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Abstract. This paper begins with an introduction to additive and multiplicative Schwarz methods.
A two-level method is then reviewed and a new result on its rate of convergence is established for the
case when the overlap is small. Recent results by Xuejun Zhang, on multi-level Schwarz methods,
are formulated and discussed. The paper is concluded with a discussion of recent joint results with
Xiao-Chuan Cai on nonsymmetric and indefinite problems.
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1. Introduction. Over the last few years, a general theory has been developed
for the study of additive and multiplicative Schwarz methods. Many domain decom-
position and certain multigrid methods can now be successfully analyzed inside this
framework. Early work by P.-L. Lions [23], [24] gave an important impetus to this
effort. The additive Schwarz methods were then developed by Dryja and Widlund
[15], [16], [17], Matsokin and Nepomnyaschikh [25] and Nepomnyaschikh [26] and oth-
ers. Recent efforts by Bramble, Pasciak, Wang and Xu [4] and Xu [36] have extended
the general framework making a systematic study of multiplicative Schwarz methods
possible. The multiplicative algorithms are direct generalizations of the original al-
ternating method discovered more than 120 years ago by H. A. Schwarz [30]. We note
that most of the work in recent years has focused on the positive definite, symmetric
case.

While this theory is quite general, the applications so far have primarily been to
the solution of the often large linear systems of algebraic equations, which arise in
the finite element discretization of elliptic and parabolic boundary value problems.
As shown in P.-L. Lions [24], the classical Schwarz algorithms can conveniently be
described in terms of subspaces of the given space. The relevant error propagation
operator of a particular Schwarz method can be written as a polynomial of orthog-
onal projections onto these subspaces. The use of these projections in computations
involves the evaluation of the residual of the original finite element problem and the
exact, or approximate, solution of several finite element problems on subregions. An
additional coarse discrete model is also often used to enhance the rate of convergence.
For a discussion of many applications, see Dryja and Widlund [17]. For other current
projects, which also use the Schwarz framework, see Dryja and Widlund [18], [20] and
Dryja, Smith and Widlund [14].
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This paper is organized as follows. In Section 2, we first briefly review the theory
for the positive definite, symmetric case and then, to provide an example, turn to
a special case already discussed in our first papers on Schwarz methods, c¢f. Dryja
and Widlund [15], [16]. This additive method uses two levels of discretization corre-
sponding to a coarse space and a number of local finite element spaces. The former
plays a role similar to the coarse mesh solver in a multigrid method; it provides global
transportation of information across the region.

In our original proof that the condition number for this Schwarz method is inde-
pendent of the number of subspaces and the mesh size, it is important to assume that
there is a relatively generous overlap between the subregions. However, numerical
experiments have shown that such methods often perform quite satisfactorily with
little overlap, cf. Bjgrstad, Moe and Skogen [1], Bjgrstad and Skogen [2], Cai [T7],
[8] and Cai, Gropp and Keyes [9]. In Section 3, we prove a theorem on additive
Schwarz methods with minimal overlap to help provide an explanation. This result
has recently been obtained in joint work with Maksymilian Dryja.

In Section 4, we describe a recent result by Xuejun Zhang [37], a Courant Institute
student, on multilevel additive Schwarz methods. He has shown that the condition
number of a family of such methods grows at most linearly with the number of levels.
The parallel multilevel preconditioner of Bramble, Pasciak and Xu [5] belongs to this
family and, consequently, the estimate of the condition number of the BPX operator
can be improved. For earlier results and a general discussion of multilevel methods,

see Dryja and Widlund [19] and Xu [35].

In Section 5, we discuss recent joint work with Xiao-Chuan Cai on nonsymmet-
ric and indefinite elliptic problems. Cai’s dissertation [7] was a pioneering study on
nonsymmetric problems. He discovered that the use a coarse model is even more
important than in the positive definite, symmetric case. Thus, already in the non-
syminetric, positive definite case, the use of a sufficiently fine coarse mesh model is
required in order for the additive Schwarz operator to have a positive definite, sym-
metric part. Confining the spectrum of the additive Schwarz operator to the right
half plane allows us to derive strong results on the convergence rate of GMRES, a
conjugate gradient-like method, which is effective for many nonsymmetric problems,
cf. Saad and Schultz [28]. Generally, it is known that the performance of iterative
methods of the conjugate gradient family suffers if the origin of the complex plane
is surrounded by eigenvalues. The experimental evidence is also very clear; the per-
formance is clearly enhanced in the presence of a coarse space with sufficiently many

degrees of freedom, cf. Cai [7], Cai, Gropp and Keyes [9] and Cai and Widlund [11].

Our joint work concerns both additive and multiplicative algorithms, cf. Cai
and Widlund [11], [10]. In the second paper, the theory, previously developed for
multiplicative methods by Bramble et al. [4] for the positive definite, symmetric case,
is generalized to a class of nonsymmetric and indefinite elliptic problems.
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2. An introduction to Schwarz methods. As usual, we write our continuous
and finite element elliptic problems as

a(u,v) = f(v), Yve V,
and
(1) a(uhavh) = f('Uh), Voo, € Vh s

respectively. We assume, in the next few sections, that the problem is selfadjoint and
elliptic in a suitably chosen space V and that a(u,v) is bounded in V x V. In the case
of Poisson’s equation, the bilinear form is defined by

a(u,v) = / Vu-Voude.
Q

To avoid unnecessary complications, we first confine our discussion to this operator, to
homogeneous Dirichlet conditions and to continuous, piecewise linear finite elements.

In the classical formulation of Schwarz’s alternating method, two overlapping
subregions, Q] and €2, are used; the union of the two is 2. There are two sequential,
fractional steps in which the approximate solution of the elliptic equation on §2 is
updated by solving the problem restricted to one of the subregions, one at a time.
The most recent values of the solution are used as boundary values on the part of
0., the boundary of !, which is not a part of 0€2.

The finite element version of the algorithm can conveniently be described in terms
of projections P; : V" — V! defined by

(2) a( Pion, é1) = alvi, é1), Von € VI,

Here V" is the finite element space on Q and V' = H}(Q)N V" It is easy to show
that the error propagation operator of this multiplicative Schwarz method is

(I — Py)(I— Py).
This algorithm can therefore be viewed as a simple iterative method for solving
(Py+ Py — P,Py)uy, = g,

with an appropriate right-hand side g;.

This operator is a polynomial of degree two and thus not ideal for parallel com-
puting since two sequential steps are involved. This effect is further pronounced if
more than two subspaces are used even if the degree of the polynomial representing
the multiplicative algorithm often is lower than maximal because the product of two
projections associated with subregions, which do not overlap, vanishes.

We note that it is often advantageous to group subspaces, which do not intersect,
into sets. The subspaces of each set can then be merged and the value of N reduced.
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The decrease in the number of fractional steps makes the algorithm easier to paral-
lelize. Numerical experiments also show that the convergence rate often is enhanced
if the number of subspaces, created in this way, is small.

In the additive form of the algorithm, we work with the simplest possible poly-
nomial of the projections: The equation

(3) Pup = (P, 4+ P, +---+ Py)u, = g}, ,

is solved by an iterative method. The choice of this polynomial can also be motivated
by first introducing a relaxation parameter 7 in the multiplicative algorithm, which,
for the case of N = 2, results in the polynomial 7(P; + P, — 7P, P;). Cancelling the
factor 7 and letting 7 decrease to zero, we again obtain the first order polynomial of
equation (3).

Since the operator P is positive definite, symmetric, with respect to the bilinear
form, the iterative method of choice is the conjugate gradient method. Equation (3)
must have the same solution as equation (1), i.e. the correct right-hand side must
be found. Since by equation (1), a(un, ¢n) = f(ér), the right-hand side g¢; can be
constructed by solving equation (2) for all values of ¢ and adding the results. Similarly
the operator P of equation (3) can be applied to any given element of V" by applying
each projection P; to the element. Most of the work, in particular that which involves
the individual projections, can be carried out in parallel.

We now describe the special additive Schwarz method introduced in Dryja and
Widlund [15], cf. also [16] and Dryja [13]. We start by introducing two triangulations
of © into nonoverlapping substructures 2; and elements. We obtain the elements by
subdividing the substructures. We always assume that these triangulations are shape
reqular, cf. e.g. Ciarlet [12]. In this additive method, we use overlapping subregions
obtained by extending each substructure to a larger region .. We first assume that
the overlap is generous with the distance ¢; between the boundaries 0€; and 0€!
bounded from below by a fixed fraction of H;, the diameter of ;. We also assume
that 0 does not cut through any element. We make the same construction for the
substructures that meet the boundary except that we cut off the part of Q! that is
outside of (2.

Our finite element space is represented as the sum of N+1 subspaces

V=V V4 VR

The first subspace V" is equal to V, the space of continuous, piecewise linear func-
tions on the coarse mesh defined by the substructures €2;. The other subspaces are
related to the subdomains, in the same way as in a traditional Schwarz algorithm, i.e.
Vit = Hy(2)NV*".

It is often more economical to use approximate rather than exact solvers of the
problems on the subspaces. We use the following notations. b;(u,v) is an inner
product defined on V;* x V*. We assume that there exists a constant w such that

(4) a(u,u) < wbi(u,u) ,Yu € V'
4



An operator T} : V" — V!, which replaces P;, is defined by
(5) bi(Tiu, ¢:) = a(u, é1), Vou € Vi

It is easy to show that the operator T; is positive semidefinite and symmetric with
respect to a(-,-) and that the minimal constant w in equation (4) is ||Ti||..

In order to estimate the rate of convergence of our special additive Schwarz
method, or any other, we need upper and lower bounds for the spectrum of the
operator relevant in the conjugate gradient iteration. The technique used to obtain
lower bounds is often associated with P.-L. Lions, cf. [24]. One form of this result is
given in the following lemma.

LEMMA 1. Let T; be the operator defined in equation (5) and let T = Ty + 11 +
<o+ Tx. Then

(T u,u) = mzi:n Zbi(ui,ui), u; € V.

Therefore, if a representation, u = > u;, can be found, such that
> bi(ui,u) < Coalu,u), Yue V",
then
Amin(T) 2 Cg”.

The upper bound for the spectrum of 7' can often conveniently be obtained in terms
of strengthened Cauchy-Schwarz inequalities between the different subspaces. Note
that we now exclude the index 0; the coarse subspace is treated separately.

DEFINITION 1. The matrizc £ = {e;;} is the matriz of strengthened Cauchy-
Schwarz constants, i.e. €;; 1is the smallest constant for which

(6) la(vi, v;)| < egjllvillallvjlla ,Voi € Vi Vo, € V50,5 > 1,

holds.

The following lemma is easy to prove.

LEMMA 2. Let p(E) be the spectral radius of the matriz £. The operator T satisfies
the following upper bound,

T <w(p&)+1)I.

Combining these two lemmas, we obtain
THEOREM 1. The condition number of the operator of the additive Schwarz
method satisfies

#(T) < w(p(€) +1)C3 .

In the special case considered in this section, it is easy to show that there is a
uniform upper bound; see Section 3, where an estimate of Cj is also given.
)



It is clear that Cy does not increase if we expand (or add) individual subspaces.
This follows from the fact that there is a larger choice in selecting u; € V;. If we can
expand the subspaces without worsing the upper bound, and that is often possible,
our estimate of the condition number x(7") can improve. On the other hand, a larger
subspace also means that the subproblems have more variables and that they are
worse conditioned.

In the multiplicative case, we need to provide an upper bound for the spectral
radius of the error propagation operator

(7) Eyj=(I-T))-(I-T).

The following theorem is a variant of the important results of Bramble, Pasciak, Wang
and Xu [4] and Xu [36].
THEOREM 2. In the symmetric, positive definite case,

(2-w)
P(Es) < \l 1= (2w2p(€)? +1)C2

We note that this formula is useless if w > 2. Since ||I — T;||, > 1 if ||Ti]|. > 2, the
assumption that w < 2 is most natural.

3. The case of a small overlap. As we have already pointed out, the arith-
metic work grows with the overlap while, at the same time, the smallest eigenvalue of
the operator P, or T, can increase, often leading to a decrease of the condition num-
ber. Numerical experiments suggest that it is often advantageous to use a minimal
overlap, with a single layer of interior mesh points common to neighboring subregions,
if we wish to minimize the running time of the algorithm rather than the number of
iterations, cf. Bjgrstad, Moe and Skogen [1], Bjgrstad and Skogen [2], Cai [7], [8] and
Cai, Gropp and Keyes [9]. Some experiments also indicate that for large values of
H/h, the condition number decreases by about a factor of two when the overlap is
doubled. All these results are for problems in the plane. For a discussion of a similar
phenomenon with a related algorithm, see also Smith [33] or Chapter 4 of Smith [32].
It is important to note that in these experiments, and in the proof given below, the
special coarse, global subspace is very important. Without it, these algorithms can
be very slow.

We will give an estimate which helps explain the results of these experiments.
Our proof is valid in two as well as three dimensions and this suggests that additive
Schwarz methods with small overlap might produce satisfactory results even in three
dimensions, in particular, if the value of H/h, and thus the number of degrees of
freedom for each subproblem, is not enormous. We also note that parallel computing
practitioners have expressed a clear preference for domain decomposition methods
where the subregions only share one layer of points, cf. e.g. Smith [31], [34]. Iterative
substructuring methods have that property but so do the additive Schwarz methods
with minimal overlap. From now on, C' will denote a generic constant. To simplify
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the proof, we assume that the maximum width of I's;, the neighborhood inside the
boundary 9€); that is in common with other subregions, is bounded by C'é;.

THEOREM 3. In the case of exact solvers for the subproblems, the condition
number of the additive Schwarz method satisfies

k(P)<C(1+ C’miax %)
Here H; 18 the diameter of the substructure ; and 6; the distance between the bound-
artes of Q; and Q.. The constants are independent of the parameters H;, h and ¢;.
Proof. The proof is a refinement of a result first given in Dryja and Widlund
[15]; cf. [16] for a better discussion. We first note that a constant upper bound for
the spectrum of P can be obtained as follows. For ¢ > 1, P; is also an orthogonal
projection of H'(€!) onto V;. Therefore,

a( P, up) < agr(un, up).
Since there is an upper bound, m, on the number of subregions to which any = € 2

can belong, we have

N

ZGQ:(U}L, up) < ma(ug,up).
=1

In addition, we use the fact that the norm of Py is equal to one and obtain
Amaz(P) < (m+1).

The lower bound is obtained by using Lemma 1. A natural choice of ug is the
Ly-projection Qpuy, of uy, onto V. It is well known, cf. e.g. Bramble and Xu [6],
that Qg is bounded not only in L, but also in H' and that there exists a constant,
independent of h and H, such that

(8) |Quun — up

Let w, = up — Quuy, and let u; = I,(6;,wy) ¢ = 1,---, N. Here I, is the interpolation

1, < C Hlug o

operator onto the space V" and the 6; define a partition of unity. These functions can
be chosen in many ways, in particular, as nonnegative elements of V". Then, all the
values of 6; are determined by those at the mesh points. In the interior part of {2,
which does not belong to any other subregion, #; = 1. This function must also drop
to 0 over a distance on the order of ;. We denote the region, where there is overlap,
by I's and we also use the notation I's; = I's N ;. It is easy to construct a partition

of unity with 0 < 6, <1 and
C
Ve, < — .
Vol < ¢

In order to use Lemma 1, we now estimate a(u;,u;) in terms of a(wy,wy). We
consider the contribution from one substructure at a time and note that, trivially,

aﬂz‘\ré,i(uﬁui) = an‘\Fé,i(wh’ wh) .
7



Let K be an element in I's;. Then, using the definition of v,
ax(ui, u;) < 2ax (0w, O;wy) + 2ar(L((0; — 6;)wy), I ((6; — 6:)wy)) ,

where §; is the average of 8; over the element K. Using the fact that the diameter of
K is on the order of h and the bound on V#;, we obtain
C

GK(Uiaui) < ZGK(‘LU}H wh) + §||‘wh||%2(]() .
1

To complete the proof, we need to estimate ||wh||%2(r“)- This estimate is based
on the following lemma.
LEMMA 3.

H; 1
||u||%2(r5,i) < 053((1 + 5—2_)6191'(%’“) + m”uniz(m)) .
Proof. All the essential ideas of the proof can be illustrated by considering a
square region (0, H) x (0, H). Then, since

u(z,0) = u(z,y) = /Oy %‘Z’ﬂdr :

we find, after some manipulations, that

H/ rO|dr<2// ij|d3:dy—|—H2// |—|d3:dy

Therefore,
H/ $O|d:p<2||u||LQQ)—|—HaQ(u u) .

Now consider the integral over a narrow subregion next to one of the sides of the
square. Using similar arguments, we obtain

//|ry|drdy<6aguu+26/ u(z,0)*dx .

By combining this with the previous inequality, we obtain

H 76 2
| [ e, y)Pdady < 8%, (u,u) + 28( ullfaqq,) + Has, (v, 0) |

as required.
The modifications necessary to cover the case of an arbitrary, shape regular sub-
structure are routine. |
We now apply Lemma 3 to the function w;, and use inequality (8) to complete
the proof of the Theorem 1. We also note that there are no difficulties extending the
arguments to three dimensions. |
We note that for the case of two subregions, it is easy to show that the result of
this theorem cannot be improved.



4. Multi-level additive Schwarz methods. The method, described in the
two previous sections, uses two levels corresponding to a coarse and a fine mesh and a
decomposition of €2 into overlapping subregions. If H is small, the local problems are
small but we then have to contend with a relatively large linear system corresponding
to V' = V. Tt is natural to try to decrease the cost by replacing the exact solver on
the coarse mesh by using the algorithm recursively. This introduces additional levels
of triangulation.

Let us consider 41 rather than two levels of triangulation of Q2 with substructures
Qp; and discretization parameters hy, k = 0,---,{. We assume that the triangulation
on level k is a refinement of that of level £ —1. On each level, we define a finite element
space V™ with V" = V" Each V"* is represented, as in the two-level case, by

V% =Vig + - 4 Vin,.

The subspace Vj; 1s associated with a subregion 2, obtained by extending €; as in
Section 2. Thus, Vi, = H}(Q};) N V", extended by zero outside of 9Q};. The entire

space can then be represented as

¢ Ny

(9) V=V 43 3 V.

k=1 :i=1

The projections Py; : V* — Vj;, are defined as before by

a(Pkiuhv ¢h) = G(Uh, ¢h)7v¢h € Vk’l )

and the original problem is replaced by

¢ Ny
Pup=(Po+ > Pu)un =g .
k=1 i=1
The right hand side is constructed as in Section 2.

We note that we are now able to design methods for which there is fixed upper
bound on the dimension of the subspaces; when h decreases, we can gradually increase
{ keeping the size of the subproblems uniformly bounded. In this case, the work
per iteration step grows only linearly with the number of degrees of freedom of the
whole problem. The condition number of the stiffness matrices of the small problems,
corresponding to individual subspaces, are uniformly bounded and these matrices
can be replaced by diagonal matrices without affecting the condition number of the
iteration operator by more than a constant factor.

Dryja and Widlund [19], have previously established that the condition number of
P grows at most quadratically with ¢, the number of levels. Recently, Xuejun Zhang
[37] has established a constant upper bound for the eigenvalues of P and obtained:

THEOREM 4. There exist constants vy and 1, independent of the mesh sizes and
(, the number of levels, such that the operator P defined by the decomposition (9),
satisfies

70(£ + 1)_1a(uh7 uh) < a(Puh, Uh) < ’Vla(uin uh) :
9



In the case of H*—reqularity, e.q. if the region 1s convez, there is also a constant
lower bound.

Zhang also notes that the case, where the refinement from each level to the next
is by a factor two and all the subspaces Vi, k > 1, are of dimension one, is covered by
his theory. The resulting algorithm can also be derived from the BPX algorithm, see
Bramble, Pasciak and Xu [5], by using a simple diagonal scaling. As a consequence,
Zhang has improved the bound for the BPX algorithm. Previously only a C'¢* bound
was known, in the absence of an extra regularity assumption.

5. Nonsymmetric and indefinite problems. Let 2 be an open, bounded
polygonal region in R?,d = 2 or 3, with boundary 9Q. Consider the homogeneous
Dirichlet boundary value problem:

Lu = f in Q,
(10) { u = 0 on Of.

The elliptic operator L has the form

Lu(z) = Z 822 (a”(r)agij)) +2 Z bz(r)a;if) + c(z)u(z).

All the coeflicients are, by assumption, sufficiently smooth and the matrix {a;;(z)}
is symmetric and uniformly positive definite for € . The right hand side f € L*().
We also assume that the equation has a unique solution in H}().

The weak form of equation (10) is: Find u € Hj () such that
() o) = Fv), Vo€ HYQ).
The bilinear form b(u,v) is defined by

Z/ azj%aav 22/6 vdx—l—/ cuvdzx
Zj

2,7=1

or

ou 80 4 Ou O(biu)
E/ a”a 61:2 —I—Z/Qbiaxiv—l— oz, vdzx —I—/ cuvdz.

7,7=1 1=1
Here, &(z) = c(z) — 20, 0bs(x) /0.

We also use two other bilinear forms

Z / Ju 80

Pt ”(9 axZ

and

9(b;u)

vdx

?
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which correspond to the second order terms and the skew-symmetric part of L, re-
spectively. The bilinear form a(-,-) defines a norm, which we denote by || - ||.. Under
the given assumptions on the coefficients a;;, this norm is equivalent to the H; norm.
Symmetry is always with respect to a(-,-) and the adjoint ST of an operator S is
defined by a(STu,v) = a(u, Sv). It is also easy to verify that

s(u,v) = —s(v,u), Yu,v € Hy(R).
Using elementary, standard tools, it is easy to establish the following inequalities:
(i) | b(u,v) |< Clluflallvlla, Vu,v € Hy(€2).
(ii) Garding’s inequality: There exists a constant C, such that

[ulls = Cllullzz) < blu,u), Yue Hy(9) .

(iii) There exists a constant C, such that

| s(u,0) [< Cllullallvllzzg@), Yu,v € Hy(9),
| s(u,0) [< Cllollallullze), Yu,v € Hy(Q).

We note that the bounds for b(-,-) and s(-,-) are different, since each term in
s(+,-) contains a factor, which is of zero order. This enables us to control the skew-
symmetric term and makes our analysis possible; see further discussion at the end of
this section.

We also use the following regularity result, cf. Grisvard [22] or Necas [27].

(iv) The solution w of the adjoint equation

b(¢,w) = g(¢), V¢ € Hy(2)

satisfies

[wl[gr4 @) < Cllgllzzg) -

where v depends on the interior angles of 012, is independent of g and is at least 1/2.

We approximate equation (11) by a Galerkin conforming finite element method
as in (1). For simplicity, we consider only continuous, piecewise linear, triangular
elements in R* and tetrahedral elements in R®.

We consider the same additive Schwarz algorithm, which were introduced previ-
ously in this paper, and also its multiplicative counterpart. Our results have also been
established for several other classes of algorithms, cf. Cai and Widlund [11]. There
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is also a more abstract theory, which we will describe briefly without providing any
proofs.
We introduce operators which can replace the projections P; and the operators
T; used previously. They are no longer symmetric.
Definition: For:=0,---,N:
For any w" € V" Paw" € V' is the solution of the finite element equation
b(Pw" vl = b(w”,vl), Vol e VI

For any w" € V', Tiw" € VI is the solution of the finite element equation

(T, vf) = b(w",vf), Voi € VI
Other choices for the operators T; are also possible. We introduce operators which
define two possible additive Schwarz methods

P="P +P + + Py
and
T =P +T + + Ty.

The only difference between P and T is that, for 7 > 0, we replace the operator
P;, corresponding to 2., by T;. The coarse mesh operator is not changed; it should
always correspond to the exact solution of the original problem in the coarse space.

The problems that we are considering are always nonsymmetric and we there-
fore have to replace the conjugate gradient method by a more appropriate iterative
method. In our experiments with additive methods, we have always used the GMRES
method, cf. Saad and Schultz [28], and Eisenstat, Elman and Schultz [21]. This is
a generalized minimum residual method that in practice has proven quite powerful
for a large class of nonsymmetric problems. The method converges satisfactorily for
positive definite problems and a bound on the decay of the norm of the residual in
n iterations is given by (1 — CZ/C’;)”/Q . Here ¢, = inf,zqa(z,Tz)/a(x,z) and
Cy = sup, o |Telo/ 2]

In our discussion of the symmetric, positive definite case, we have found that the
analysis of both additive and multiplicative cases requires estimates of the constant
Co, the spectral radius of the matrix & and the norms of the operators 7;. In the
nonsymmetric case, we must do additional work.

For the multiplicative algorithms, we wish to estimate the spectral radius of the
error propagation operator Ej given in formula (7). Following Bramble et al. [4],
we begin by observing that, with £, = (I = T;)--- (I = Th)(I — Ty), E_; = I, and
R, =T, + T]-T — TjTTj,

E'E;—E!,\E;y1 = E/R; 1, E;.
12



This leads to the identity

J
(12) I-EJE;=Ry+Y E"|R/E;, .

J=1

To simplify the notations, we here use Ty = Pp.

A satisfactory upper bound for p(E;) could therefore be obtained by showing that
the operator on the right hand side of (12) is sufficiently positive definite. It therefore
seems natural to assume that the operators R; are positive semidefinite. It is easy to
see that this is so if TZ»T = T; > 0, but such an assumption on R; can often not be
established in our nonsymmetric applications. In the general case, we therefore make
a different

ASSUMPTION 1. There exist parameters o;, which can be made sufficiently small,
and a constant v > 0, such that

(13) Ri=T+T' —T'T, > T'T, - &1 .

We note that if we can bound 7; + TZ-T + 6;1 from below by some positive constant
multiple of T!'T;, then Assumption 1 is satisfied for a7} for a sufficiently small «.
It 1s well known that such a rescaling often is necessary to obtain convergence for
nonsymmetric problems.

It follows easily from Assumption 1 that
(14) IT o wi= (1414 6+ 2)/(L4+7) < —— + 2
illa > W; = 7 Y Y) > 1 + ~ 2 .

To simplify our calculations and formulas, we always assume that w = max;w; > 1.

It is easy to show that || — T3]l < 1+ % and that for a small enough 6;, Tl < 2.

2
In the case when T; is positive definite, symmetric, 6; = 0,

(15) 0<T: <wl=2/(14+~)]
and
(16) Ri>(2-w)T .

In our discussion of the symmetric case and the additive algorithms, we have seen
that we can often establish a lower bound on the operator T'= Ty + - - - Ty in terms
of the constant Cy of Lemma 1. By using similar tools, we can often establish

ASSUMPTION 2. There ewists a constant Co > 0, such that

(17) S TIT > Cp*I

We note that in the symmetric case, P? = P; and generally T; > T?/2, if | T;||. < 2.
In this case, Assumption 2 is therefore closely related to the bound given in Lemma

1.
13



We can establish Assumption 2, for a sufficiently fine coarse mesh, by using only
Lemma 1, Garding’s inequality, cf. inequality (ii) above, and a result of Schatz’s
[29]. We note that Schatz proved the existence of finite elment solutions for elliptic
problems, such as those introduced in the beginning of this section, for a sufficiently
small mesh size. (In the variant that we need here, we replace the approximate
solution by the coarse mesh solution and the exact solution of the continuous problem
by the finite element solution in V"*.) In the proof of the variant of Schatz’s result,
Garding’s inequality, (ii), and the regularity result, (iv), but not (iii) are used. Details
are given for the special Schwarz method, considered in this paper, in Lemma 5 of
Cai and Widlund [11]. That paper also contains results for Yserentant’s method and
iterative substructuring methods for problems in the plane.

If we combine Assumptions 1 and 2, we obtain the required positive lower bound
for T that is required for the estimate of the rate of convergence of the GMRES
algorithm provided that 3 ¢; is made sufficiently small, c¢f. Cai and Widlund [10] for
details. In the applications this requirement is met by decreasing the coarse mesh
size. The upper bound is given by

J J
I3 Tl < 20(8) 4 D/ +7) +1/2 306
=0 =0
This bound is obtained quite straightforwardly.
For the multiplicative case the following result holds. A proof will be given in Cai
and Widlund [10] together with several applications.
THEOREM 5. In the general case, the multiplicative algorithm is convergent if

y
(W€l + (T 6:)?)C8

dominates

7—1

Z:‘Sjmp(z 6i)

=0

by a sufficiently large constant factor. Under this assumption, there exists a constant

C > 0, such that

C
(W€} + (Z8)1)CE

p(E;) < Jl -

The main effort in the application of this theory goes into the verification of
Assumption 1. So far we have have only been able to do so by using the inequality
(iii) and a perturbation argument. However, there are elliptic problems which satisfy
Garding’s inequality but for which the skew-symmetric part is not a relatively compact
perturbation. In such a case an inequality serving the same purpose as (iii) will not
hold. For an example of elliptic problems of this type, see Bramble, Leyk and Pasciak
[3] in which several interesting algorithms, which differ from ours, are considered.
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