might seem better suited

since it is not an approximation as the coalescence is. Yet the coalescence model

is more widely used since the running time of the Wright-Fisher model is pro-

hibitive as soon as some parameters become too large (e.g. population size or

number of generations). On the other hand, with the amount of data available

growing at a quick pace, analyzing data with the coalescence might be more

problematic than desired and no consensus method has yet been chosen between

rejection algorithms, importance sampling, Markov chain Monte Carlo or approx-

imate bayesian computation. Anyhow, a choice has to be made. For our model

we selected the Wright-Fisher model.

28



As stated earlier, the problem with the Wright-Fisher implementation is its com-

putational cost. There is a twist on the implementation of this model described

in [77] that speeds up the process greatly. The classic implementation of the

model simulates the genealogy generation by generation. In the accelerated im-

plementation, we look at the genealogy for a few generations ahead and treat only

those individuals whose genetic material will participate in future generations. In

the current generation, we simulate a genealogy for the next k generations but

we do not create the individuals of the next generation. We can now detect if

a chromosome has undergone recombination or not during those generations. If

it recombines, we check if any of the descendants that has part of its material

will survive at generation k. If it does not recombine, we check if the genetic

material is saved in the kth generation. If none of those two conditions are true,

then we know that the genetic material of this individual will be lost by the kth

generation at most and it is therefore useless to simulate him. This heuristic al-

lows to simulate only the individuals that will participate in the genetic material

present in the future, thus cutting down a lot of useless computation. The new

generation is created based only on the people that will contribute later on. Then

further genealogy is updated by one generation, and the process is repeated as

long as the number of generations defined in the parameters is not reached.

This strategy looks good and promising, unfortunately there are important caveats

to this Marjoram’s acceleration. First and foremost, we have to simulate a ge-

nealogy to determine which individuals contribute to the genetic information of

future generations. This works as long as the genealogy itself does not depend
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on who is picked. To study rudimentary features (e.g. mutations, recombina-

tions, islands of population), this approach is perfect but if we want to study

more complex features such as lethal mutations or heterozygous advantage, one

faces a problem. For example, with heterozygous advantage, an individual does

not have the same chance of getting selected for the next generation depending

on his genetic material. Therefore, the genealogy of the population is not ran-

dom anymore and one can no longer randomly create a genealogy and see who

is participating in the future. Another problem with this approach is the gain of

time that is claimed. The code that is given with Marjoram’s paper is erroneous

and does not do what it claims. It is therefore hard to assess the real advantage

gained by this implementation. We spend most of our time either recombining

or mutating genomes. A careful implementation of those features is important

so as not to waste time unnecessarily. The difference of time between the regular

model and the accelerated version is about a factor of ten which is much larger

than the factor of 5 that would be at most expected. This is primarily because

there was something wrong in the implementation of the accelerated version. At

the end, not being able to implement features for complex diseases and a gain

of time that is not that impressive, we decided to carefully implement a regular

version of the Wright-Fisher model. In addition to the regular mutation and

recombination, we have also implemented more realistic features. On top of the

mutation and recombination rates, we introduce the possibility of changing the

size of the population. We can make it grow or shrink depending on a growth

function. We can define this function on a certain number of generations. This
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approach lets us simulate rapid growth over few generations or a population bot-

tleneck effect on the results of the simulation. We can also combine shrinkage and

growth of the population as many times as we want. Basically, any scenario one

may want to define in term of population size fluctuation is possible. Another

feature is the presence of recombination hotspots that can also be seen as regions

of linkage disequilibrium. We can define regions of high recombination rate where

recombinations can occur easily and regions of small recombination rate where

few recombinations will occur (thus having a strong linkage disequilibrium). This

technique mimics the linkage disequilibrium and haplotype block structure of the

genome. We also want to simulate different types of diseases, from Mendelian to

complex ones. We allow the user to define list of SNPs for which, if a mutation

occurs, the individual will die. In this model, rare diseases are influenced by

strong selection where the mutation is lethal before an individual can have any

offspring. On the other hand, we can define another set of SNPs that would make

the individual sick but would not prevent him from propagating those mutations.

This category represents the case of mutations that are selectively neutral and

are typically mutations that will define common diseases such as cancer or dia-

betes. We also implemented a heterozygous advantage feature. It is known that

at some loci, while having two mutant alleles might lead to grave problems, being

a heterozygote might give an advantage against some disease. A famous example

is the thalassemia mutation that confers a certain protection against malaria but

will cause blood disease if present in the two chromosomes. At the locus of in-

terest, if an individual has no mutation, he will have a slightly lower probability
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of being selected than if he had one mutation while his chances of being chosen

if he has two mutations decrease dramatically. If we follow more than one locus,

the effect will be cumulative. Let us say we follow i loci. The probability for this

individual to be picked will be
∏

i pi.

2.2 Common Disease Common Variant

2.2.1 Theory

The common disease common variant hypothesis was first proposed by Lander in

1996 [63]. This hypothesis says that the variants that are responsible for com-

mon diseases are reasonably frequent in the population (usually between 1 and

10%). For each of the loci responsible for the disease, there will be one or a few

predominant disease alleles. This theory raised hopes for diagnosing and creating

therapy against those diseases. Indeed, if only a handful of genes are responsible

for a disease and that within this handful of genes, the allelic spectrum is sim-

ple (not very diverse), the resources needed to detect them would be reasonable.

Lander and Reich later developed a model [69] to explain this theory.

The model is based on some assumptions. It starts with an panmictic ancestral

population of fixed size (N = 10000). This population expands instantaneously

to its current number (N = 6 ∗ 109). The mutation rate µ is also defined as

3.2 ∗ 10−6. Then, a few values are defined as follows:

- f is the total frequency of the set of disease alleles in the current population
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- f0 is the equilibrium frequency of the class of disease alleles (frequency expected

under the balance between mutation and selection).

-fexp is the frequency for the class of disease alleles just before the population

expansion.

The probability that two alleles within the disease class are the same is: φdisease =

1
1+4Nµ(1−f0)

where N is the effective overall population size and µ is the proba-

bility that a non-disease allele will mutate into a disease one. The common

variant/common disease hypothesis can now be expressed as the prediction that

φdisease is high for the disease loci responsible for most of the population risk for

common diseases.

A rare disease will have a low f0 and a common disease a high one. Since the

mutation rate is constant and f0 is determined by the balance between mutation

and selection, the selection has to be different between common and rare disease.

An explanation would be that the selection is intense towards rare disease be-

cause it would be reproductive lethal whereas selection might be mild towards

common disease that only occurs later on.

Now, if we consider that f = f0 = fexp, in the ancestral population, all disease

loci had a simple spectrum. The number of disease alleles should be n = 1.1 for

both the rare and common disease since 1−f0 is close to 1. A single disease allele

accounts for 90% of the disease class. In a modern population size, all disease loci

should have a complex spectrum. The difference between the common disease

and the rare one is the speed at which they reach a complex spectrum.

Each generation, (1−f0)µ
f0

of the alleles in the disease class are expected to be
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replaced. The proportion of original alleles that are expected to remain after t

generations is e−(1−f0)µt/f0 . The half-life of allelic replacement is ln(2)f0/µ(1−f0)

generations. Depending on the value of f0, this half-life varies greatly from thou-

sands of years for the rare disease to million of years for a common disease.

This model relies on strong assumptions as one can see. First of all, the human

population did not grow from few thousands to a billion instantaneously. With a

gradual population growth, the growth in diversity would also be slower. Lander

claims that it does not change the final results very much but it remains an ap-

proximation. The ancestral population is also assumed to be of constant size to

allow φ to be at equilibrium but the ancestral population might very well have

fluctuated in size and have had an influence on allelic diversity. There are neither

structure in the population nor selection pressures. Those factors may greatly

influence the frequency of alleles in a population.

2.2.2 Debate

The common disease common variant hypothesis (CDCV) is probably one of

the most debated inside the population genetics community. One argument for

CDCV is that stochastic phenomena or purifying selection would get rid of rare,

disease-causing variants. The opposing argument states that there is a large

population with common diseases, so less susceptible to stochastic phenomena

that knock out rare variants. Also, there has been a recent explosion of the human

population that may come from a bottleneck. Furthermore, selective pressures

against many modern diseases that are associated with abundant access to food
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and a sedentary lifestyle, have only been acting for six to eight generations. While

we are learning about common disease loci and variants from association and

linkage studies, the genetics of common traits is likely more complex; relatively

rare alleles with relatively weak effects probably also play a role.

There are other explanations besides CDCV. One is allele heterogeneity, where

there are multiple alleles at a single locus that are weak individually, but which,

when aggregated, have a frequency high enough to explain a disease. Another

explanation is locus heterogeneity, where there are many loci that confer risk,

and any individual with a disease will have a small fraction of the risky loci.

Also, carrier status of Mendelian variants may contribute to common, complex

diseases. Studies can look at a mendelian gene for study on related complex

trait. Mutation selection is weak selection against predisposing variants; so it is

possible that the presence of common diseases is due to new mutations. In some

cases, environmental factors leading to disease were not common until the past

few hundred years. Arguments for or against CDCV based on natural selection

are dangerous. Selection may be acting for a different, non-disease related aspect

of the variant, conditions in the past may not have allowed many people to

develop disease associated with the variant, and a potential founder effect may

have preserved genes with moderate effects, even if they are common. Another

important fact to remember when studying complex traits is that even strong

alleles can be affected, and their effects can be entirely reversed in some cases by

other genes at other loci or by the environment.

Environment affects common diseases more than some common variants. Some
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authors argue that CDCV doesnt work with the multi-regional theory of human

origins, because CDCV depends on the idea that this common variant arose long

ago (hence its ability to become common), got fixed in the population, and any

other competing alleles that could also cause disease at that locus have not had

enough time to significantly alter the predominance of the common allele.

Current knowledge is based on the studies that have been performed, and these

studies may be biased towards finding common variants, due to limitations in

sample size, study design, or technology used. These constraints lead to the

challenge of how we can detect rare allele effects. Whole genome sequencing

may be a good technology to use for detecting rare alleles, but as of now it is

too expensive and time consuming to carry out studies on a large scale. The

question of CDCV versus genetic heterogeneity needs much more work. One

thing to remember is that mutation rates vary among loci, and if a locus has

a very high mutation rate, there may be enough heterogeneity to decrease the

utility of linkage mapping.

Even if a common variant is involved with a common disease, other, rarer variants

may also play a role. In cases where the common variant is known, it is important

to remember that the variant can have effects on systems not directly involved

in the disease in question, so it may have an impact on other diseases as well.

Neither the CDCV nor the CDRV (common disease rare variant) theory has

anywhere near enough evidence behind it to support its predominance. It is hard

to decide when a gene or variant can be nominated as CDCV or CDRV, because

many studies have not gone far enough beyond linkage associations or do not
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have large enough sample sizes to settle the question for a given variant. There

may also be rare variants with strong effects producing a different variant of a

common disease. These variants would be easily missed with association studies.

Lack of standardization of approaches to linkage or genome-wide studies makes

it difficult to compare results in multiple studies.

CDCV is certainly true for some versions of certain diseases, but the heritability of

common diseases is almost certainly some mixture of common and rare variants;

and the only question is what is the best way to model this mixture. Common

diseases tend to have a genetic component, but they tend to be polygenic and

interact extensively with environment, making it harder to understand the nature

of that heritability. Also these diseases may represent more than one physiological

pathway. One thing to beware is that a gene can have a strong effect on disease

development within an individual or even within a population, but that it may

not add much to a familys risk, due to various factors including other genes that

are present in a familys genome. For this reason, if heritability is defined as the

risk of a disease based on family history; it may mask heritable effects of certain

variants.

Rather than looking at the relative frequency of a locus and deciding whether

that locus constitutes a common variant or not, it has been posited that the

null hypothesis when examining the question of CDCV should be that the allele

spectrum of a disease gene resembles the average allele spectrum of the human

genome. This assumption is based on knowing the overall human genome allelic

spectrum.
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2.3 Simulations

The model we have implemented is still rudimentary and we cannot yet try real-

istic scenarios. Nevertheless, we can see if known features of population models

are respected and what some disease models have to show us. First we can see

what happens with a population of constant size. We know that we should reach

the Hardy Weinberg equilibrium after the first generation. Since at the first gen-

eration, everybody is the same (and has no mutations), we run the simulation

over 1000 generations, of which the first 200 generations have mutations to create

a diverse population. After the 200th generation, there are no more mutations

added. We follow two types of mutations. The blue curve represents a SNP that

is selectively neutral but that will be responsible for a common disease later on in

the life of the individual. The green curve represents the number of people who

have a heterozygote advantage. In the simulation, being a heterozygote gives

you a chance of 1 to be kept if selected, while if you are homozygote, you have a

chance of 0.8 for the wild case and a chance of 0.01 for the mutant case.

What we see in Figure 2.1 is that the number of people with the heterozygote

mutation grows up to a certain threshold and then remains constant (the small

variations are due to genetic drift). This can be explained by the fact that if there

are too many heterozygous individuals, the population reaches a point where a

lot of the mutant homozygotes are produced. These homozygotes will most likely

die and therefore diminish the presence of the mutant allele. This acts as a con-

trol mechanism. The blue curve is a little bit more unusual. As said earlier, after

the 200th generation, it should reach an equilibrium. The reason it does not is
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Figure 2.1: Constant size population of 5000 individuals with no mutations after
the 200th generation

genetic drift. If the population is small, the Hardy-Weinberg equilibrium may be

violated. Genetic drift can eliminate certain members out of proportion to their

numbers in the population. If this is the case, an allele might start to drift toward

either fixation or extinction. Here, the simulation clearly shows an extinction of

the SNP.

Now, if we had not stopped the mutations from occuring, the results would look

like the Figure 2.2. In this case, mutations keep occurring at a Poisson rate so the

blue curve, which is not under any kind of selection other than genetic drift, has

a linear progression with fluctuations due to genetic drift. What is interesting is

that the green curve follows the same pattern as it did without mutation, reach-
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Figure 2.2: Constant size population of 5000 individuals with mutations

ing an equilibrium of around 1500 heterozygous individuals out of 5000. This

threshold depends on the parameter. The more being heterozygote is selectively

positive, the higher the number of heterozygote individuals will be and conversely

the less advantage conferred by heterozygosity, the lower the proportion of het-

erozygotes in the population.

We have been following a single SNP so far. But we know that there is probably

a mixture of different SNPs that are responsible for most common diseases. In

the Figure 2.3, we ca see the behavior of the blue curve. It still represents the

number of SNPs present in the population, but this time, we follow ten SNPs.

Here, as long as an individual has fewer than four of those SNPs, he is fine but if
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he has more than four, this individual cannot be picked up in the next generation.

It is worth noting that, like the number of heterozygote individuals, the number

Figure 2.3: Constant size population of 1000 individuals with mutations, following
ten SNPs

of SNPs reaches an equilibrium at a certain point.

In Appendix C, results with different population size dynamics are displayed. As

stated earlier, there are still many features that can be implemented in the model

in an easy way. Adding population structure with some type of island model is

a possibility. It will also be interesting to define a weight for each SNP that we

track in order to refine the cumulative effect of their presence in a genome instead

of just a strict threshold. Another extremely important feature is to track LD.
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Population Generations u r Genome Size Time
100 1000 0.1 0.1 100 000 0m33s
100 1000 0.1 0.5 100 000 0m26s
100 1000 0.5 0.1 100 000 2m00s
100 1000 0.5 0.5 100 000 2m09s
1000 1000 0.1 0.1 100 000 5m02s
1000 1000 0.1 0.5 100 000 4m36s
1000 1000 0.5 0.1 100 000 21m54s
1000 1000 0.5 0.5 100 000 22m03s
1000 1000 0.1 0.1 1 000 000 5m59s
1000 1000 0.1 0.5 1 000 000 4m19s
1000 1000 0.5 0.1 1 000 000 23m36s
1000 1000 0.5 0.5 1 000 000 25m58s
1000 100 0.1 0.1 1 000 000 0m7s
1000 100 0.1 0.5 1 000 000 0m8s
1000 100 0.5 0.1 1 000 000 0m17s
1000 100 0.5 0.5 1 000 000 0m19s

Table 2.1: Running time of simulations with different parameters. u is the mu-
tation rate per generation per sequence and r is the recombination rate per gen-
eration per sequence. The simulations were run on a 3.06 GHz Intel Core 2 Duo
with 4 GB of RAM. The code is written in python and interpreted using pypy.

For now, we have hot and cold spots for recombination, which is the first step,

but we need a tracking implementation to see how LD plays a role.

In terms of performance, as discussed previously, using a Wright-Fisher approach

is not the fastest way to solve the problem. Nevertheless, the running time for

the simulations is more than acceptable. Different running times for different

parameters are displayed in table 2.1. We can see that the mutation rate is an

important factor in terms of running time as well as the population size while the

recombination rate and the size of the genome do not seem to play a big role.
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Chapter 3

Genome Wide Association Study

3.1 Status of GWAS

There are two main approaches to connecting the genes involved in common dis-

eases. These include 1) the candidate gene study in which one can use either

association or re-sequencing approaches, and 2) the genome-wide study in which

one uses linkage mapping and the genome-wide association (GWA) study.

Until recently, genome-wide linkage analysis was the main method used to iden-

tify disease genes. It has been successful for mendelian diseases (where only one

gene is involved) [8] where there is near a one to one connection between geno-

types at a single locus and the observed phenotype. The most famous successes

are cystic fibrosis [18], Huntington’s disease [28] or Duchenne’s syndrome [33].

Those studies have also had some positive results for common diseases in cases

such as schizophrenia [26], Crohn’s disease [31] and type 1 diabetes [32] , but for

most common diseases, the results are far from being successful [1]. Many factors
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can explain this lack of predictive power. Most complex traits have low heritabil-

ity, phenotypes of those diseases are hard to define precisely [22] and finally, the

design of the study itself [5] is often flawed. It is argued that with bigger samples

[35], larger pedigrees [5] or dense marker sets [47, 39] linkage analysis could give

better results. However, candidate gene studies are still required to move from a

wide region of linkage to the causal gene(s) within this region. The biggest prob-

lem lies elsewhere. Linkage analysis cannot efficiently identify common variants

that have moderate effects on disease [84, 90]. For most common diseases, their

phenotype is composed of a combination of multiple genetic and environmental

factors and their interactions [95]. Each individual variant will account for a

small part of the phenotype of the disease. Whether the CDCV hypothesis is

true or rare alleles also contribute to common disease, the poor power of linkage

analysis to detect alleles with low penetrance make them unsuitable to use them

alone for finding alleles that are susceptible to take part in a disease.

A candidate gene is a gene for which we have evidence or at least a strong indi-

cation that it plays a role in the trait or the disease that is studied. One type of

analysis of candidate genes is done by re-sequencing the entire gene in the stud-

ied populations (often case and control) and looking for variant(s) between the

populations. The main problem with this approach is its cost, effectively limiting

the regions where to look for the candidates (usually in the coding regions). We

can also use association studies with candidate genes. They are cheaper and sim-

pler than their resequencing counterpart and have been proposed to find common

variants that underly complex traits. Basically, an association study compares
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the frequency of alleles of a variant between case and control. Candidate gene

association studies have identified many genes that are partially responsible for

common diseases [57, 90, 69]. Still, candidate gene studies require to have some

biological evidence implicating it in the disease trait. Even if hypotheses made on

those genes may be very broad (for example, that a gene is somehow involved in a

certain pathway), it is impossible to overcome the fact that only a small fraction

of the genetic risk factors will be determined. Worse, this approach is clearly

inadequate in the case that the physiological defects of a disease are unknown,

therefor no assumption can be made .

A GWA study is defined by the National Institute of Health as a study of common

genetic variation across the entire human genome designed to identify genetic as-

sociations with observable traits. A GWA study can be decomposed into four

parts. First, the selection of a large number of individuals for both the case and

the control group. Second, the genotyping quality must be high, implying the

use of DNA isolation, genotyping and data review. Third, statistical tests have

to be run for association between the SNPs passing a certain quality threshold

and the disease. Finally, the experiment should be replicable in an independent

population sample. Even if the primary goal of GWAS is to detect SNPs associ-

ated with a disease, this technique also permits identification of variants relative

to quantitative traits such as height [97]. It can also demonstrate gene-gene

interactions (as with GAB2 and APOE in Alzheimer disease [82]). It can also

detect high-risk haplotypes inside a single gene (as in atrial fibrillation [52]).

As stated earlier, the design of a GWAS often includes two populations; a case
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population which is formed of theindividuals affected by the studied disease and

a control population with healthy people (who are not affected by the disease in

question). Allele frequencies between those two groups are then compared. This

design is the simplest but also the one with the most assumptions. As usual,

the more assumptions that are made, the more bias is introduced [71]. Another

study design is called the trio design. In a trio design study, the parents of the

affected patients are included in the population. Only the offspring needs to dis-

play the phenotype of the disease but the three individuals will be genotyped.

Also, the disease variant(s) is transmitted in excess of 50% to affected offspring

from heterozygous parents. A last design is the cohort design. It implies an

extensive collection of baseline information about the studied population. Those

individuals are then observed prospectively to assess the incidence of disease in

subgroups defined by the variants. Each of these designs has advantages and

drawbacks. For the case-control design, advantages include simple implementa-

tion. It yields results faster than the other designs. It is also easy to gather large

population for the groups and in term of epidemiology, this design is optimal for

studying rare diseases. On the other hand, this design is prone to biases such as

population stratification. The case group is often made of prevalent cases which

does not take into account the variety of disease expression (like fatal, short, mild

or silent cases). It also tends to overestimate the risk for common diseases. A

major advantage of the trio design is resilience to population stratification since

the population structure is controlled. In addition, during the genotyping quality

control phase of the study, we can check for Mendelian inheritance patterns and
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trio studies do not require phenotyping the parents. The trio design is useful to

examine the children’s conditions. But it is hard to unite parents and children

with late onset diseases and this design is extremely sensitive to genotyping er-

rors, imposing higher standards for quality checks. The cohort design, unlike trio

studies or case-control studies, permits direct assessment of disease risk. Since

cases are developing during the observation, they are free of survival bias even if

some other biases can still exist (though to a lesser degree than in the control-case

design). Unfortunately the logistics of cohort studies pose some difficulties. One

needs a large sample for genotyping if the incidence is low. Cohort studies are

notoriously expensive and require a long time for observation. It is not always

agreed upon whether the consent obtained during the study is sufficient for data

sharing. Cohort studies also need variation in the studied phenotype. In contrast

to the case-control design, it is very poorly suited for studying rare diseases.

The first step in a GWAS is to chose a case and a control group. The difficulty in

choosing subject to place in these groups lies in the misclassification of individuals

inside the case group (healthy people put into this group). Such misclassifica-

tions lead to a loss of power. Misclassification, however, is difficult to avoid, as

the genetic architecture of complex diseases is poorly understood and accurately

diagnosing those diseases can be difficult making the marking of individuals a

complex process. For the control group, the individuals should de taken from

the same population as for the case group and should also have the possibility

to develop the disease. For example, putting a woman in the control group of a

disease that only affects men would be problematic since she cannot develop the
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disease. In some cases, she may have the disease trait but is lacking the neces-

sary conditions to trigger the disease, as those conditions may be coded on the Y

chromosome. In this situation, the control group is mixed with latent cases. For

the study of common diseases such as coronary heart disease, the control group

must truly be free of disease. Still, the Wellcome Trust Case Control Consortium

seems to lean in the direction that the“quality” of the control group does not

interfere much with the discovery of variants associated with the disease. There

is also a consensus that the larger the sample size in a case control study, the

better the results will be. The population stratification (or structure) can also be

resolved by different techniques if the case and control groups are well matched

for wide ethnic background. Still, those techniques do not get rid of all the biases

introduced by population stratification.

The second step is to control the quality of genotyping. GWAS rely on a strong

linkage disequilibrium among SNPs. Genotyping is performed either on chips

or arrays and the genomic coverage of those platforms is often assessed by the

percent of common SNPs having an r2 value (as defined in chapter 1) of 0.8

or bigger. Depending on the population, the number of SNPs that are tested

on those genotyping platforms will represent a greater or smaller proportion of

the common SNPs variations in that population. For platforms with 500k to a

million SNPs, 67 to 89% variations can be captured for European and Asian pop-

ulations while only 46 to 66% for the African one [51]. It it possible to use higher

density platforms. Recently, on top of the SNPs, those high density platforms

have added probes for copy number variants (CNV) which have become of great
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interest because of their apparent ubiquity and potential dosage effect on gene

expression [72]. Still, while capturing SNPs and CNVs, there are still features

like inversions, insertions and deletions that are hard to capture. There are no

universal quality-control thresholds to define a set of good genotypes. Depending

on the focus (accuracy or call rate) of the study, the threshold will be different.

If you want high accuracy, the threshold for calling genotypes will be high and

therefore many SNPs will have a low call rate, leading the researcher to discard

some of the true signals. On the contrary, if the focus is on call rate, the study

will end up with a number of poorly performing SNPs that will resist the phase of

quality-control. The remaining samples undergo other checks to filter genotyping

errors. If SNPs are significantly in violation of the Hardy-Weinberg equilibrium,

they can be discarded. For the trio design, the mendelian inheritance errors are

checked.

The third step is the statistical analysis of GWAS. There are some tools that

allow representation of the data from GWAS, one of the most common being the

quantile-quantile plot. On those plots, we can see if the study has had results that

are more significant than results expected by luck. The most used and arguably

powerful tool to analyze results of GWAS is a single-point, one degree test of

association, such as the Cochran-Armitage test. Basically, the genotypes of case

and control groups are compared SNP by SNP with or without adjustment for

relevant covariates (like the principal component of population substructure). It

is robust to small variations from additivity on the logistic scale. The use of alter-

native models such as general, dominant or recessive might increase the detection
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of some signals but the calculation of type 1 error rates might get complicated

with multiple correlated tests. The most widely used model is an additive one

where each copy of the allele accounts for the same increased risk of disease. We

can compute odds ratios of disease associated with the risk genotype(s). It is

also possible to compute risk due to membership in a specific population. The

problem of those values is that they are often overestimated because odds ratios

increase relative risks needed for population attributable risk calculations. This

initial overestimation of odds ratio tends to create problems when trying to repli-

cate a study because larger samples are then needed to detect smaller odds ratios.

To assess the significance of genotype association findings, the classical statistical

approach based on p value prevails. The problem is for classical values of p (such

as ≤ 0.05) of significance, the number of SNPs associated with a disease will be

extremely large (in the order of 105). Obviously, almost all of those SNPs are false

positives. To deal with this problem, people often use the Bonferroni correction

(the p value is divided by the total number of tests) to decrease the rate of false

positives. This correction, while commonly used, is undermined by the fact that

it assumes an independent association of each SNP with the disease while it is

known that SNPs are correlated through LD. Those limitations have lead to the

development of other techniques, mostly based on a Bayesian approaches, with an

integration of the likely number of true positives and the power of a given study

[92, 93]. To improve the power of a study, we can also use haplotype based and

imputation methods [36, 75]. The improvement comes from the fact that the

coverage of common variants provided by the GWA platforms is not complete.
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The last step is the replication and validation of the study. Because of the high

number of false positives, an effective way to test for real associations is to repli-

cate the results with independent samples [3]. This analysis could be done in a

single GWAS with a multistage design or could be reported separately. To repli-

cate studies, one accepted method is to study the closest possible phenotype and

population to the original study and demonstrate a similar magnitude of effect

and significance for the same SNP as the initial report [3]. Some relaxation of

those conditions can be tolerated such as use of different populations (European

then European plus African) or related phenotypes (such as fat mass in addition

to obesity), or different study designs. It is common for a study not to be repro-

ducible. Many factors can explain this, such as population structure, selection

biases, phenotype definition differences, genotyping errors, etc. One way to solve

these differences with the original study might be to use larger samples although

it is not always possible.

3.2 HapMap

After reviewing the state of GWAS, it is quite clear that something else is needed

if we want to be able to find variations that are related to disease. Linkage studies

are extremely powerful when it comes to Mendelian diseases but are inefficient

when the the effects of different variants on a disease is diluted among all of

them. It is hoped that association studies will overcome those problems but no

real breakthrough has been seen yet. The single point analysis presents too many
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flaws to be of a great help. This is why people have started to lean toward more

complex analyses, taking into account not one SNP but many. This set of SNPs

is known as haplotype. Before going into more details about what are haplotypes

and how they could help detecting variants linked to complex diseases, let us

introduce a project that aims to help with the use of haplotypes in GWAS.

The International HapMap Project is composed of a consortium of scientists

from different countries. The project is based on the premise that 90% of human

genetic variation is due to common variants of about 10 million SNPs [62, 81]. In

addition, most variants have individually arisen from a single historical mutation

rather than being the products of multiple independent mutations, due to the

low mutation rate at a given site in the human genome.

Over time, as SNPs accumulate, each new SNP would be associated with SNPs

that arose prior to it, leading to linkage disequilibrium between a certain allele

of one SNP and alleles of neighboring SNPs. Governed by the nature of linkage

disequilibrium and recombination events, the farther apart two SNPs are, the less

likely they are to be reliably associated due to LD. The sequence of neighboring

SNPs constitute a haplotype, and because of the linkage between SNPs, the

HapMap project constructed haplotypes and identified tag SNPs i.e. identifies

a few SNPs out of the many in a region of a chromosome that are common and

therefore older than other SNPs. Based upon the sequence of the tag SNPs, the

project predicts the nearby SNPs by comparing the tag SNPs to a haplotype

map. The project estimates that 200000 to 1000000 SNPs will suffice to predict

the sequence of all 10 million common SNPs in an individual’s genome.
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The purpose of the HapMap project is to identify areas of common variants

on the human genome, and to create a database of these variants, as well as

identifying suitable tag SNPs and suitable other SNPs that have a high degree

of linkage disequilibrium with the tag SNPs. Both their locations and sequences

will be useful for future studies examining the association between diseases and

certain haplotypes. To that end, data is planned to be made completely available

in a timely fashion for other researchers to use. The study gathered data from

populations in Utah (of northern and western European descent), Ibidan Nigeria,

Beijing and Tokyo. Despite the selection of various populations, most haplotypes

were expected to be found in every population.

The project aims to genotype 600000 evenly spaced SNPs in an initial round of

genotyping, each SNP with an allele frequency ≥ 5%, with priority given to SNPs

that would change amino acid sequence in a gene product, SNPs that have been

validated in previous studies, and SNPs that are found independently in two or

more samples. Associations of LD between these alleles will be analyzed. Further

sequencing will identify other, less common SNPs in areas of poor LD.

3.3 Haplotype: The Missing Link?

As we have discussed, as haplotype maps became available, and researchers were

no longer limited by the analysis of single SNPs, there was hope that GWAS

would finally allow us to discover the secret behind complex diseases. Yet, the

HapMap project and the GWAS that followed didn’t bear the fruits that were

expected. The question now is to assess if those fruits are not ripened yet or if
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they are just not what we were expecting them to be. Here, we will focus on the

problems that crop up when using haplotypes.

Since we are talking about complex diseases, usually more than two loci are stud-

ied together. In this case, we try to distinguish between pairs that have high levels

of LD from those that do not [54]. The results are often displayed as a graph

to describe patterns of LD in the genome. Those highly correlated SNPs form

groups that are usually referred as haplotype blocks. It has been noticed that

the boundaries of these blocks were correlated with hot spots of recombination.

Inside a block, the recombination rate is low while it is much higher in between

the blocks. It is now hypothesized that the human genome has a block-like pat-

tern of LD. The size of those blocks varies from few kb to 100 kb [94]. The view

of the genome as partitioned into haplotype blocks is recent. Before that, the

most common belief was that, under assumptions that tried to fit the history of

modern human evolution, the further apart SNPs were on chromosome,the less

LD they had and little LD would be expected for SNPs distant by more than 3

kb [61]. The structure of genomes into haplotype blocks has changed this view

and it is now believed that LD is effective over much longer genome distances (to

the order of 10 or 100 kbp). It is also hypothesized, and applied in the HapMap

project, that the study of only one SNP inside a block might be sufficient to reveal

association with all other SNPs within the block. This would allow significant

reduction in the number of needed SNPs to perform association studies, therefore

making it more affordable [20]. The reality is less idyllic because some regions

of the genome cannot be described with this block structure. There is also not
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a single way to define haplotype blocks, changing the boundaries of those blocks

hence changing associations between those blocks.

The major setback when studying haplotypes is called the problem of unobserved

haplotype phasing. On a theoretical level, a value such as D assumes that the

haplotype of an individual is available. In reality, only diploid genotypes can de

found. Let us imagine surveying three loci in three individuals who are going to

be genotyped. If the genotype of the first individual is AaBBcc then his haplo-

type is obvious and there is no problem determining it. His haplotype is ABc and

aBc. As long as only one of the loci is heterozygous, there is only one solution to

resolve the haplotype without uncertainty. Now, individual 2 has aaBbCc for a

genotype. To determine his haplotype, more information is needed. Indeed, just

with this genotype, this person could have the following haplotype aBC and abc

or another one aBc and abC. The number of possible haplotypes for a person

increases exponentially with the number of heterozygous loci that are studied. In

our example, if a third individual had three such loci (the genotype is AaBbCc),

he would have four possible haplotypes: ABC and abc, ABc and abC, AbC and

aBc, or aBC and Abc. There is a need of methods to determine the correct

haplotype from genotype data. This problem is called resolving haplotype phase.

One of those methods involves genotyping the parents along with the individual

of interest. Going back to our example, if the genotypes of the parents of the sec-

ond individual are AaBBCc and AaBbcc then person two has to have aBC and

abc as haplotype. On the other hand, if the parent’s genotypes are AaBbCc and

AaBbcc, we still cannot resolve the haplotype phase. More commonly, statistical
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imputation methods are used to infer haplotype phase and then inference is used

as data. There are numerous methods that have been developed based on differ-

ent concepts such as maximum likelihood [55], parsimony [10], combinatorial

theory [14] and a priori distribution derived from coalescent theory [88]. The

main idea behind these theories is that people who have at most one heterozy-

gous locus among all the studied loci provide some information about haplotype

frequencies. This information is then used to infer the haplotype phase of the

other individuals. This approach has been reasonably fruitful in term of results,

especially for common haplotypes. Still, it ignores the uncertainty that defines

the inference step. Inferred frequencies of rare haplotypes can be quite inaccurate

[49].

The discovery of some block-like structure within the genome has shown that

regions that are far apart can still be in LD and are therefore important to un-

derstand. The hopes that rose with the study of haplotypes have been shattered

due to a simple fact: with current techniques it is impossible to resolve the hap-

lotype phase with certainty. As long as this issue persists, there is little hope

that haplotype analysis will be useful in association studies. There is one way to

resolve the haplotype phase with certainty: directly sequencing the haplotype.

Unfortunately, as of today, no sequencing technology allows haplotype sequenc-

ing. We are now going to review existing different technologies and propose a

novel scheme that will permit us to sequence haplotypes and therefore might be a

major breakthrough in sequencing technologies as well as in population genetics.
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Chapter 4

Sequencing Technologies

4.1 Technologies

4.1.1 Sequencing

Sanger: Capillary gel electrophoresis

Sanger sequencing was developed in the 1970s at the same time as Alan Maxam

and Walter Gilbert devised a different sequencing method. In the modern ver-

sion of Sanger sequencing, cloned DNA (originally cloned using bacteria, but now

usually amplified using PCR) is primed and dideoxribunucleotide triphosphates

(ddNTP) are added to the reaction mixture (A,C,T, or G), along with normal

deoxynucleotides of all four bases. The ddNTPs are labeled using a fluorescent

dye, with a different color used for each base. Using a DNA polymerase, a base

is added to each cloned strand until a ddNTP is incorporated, and the resulting

strands are run through a sensitive electrophoresis gel, capable of resolving dif-
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ferences of one nucleotide between strands. For every given length strand, the

fluorescent label is detected, and based upon the color of the label, the base at

that position is recorded.

Sequencing by synthesis

The Sanger method is based on chain termination and separation in capillary gel.

In sequencing by synthesis, cycles of the four nucleotides are consecutively added,

a nucleotide is incorporated, it is detected, and the chain is continued, such that

there is no need to use the electrophoresis step. In addition to pyrosequencing,

sequencing by synthesis is used commercially in an array format, where fragments

are produced, amplified, and hybridized to an oligonucleotide that is linked to

a glass surface. The strands are denatured, primed and 3- blocked fluorescent-

labeled deoxyribonucleotides are added sequentially. After each addition, the

surface is washed to remove unincorporated nucleotides and any incorporation is

detected, followed by deblocking the 3- end, and adding the next nucleotide.

Sequencing by ligation

DNA ligase is an enzyme that links together double-stranded DNA or can even

link together one of two strands of DNA. The enzyme is quite specific and will

not link together mismatched strands, a feature which is helpful in preventing

formation of malformed or mutated DNA during reproduction. This method

utilizes the fact that DNA ligase, the enzyme that can link double strands of

DNA, or even one of two strands of DNA is highly specific and tends not to link

together mismatched bases. In polony sequencing, a query fragment is amplified
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and hybridized to an anchor primer. A group of random 9-mers is then added,

with a fluorescent label at a specific base position. As with modern Sanger

sequencing, each base has its own color. A detector then reads to see which color

predominates at the given base position, and the complex is stripped apart and

9-mers washed away to reset for the next cycle, which will look at the next base

position.

Sequencing by expansion

This technology converts DNA into an Xpandomer, which encodes sequence in-

formation with low noise, allowing for reduced sample preparation and processing

time. In May of 2011, Stratos Genomics received a patent for a method of con-

verting DNA to an Xpandomer.

Sequencing by hybridization

The principle of sequencing by hybridization rests on the fact that comple-

mentary single strands of DNA will hybridize if put in proximity together. If

oligonucelotides of known sequence are mixed with fragments of unknown se-

quence, one can determine the sequence of the unknown strand by determining

which oligonucleotide has bound the unknown fragment. Currently, this type of

sequencing is used to test for SNPs, by having arrays of similar oligonucleotides,

and adding fragments from a specific site in the genome/chromosome [37, 21, 43].
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Pyrosequencing

Pyrosequencing is basically a modification of sequencing by synthesis in which a

primer is hybridized to an amplified template and mixed with DNA polymerase,

ATP sulfurylase, luciferase, and apyrase. Each of the four dNTPs is added in-

dividually, in a cycle, and when an NTP is incorporated, the ATP sulfurylase

converts the released inorganic pyrophosphate to ATP. The ATP then allows lu-

ciferase (an enzyme present in fireflies) to convert luciferin to oxyluciferin, which

produces visible light. The apyrase serves to reduce the amount of false signals

that can be caused by natural dATP. The amount of inorganic phosphate re-

leased, and therefore, the amount of visible light produced, is proportional to the

number of nucleotides incorporated. In other words, if four of a certain base are

incorporated in a row, the signal will be higher than that for three or fewer. The

light is detected by some sort of photon-detection device, and is displayed as a

peak on a pyrogram, or flowgram.

Ion semiconductor sequencing

This is another technology that is derived from sequencing by synthesis during

which a complementary strand is built. This technology is based on a well-known

biological fact: when a nucleotide is added into a strand of DNA by a polymerase,

a hydrogen ion (H+) is liberated. Ion semiconductor sequencing will basically

detect the release of this hydrogen ion. A semiconductor chip is made of a high-

density array of micro wells. Each of those wells is filled with a single-stranded

template DNA and a DNA polymerase. Then, those wells are flooded with A, C
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T and G dNTP sequentially. Under the wells, there is an ion sensitive layer and

beneath this layer there is an ion sensor. If a C is added to a DNA template and

is then incorporated into a strand of DNA, an ion will be released. The charge

of this ion will change the pH of the solution and the hypersensitive ion sensor

will detect this variation. Each nucleotide addition is directly recorded, without

the need of scanning or camera or light.

Nanopore sequencing

When a channel has an electrical voltage applied across it, and there is a parti-

cle pulled through that channel, the current will decrease. This is the basis of

nanopore sequencing in which DNA is drawn through a channel that is protein-

based or synthesized. The benefit of nanopore technology is the potential for

long read lengths and the possibility to cut out the DNA labeling step. It would

allow very high throughput due to the small size of the nanopores, at a relatively

low cost. So far, it has proven difficult to distinguish individual nucleotides as

well as to force DNA through the channel without the molecule folding into its

characteristic hairpins and loops.

4.1.2 Mapping

Optical Mapping

This single molecule technology is based on a de novo process that generates

a high-resolution, whole genome and ordered restriction map. It works with

a single molecule, is independent of sequence information and does not require
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amplification or PCR steps. The idea is to map the location of restriction enzyme

sites giving the output a resemblance to a bar code (a black line appears where

a restriction site is found). There are five steps in order to get an optical map.

The first step is to extract the DNA from the cell. Once this is done, single

molecules of DNA are stretched and immobilized on a surface. The DNA can

be held by electrostatic interactions on a positively charged surface or along

microfluidics channels. The next stage is to digest the molecule with restriction

enzymes. Those enzymes will cut the molecule at their digestion sites. The

resulting fragments remain attached to the surface so they keep their order. Since

the DNA has some elasticity property, it shrinks back a little at the ends of

those sites, leaving a gap between fragments which can be detected with optical

microscopes. After the digestion is done, the DNA is stained with a fluorescent

dye. In order to determine the size of a fragment, the intensity of the fluorescence

of each fragment is computed. At the end of this process, we have a single

molecule map. Finally, all individual molecule maps are assembled by overlapping

fragment patterns to obtain a consensus, genomic optical map.

BioNanoGenomics

4.2 Assemblers

4.2.1 Phrap

There is no publication about the algorithm behind Phrap even though it is one of

the most widely used assemblers. We have to go to the website http://www.phrap.org
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to find a description of the algorithm. It is decomposed into five steps. First, a

sorted list of fragments of at least a minimum length is created. Second, for each

pair of fragments, a band around a diagonal that is defined by matching fragments

is defined and overlapping fragments are merged. Phrap uses an implementation

of the Smith-Waterman algorithm called SWAT to identify matching segments

above a certain score. SWAT is recursively applied between matches by masking

out the current matched regions. Third, two hypotheses are tested and compared

through a log-likelihood ratio. The first hypothesis is that the reads truly overlap

and the other hypothesis is that they are from repeats of 95% similarity. A posi-

tive log-likelihood confirms the first hypothesis while a negative one confirms the

second hypothesis. Fourth, a fragment layout is progressively generated using a

sorted list of matches in term of their log-likelihood scores. Finally, a consensus

sequence for each contig is built using a a weighted graph (using a single source

maximum weight path algorithm) with selected positions of matches as vertices.

4.2.2 TIGR

The first bacterial genome, H. influenzae, was assembled by TIGR [89] using

the shotgun strategy in 1995. This assembler follows two phases, first a pairwise

comparison of the fragments and then an assembly of those fragments. After the

pairwise overlaps between fragments have been computed, a fragment is merged

with the current assembly if it satisfies four conditions. The overlap has to be

bigger than the minimum overlap length defined, there has to be more than a

minimum similarity in the overlap region (defined as a percentage of the best
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possible score), the length of overhang (the region in the alignment where two

fragments do not match) should not exceed a certain maximum and there should

be no more than a certain maximum of local errors. The maximum error threshold

is used to discard overlap with clustered errors but have passed the similarity

test.

If a fragment passes all those tests, it is added to the current assembly. No

consensus is computed then but TIGR keeps a trace of what bases have been

aligned to that position. It keeps a record of bases and gaps in a profile for each

position. After the assembly is done, a consensus sequence is generated using

this profile, choosing the most frequent bases. Fragments that have a number of

potential overlaps based on pairwise comparisons are labelled as repeats. When

such a fragment is incorporated to the assembly, the match criteria is increased

(the similarity test) to distinguish inexact repeats. Since it is still impossible

to avoid false overlap when repeats are longer than the fragment size, TIGR

incorporates mate-pair information as well to deal with repeats.

4.2.3 CAP3

CAP3 is the latest version of the CAP [44] assembler. In CAP2 [45], some

improvements had been developed such as filtering potentially non-overlapping

fragments, identification of chimeric fragments (using an error rate vector for each

fragment) and handling repeats by constructing repetitive contigs while merging

two different contigs. In the third version of the software, other improvements

have been created. Now, 5’ and 3’ poor quality regions are clipped. It is done by
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using both base-quality values and sequence similarities. A good region of a frag-

ment is defined as one with any region of at least a minimum size of high quality

values and any sufficiently long region that is highly similar to a high-quality

region of another fragment that can be defined as good. The 3’ and 5’ clipping

positions of a fragment are determined by the boundaries of good regions.

The alignment between two fragments is determined over a band defined by the

optimal local alignment while clipping the poor quality regions. Then the quality

of the overlap is assessed by five different measures: minimum percent identity,

minimum length, minimum similarity score, difference between overlapped frag-

ments at high-quality bases and difference between the expected sequencing error

rate and the error rate of the treated fragment. While contigs are built, CAP3

uses mate-pair constraints. An initial layout is built greedily in decreasing score

of overlaps. Then this layout is tested by mate-pair constraints. The region with

the largest amount of unsatisfied constraints is located and those constraints are

checked for being satisfiable by aligning unaligned pairs according to their dis-

tances. If this is possible, corrections to the region are made by adding satisfiable

pairs and breaking unsatisfiable ones. The new layout is then retested until such

regions cannot be found and the program stops. Finally, contigs are ordered and

linked with unsatisfied constraints (for example, using mate-pairs in two different

contigs).
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4.2.4 Celera

Celera was the first assembler to successfully assemble reads from large eukary-

otic genomes (≥ 100Mbp). It not only uses mate-pair information to resolve the

repeats problem but also uses available external data in order to get the best

possible assembly of the genome. This assembler has a different level of “ag-

gressiveness” to treat the reads, starting from the safest moves and progressing

to bolder ones. The Celera assembly is divided in five steps. The first step is

called screener and essentially serves to treat repeats. Each input fragment is

checked for matches to known repeat regions and is either marked (soft screen)

or masked (hard screen). If the strategy chosen is the hard screen, these regions

of the genome will not be assembled since overlaps cannot be computed. The

second step is called overlapper. To find overlaps, Celera uses a method similar

to BLAST. Each fragment is compared with all fragments previously examined.

Overlaps are accepted if they have fewer than a certain percentage of differences

and a minimum number of base pairs of unmasked sequences. Celera uses par-

allel processing in order to compare so many bases in a not too timely fashion.

The fragments with a large number of overlaps are probably part of repetitive

regions. The third step is called unitiger. Collections of fragments whose ar-

rangement is uncontested by overlaps from other fragments are assembled into

unitigs. If the unitig represents a unique sequence (as opposed to a repeat), it is

called a U-unitig. Potential boundaries of repeat sequences are looked for at the

ends of U-unitigs. When found, U-unitigs are extended as far as possible into a

repeat. By detecting repeat boundaries, some overlaps between unitigs might be
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resolved. The fourth step is called scaffolder. As its name indicates, all possible

U-unitigs are linked into scaffolds which are sets of ordered and oriented contigs

for which the size of the intervening gap is roughly known. When the two reads of

a mate-pair are in different unitigs, their distance relation orients the two unitigs

and allows to estimate the distance between them. Finally, the last step is the

creation of a consensus sequence based on the different scaffolds.

4.2.5 Arachne

Arachne is used to assemble a whole genome [38]. It, too, is an overlap based

algorithm. The first step is to detect overlaps and align them. The program iden-

tifies all k-mers (k = 24) and merges overlapping shared k-mers, then extends

these shared k-mers to alignments and finally refines the alignment by means of

dynamic programming. Arachne tries to achieve high-quality overlaps by cor-

recting them before starting to assemble them. Once the overlaps have been

identified, sequencing errors are detected and corrected by generating multiple

alignments among overlapping reads using a majority rule based on the quality

based score given by Phred. The alignments are then given a penalty score which

combines individual differences among base calls. If the penalty score is too high,

the alignment is discarded. At this level, repeats and chimeric reads are detected.

The last step before contig assembly starts is identification of mate pairs. During

the contig assembly, potential repeat regions are identified by aligning fragments

that extend the same fragment. All fragments are merged and extended until a

repeat region is found. When the contigs are assembled, Arachne goes back and
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detects contigs that are potentially wrong due to repeats by looking at the depth

of coverage and the consistency of linking with other contigs. Those contigs are

marked. Once this step is completed, the software builds supercontig by incre-

mentally using unmarked contigs. Finally, when all unmarked contigs have been

assembled, Arachne tries to fill the gaps by using the repeat contigs.

4.2.6 EULER

EULER is an assembler based on a graph approach as opposed to the overlap

layout consensus. This technique was developed to assemble reads obtained by

sequencing-by-hybridization [19, 78]. Let’s say we want to reconstruct a sequence

ATAGCATGCTT and the SBH gives us reads of length three. Those reads

would be ATA, TAG, AGC, GCA, CAT, ATG, TGC, GCT, CTT. The reads

are represented by nodes augmented with a directed edge between a node that

has a suffix which is also the prefix of another node (for example, between ATA

and TAG). In such a graph, assembling the reads would be equivalent to finding

a Hamiltonian path. Since this problem is NP-complete, this construction has

been discarded. Instead, a de Bruijn graph is built. With a de Bruijn graph,

each k − 1-mer is a node and there is a directed edge between two nodes N1 to

N2 when there is an instance of a probe whose prefix is of a size k − 1 is N1

and whose suffix is of a size k − 1 is N2. This time, assembling the sequence is

equivalent to finding an Eulerian tour in this graph.

This approach [56] is very close to that of EULER but EULER has additional

modifications to it. First, before computing the eulerian path, EULER tries to
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correct as many errors in the reads as possible. Indeed, each erroneous fragment

will add wrong edges in the graph making it harder to compute the eulerian

path. Also, EULER doesn’t solve the Eulerian path problem but the Eulerian

superpath problem. This problem is as follows; given an Eulerian graph and a

collection of paths in this graph, find an Eulerian path that contains all paths as

subpaths. To solve this problem, the graph created in the first step needs to be

slightly transformed. Some improvements of EULER also use mate-pair, trying

to solve repeats by treating each clone-mate pair as artificial paths in the graph

with their expected lengths.

4.2.7 SOAPdenovo

The assemblers we reviewed previously were mostly based on long reads. In those

cases, the overlap layout consensus approach makes sense but when the size of

the reads is small, this approach starts to be less useful by itself and mixing it or

using it with a graph approach (as with EULER) is probably a better choice. We

start our discussion of assemblers for short reads with SOAPdenovo [68]. Before

the program starts to assemble anything, there is a first step of preprocessing

for error correction. For a small data set, this step is not necessary since the

erroneous connections can be easily removed in the graph during the assembly.

However, with large data sets (such as a human genome), this step might be

crucial in terms of memory usage. Without it, the list of all reads (not cleaned

of its errors) might be far too big to store in a machine’s memory making the

building of the de Bruijn graph impossible. Once this error correction step is done,
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SOAPdenovo starts to assemble contigs. The initial graph is usually composed

of 25-mers as nodes and the edge connection is made up of read paths. The tips

that have a length smaller than a certain threshold are eroded in the graph. The

assembler removes bubbles with an algorithm like Velvet’s tour bus, with higher

read coverage determining the surviving path. After the contigs are sequenced,

SOAPdenovo realigns the reads onto the contigs. Each short read is mapped to

one and only one contig without uncertainty since the repeat copies have been

merged into consensus sequences in the graph and in the output contigs. The

relationship between the contigs is then displayed as a graph. When repeat

contigs have a conflict with the unique ones, they are masked. The remaining

contigs with compatible connections are made into a scaffold. To join contigs into

the scaffold, the information of mated-pairs is used.The last step is gap closure.

Most of the gaps are due to the repeat contigs that were masked in the previous

phase. To fill in the gaps, the paired-end information is used to get the read pairs

where one of the reads is well aligned on the contigs and the other one located in

the gap region.

4.2.8 AllPaths

Allpaths [7] is an algorithm that assembles microreads and paired reads. It

starts by computing an approximation of the unipaths. A unipath is a sequence

of nodes x1, . . . , xn in a de Bruijn graph for which x1, . . . , xn−1 has outdegree one

and x2, . . . , xn has indegree one and cannot be lengthened without violating one

of those conditions. When the unipaths are computed, the first step is to chose
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seeds. A seed is a unipath around which the sequence will be assembled. To pick

those seeds, Allpaths looks for ideal unipaths which are relatively long with as

low a copy number as possible (ideally one). Allpaths also looks at the pair reads

information in order to spread those seeds as evenly as possible along the genome.

After the seeds are picked, the assembler starts to build neighborhoods around

them. A neighborhood of a seed is a region that extends the seed by 10 kb on

each side of the seed. To construct this neighbor, the algorithm first finds a set

of unipaths that partially cover the neighborhood. Then, two sets of reads are

constructed, one composed of reads whose true genomic locations are near the

seed, the other one made of all the short fragment read pairs near the seed. With

the help of those two sets, the gaps between the unipaths of the neighborhood

region are filled. The next step is to calculate the closures of all the merged short

fragment pairs. The resulting set of closure sequences should cover the entire

neighborhood region. Now, the only remaining local step is to glue together the

closures of the mid-length read pairs. This gluing induces the assembly graph for

the neighborhood. The local gluing runs in parallel and when this step is finished,

Allpaths will build the global assembly. Basically, all the local neighbors are glued

together, inducing a single sequence graph. This graph may have more than one

component, depending on the number of chromosomes in the genome and also

on the quality of the assembly. There is one last post-processing step in order to

improve the quality of this graph.
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4.2.9 Abyss

Abyss [86] is another assembler that works with short read sequences. The main

structure in this algorithm is a de Bruijn graph, the originality here being the

way the graph is implemented. Adjacent sequences do not need to be located

in the same computer, allowing the program to distribute the sequences over a

cluster of computers. The location of a given k-mer must be deterministically

computable from its sequence. Also, the adjacency information between k-mers

have to be stored independently of the location of the k-mer. The algorithm

works in two steps. The first step is to build this specific de Bruijn graph, first

spreading the sequences over the cluster then storing their adjacency information.

Once this is done, vertices are not merged into contigs yet, but there is a run of

read correction errors. When this cleaning is complete, the algorithm merges the

vertices linked by unambiguous edges. Ambiguous edges are simply removed from

the graph and the vertices are then merged creating the initial contig. This step

closes the first phase of the algorithm. The second phase is to use the paired-end

information in order to resolve ambiguities between contigs. This information is

used to determine contigs that can be linked together.

4.2.10 SUTTA

In contrast to traditional graph based assemblers, a new sequence assembly

method has been more recently developed. It employs combinatorial optimiza-

tion techniques typically used for other well-known hard problems (satisfiability

problem, traveling salesman problem, etc.). At a high level, SUTTA’s framework
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views the assembly problem simply as that of constrained optimization: it relies

on a rather simple and easily verifiable definition of feasible solutions as “consis-

tent layouts”. It generates potentially all possible consistent layouts, organizing

them as paths in a “double-tree” structure, rooted at a randomly selected “seed”

read. A path is progressively evaluated in terms of an optimality criteria, encoded

by a set of score functions based on the set of overlaps along the lay-out. This

strategy enables the algorithm to concurrently assemble and check the validity of

the lay-outs (with respect to various long-range information) through well-chosen

constraint-related penalty functions. Complexity and scalability problems are ad-

dressed by pruning most of the implausible lay-outs, using a branch-and-bound

scheme. Ambiguities, resulting from repeats or haplotypic dissimilarities, may

occasionally delay immediate pruning, forcing the algorithm to lookahead, but in

practice, do not exact a high price in computational complexity of the algorithm.
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Chapter 5

SMASH

As we have seen in the previous chapter, sequencing whole genomes has been

around for three decades and has gone through multiple innovations. Since

Sanger, a number of new approaches have been created to form the so-called

“Next Generation Sequencing”. The goal of those new methods was to reduce

the cost (in time and money) of the sequencing process compared to the Sanger

method. Unfortunately, the current technologies and algorithms are not good

enough to find rare SNPs or copy number polymorphisms. They simply ignore

this problem. Those methods rely on aligners and assemblers that use shotgun

assembly. It gives us a genotype consensus sequence but contain many gaps in the

sequence which correspond to the repeats that we can find in a chromosome. The

SNPs that we find using those technologies come only from non repetitive regions

and they are haplotypically phased by using population data. Also, rare SNPs

are rarely found. These technologies also force us to treat the Y chromosome

separately and it is rather expensive. Finally, these technologies need bulk mate-
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rials (a lot of cells) or amplifications which make them less useful for aneuploid

cancer cells for example. Even when it has produced some form of a haplotype

sequence (like Venter’s), the sequencing requires a lot of post-processing opera-

tions, making the cost explode and the sequence still contains a lot of errors.

As we have discussed in the population genetics section of this document, we

know that there is a need for a new sequencing technology and the priorities

lie with an assembly algorithm that is cheaper and yet more accurate in pro-

ducing haplotype sequence. The quality of a sequencing technology should not

ultimately be assessed only on a base-by-base basis but also by the amount of

information on genome structural information. It should be judged not only on

an individual basis but on a haplotype basis.

How can one solve the problems we have just discussed? We can think of using a

single molecule and a single cell. We will also need to have a long range sequenc-

ing technology in order to keep the context and be able to reconstruct a haplotype

sequence. The major argument against this kind of approach is its high cost. One

solution to this problem would be to use a hybrid technology. We could combine

optical maps, Sanger sequencing and mate pairs in order to resolve our prob-

lems. This has been achieved by SUTTA [76]. Another approach and the one

developed in this chapter is to integrate everything in one technology: SMASH

(Single Molecule Approach to Sequencing by Hybridization). This method will

reduce the errors and ambiguities of the resulting sequence while cutting down

the cost. This technology combines other well-known technologies like optical

maps and probe hybridization and ideas of SBH (Sequencing By Hybridization)
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algorithms. The probes will give us short sequences and the optical maps will

give us the context information necessary to obtain haplotype sequences. The

caveat with SBH is its complexity but by combining those two technologies, we

can tame this complexity.

We call SMASH-P the problem we are trying to solve and it can be formulated

as follows. We are given a fragment (typically of length 4 kb) and a spectrum

of this fragment. A spectrum is a map of all probes that are present within this

fragment with their location information. With this information, we wish to de-

termine the original sequence. Note that if one assumes that the single molecular

data can be assembled into haplotypic maps, then at the end of our experiment

we will have individual haplotype sequences. At a population level, that means

we can have polymorphisms with exact phasing.

5.1 Sequencing Technology

We can separate the different sequencing technologies into two groups; those that

focus on single base with an exact location of this base and another group based

on long sentences without any location information. SMASH strikes a balance

between those approaches. It is based on short words (k-mers or probes) with

inexact location. This inexactitude gives us a window of a certain size where we

can find our probe. The set of all probes with their associated locations is called

a spectrum and with this spectrum, we are in a situation where we have to solve

the positional SBH problem described in [15].

In practice, those windows allow us to treat our problem in a divide and con-
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quer fashion. Each one of these windows is independent from the others and

can therefore be treated separately. This approach makes our technology highly

parallelizable. When we are dealing with haplotypic optical maps, these windows

are nothing but the different restriction fragments given by the optical mapping

technology (explained in more detail in section 5.1.1).

As we have seen, we will have to assemble our sequence for each of the restriction

fragments. This assembly can be carried out independently so we can just focus

on what happens for one of those fragments, the same reasoning being applicable

to all the fragments. For each fragment, we get a spectrum (explained in more

details in section 5.1.2)which is the set of all the probes present within this frag-

ment with their location. Such a spectrum is corrupted with some noise which

can be typically put into three groups: false positives, false negatives and location

error. The simplest scheme is non robust because of the non random nature of

a human genome. Places where we find repeats or certain type of patterns may

pose difficulties for the algorithm. By introducing the use of universal bases, this

limit can be ameliorated as show in [25], [24] and [23].

5.1.1 Optical Restriction Fragments Mapping

We want to create technologies that are accurate, inexpensive, flexible and pro-

duce whole genome haplotype sequences. Having the haplotype will permit later

study on genomic variations at multiple scales and across multiple species. To

develop such technologies, we can integrate components of technologies that are
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used for various mapping approaches like optical mapping or array-mapping tech-

niques. We can find a description of those in [46], [16], [9], [73], or [99]. The

advantage of these techniques is that they can provide us powerful algorithmic

strategies that may be capable of statistically combining disparate genomic in-

formation and novel chemical protocols that can, in parallel, manipulate and

interrogate a large number of single DNA molecules in various environments.

Our sequencer can incorporate several of those technologies. One of these is a

single molecule technology, often called Optical Mapping and described in [46]

and [16]. Another optical mapping approach is based on an LNA/PNA probe

technology that hybridizes to double-stranded DNA. Optical Mapping is a single

molecule approach allowing us to detect genetic markers. Raw optical mapping

can be assembled on computers in order to get whole genome haplotype restric-

tion maps.

We can use Optical Mapping to build up single molecule DNA ordered restriction

maps (also called physical maps) using fluorescent microscopy. We can find a de-

scription of this in [46] and [30]. After several years of work and effort spent on

Optical Mapping, the first single molecule mapping technologies for BAC clones

was released in 1998 in [29]. A year later, a technology based on the Gentig

algorithm for whole microbial genomes was published in [30]. DNA is extracted

directly from cells by lysing (without the use of clones). It can be sheared into

0.1-2Mb pieces and attached to a charged glass substrate. Then, a reaction occurs

with the restriction enzyme and finally, DNA is stained with a fluorescent dye

as described in [29]. The gaps created by the restriction enzyme can be spotted
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with a fluorescent microscope and appear as breakages in the DNA.

The images collected by the microscope can be processed by imaging algorithms

to detect the brightness of the molecule. It will also detect cleavages within the

molecule, therefore detecting the restriction enzyme sites. The distance between

such sites can be approximately estimated by comparing the integrated fluores-

cent intensity relative to that of a standard DNA fragment that has been added

to the sample. Using the length and the restriction map of the standard, we can

deduce the distance between sites in the studied molecule. Using a fluorescent

probe that hybridizes at the end of the standard DNA makes it even more read-

able and recognizable in the image, improving the overall technology.

Obviously, errors can be introduced during the experiment and the analysis. The

restriction enzyme may not cut the DNA at some sites. The DNA could ran-

domly break, creating a gap that cannot be distinguished from a cleavage site.

The dyeing process may not be homogenous. The image processing might make

mistakes in detecting gaps (missing some real ones or creating new false ones).

Those kinds of errors can be categorized in a raw map. We can face sizing errors

in the fragment or the distance between two sites (of the order of 10% for a 30Kb

fragment). Also, missing restriction sites can occur (10 to 20% of the restriction

can be false negatives) or false restriction sites (2 to 10% of restriction sites can

be false positives). Finally, we can have missing fragments (half of all fragments

under 1Kb and most fragments under 0.4Kb). To recover from those errors, we

can use redundant data. A minimum redundancy of 50x can be used to assemble

genome wide maps and recover from most errors with high confidence, as de-
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scribed in [42] and [41].

Even though optical mapping of whole organism genomes may be produced us-

ing conventional techniques as described in in [30], [46], [16] and [40], we

want to employ those techniques in a different fashion. We utilize a restriction

enzyme that will give us restriction fragments on an average size of 2-16kb and

at least 50X coverage (50x for each haplotype) and will enable us to assemble a

genome wide haplotype. This restriction fragment map will provide a scaffold for

sequencing the genome.

5.1.2 Optical Probes Mapping

We hybridize fluorescent oligonucleotide probes to DNA. Various types of probes

can be used as we will see. Fluorescent microscopy images of the hybridized DNA

can be assembled by computers into genome wide haplotype maps of location of

the probe sequences. The sizing information of that map will not be as accurate

as a restriction map but by tallying up the same restriction sites to the molecules

with the probe sites, the sizing can be normalized every 2-16Kb. This process

can generate a map for any probe sequence using standard coverslips covered

with genomic DNA using a molecular-combing-like technique for flow deposition

of the DNA.

The cost for sequencing human whole haplotypic genome can be dominated by

the cost to image standard 20x20mm regions on a fluorescent microscope at

a resolution of 1 pixel every 75nm. A design for such a microscope system,
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designed to minimize cost and maximizing throughput, is described in a proposal

to NIH for a Novel Whole Genome Sequencing Technology by Anantharaman

et al. in 2005 (never published) and may be based on conventional components

that can image a large number of coverslips per day. There is also room to

design customized fluorescent microscopes and VLSI chips for high throughput

CD imaging to improve this technology in order to reduce the costs.

We wish to hybridize those probes with genomic DNA without breaking the DNA.

We can deposit DNA intact on a surface, as for the restriction enzyme mapping

technology. Regular oligonucleotide probes (as used in FISH, for example) will

typically hybridize at 75◦C. This temperature is above the melting point of

dsDNA (double stranded DNA, which is typically 65◦C). Hence, this treatment

can result in breaking both strands of dsDNA and produce random “necklaces”

of DNA balls (often seen in Fibre-FISH) instead of one continuous segment of

DNA. Such a behavior can be seen in [64], [12] and [98]. Another problem with

regular oligonucleotide probes is that the length of such a probe for a reliable

hybridization should be of 15bp or longer. Fortunately, there are other types of

probes that do not break dsDNA and that can hybridize reliably with only 6bp.

Here is an overview of such probes.

LNA (locked Nucleic Acid) probes are single stranded, like PNA (Peptide Nucleic

Acid) probe. The difference with PNAs is that they rely on a greater specificity

to ssDNA (single stranded DNA). We can find a description of LNAs in [17] and

[13]. The advantage of both LNAs and PNAs is that they can hybridize with

dsDNA at 55◦C and therefore will not break our molecule of dsDNA. At this
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temperature, dsDNA will frequently open their two complementary ssDNA at

various locations, allowing our LNAs or PNAs to hybridize. When a LNA probe

(or PNA) hybridizes to ssDNA, it remains bound since its binding constant is

higher than that of dsDNA. As mentioned before, LNA has a stronger affinity

with ssDNA than PNA and depending of the GC content of the sequence, the

length of the LNA that reliably hybridizes with DNA may vary from 6 to 8 bp

as described in [17].

In contrast with LNA and PNA, TFO (Triplex Forming Oligonucleotide) probes

can hybridize directly to dsDNA without having to “open” the DNA into two

ssDNA. When it hybridizes with dsDNA, it forms a triple stranded DNA. TFOs

have originally been developed for suppressing gene expression in vivo in [34] but

can also be utilized as fluorescent probes. A common TFO design can be an oligo

formed by a 50% mix of LNA and normal DNA. It can be improved employing

ENA (Ethylene Nucleic Acids). The melting temperature for TFOs varies from

28◦C-41◦C for regular ones and 42◦C-57◦C for ENA-DNA mixtures.

Double stranded probes can be designed using pcPNA (pseudo-complementary

PNA) which is a modified form of ssPNA probes that may not hybridize with

themselves as shown in [13] and in [27]. Complementary pairs of such probes

may be used to hybridize with both strands of the dsDNA, which can be stable

because the two pcPNA-DNA hybrids formed may be more stable than dsDNA.

For this technology, after preliminary experiments with LNA probes, it was

decided to keep pursuing the use of PNA probes and more precisely, bisPNA.

To test the efficiency of hybridization of bisPNA, it was hybridized it to lambda
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Figure 5.1: 880 bp fragment resolved using 4% PAGE gel. The first lane is the
lambda DNA sample without bisPNA probe hybridization digested with PmlI
restriction enzyme. The second lane is the lambda DNA sample that has been
hybridized with bisPNA probe digested with PmlI restriction enzyme. There is
a clear shift in mobility of the 880bp fragments, which has bound the bisPNA
probe.

DNA molecules inside a test tube. The probe target was an 8-mer sequence (5-

GAGAAGGA-3). To measure the quality of the hybridization of this probe, the

lambda DNA was digested after the supposed hybridization with PmII restriction

enzyme and run the sample on a 4% PAGE gel. It was found that the rate of

hybridization was greater than 90%.

5.1.3 Results

The focus was on two kinds of tests. Mishra-lab started with small genomes like

E. Coli to keep the experimental cost low. The goal of this experiment was to

validate the scheme of using a combination of restriction and probe maps and

also to estimate various parameters. The goal was to achieve restriction enzyme

mapping and probes hybridization mapping simultaneously. The digestion of a

molecule by a restriction enzyme had an efficiency of the order of 90%. At the

same time, hybridization had an efficiency of only about 30%.

When one examines the image, only 30% of the matching probe sites are
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Figure 5.2: Overlayed fluorescent images of labmda DNA molecules using a FITC
filter (white) and CY5 filter (red), showing the position of the probes on the
lambda DNA molecules.

visible. One must ensure that, to assemble genome wide maps from restriction

fragments, the false negative rate should not exceed around 30% per marker site

as shown in [42]. It follows a 0-1 law. If experiments operate above those pa-

rameters, it can produce reliable maps. One can get a likely false negative rate

of 70% for probe maps by carefully setting up the experiment in this way.

The scientists in Mishra-lab used a suitable threshold to minimize false pos-

itives. They then estimated the distance between probe locations (or the DNA

ends) by comparing the intensities of the two images. The resulting probe map

from each DNA molecule is normalized to the same length of 100%. The most

likely consensus map was computed by combining probe maps from around 20

image pairs using a Bayesian algorithm. For one set of 20 image pairs, a total of

512 DNA molecules with a total of 678 probes were identified and combined into

a consensus map with 2 probe locations at 14.8% and 52.4% of the DNA length.

The 3’ to 5’ orientation of the DNA molecule cannot be determined from optical
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maps. Thus this result is in close agreement with the correct map with probes

at 50.2% and 85.7% (14.8% ≈ 100% − 85.7%). The probe hybridization rate of

42% is also quite good.

They next generated a high resolution ordered E.coli K-12 genome map using both

hybridizing probes and an XhoI restriction digest of single DNA molecules. The

K-12 bisPNA probe was designed to target a specific 8-mer sequence (GAAGA-

GAA), which appear 313 times along E.coli K-12. They used the same fluorescent

hybridization technique that was used in the creation of the lambda DNA map.

Separately, they digested the labeled single DNA molecules with XhoI restriction

enzyme and combined the mapping information from both approaches.

Figure 5.3: Experiments with E. coli K-12 genome.

The initial results showed successful generalization of this technique, initially

developed to map lambda DNA. Thus it was seen that it is possible to combine

optical mapping and hybridization.
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5.2 Assembler Algorithm

We will now introduce the algorithm by Anantharaman, Lim, Mishra (unpub-

lished results). For now, we will only focus on a restriction fragment of the

sequence since we have seen that we need to solve the same problem for every

fragment. At the end of the experiment described in the first part, we end up

with a probe map or positional spectrum which is the set of all possible L-mers

with their locations. Ideally, the information generated by restriction digestion

and sequencing of probes would consist of a triplet of locating data for every

possible probe generated by the restriction enzyme digestion:

- sequence (5’ to 3’) of the template (or expressed) strand,

- sequence (5’ to 3’) of the complementary strand, and

- position (or positions, if a sequence appears more than once) (number of base

pairs from 5’ end) of the 5’ end of each sequence; template and complementary.

In short, a triple of the map is of the form (x, ωW , ωC) where x is the position

of the probe, ωW the sequence of the probe in the template strand and ωC the

sequence in the complementary strand. The goal of the assembly algorithm is,

from this positional spectrum, to construct a sequence τ that is coherent with

the given map. We can make an analogy with trying to read a book from an

index. In the index of the book, all the words are referenced with their page, line

and position in the line numbers.

If all three of these factors could be entered with high accuracy, generating a

sequence would be a straightforward matter. Such a world does not exist and so

we have to face data with errors of different kinds. We need to take this noise
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into account if we want our sequence τ to be the same as our sequence σ.

Figure 5.4: For the restriction fragment of the DNA we are currently treating
(usually of length 1kb), we can see the different types of noise. In green are
some probes along the sequence. We can see that the second green probe does
not appear in the positional spectrum (here, the spectrum is represented as if it
were already reconstructed in a sequence) and so is a false negative. We also see
that the first green probe is a match with the first blue probe with a small shift
(location error). Finally, the second blue probe, used to reconstruct the sequence,
does not appear in the original sequence and so is a false positive.

We can divide the noise into three different components. The first is the

location error. A probe that has a location error is a probe that represents the

reality of the sequence we are sequencing but that is slightly shifted from its real

location by a window of a certain size in bases. Another type of noise is false

positives. A false positive is an L-mer that is present in the map but absent in

the original DNA sequence. Typically, a false positive probe is a probe that is

shifted by more than the accepted window size. Finally, we also have to deal with

false negatives, the opposite of false positives. A false negative is an L-mer that

is present in the original DNA sequence but not in the map. If we come back

to our book analogy, we now have to read a book from an index that contains
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words that are not present in the book (false positives), that misses some of the

word that are in the book (false negatives) and some words are referenced with

a wrong number of page for example (the location error).

Now that we have a model for our noise, we can assemble the map into a sequence.

There are 5 basic steps, each of which will be described below:

- Start with a sequence of k − 1 bases (this sequence can be derived in various

ways).

- At the kth position, add each of the 4 possible bases, and score the probability

of the k, using the map as a guide.

- At the k + 1 position, repeat step 2, then, add the scores of k and k + 1 for

each possible sequence. Repeat for each subsequent base. A tetranary (base 4,

as there are four possible bases at each position) tree is formed.

- Prune the tree occasionally, removing the sequences with the lowest scores

- Repeat until the false negative rate jumps from 2% to 55%.

- Choose the sequence with the best score.

Initial k − 1 sequence: For software testing purposes, the initial k − 1 sequence

of base pairs can be determined from the reference sequence (which has been

artificially digested to create a map), though in an actual sequencing situation,

all possible k − 1 probes must be created. The incorrect probes will quickly get

pruned as the sequence grows past the first few bases. Because all the probes on

the actual positional spectrum are k bases long, it is impossible to score a probe

of the first k− 1 bases alone, since all scores must be based on the probability of

a probe of k bases.
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Adding the kth base: At the kth position, all 4 bases are added to each of the

constructed initial probes. Because each probe is now k bases long, they can be

compared to the map. Based on map-reported probe sequences for the first k

positions, a score is assigned to each of the computer-generated probes

Adding Subsequent Bases: At the (k + 1)th position, all four bases are added to

each leaves of the previous tree (of depth k). Again, a score is generated for each

of these new probes based on map-reported probe sequences for positions 2 to

k+ 1. This score is added to the score generated for that same sequence score for

position k. We then iterate this operation as many times as necessary to finally

reconstruct the entire sequence. Obviously, the tree can grow exponentially and

must be pruned regularly.

Pruning the tree: The sequence assembly heuristic described above can be

achieved in linear time because it is possible to limit the number of paths at

any depth of the tree to some maximum number (which can be referred to as

the beam width). Whenever the number of paths exceeds this maximum num-

ber, a sufficient number of worst scoring paths can be discarded such that the

remaining number of paths drops below the beam width. There can be a small

risk that the correct path (which may not be a best scoring path) may be dis-

carded too hastily. Simulations indicate that for random sequences, such an

early discarding of the correct path may not occur if the beam width is set to

the equivalent of 2 Gigabytes of memory. For a human genome sequence, the

correct sequence may be discarded about once every 50kb. Even in such cases,

the incorrect sequence assembled may be usually incorrect only in a few bases
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Figure 5.5: The first i positions of the sequence have already been computed.
At position i, we add the 4 possible bases. We compute a score for each of the
bases (upper number). The score for the sequence of length i+1 is the score of
the sequence of length i + the score to add one of the bases to this sequence
(lower number). If the number of paths exceeds the beam width, the worst paths
(in term of score) are pruned (the red dashed arrows) until we have reached a
number of paths below our beam width. The green arrow represents the best
scoring path.

(typically 10-30bp) around the region where the beam width was exceeded. Such

errors can be reduced further, by adding an annealing step in which regions of the

assembled sequence that are likely to contain errors (e.g., regions where the beam

width was exceeded) may be subsequently reassembled locally while relying on

the higher level of correctness of the sequence on either side of the problem region.
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5.2.1 Results

Gapped Versus Ungapped Probes

We wanted to create simulated data from real human genome and check the al-

gorithm for two different approaches, one with ungapped probes and one with

gapped probes (use of universal bases). To generate the simulated data we used

both random DNA sequences as well as sequences from H. sapiens chromosome

1 and computed the probe map of a single restriction fragment of size 1kb, for all

possible probes for the probe type chosen. For example, for a probe with 6 specific

bases and 4 universal bases and the pattern xx-x–x-xx (x being a solid base and a

dash a universal one), there are a total of 2080 distinct possible probes, excluding

reverse complements. For each probe map, we simulated data error under the

following assumptions for single DNA molecules: Probe location Standard Devi-

ation = 240 bases; Data coverage per probe map = 50x; Probe hybridization rate

= 30%, and false positive rate of 10 probes per megabase, uniformly distributed.

Instead of simulating each single DNA molecule, we analytically estimated the

average error rate in the probe consensus map based on the above assumptions:

Probe location SD = 60 bases; False Positive rate < 2.4%; False Negative rate

< 2.0%. Using these estimated error rates for probe consensus maps we ran-

domly introduced errors at the above rates into each of the 2080 simulated probe

consensus maps (for the above example). We then ran our sequence assembly

algorithm, and then aligned the sequence produced with the originally assumed
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correct sequence using Smith-Waterman alignment. We counted the total num-

ber of single base errors (mismatches + deletions + insertions). We then repeated

this experiment until a total of 200,000 bases of sequence had been simulated and

computed the average error rate per 10,000 bases. We first tried probes without

universal bases with 5,6,7 and 8 bases respectively and got error rates per 10,000

bases of 1674, 255, 39.6 and 3.7 bases respectively.

Figure 5.6: Sequencing errors per 10kb sequence for solid (no universal bases)
probes

Next we tried various gapped probes (with universal bases) each with 6 specific

(solid) bases and varying the numbers of gapped (universal) bases, ranging from 1

to 5. We always put 2 solid bases at each end and placed the remaining two solid

bases so that the resulting pattern was symmetric, since that ensures that there

will only be 2080 distinct possible probes (rather than 4096 possible probes for

non-symmetric patterns of solid bases). The exact patterns used were xxx-xxx,

xx-xx-xx, xx-x-x-xx, xx-x–x-xx, and xx–x-x–xx respectively. The resulting errors

rates per 10,000 bases with 1,2,3,4 and 5 gapped probes were 35.9, 4.35, 2.65,

92



0.05 and 0.30 respectively. We excluded regions within 5 bases of a simulated

restriction site, since error rates are higher at those locations.

Figure 5.7: Sequencing errors per 10kb sequence for gapped probes

Note that while the error rates mostly decreased monotonically as the total

probe size increased, the probe with 5 gapped bases had a higher error rate than

the one with 4 gapped bases. One possible explanation is that the patterns cho-

sen are not optimal, and in particular the 5 gap pattern is less optimal than the

4 gap pattern. We have subsequently explored additional patterns to determine

the optimal gap pattern, which has made it clear that the probes with 4 and 5

gap bases far exceed the goal of 1 base error per 10,000 bases as desired in appli-

cations involving rare and de novo mutations. Note also that the error rates of

gapped and ungapped probes of the same length roughly match for lengths of 7

and 8 bases, in accordance with the theory for optimal probe patterns, suggesting

that the patterns we picked for 1 and 2 gapped bases are already close to optimal.
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FN (%) % of correct assembly
0 97.48

0.5 97.79
1 97.70

1.5 97.59
2 97.87

2.5 97.60
3 97.43

Table 5.1: Percentage of sequence correctly assembled for different values of false
negatives while other parameters (false positives, window error size, probe pat-
tern) vary

Robustness To Parameters

Considering that gapped probes produced better results, we then changed the

parameters of our simulations to see how robust the algorithm was. We made

the probe location window vary from 0 to 105 bp (0% to 10.5% of our fragment

size) by increments of 15. We also tweaked the false positive and false negative

rates from 0 to 3% by increments of 0.5%. We focused on 15-mers with 6 solid base

pairs and therefore 9 universal bases. We reconstructed 20 kbp of the chromosome

1 sequence. So for example, for 1.5% of false positives, we will get the result of the

experiments with 1.5% false negatives and all the values of the other parameters

(6 for the false negatives, 7 for the sizing error, 15 for the pattern and 20 for the

size of the sequence). That gives us 12 600 experiments on which we compute the

average score of the alignment between our assembled sequence and the reference

sequence. The final percentage we get is the percentage of the sequence that is

correctly assembled. For a 97% result, that means on a sequence of 100 bp, we

have made 3 mistakes.
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FP (%) % of correct assembly
0 97.93

0.5 97.52
1 97.59

1.5 97.73
2 97.60

2.5 97.60
3 97.49

Table 5.2: Percentage of sequence correctly assembled for different values of false
positives while other parameters (false negatives, window error size, probe pat-
tern) vary

We notice in Table 1 and 2 that the percentage of false negatives or positives

does not have any effect on the result, which means that our algorithm can han-

dle a reasonable amount of these kinds of noise without a problem. On the other

hand, we see in Table 3 that as the sizing error grows, the quality of the assembler

diminishes and the closer we get to 10% of the length of the fragment (we recon-

struct 1 kbp fragments so 10% is 100 bp), the more inaccurate our algorithm is,

as we have discussed earlier. Finally, we see that the choice of a pattern is fairly

robust since only few of them (3 over 15) are significantly worse than the others.

We can also see that the values of percentage of sequence correctly assembled are

sometimes low (around 3% of mistakes for the false positives or false negatives

rates). Our goal here was to get an idea of what pattern is good or to know if

the value of a parameter has any effect on the execution of the algorithm. This

requires a lot of simulation so we decreased the number of branches saved in our

tree to execute the simulations faster. As we prune more branches, the risk of

mistakes becomes higher and therefore, we have more mistakes than if we were

to run the algorithm normally.
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Location error (bp) % of correct assembly
0 99.22
15 98.60
30 98.40
45 98.43
60 98.29
75 97.43
90 96.40
105 94.32

Table 5.3: Percentage of sequence correctly assembled for different values of sizing
errors while other parameters (false negatives, false positives, probe pattern) vary

It is clear that the sizing error should be controlled since we have a large

decrease in accuracy as the value of this parameter gets closer to 10% of the

fragment length. However, the rate of false positives or negatives does not signif-

icantly impact the execution of our algorithm (except for the time of execution)

for at least 3 % which is a reasonable value for a real life experiment. Finally,

choosing the right probe design may be important in order to have the best as-

sembly possible. It will be interesting to see if there is a combinatorial structure

behind the “good” patterns and the “bad” ones so we could predict in advance

what pattern we should design before starting the experiment.

5.2.2 Complications

There may be repeated regions in a sequence leading to wrong paths that look

correct. Every time we hit one of those regions the number of such paths will

keep multiplying and might make our tree grow exponentially. Fortunately, this

situation can be avoided. We can label each probe in the map with its multiplic-
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Probe % of correct
pattern % assembly

x− x− x−−−−− x− x− x 91.69
x− x−−− x− x−−− x− x 91.92
x−−− x− x− x− x−−− x 92.24
x−−− xx−−− xx−−− x 97.88
x−−x−−x− x−−x−−x 98.47
x−−x− x−−− x− x−−x 98.75
x−−xx−−−−− xx−−x 98.77
x−−−−xx− xx−−−−x 98.88
xx−−− x−−− x−−− xx 98.99
xxx−−−−−−−−− xxx 99.12
xx− x−−−−−−− x− xx 99.13
xx−−x−−−−− x−−xx 99.21
x− xx−−−−−−− xx− x 99.23
xx−−−−x− x−−−−xx 99.29
x− x−−x−−− x−−x− x 99.58

Table 5.4: Percentage of sequence correctly assembled for different probe patterns
while other parameters (false negatives, false positives, window error size) vary
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ity depending on the intensity of the fluorescence we observe in the microscope.

Then you can penalize a path in the graph that uses a probe that has already

been used as many times as its multiplicity. That would avoid a case where we

assemble too many repeats. On the other hand, any final sequences not contain-

ing enough repeats to explain the multiplicity of certain probes can be penalized.

This penalization requires looking back to count how many times a probe has

been used. This step can be very slow even if going back just to the previous

occurrence of the probe is sufficient (this occurrence can be thousands of base

pairs away), if it needs to be done every time the path is extended by one base

pair. To prevent this issue, we use two types of data structures. One is a table

containing the probe location at selected nodes in the tree. At those nodes, the

table contains the previous location of each probe. We store this table every

64 nodes which limits the amount of memory per node (130 bytes per node for

6-mers probes, and this value can even be lowered). To find the first instance of

the probe, we look back to one of those “special” nodes. Finally, in order to find

the remaining locations of the probe in the path, we add a pointer that refers

to the previous node that has the similar probe instance as the current node.

Hence, we only look back at 64 plus the number of occurrences of a probe nodes

instead of the thousands previously described.

There are other types of structures that we can find in the genome which lead

to problems in reassembly. One of those is when we have a sequence following

this form: xWx̄ with x̄ representing the reverse complement of x. During the
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execution of our algorithm, there is a risk that we will reconstruct xW̄ x̄ instead

of xWx̄. As an example, consider the following DNA sequence:

TATCACCGGATA (W)

ATAGTGGCCTAT (C)

We see that GATA is the reverse complement of TATC (here, W and C stand for

the Watson and the Crick branches). Assuming we use 3-mers, the probe map

that we would obtain for such a sequence would look like TAT, ATC, CCG, CGG,

GAT, ATA, TCA, CAC, ACC, GGA, TCC, GGT, GTG, TGA. The underlined

probes are those where our algorithm will not be able to determine which probe

to use to continue assembling. If we try to reconstruct this sequence by hand,

here is one possible result:
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W T A T

W A T C

C T C C

C C C G

C C G G

C G G T

C G T G

C T G A

C G A T

C A T A

T A T C C G G T G A T A

We started by assembling the Watson branch but when we hit the red probes,

because they are both almost equally plausible, one had been chosen randomly,

leading to the overall reconstruction of our Watson branch. If we go back to our

graph representation, that kind of structure would be a cycle in the De Bruijn

graph but we would not know what direction to enter the cycle. By using 6-mers,

we fail to see far enough ahead in this loop to assess what is the correct direction

to enter the cycle. Interestingly, such structures are few in the human genome

(in the order of 50bp).

Suppose we are looking for a pattern Pat = A(̄A, B̄)iB. Let us define the prob-

abilities p(A) = p(B) = p and p(Ā, B̄) = q = 1 − 2p. The probability that such

a pattern Pat will occur in a sequence of size L will be p(Pat) =
∑L

i=0 p
2qi =

p2(1− qL+1)/(1− q) = (p/2)[1− (1− 2p)L+1] ≈ (p/2) ∗ (2p(L+ 1)) ≈ p2L. This
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approximation will give us the expected number of pattern Pat occurring in a

restriction fragment of size R. This number is E = p2 ∗ LR with p = 1/4k for

any k-mer.

Now if we look at the value of E depending on the size of our k-mer, we can see

that for a 6-mer, and L = 4000, R = 50, k = 5, we have E = 0.191 but for an

8-mer, with L = 4000, R = 50, k = 7, we have E = 7.4 ∗ 10−4. Even better, for a

15-mer with L = 4000, R = 50, k = 14, we have E = 2.78 ∗ 10−12.

We can see here that with 6-mers, this kind of pattern can be expected relatively

frequently but going to 8-mers (and even more with 15-mers) would actually solve

the problem for the vast majority of the cases. On the other hand, with 6-mers

probes, only 2080 experiments need to be performed while with 8-mers, 32896

experiments are necessary, significantly increasing the cost of the technology. We

would like to keep the number of experiments as low as possible but we need to

overcome the problems encountered with those small probes.

One efficient way of confronting this problem is to use so-called universal bases.

Universal bases are bases that can bond to any of the A, T, C or G base. Their

efficiency has been discussed in [24]. We can now use probes that are longer

(say 15 base pairs) but that are still made of 6 solid base pairs and therefore 9

universal bases (e.g ATT—G—C—CCT would be such a probe, with the dash

symbolizing a universal base). Obviously, by using those “wild cards”, we lose a

little bit in terms of accuracy but it does not create a real problem. On the other

hand, we are now able to have 15-mers for the same cost as 6-mers.
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5.3 Improvements

5.3.1 Design of gapped probes

We can see here that even though most of the gapped probes give us good results,

some of those probes are not as good as the others. Even if the algorithm seems

pretty robust to such a choice, choosing the optimal pattern for a probe might lead

to easier reconstruction of our sequence and therefore faster and more accurate

results. It would be interesting to see if we can predict a priori which patterns

are better.

Figure 5.8: Percentage of correct assembly of our sequence for different probe
patterns.
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i
x x x x

x x x x
x x x x

x x x x

Table 5.5: Coverage of position i by ungapped probes of size 4

i
x x - - x x

x x - - x x
x x - - x x

x x - - x x
x x - - x x

x x - - x x

i
x - x x - x

x - x x - x
x - x x - x

x - x x - x
x - x x - x

x - x x - x

Table 5.6: Coverage of position i by two different gapped probes of size 4 with
two universal bases

When we use ungapped probes, a specific position i of the sequence is going

to be covered by k different probes (if the size of the probe is k) and the coverage

of the surrounding 2k − 2 is going to be maximal.

Now we have gapped probes that lose this maximum coverage. Each position

is still covered by k probes but the size of the probe includes both solid and

universal bases. Depending on the probe pattern, the coverage is different.

The reason we have good and bad patterns might lie in this difference of

coverage. Some probe patterns might allow a better mixing of solid and universal

bases. We can represent the different coverages of the probes by their graph and
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adjacency matrices. For example, the matrix for the right pattern of Table VI is:



6 1 2 2 0 1

1 6 1 2 2 0

2 1 6 1 2 2

2 2 1 6 1 2

0 2 2 1 6 1

1 0 2 2 1 6


A good indicator of how well our probes are mixing is the value of the spectral

gap of those matrices. The spectral gap is the difference between the first and

the second eigenvalue of a matrix. If the spectral gap is big, it is easier to go

through our graph from any point while a small spectral gap means that it is

hard to travel in the graph. What that means for our purpose is that if our probe

pattern has a big spectral gap, even though the probe is gapped, the coverage of

the few bases around the currently treated base is good enough to give us some

checking information.

We normalize our matrices so they are stochastic and the first eigenvalue will be

1 for each of them. We now compute the second eigenvalue of the matrices. Here

are the results:

We notice two effects here. First, the three probes that were not good to

assemble the sequence get a second eigenvalue of 1, leading to a null spectral

gap. By looking at the eigenvalues, it seems that we are able to predict the

clusters of good and bad probes. Unfortunately, we are not guaranteed to get
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Probe pattern % of correct 2nd spectral
assembly eigenvalue gap

x− x− x−−−−− x− x− x 91.69 1 0
x− x−−− x− x−−− x− x 91.92 1 0
x−−− x− x− x− x−−− x 92.24 1 0
x−−− xx−−− xx−−− x 97.88 0.7223709 0.2776291
x−−x−−x− x−−x−−x 98.47 0.7262696 0.2737304
x−−x− x−−− x− x−−x 98.75 0.5002489 0.4997511
x−−xx−−−−− xx−−x 98.77 0.5691417 0.4308583
x−−−−xx− xx−−−−x 98.88 0.4412064 0.5587936
xx−−− x−−− x−−− xx 98.99 0.7096873 0.2903127
xxx−−−−−−−−− xxx 99.12 0.8679781 0.1320219
xx− x−−−−−−− x− xx 99.13 0.6529811 0.3470189
xx−−x−−−−− x−−xx 99.21 0.5141738 0.4858262
x− xx−−−−−−− xx− x 99.23 0.6116911 0.3883089
xx−−−−x− x−−−−xx 99.29 0.6261011 0.3738989
x− x−−x−−− x−−x− x 99.58 0.6202461 0.37975389

Table 5.7: Value of the spectral gap for the different 6-mers

the optimal probe. This does not pose too much of a problem since the precision

in the assembly process for the good patterns are fairly close and would be even

closer if we had simulated the assembly with a bigger memory.
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Conclusion

Ten years ago, when the Human Genome Project started, the hopes were tremen-

dous and the expectations were high. A decade later, we find ourselves in front of

a door which beckons an ambiguous future. Will this door open to a new era in

term of medicine and biology discovery or will it close and remain closed to hide a

major failure? Newer and newer sequencing technologies are being developed and

improved but many people still doubt if these technologies will yield any useful

results. Genome-wide association studies have reached a dead end. While new

technologies have been focusing on cutting costs and increasing throughput, they

have lost accuracy, allowing for more single nucleotides and indel errors. Worse,

they still cannot sequence haplotypes. Despite these issues, we feel that there is

hope for the future or genome-wide association studies. Overcoming these dif-

ficulties requires the development and design of a highly performing technology

that is able to sequence haplotypes with an acceptable rate of mistakes and still

operate at a reasonable price. With this technology in hand, the study of popu-

lations may become more efficient and could lead to results that will live up to

the expectations biologists and doctors once had.
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This dissertation has presented solutions to those problems. A new sequenc-

ing technology called SMASH has been introduced. The combination of two

technologies utilized by SMASH allows us to rapidly sequence whole genomes by

using a branch-and-bound approach that keeps complexity to a low level. Not

only is this approach fast and cheap but it also is very accurate. A rate as low

as one mistake per million base pairs can be expected. Most importantly, thanks

to the use of optical mapping, it is now possible to get haplotypes. There is still

room for improvement in the SMASH program. For one thing, mistakes in the

assembly will occur when the underlying search tree needs to be pruned. We

could perform a second run where we focus on those locations where the tree had

to be pruned and allocate more resources as to further expand the tree to be sure

we get the proper path. There is also a nice theoretical analysis that can be done

on the design of probes to justify what we have seen in the simulations.

But let us not lose our focus. Sequencing the whole genome is the corner-

stone of any population study but it provides only the basis for these studies.

Once the sequences are obtained, we need to do something with them. Some

very important questions deserve to be asked. How important are haplotypes?

Does it suffice to impute the haplotype-phasing from a population? How much

information is captured by the known genetic variants (e.g., SNPs and CNVs)?

How does one find the de novo mutations and their effects on various complex

traits? Can exon-sequencing be sufficiently informative?
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The other half of this dissertation has discussed the current state of knowl-

edge on these questions. To develop personalized medicine, determining whether

common, rare or a combination of both types of variants are responsible for com-

mon diseases seems to be a major step. I have developed a population genetics

model that will be able to test different disease models. This model and its usage

is still at an embryonic stage and needs some developing but the bases are solid

and it will be easy to take over and keep improving it. The model allows one

to simulate any population size evolution and any kind of disease. One obvious

improvement would be to create non-random mating patterns such as an island

model. It would also be interesting to study linkage relationships between SNPs

under varying conditions of linkage disequilibrium.There is still a lot to do there

but there is potential for a rewarding result.

As stated earlier, we are at a cross-roads. We may end up having to admit that

the individualized analysis of sequences will not be able to bring us any useful

information. But let us not forget that sequencing technologies, the very core

of any further discovery in genetics, have been developing quickly and trying to

optimize different constraints of the problem (accuracy, cost, rapidity, etc). From

Sanger to nanopore technologies, many creative and innovative technologies such

as pyrosequencing, sequencing by ligation, sequencing by synthesis have seen

light. Unfortunately, none of these technologies have provided conclusive, error

free sequencing results. I believe that the technology developed in this thesis

will bring new life to the field and will give hope back to many physicians and
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biologists. Furthermore, the ability to simulate different disease models may lead

to a better understanding of how diseases work, in order to plan and evaluate

results when real population studies are conducted.
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Appendix A

Branch and Bound Efficiency

We have seen in the results that the algorithm works beyond what most people

have expected in term of accuracy. An error rate of 1 base for every 10 000 base

pairs is generally an acceptable rate for most studies and we can actually achieve

an error rate of 1 per million base pairs. The problem is NP-complete and yet,

we have extremely good efficiency. The underlying idea behind our technology

is to create easy-to-solve instances of the PSBH problem. As stated above, this

problem can be solved in a polynomial time if the probes do not hybridize more

than two times on the sequence. This is very unlikely for long sequences but not

for a restriction fragment of our sequence. Using 6-cutters, the expected length of

our fragments is around 4000 bp. Using 6-mers, the probability that every 6-mer

appears more than two times within the restriction fragment is very low, and

we can treat each restriction fragment independently of the others. We are now

asked to solve the PSBH multiple times (as many times as there are restriction

fragments) but each of those instances of the problem is easy to solve.

Once we are able to get those small fragments, we are actually performing an

exhaustive search with a Bayesian scheme of all possible assemblies of these small

fragments, leading us to be quite confident we will get the correct assembly at the

end of the search. This approach is motivated by the fact that we want to give

each solution a chance. The counterpart of this is that we have to be sure our
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tree does not grow exponentially. Assuming a random sequence, we can analyze

the branching factor of our algorithm. Every node of our tree is extended by any

of the four possible bases, given a probe that can be located within ±Kbp of the

current location. A probe that occurs every Pbp (for 6-mers, P averages 4096)

can be located every P
2

base pairs, including bases in the reverse complement. For

each possible extension of the tree, the probability of finding a particular probe

within our window of acceptance is therefore 4K
P

. Since each node is extended

by four possible bases, the expected branching factor of a node is 16K
P

. If we

want the number of branches generated to remain bounded, we have to keep this

branching factor below 1.

Along the correct path, each node will have one correct extension and 12K
P

ran-

dom ones. Hence, the expected number of surviving branches will be 1 +
12K

P

1− 16K
P

.

For example, if K = 200 and P = 4096, 16K
P

= 0.781, the expected number of sur-

viving branches will be 3.68 which is a reasonable number. However, if K = 250,

then the expected number of branches will be 32.24 (the expecting branching fac-

tor will be 0.976) and for K = 255, the number of branches becomes unbounded.

This sudden jump from reasonable to undoable forces us to carefully choose the

size of our window.
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Appendix B

SMASH-P is NP-complete

Historically, sequencing by hybridization has been linked with graph theory prob-

lems, in particular finding an Eulerian path within a de Bruijn graph. The

problem with a sequencing by hybridization sequencer and assembler was the

non-uniqueness and ambiguity of the answer. The hope with positional sequenc-

ing by hybridization was that the extra information about the location of the

probes would decrease this ambiguity. Unfortunately, we can prove that if the

probes have more than 2 possible locations, the problem becomes NP-complete.

Because there is a strong relationship between SBH and finding a Eulerian path

in a graph, we will reduce the Positional Sequencing by Hybridization (PSBH)

problem, described in [15] problem to the Positional Eulerian Path (PEP) prob-

lem. First, let us show that PEP is NP-complete. It will then be straightforward

to reduce the PSBH problem to the PEP problem.

The PEP problem is to find an Eulerian path in a graph in which the edges of the

path have to follow a certain order. Every edge e in a graph G is labelled with

an integer Le which represents the location of the probe. A positional Eulerian

path is a path in which the position of the edge e, Pe, matches Le. We can relax

this assumption a little bit and allow Pe to be within a window of size W relative

to Le. Mathematically speaking, |Pe − Le| ≤ W . To prove this problem to be

NP-complete, we can reduce it to the well known Hamiltonian path problem in

a directed graph.
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Let us start with a graph G(V,E) such that the in-degree and the out-degree are

equal to 2 for every vertex. Therefore, with |V | = n we have |E| = 2n. Let us

fix W = 4n. We build a graph G′(V ′, E ′) with |V ′| = 4|V | and |E ′| = 3|E| as

follows:

• We split every vertex ui of G into three vertices (ui,1, ui,2, ui,3).

• Every ui,1 has an edge directed to ui,3 and ui+1,1 (for the vertex un,1, the

vertex un+1,1 is the vertex u1,1 which will always be the case later on). There

are 2n such edges and their location Pe is 6n. Their window of accepted

location is then {2n, 6n}.

• Every vertex ui,3 has two edges directed to the vertex ui+1,2. Those edges

are the ones from the graph G, therefore, we have 2n such edges and their

location Pe is 2n. Their window of accepted location is then {2, 6n}.

• Finally, every vertex ui,2 has an edge directed toward ui,1 and ui,3. That

gives us our final 2n edges. The edges from ui,2 to ui,3 have location Pe = 1

and the ones from ui,2 to ui,1 have location Pe = 6n. Their windows of

accepted location are then respectively {1, 2n} and {2n, 6n}.

We will show that G has an Hamiltonian path⇔ G′ has a positional Eulerian

path.

⇒: Following the previous construction of G′ from a graph G with a Hamilto-

nian path, here is how we construct a positional Eulerian path in G′. Starting

at vertex u1,2, we alternate edges from ui,2 to ui,3 and edges from ui,3 to ui+1,2

and we stop at un,3. Those edges are either labelled 1 or 2n. The positional
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Figure 9: Example with a 3 vertices graph. Red edges: directed from ui,1 to ui,3
and ui+1,1. Green edges: directed from ui,3 to ui+1,2. Black edges: directed from
ui,2 to ui,1 and ui,3. Numbers on the edges represent their location and numbers
between parenthesis represent their position in the Eulerian path.

constraint (|Pe − Le| ≤ W ) is respected since we start with an edge labelled 1

and we visit 2n − 1 edges. Now, if we remove those edges from the graph, the

remaining graph will be connected and every vertex will have equal in-degree and

out-degree, except for the starting and the ending vertices which does not create

a problem, and hence has an Eulerian path. The window of accepted location of

the remaining edges provides that the Eulerian path in this remaining graph fits

our positional assumption.

⇐: If G′ has a positional Eulerian path, then construct a Hamiltonian path this

way. For every ui,j vertices, go from vertex ui,2 to ui,1 and from ui,1 to ui,3. Then,

go from ui,3 to ui+1,2 and repeat. End at un,3. You will have visited every node

114



once and only once.
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Appendix C

Figure 10: Here, we follow 10 SNPs that have an implication in a common disease.
As long as one does not carry more than three of those SNPs, the individual will
survive. If he has more than 3, he will die and not give birth to any offspring.
We also follow a SNP known to give a heterozygote advantage to the carrier. The
blue curve represents the total number of those 10 SNPs within the population
while the green curve is the number of homozygote individuals. The population
follows an abrupt bottleneck after 200 generations, leading the population from
a 1000 individuals to as few as 27 in just 10 generations. The population remains
constant for the next 190 generations before a rapid population expansion occurs.
In 20 generations, the population count grows from 27 to 4888 individuals. As
we can see in the figure, even if new mutations occur every new generation, the
total number of SNPs or heterozygote individual reaches an equilibrium.
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Figure 11: Here, we follow 1 SNP that has an implication in a common disease.
We also follow a SNP known to give a heterozygote advantage to the carrier.The
blue curve represents the total number of the followed SNP within the population
while the green curve is the number of homozygote individuals. The population
follows a slow bottleneck after 200 generations, leading the population 1000 indi-
viduals to 10 in 100 generations. The population remains constant for the next
100 generations before a rapid expansion. In 25 generations, the population count
grows from 10 to 5426 individuals. As we can see in the figure, even if new muta-
tions occur every new generation, the number of heterozygote individual reaches
an equilibrium. We also see that the curves follow the evolution of the population
size (a slow decrease and a quick increase). The total number of SNPs in the
population keep growing since no selection effect is acting. The blue curve would
reach fixation eventually.
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Figure 12: Here, we follow 1 SNP that has an implication in a common disease.
We also follow a SNP known to give a heterozygote advantage to the carrier.The
blue curve represents the total number of the followed SNP within the population
while the green curve is the number of homozygote individuals. After 200 Gen-
erations, no new mutations are introduced in the population. The population
follows a slow bottleneck after 200 generations, leading the population from a
1000 individuals to 10 in 100 generations. The population remains constant for
the next 100 generations before a slow growth rate occurs. In 200 generations,
the population count grows from 10 to 4010 individuals. Both curves follow the
changes in population size. The number of heterozygote individuals still reaches
an equilibrium. While the Hardy-Weinberg equilibrium states that the total num-
ber for the SNP followed should reach equilibrium, we see that it is not the case.
This is probably due to a small size population combined with genetic drift and
recombinations.
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