NEW ESTIMATES FOR RITZ VECTORS
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Abstract. The following estimate for the Rayleigh—Ritz method is proved:
A= All(@u)| < |lA@ — Xal[sin £{u; U}, |Jul| = 1.

Here A is a bounded self-adjoint operator in a real Hilbert/euclidian space, {A, v} one of its eigenpairs,
U a trial subspace for the Rayleigh—Ritz method, and {5\, %} a Ritz pair. This inequality makes it
possible to analyze the fine structure of the error of the Rayleigh—Ritz method, in particular, it shows
that |(@,u)] < Cé?, if an eigenvector u is close to the trial subspace with accuracy e and a Ritz
vector @ is an € approximation to another eigenvector, with a different eigenvalue. Generalizations
of the estimate to the cases of eigenspaces and invariant subspaces are suggested, and estimates of
approximation of eigenspaces and invariant subspaces are proved.

Key words. eigenvalue problem, Rayleigh—Ritz method, approximation, error estimate

AMS(MOS) subject classifications. 65135

1. Introduction. Let A be a bounded self-adjoint operator in a real Hilbert (or
euclidian) space, and {A, u} be an eigenpair,

Au = Au, |Ju|| = 1.

A Ritz pair, {/\],u]} is, by definition, an elgenpaur of the operator A = (QA) lg
where @ is an orthoprojector on the trial subspace U and |;; means the restriction of
the operator to its invariant subspace U,

Ai=Xa, a e U, ||a| = 1.

The behavior of a Ritz vector as a function of the trial subspace is complicated
and still not completely studied. For example, let an eigenvector u be close to the
trial subspace with accuracy € and a Ritz vector @ be an € approximation to another
eigenvector, with a different eigenvalue. FEither of the two assumptions leads to the
trivial estimate

[(@,u)| < Ce.
Do they together give
(i1, u)| < Ce*?

The following basic estimate gives the positive answer to this question.
THEOREM 1.1. If A # A, then

HAu /\uH

u,u)| <
@) < 2

= @Q)ull.
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In the next section a somewhat more general formulation of the basic estimate is
presented in Theorem 2.1 along with two dual proofs.

We note that it is often important to analyze several eigenspace components to-
gether rather than just one component, as in Theorem 1.1 and Theorem 2.1. Such
analysis is carried out in section 3. The purpose is to make clear a behavior of Ritz
vectors when ||(I — Q)AQ)|| is small, e.g. for a case when the trial subspace is close to
an invariant subspace of the operator A. Interestingly, generalizations of the two dual
proofs of Theorem 2.1 lead to two different statements, Theorem 3.1 and Theorem
3.2. Theorem 3.1 shows that the approximation error of an eigenvector by the cor-
responding Ritz vector is essentially orthogonal to this invariant subspace. Theorem
3.2 leads to a dual statement that the orthoprojection of any eigenvector from the
invariant subspace onto the trial subspace essentially coincides with a Ritz vector; see
also Saad [12].

Asymptotic statements of this kind were formulated in [9]; the proof, based on a
perturbation theory, was published in Russian in Knyazev [7]. They now turn out to
be direct consequences of the simple estimates of Theorem 3.1 and Theorem 3.2.

There is a classical fact that the Ritz procedure, applied to a linear equation with
a selfadjoint positive operator, produces an approximation in a trial subspace which
is just the orthogonal projection of the solution onto the subspace with respect to the
“energy” scalar product. Perhaps, by analogy with this fact, there was a well-known
naive statement that the Rayleigh—Ritz procedure, applied to an eigenvalue problem,
gives an approximation (a Ritz vector) to an eigenvector which must be an orthogonal
projection of the eigenvector onto the trial subspace, because of “the optimality” of
the Rayleigh—Ritz procedure; see a discussion in Parlett [11]. Such a point of view
was popular among specialists of structural analysis in seventies, who used subspace
iterations — the method of computing a sequence of subspaces that tends to an invariant
subspace. The present paper shows that the engineers were right, in their own way,
though strictly speaking, the statement is not mathematically correct, see Corollaries
3.2 and 4.2.

In the section 4, further extensions, of the main Theorem 2.1, are made for the
case of invariant subspaces of A and A instead of eigenspaces. Such generalizations
are of particular importance for the analysis of approximations of an invariant sub-
space, corresponding to a cluster of eigenvalues, or even an interval of the continuous
spectrum of A; see [4]. Two estimates of approximations of an invariant subspace are
proved, of Corollary 4.1 and Theorem 4.3, as simple consequences of the main results.
The statement of Corollary 4.1 is already known, see Davis and Kahan [2] and cf.
also Theorem 11.7.11 of [11]. Theorem 4.3 is a generalization of the Saad’s estimate
[12, 11] for the case of invariant subspaces.

Let us finally mention that ||(I — Q)AQ|| can be small not only in the case when
the trial subspace is close to an invariant subspace of the operator A. If the operator
A is compact and for a sequence of trial subspaces the corresponding orthogonal
projectors Q strongly converge to the identity operator, then H(I—@)A@H, in fact even
(T =@Q)A]|, tends to zero [3]. Such a situation is typical for the Rayleigh-Ritz method
applied for approximation of low eigenpairs of differential operators, e.g. using finite
elements [13, 1]. However, if the operator A is not compact, then ||(I — Q)AQ|| is not
necessarily small, even for Q strongly converging to the identity [4]. The importance



of ||(I — Q)AQ)]| is based on the representation
A=QAQ+(I1-QA(I- Q)+ (I - Q)AQ + QA(I - Q),
and the fact that

I = @)AQ + QAU - Q)| < I = @AQ| = |QA( — Q)]|-

Considering the last two terms in the representation of A as a perturbation and using
Theorem 4.10, p. 291 of [6] lead to the following important estimate, cf. (11.5.1) of
[11],

(1) dist{o(4),0(H o ({1 - QAU - Q)}lps) } < (1= @)AQ).

Here o(x) is the spectrum of an operator %. In particular, this shows, that there is no
spectral pollution [4] if ||(I — Q)AQ)|| is small. Examples of polluting and non-polluting
approximations of the continuous spectrum of operators related to the MHD equations
can be found in [4].

The results of the paper were presented at the Fifth STAM Conference on Applied
Linear Algebra, June, 1994, in Snowbird, Utah.

2. The main theorem. Let P and P be orthoprojectors on eigenspaces of the
operators A and A, corresponding to the eigenvalues A and A :

(2) AP = AP, AP = \P.

It is not required that P and P be orthoprojectors on complete eigenspaces; and there
are no restrictions on the dimensions of their images.
There are several important equalities that stem from the definition (2)

(3) AP = PA, AP = PA, OP = PO = B, O(A— )P =
If, in particular, P and P are orthoprojectors on the one-dimensional subspaces
span{u} and span{a}, respectively, then the following equalities hold
IPP|| = [|Pall = (@, u)| = [|Pull = [|PP], for [[u]| = [lal| = 1,

and the estimate of the basic Theorem 1.1 becomes a particular case of an estimate
of the next Theorem.

THEOREM 2.1. If A # A, then

[1(A - A)PHH

(4) I1PP| = ||PP| < Y

(I-Q)P|.

Proof. [First] We have

A= [P = [[(A =N PP|| = ||[P(A= NP =
IP(I = Q)(A—=NP|| < [IP( - Q)[lI(A= NP =

I(Z = Q)PII(A = X)P].
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Here the first three equalities are based on (2) and (3). The final equality is a particular
case of a general equality,

[FG] = I(FG)] = IGF

for linear bounded selfadjoint operators F' and G'. (Below such equalities will be used
without special references.) 0O )
Proof. [Second] By exchanging of P and P in the previous arguments, we obtain

A= MIPP|| = |P(A =N PP|| =
I1P(A = NQP|| = [|[PA(I - Q)P|| <
IPAL = QU = Q)P = I - QAP - Q)P|| =

ICA = NPT = @)Pll,

which gives the second proof of the theorem. [
ReEMARK 2.1. [t is useful to note, that

(5) (I-P)AP=(A- NP =(-Q)A- NP =(I-Q)AP
due to (I — Q)P =0 and (3).

3. Accuracy estimates for eigenspaces. Let R and R be orthoprojectors on
invariant subspaces of the operators A and A, such that ImR C Im¢). Then

(6) AR = RAR = RA, AR = RAR = RA, QR = RQ = R.

Replacing R by P in Theorem 2.1 and using the first proof, we obtain the following
more general statement.
THeOREM 3.1. If

d= inf lv =X >0,
VEO({RAR}hmR)
then
. I—Q)AP -
jep) < IW=DAL g,

Proof. The spectrum o({RAR} [imr) does not contain A, therefore the operator
{R(A — M) R} |impr has a bounded inverse and

d|RP|| < [[(A=NRP|| = |R(A =~ NP =
IR(I = @)(A = NP|| < R - QI - Q)(A~NP|| =

I = @)RII(A = 2)P||
4



by (6). D
Let us now consider the particular case R = I— P, in view of the fact H(I—@)RH <

1.
COROLLARY 3.1. If
d= inf lv—=A >0, R=1-P,
UEG’({RAR}hmR)
then
5 o (L= QAP
17 = P)Pl| < F—

REMARK 3.1. If the eigenvalue X is simple, and P and P are orthoprojectors on
the one-dimensional subspaces span{u} and span{a}, respectively, then the estimate
of Corollary 3.1 converts into a wellknown estimate due to Kato [5]

sin Z{u;a} <

e —
—, ||la|]| = 1.

inf ey v — Al

By replacing R by P in the second proof of Theorem 2.1 we get
THEOREM 3.2. If

d= inf |7 — Al >0,
peo({RARY, 2)
then
5 I(I - Q)AR| 5
|RPl < B - Q)P

Proof. The spectrum o({RAR} |impz) does not contain A, therefore the operator
{R(A = )R} |mmr has a bounded inverse and

d||RP|| < |R(A - NRP| =
IR(A = NQP| = || RA(I - Q)P <

IRAUL = )M = Q)P = |I(1 = QAR - Q)|

by (6). O

REMARK 3.2. [t is clear that
(7) (T = Q)AP|| < (T - QAQI|, II(I - Q)AR| < [|(T - @)AQ||
because of

ImP C ImQ, ImR C Im@.



In the particular case R = Q — P, taking into account of the previous remark, we
can make the following conclusion from Theorem 3.2.
COROLLARY 3.2. If

d= inf 7 —A >0, R=Q - P,
vea({RARY )
then
.. I-0Q)AQ -
1@~ Py < =DA%y g)py.

Finally, using the inequality
(1 = P)P|* < (@ = P)PII* + (I - Q)P
that follows from the equalities
[-P=(Q-P)+(I-Q), (@-P)I-Q)=0,

we obtain the theorem, that was proved by Saad [12] for the case of a simple eigenvalue
A of a matrix A.
THeEOREM 3.3. If

d= inf 7—A >0, R=Q — P,
vea({RARY; )

then

. I-Q)AQ|? -
- Pypip < 1 =Dy g)pe

REMARK 3.3. It was shown in [9, 7] that this estimate is stronger than the classical
one of Vainikko [10], even though it looks much simpler and uses less information.
Also, for fized positive numbers d and r ezamples of operators A and projectors P
were constructed in [9, 7], such that ||(I — Q)AQH = r and the inequality of Theorem
3.3 becomes an equality. Therefore the estimate of Theorem 3.3 cannol be improved
without new information.

4. Accuracy estimates for invariant subspaces. We now redefine P and P
as orthoprojectors on invariant subspaces of the operators A and A, corresponding to
the spectrum of A in the interval [A — 8, A 4+ 6] and of A in the interval [A — 8, A + §]

AP = PA, |P(A—NP|| <6, AP = PA, |[P(A- NP <é.

Then we do not require, that these subspaces incorporate all and/or the complete
eigenspaces of the spectrum in the intervals. There are no restrictions on the dimen-
sions of their images.

In this section, we generalize all the statements of the previous section to the case
of invariant subspaces instead of eigenspaces, using the new definitions of P and P
given above.



THEOREM 4.1. If

d= inf lv— Al > 6,
UEU({RAR}|ImR)
then
. I-Q)AP -
e < = DAy gy,

Proof. We have

d|RP|| < [[(A=NRP|| = [|[R(A = NP <
IR(I = Q)(A = M P|| + |RQ(A - V) P|| <
IR( = Q) = Q)(A = NP + [ RP|[| P(A = M) P|| =

(1 = Q)RII(I — Q)AP|| + §||RP|

The theorem is proved. 0O

We can, considering the particular case of R = I — P and using the trivial in-
equality ||(I — Q)R|| < 1, in analogy with an argument of the previous section, give
the statement, which was proved by Davis and Kahan, see [2] and cf. also Theorem
11.7.11 of [11].

COROLLARY 4.1. If

d= inf lv—A>é R=1-P,
VGO({RAR}hmR)

then

= I = Q)AP|
[|(f — P)P|| < T

We now prove an analog of Theorem 3.2 for invariant subspaces.
THEOREM 4.2. If

d= inf |7 — A > 6,
vec({RAR Y1)
then
I-Q)AR <
(ke < DAL Gpy
d—6
Proof.

dl|RP|| < [|R(A - N)RP|| =
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IR(A = NQP| < [[RA(I = Q)P|| + [|R(A = M) P <
IRAU = QI = @)PI| +[|1P(A = 2)PI|[| RP|

<= QAR - Q)P + 8| RP].

The theorem is proved. 0O

Choosing R = Q — P in Theorem 4.2 and taking into account Remark 3.2 we can
make the following conclusion.

COROLLARY 4.2. If

d= inf |7 —A>6 R=Q — P,
veo({RARY . 7)
then
- I—Q)AQ -
@~ pyp| < =222 g)py.

Now, using the same arguments as in the previous section, we prove the following
generalization of the Saad’s Theorem 3.3 for the case of invariant subspaces instead

of eigenspaces.
THEOREM 4.3. If

d=  inf lp—A>6 R=Q - P,

then

(1 - Q)AQ|”

rEri LR

I = P)PI* < {1+

REMARK 4.1. [t is wellknown, see [7], that
o |I(1 - P)P|| < 1 measures the proximily of ImP to ImP;
o ||P - P|| = max{||( - P)PH (I = P)P||} < 1 measures the prozimily (the
gap) between Im P and Im P;

e ||(I = P)P|| <1 measures the prozimily of ImP to ImP.
The prozimily, for ezample, of ImP to ImP means by Theorem 6.3} of [6], p. 56, the
prozimily between InP and a subspace of ImP, i.e. if ||(I — P)P|| < 1, then there is a
subspace in ImP with an associated orthogonal projector P' such that (I — P)P|| =
|P— P < 1.

dim ImP = dimImP < oo,

(8) I(L = P)P|| =P = P| = (I - P)P],

as follows from Theorem 6.34 of [6]. Therefore, Corollaries 3.1 and 4.1 estimate the
prozimily of Im P to Im P, while Theorems 3.3 and 4.3 estimale the proximily of Im P
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to ImP. In the case dimImP = dimImP < oo all of them estimate the gap belween
ImP and Im P.

REMARK 4.2. By choosing subspaces properly, and by using statement (1), we
can derive a priori estimates of d and d in the denominalors of estimales.

Assume that the points A — 6 and A + § do not belong to the spectrum of A. Let
E(v) be a spectral family associated with A, i. e.

A= /_-:o vdE(v).

Then it is possible to define the projector P as

A+6

P= A : dE(v)= E(A+6)— E(A=9).
With such a definition, P is the orthogonal projector on the invariant subspace of
the operator A, which corresponds to the spectrum of A in the interval [\ — 8, A + 6];
this subspace incorporates all and complete eigenspaces of A with the spectrum in the
interval. Further, let for a number A > 0 the closed intervals [A — 6 — A, X\ — 6] and
[A 6, A+ & + A] contain no points of the spectrum of A, i. e. there is at least a A
gap in the spectrum of A around the interval [\ — 6, A 4+ 6]. Let

e A~ A
P 1 -@)ag) < 5.

Then, by statement (1), A\ — 8 —r and A+ 6 + r do not belong to the spectrum of the
operator A, while the interval [A\— 8 —71,A4 6 + 7] may contain points of the spectrum
of the operator A. Lel E(V) be a spectral family associated with A, and define the
projector P as

P=EXN+é6+7)—EN-6—-1).

This makes P the orthogonal projector on the invariant subspace of the operator A,
corresponding to the spectrum of A in the interval [A=06 —r,\+ 6+ 7]; this subspace
incorporates all and complele eigenspaces of A with the spectrum in the interval. To
comply with the previous definition of P, we sel

A=A, 6=6+r.

Now it is clear, that in Corollary 4.1 d=X+6+A—X =6+ A, and the estimate
of Corollary 4.1 takes the form

|- @)AP| _ _»

(9) (1 - Py < B8l o L

<1

because of the condition A > 2r introduced above.

To estimate d of Theorem 4.3, we have lo use slalement (1) again to conclude
that inside the interval [\ — 6 — A+ r, A4+ 6 + A — r| there are no points of spectrum
of the operator A except these of the spectrum of the operator {PAP} limp - But

o(A) = 0 ({PAPY |yyp) o ({RARY|10) - = Q- P.

9



Therefore, d = A+ 86+ A—r—X = 6+ A —r, and the estimate of Theorem 4.3 converls
into

T2

(10) (1= P)P|* < B

1+

] I = Q)P

Taking the previous remark into account, we can draw the conclusion that small
r affords the prozimity of the Ritz vectors to an eigenspace of A by (9), but not nec-
essarily ensures a good approzimation of the complete eigenspace, in contrast to (10),
excepl for the case when the dimension of the eigenspace is known a priory (and is
finite). We can then use (8) if the dimension of the approximation subspace, spanned
by Rilz vectors, happens to be the same.

REMARK 4.3. There is also a sharp accuracy estimate [15, 14] for a finite dimen-
stonal tnvariant subspace corresponding a group of leading eigenvalues just in terms of
the accuracy approximation of the eigenvalues. The simplified proof for the particular
case of an eigenspace instead of an invariant subspace can be found in [8].
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