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Abstract

Consider the problem of monitoring tens of
thousands of time series data streams in an
online fashion and making decisions based on
them. In addition to single stream statis-
tics such as average and standard deviation,
we also want to �nd high correlations among
all pairs of streams. A stock market trader
might use such a tool to spot arbitrage oppor-
tunities. This paper proposes eÆcient meth-
ods for solving this problem based on Discrete
Fourier Transforms and a three level time in-
terval hierarchy. Extensive experiments on
synthetic data and real world �nancial trad-
ing data show that our algorithm beats the di-
rect computation approach by several orders
of magnitude. It also improves on previous
Fourier Transform approaches by allowing the
eÆcient computation of time-delayed correla-
tion over any size sliding window and any time
delay. Correlation also lends itself to an eÆ-
cient grid-based data structure. The result is
the �rst algorithm that we know of to compute
correlations over thousands of data streams in
real time. The algorithm is incremental, has
�xed response time, and can monitor the pair-
wise correlations of 10,000 streams on a single
PC. The algorithm is embarrassingly paral-
lelizable.

1 Introduction

Many applications consist of multiple data streams.
For example,
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� In mission operations for NASA's Space Shut-
tle, approximately 20,000 sensors are telemetered
once per second to Mission Control at Johnson
Space Center, Houston[16].

� There are about 50,000 securities trading in the
United States, and every second up to 100,000
quotes and trades (ticks) are generated.

Unfortunately it is diÆcult to process such data
in set-oriented data management systems, although
object-relational time series extensions have begun to
�ll the gap [21]. For the performance to be suÆciently
good however, \Data Stream Management Systems"
(DSMSs) [3], whatever their logical model, should ex-
ploit the following characteristics of the application:

� Updates are through insertions of new elements
(with relatively rare corrections of older data).

� Queries (moving averages, standard deviations,
and correlation) treat the data as sequences not
sets.

� Since a full stream is never materialized, queries
treat the data as a never-ending data stream.

� One pass algorithms are desirable because the
data is vast.

� Interpretation is mostly qualitative, so sacri�cing
accuracy for speed is acceptable.

This paper presents the algorithms and architec-
ture of StatStream, a data stream monitoring system.
The system computes a variety of single and multiple
stream statistics in one pass with constant time (per
input) and bounded memory. To show its use for one
practical application, we include most of the statistics
that a securities trader might be interested in. The al-
gorithms, however, are applicable to other disciplines,



such as sensor data processing and medicine. The al-
gorithms themselves are a synthesis of existing tech-
niques and a few ideas of our own. We divide our con-
tributions into functional and algorithmic. Our func-
tional contributions are:

1. We compute multi-stream statistics such as syn-
chronous as well as time-delayed correlation and
vector inner-product in a continuous online fash-
ion. This means that if a statistic holds at time
t, that statistic will be reported at time t + v,
where v is a constant independent of the size and
duration of the stream.

2. For any pair of streams, each pair-wise statistic is
computed in an incremental fashion and requires
constant time per update. This is done using a
Discrete Fourier Transform approximation.

3. The approximation has a small error under natu-
ral assumptions.

4. Even when we monitor the data streams over slid-
ing windows, no revisiting of the expiring data
streams is needed.

5. The net result is that on a Pentium 4 PC, we can
handle 10,000 streams each producing data every
second with a delay window v of only 2 minutes.

Our algorithmic contributions mainly have to do
with correlation statistics. First, we distinguish three
time periods:

� timepoint { the smallest unit of time over which
the system collects data, e.g. second.

� basic window { a consecutive subsequence of time-
points over which the system maintains a digest
incrementally, e.g., a few minutes.

� sliding window { a user-de�ned consecutive sub-
sequence of basic windows over which the user
wants statistics, e.g. an hour. The user might
ask, \which pairs of stocks were correlated with a
value of over 0.9 for the last hour?"

The use of the intermediate time interval that we
call basic window yields three advantages:

1. Results of user queries need not be delayed more
than the basic window time. In our example, the
user will be told about correlations between 2 PM
and 3 PM by 3:02 PM and correlations between
2:02 PM and 3:02 PM by 3:04 PM.

2. Maintaining stream digests based on the basic
window allows the computation of correlations
over windows of arbitrary size, not necessarily a
multiple of basic window size, as well as time-
delayed correlations with high accuracy.

3. A short basic window give fast response time but
fewer time series can then be handled.

A second algorithmic contribution is the grid struc-
ture, each of whose cells stores the hash function value
of a stream. The structure itself is unoriginal but the
high eÆciency we obtain from it is due to the fact that
we are measuring correlation and have done the time
decomposition mentioned above.

The remainder of this paper will be organized as
follows. The data we consider and statistics we pro-
duce are presented in Section 2. Section 3 presents our
algorithms for monitoring high speed time series data
streams. Section 4 discusses the system StatStream.
Section 5 presents our experimental results. Section 6
puts our work in the context of related work.

2 Data And Queries

2.1 Time Series Data Streams

We consider data entering as a time ordered series of
triples (streamID, timepoint, value). Each stream con-
sists of all those triples having the same streamID. (In
�nance, a streamID may be a stock, for example.) The
streams are synchronized.

Each stream has a new value available at every peri-
odic time interval, e.g. every second. We call the inter-
val index the timepoint. For example, if the periodic
time interval is a second and the current timepoint for
all the streams is i, after one second, all the streams
will have a new value with timepoint i+1. (Note that
if a stream has no value at a timepoint, a value will
be assigned to that timepoint based on interpolation.
If there are several values during a timepoint, then a
summary value will be assigned to that timepoint.)

Let si or s[i] denote the value of stream s at time-
point i. s[i::j] denotes the subsequence of stream s
from timepoints i through j inclusive. si denotes a
stream with streamID i. Also we use t to denote
the latest timepoint, i.e., now. The statistics we will
monitor will be denoted stat(si1j ; s

i2
j ; :::; s

ik
j ; j 2 [p; q]),

where the interval [p; q] is a window of interest. We will
discuss the meaning of windows in the next section.

2.2 Temporal Spans

In the spirit of the work in [10, 11], we generalize the
three kinds of temporal spans for which the statistics
of time series are calculated.

1. Landmark windows: In this temporal span,
statistics are computed based on the values be-
tween a speci�c timepoint called landmark and
the present. stat(s; landmark(k)) will be com-
puted on the subsequence of time series s[i]; i � k.
An unrestricted window is a special case when
k = 1. For an unrestricted window the statistics
are based on all the available data.



2. Sliding windows: In �nancial applications, at
least, a sliding window model is more appropri-
ate for data streams. Given the length of the
sliding window w and the current timepoint t,
stat(s; sliding(w)) will be computed in the sub-
sequence s[t� w + 1::t].

3. Damped window model: In this model, recent
sliding windows are more important than previous
ones. For example, in the computation of a mov-
ing average, a sliding window model will compute

the average as avg =
P

t
i=t�w+1 si

w . By contrast, in
a damped window model the weights of data de-
crease exponentially into the past. For example,
a moving average in a damped window model can
be computed as follows:

avgnew = avgold � p+ st � (1� p); 0 < p < 1

Other statistics in a damped window model can
be de�ned similarly.

In this paper, we will focus on the sliding window
model, because it is the one used most often and is the
most general.

2.3 Statistics To Monitor

Consider the stream si; i = 1; :::; w. The statistics we
will monitor are

1. Single stream statistics, such as average, standard
deviation, best �t slope. These are straightfor-
ward.

2. Correlation coeÆcients

corr(s; r) =
1

w

Pw
i=1 siri � s rpPw

i=1(si � s)2
pPw

i=1(ri � r)2

3. Autocorrelation: the correlation of the series with
itself at an earlier time.

4. Beta: the sensitivity of the values of a stream s
to the values of another stream r (or weighted
collection of streams). For example, in �nancial
applications the beta measures the risk of a stock.
A stock with a beta of 1.5 to the market index
experiences 50 percent more movement in price
than the market.

beta(s; r) =
1

w

Pw
i=1 siri � s rPw
i=1(ri � r)2

3 Statistics Over Sliding Windows

To compute the statistics over a sliding window, we
will maintain a synopsis data structure for the stream
to compute the statistics rapidly. To start, our
framework subdivides the sliding windows equally into

Basic Window
S[0]

Sliding Window

Basic Window
S[k−1]

...
Digests Digests Digests

New Basic Window
S[k]

Figure 1: Sliding windows and basic windows

Table 1: Symbols
w the size of a sliding window
b the size of a basic window
k the number of basic windows

within a sliding window
n the number of DFT coeÆcients used as digests
Ns the number of data streams

shorter windows, which we call basic windows, in
order to facilitate the eÆcient elimination of old data
and the incorporation of new data. We keep digests for
both basic windows and sliding windows. For exam-
ple, the running sum of the time series values within
a basic window and the running sum within an entire
sliding window belong to the two kinds of digests re-
spectively. Figure 1 shows the relation between sliding
windows and basic windows.

Let the data within a sliding window be s[t � w +
1::t]. Suppose w = kb, where b is the length of a basic
window and k is the number of basic windows within
a sliding window. Let S[0]; S[1]; :::; S[k � 1] denote a
sequence of basic windows, where S[i] = s[(t � w) +
ib + 1::(t � w) + (i + 1)b]. S[k] will be the new basic
window and S[0] is the expiring basic window. The
j-th value in the basic window S[i] is S[i; j]. Table
1 de�nes the symbols that are used in the rest of the
paper.

The size of the basic window is important because it
must be possible to report all statistics for basic win-
dow i to the user before basic window i+1 completes
(at which point it will be necessary to begin computing
the statistics for window i+ 1).

3.1 Single Stream Statistics

The single stream statistics such as moving average
and moving standard deviation are computationally
inexpensive. In this section, we discuss moving av-
erages just to demonstrate the concept of maintaining
digest information based on basic windows. Obviously,
the information to be maintained for the moving aver-
age is

P
(s[t � w + 1::t]). For each basic window S[i],

we maintain the digest
P
(S[i]) =

Pb
j=1 S[i; j]. After

b new data points from the stream become available,
we compute the sum over the new basic window S[k].
The sum over the sliding window is updated as follows:P

new(s) =
P

old(s) +
P
S[k]�PS[0].



3.2 Correlation Statistics

Correlation statistics are important in many applica-
tions. For example, Pairs Trading, also known as the
correlation trading strategy, is widely employed by ma-
jor Wall Street �rms. This strategy focuses on trading
pairs of equities that are correlated. The correlation
between two streams (stocks) is a�ected by some fac-
tors that are not known a priori. Any pair of streams
could be correlated at some time. Much e�ort has
been made to �nd such correlations in order to enjoy
arbitrage pro�ts. These applications imply that the
ability to spot correlations among a large number of
streams in real time will provide competitive advan-
tages. To make our task even more challenging, such
correlations change over time and we have to update
the moving correlations frequently.

The eÆcient identi�cation of highly correlated
streams potentially requires the computation of all
pairwise correlations and could be proportional to the
total number of timepoints in each sliding window
times all pairs of streams. We make this computation
more eÆcient by (1) using a discrete fourier transform
of basic windows to compute the correlation of stream
pairs approximately; (2) using a grid data structure to
avoid the approximate computation for most pairs.

We start by a quick review of DFT. We will ex-
plain how to compute the vector inner-product when
the two series are aligned in basic windows. This ap-
proach is extended to the general case when the basic
windows are not aligned. Then we will show our ap-
proach for reporting the highly correlated stream pairs
in an online fashion.

3.3 Review of the Discrete Fourier Transform

We will follow the convention in [2]. The Dis-
crete Fourier Transform of a time sequence x =
x0; x1; :::; xw�1 is a sequence X = X0; X1; :::; Xw�1 =
DFT (x) of complex numbers given by

XF =
1p
w

w�1X
i=0

xie
�j2�Fi=w F = 0; 1; :::; w � 1

where j =
p�1. The inverse Fourier transform of X

is given by

xi =
1p
w

w�1X
F=0

XF e
j2�Fi=w i = 0; 1; :::; w � 1

The following properties of DFT can be found in
any textbook on DFT.

� The DFT preserves the Euclidean distance be-
tween two sequence x and y.

d(x; y) = d(X;Y )

� (Symmetry Property) If x is a real sequence, then

X(i) = X�(w � i); i = 1; 2; :::; w � 1

X� is the complex conjugate of X .

Since for most real time series the �rst few DFT co-
eÆcients contain most of the energy(

P
x2i ), we would

then expect those coeÆcients to capture the raw shape
of the time series [2, 9]. For example, the energy spec-
trum for the random walk series, which models stock
movements, declines with a power of 2 with increasing
coeÆcients. And for black noise, which successfully
models series like the water level of a river as it varies
over time, the energy spectrum declines even faster
with increasing number of coeÆcients.

3.4 Inner-product With Aligned Windows

The correlation and beta can be computed from the
vector inner-product. The vector inner-product for
two series x = (x1; :::; xw); y = (y1; :::; yw), denoted
as  (x; y), is just the sum of the products of their cor-
responding elements:

 (x; y) =
wX
i=1

xiyi

Given two series sx and sy, when the two series are
aligned,

 (sx; sy) =

kX
i=1

 (Sx[i]; Sy[i])

So, we must explain how to compute the inner-product
of two basic windows: x1; x2; :::xb and y1; y2; :::yb.

Let f : f1(x); f2(x); ::: be a family of continu-
ous functions. We approximate the time series in
each basic window, Sx[i] = x1; x2; :::xb and Sy[i] =
y1; y2; :::yb, with a function family f . (We will give
speci�c examples later.)

xi �
n�1X
m=0

cxmfm(i); yi �
n�1X
m=0

cymfm(i)

i = 1; :::; b

cxm; c
y
m;m = 0; :::; n � 1 are n coeÆcients to approxi-

mate the time series with the function family f .
The inner-product of the two basic windows is

therefore

bX
i=1

xiyi �
bX

i=1

� n�1X
m=0

cxmfm(i)

n�1X
p=0

cypfp(i)
�

=

n�1X
m=0

n�1X
p=0

cxmc
y
p

� bX
i=1

fm(i)fp(i)
�



=

n�1X
m=0

n�1X
p=0

cxmc
y
pW (m; p)

where W (m; p) =
Pb

i=1 fm(i)fp(i) can be precom-
puted. If the function family f is orthogonal, we have

W (m; p) =

�
0 m 6= p
V (m) 6= 0 m = p

Thus,
bX

i=1

xiyi �
n�1X
m=0

cxmc
y
mV (m)

With this curve �tting technique, we reduce the
space and time required to compute inner-products
from b to n. It should also be noted that besides data
compression, the curve �tting approach can be used to
�ll in missing data. This works naturally for comput-
ing correlations among streams with missing data at
some timepoints.

The sine-cosine function families have the right
properties. We perform the Discrete Fourier Trans-
forms for the time series over the basic windows, en-
abling a constant time computation of coeÆcients for
each basic window. Following the observations in [2],
we can obtain a good approximation for the series with
only the �rst n DFT coeÆcients,

xi � 1p
b

n�1X
F=0

XF e
j2�Fi=b i = 1; 2; :::; b

3.5 Inner-product With Unaligned Windows

A much harder problem is to compute correlations
with time lags. The time series will not necessarily be
aligned at their basic windows. However, the digests
we keep are enough to compute such correlations.

Without loss of generality, we will show the com-
putation of the n-approximate lagged inner-product
of two streams with time lags less than the size
of a basic window. Given two such series, sx =
sx1 ; :::; s

x
w = Sx[1]; :::; Sx[k] and sy = sya+1; :::; s

y
a+w =

Sy[0]; Sy[1]; :::; Sy[k�1]; Sy[k], where for the basic win-
dows Sy[0] and Sy[k], only the last a values in Sy[0]
and the �rst b�a values in Sy[k] are included (a < b).
We have

 (sx; sy) =

wX
i=1

(sxi s
y
a+i)

=

kX
j=1

�
�(Sx[j]; Sy[j�1]; a)+�(Sy[j]; Sx[j]; b�a)�

where �(S1[p]; S2[q]; d) =
Pd

i=1 S
1[p; i]S2[q; b � d +

i]. For S1[p] = x1; :::; xb and S2[q] = y1; :::; yb,
�(S1[p]; S2[q]; d) is the inner-product of the �rst d val-
ues of S1[p] with the last d values of S2[q]. This can be

approximated using only their �rst n DFT coeÆcients.

dX
i=1

xiyb�d+i �
dX

i=1

� n�1X
m=0

cxmfm(i)

n�1X
p=0

cypfp(b� d+ i)
�

=

n�1X
m=0

n�1X
p=0

cxmc
y
p

� dX
i=1

fm(i)fp(b� d+ i)
�

=

n�1X
m=0

n�1X
p=0

cxmc
y
pW (m; p; d)

This implies that if we precompute the table of

W (m; p; d) =
dX

i=1

fm(i)fp(b� d+ i)

m; p = 0:::; n� 1; d = 1; :::; bb=2c
we can compute the inner-product using only the DFT
coeÆcients without requiring the alignment of basic
windows in time O(n2) for each basic window. Pre-
computation time for any speci�c displacement d is
O(n2d).

Theorem 1 The n-approximate lagged inner-product
of two time series using their �rst n DFT coeÆcients
can be computed in time O(kn) if the two series have
aligned basic windows, otherwise it takes time O(kn2),
where k is the number of basic windows.

It is not hard to show that this approach can be
extended to compute the inner-product of two time
series over sliding windows of any size.

Corollary 1 The inner-product of two time series
over sliding windows of any size with any time delay
can be approximated using only the basic window di-
gests of the data streams.

3.6 IO Performance

It might be desirable to store the summary data for
future analysis. Since the summary data we keep are
suÆcient to compute all the statistics we are interested
in, there is no need to store the raw data streams. The
summary data will be stored on disk sequentially in the
order of basic windows.

Let Ns be the number of streams and n be the num-
ber of DFT coeÆcients we use(2n real number), the
I/O cost to access the data for all streams within a
speci�c period will be

NskSizeof(float)(2 + 2n)

PageSize

while the I/O cost for the exact computation is

NskSizeof(float)b

PageSize



The improvement is a ratio of b
2+2n . The �rst 2 cor-

responds to two non-DFT elements of summary data:
the sum and the sum of the squares of the time series
in each basic window. Also the I/O costs above assume
sequential disk access. This is a reasonable assumption
given the time-ordered nature of data streams.

3.7 Monitoring Correlations Between Data

Streams

The above curve �tting technique can be used for
computing inner-products and correlations over slid-
ing windows of any size, as well as with any time delay
across streams. A frequent goal is to discover streams
with high correlations. To do online monitoring of syn-
chronized streams over a �xed size of sliding window
with correlation above a speci�c threshold, we use an
approach based on DFT and a hash technique that will
report such stream pairs quickly.

First, we introduce the normalization of a series
over sliding windows of size w, x1; x2; :::; xw, as fol-
lows.

x̂i =
xi � x

�x
; i = 1; 2; :::; w

where

�x =

vuut wX
i=1

(xi � x)2

As the following lemma suggests, the correlation co-
eÆcient of two time series can be reduced to the Eu-
clidean distance between their normalized series[23].

Lemma 1 The correlation coeÆcient of two time se-
ries x1; :::; xw and y1; :::; yw is

corr(x; y) = 1� 1

2
d2(x̂; ŷ)

where d(x̂; ŷ) is the Euclidean distance between x̂ and
ŷ.

Proof First, we notice that

wX
i=1

x̂2i =
wX
i=1

ŷ2i = 1

corr(x; y) =

Pw
i=1(xi � x)(yi � y)pPw

i=1(xi � x)2
pPw

i=1(yi � y)2
=

wX
i=1

x̂iŷi

d2(x̂; ŷ) =

wX
i=1

(x̂i � ŷi)
2 =

wX
i=1

x̂2i +

wX
i=1

ŷ2i � 2

wX
i=1

x̂iŷi

= 2� 2corr(x; y)

By reducing the correlation coeÆcient to Euclidean
Distance, we can apply the techniques in [2] to report
sequences with correlation coeÆcients higher than a
speci�c threshold.

Lemma 2 Let the DFT of the normalized form of two

time series x and y be X̂ and Ŷ respectively,

corr(x; y) � 1� �2 ) dn(X̂; Ŷ ) � �

where dn(X̂; Ŷ ) is the Euclidean distance between se-

ries X̂1; X̂2; :::; X̂n and Ŷ1; Ŷ2; :::; Ŷn.

Proof As DFT preserves Euclidean distance, we have

d(X̂; Ŷ ) = d(x̂; ŷ)

Using only the �rst n and last n; (n << w) DFT
coeÆcients[2, 25], from the symmetry property of
DFT, we have

nX
i=1

(X̂i � Ŷi)
2 +

nX
i=1

(X̂w�n � Ŷw�n)
2

= 2

nX
i=1

(X̂i � Ŷi)
2 = 2d2n(X̂; Ŷ ) � d2(X̂; Ŷ )

corr(x; y) � 1� �2 ) d2(x̂; ŷ) � 2�2

) d2(X̂; Ŷ ) � 2�2 ) dn(X̂; Ŷ ) � �

From the above lemma, we can examine the correla-
tions of only those stream pairs for which dn(X̂; Ŷ ) � �
holds. We will get a superset of highly correlated
pairs and there will be no false negatives. The false
positives can be further �ltered out as we explain
later. HierarchyScan[19] also uses correlation coeÆ-
cients as a similarity measure for time series. They
use F�1fX̂�

i Ŷig as an approximation for the corre-
lation coeÆcient. Because such approximations will
not be always above the true values, some stream
pairs could be discarded based on their approxima-
tions, even if their true correlations are above the
threshold. Though HierarchyScan proposes an empir-
ical method to select level-dependent thresholds for
multi-resolution scans of sequences, it cannot guaran-
tee the absence of false negatives.

We can extend the techniques above to report
stream pairs of negative high-value correlations.

Lemma 3 Let the DFT of the normalized form of two

time series x and y be X̂ and Ŷ .

corr(x; y) � �1 + �2 ) dn(�X̂; Ŷ ) � �

Proof We have

DFT (�x) = �DFT (x)

corr(x; y) � �1 + �2 )
wX
i=1

x̂iŷi � �1 + �2

)
wX
i=1

(�x̂i)ŷi � 1� �2 ) dn(�X̂; Ŷ ) � �



Now we discuss how to compute the DFT coeÆ-
cients X̂ incrementally. The DFT coeÆcients X̂ of
the normalized sequence can be computed from the
DFT coeÆcients X of the original sequence.

Lemma 4 Let X̂ = DFT (x̂); X = DFT (x), we have(
X̂0 = 0

X̂i =
Xi

�x
i 6= 0

We can maintain DFT coeÆcients over sliding win-
dows incrementally[13].

Lemma 5 Let Xold
m be the m-th DFT coeÆcient of

the series in sliding window x0; x1; :::; xw�1 and Xnew
m

be that coeÆcient of the series x1; x2; :::; xw,

Xnew
m = e

j2�m
w (Xold

m +
xw � x0p

w
)

m = 1; :::; n

This can be extended to a batch update based on
the basic windows.

Lemma 6 Let Xold
m be the m-th DFT coeÆcient

of the series in sliding window x0; x2; :::; xw�1
and Xnew

m be that coeÆcient of the series
xb; xb+1; :::; xw; xw+1; :::; xw+b�1,

Xnew
m = e

j2�mb

w Xold
m

+
1p
w

� b�1X
i=0

e
j2�m(b�i)

w xw+i �
b�1X
i=0

e
j2�m(b�i)

w xi
�

m = 1; :::; n

The corollary suggests that to update the DFT coef-
�cients incrementally, we should keep the following n
digests for the basic windows.

�m =

b�1X
i=0

e
j2�m(b�i)

w xi; m = 1; :::; n

By using the DFT on normalized sequences, we
also map the original sequences into a bounded fea-
ture space.

Lemma 7 Let X̂0; X̂1; :::; X̂w�1 be the DFT of a nor-
malized sequence x1; x2; :::; xw, we have

jX̂ij �
p
2

2
; i = 1; :::; n; n < w=2

Proof
w�1X
i=1

(X̂i)
2 =

wX
i=1

(x̂i)
2 = 1

) 2

nX
i=1

X̂2
i =

nX
i=1

(X̂2
i + X̂2

w�i) � 1

) jX̂ij �
p
2

2
; i = 1; :::; n

From the above lemma, each DFT coeÆcent ranges

from �
p
2

2
to

p
2

2
, therefore the DFT feature space R2n

is a cube of diameter
p
2. We can use a grid structure

[4] to report near neighbors eÆciently.
We will use the �rst n̂, n̂ � 2n, dimensions of the

DFT feature space for indexing. We superimpose an
n̂-dimensional orthogonal regular grid on the DFT fea-
ture space and partition the cube of diameter

p
2 into

cells with the same size and shape. There are (2d
p
2

2� e)n̂
cells of cubes of diameter �. Each stream is mapped to
a cell based on its �rst n̂ normalized DFT coeÆcients.
Suppose a stream x is hashed to cell (c1; c2; :::; cn̂). To
report the streams whose correlation coeÆcients with
x is above the threshold 1 � �2, only streams hashed
to cells adjacent to cell (c1; c2; :::; cn̂) need to be exam-
ined. Similarly, streams whose correlation coeÆcients
with x are less than the threshold �1 + �2, must be
hashed to cells adjacent to cell (�c1;�c2; :::;�cn̂). Af-
ter hashing the streams to cells, the number of stream
pairs to be examined is greatly reduced. We can then
compute their Euclidean distance, as well as correla-
tion, based on the �rst n DFT coeÆcients.

The grid structure can be maintained as follows.
Without loss of generality, we discuss the detection of
only positive high-value correlations. There are two
kinds of correlations the user might be interested in.

� synchronized correlation If we are interested
only in synchronized correlation, the grid struc-
ture is cleared at the end of every basic window.
At the end of each basic window, all the data
within the current basic window are available and
the digests are computed. Suppose that stream x
is hashed to cell c, then x will be compared to any
stream that has been hashed to the neighborhood
of c.

� lagged correlation If we also want to report
lagged correlation, including autocorrelation, the
maintenance of the grid structure will be a lit-
tle more complicated. Let TM be a user-de�ned
parameter specifying the largest lag that is of in-
terest. Each cell in the grid as well as the streams
hashed to the grid will have a timestamp. The
timestamp Tx associated with the hash value of
the stream x is the time when x is hashed to the
grid. The timestamp Tc of a cell c is the latest
timestamp when the cell c is updated. The grid is
updated every basic window time but never glob-
ally cleared. Let Sc be the set of cells that are
adjacent to c, including c. Here is the pseudo-
code to update the grid when stream x hashes to
cell c:



FOR ALL cells ci 2 Sc
IF Tx � Tci > TM //Tci is the timestamp of ci.

clear(ci) //all the streams in ci are out of date.
ELSE IF 0 < Tx � Tci � TM
//some streams in ci are out of the date.
FOR ALL stream y 2 ci
IF Tx � Ty > TM delete(y)
ELSE examine correlation(x; y)

ELSE //Tx = Tci
FOR ALL stream y 2 ci

examine correlation(x; y)
Tci = Tx //to indicate that ci is just updated

Theorem 2 Given a collection of time series streams,
using only the digests of the streams, our algorithms
can �nd those stream pairs whose correlations (whether
synchronized or lagged) are above a threshold without
false negatives.

Using the techniques in this section, we can search
for high-value lagged correlations among data streams
very fast. The time lag must be a multiple of the
size of a basic window in this case. Theorem 1 states
that we can approximate correlation of any time lag
eÆciently. The approximation methods are used as a
post processing step after the hashing methods spot
those promising stream pairs.

3.8 Parallel Implementation

Our framework facilitates a parallel implementation
by using a straightforward decomposition. Consider
a network of K servers to monitor Ns streams. We
assume these servers have similar computing resources.

The work to monitor the streams has two stages.

1. Compute the digests and single stream statistics
for the data streams. The Ns streams are equally
divided into K groups. The server i(i = 1; :::;K)
will read those streams in the i-th group and
compute their digests, single stream statistics and
hash values.

2. Report highly correlated stream pairs based on
the grid structure. The grid structure is also ge-
ometrically and evenly partitioned into K parts.
A server X will read in its part, a set of cells SX .
Server X will also read a set of cells S0X includ-
ing cells adjacent to the boundary cells in SX .
Server X will report those stream pairs that are
highly correlated within cells in SX . Note that
only the �rst n normalized DFT coeÆcients need
to be communicated between servers, thus reduc-
ing the overhead for communication.

4 StatStream System

StatStream runs in a high performance interpreted
environment called K[1]. Our system makes use of

this language's powerful array-based computation to
achieve high speed in the streaming data environment.
The system follows the algorithmic ideas above and
makes use of the following parameters:

� Correlation Threshold Only stream pairs
whose absolute value of correlation coeÆcients
larger than a speci�ed threshold will be reported.
The higher this threshold, the �ner the grid struc-
ture, and the fewer streams whose exact correla-
tions must be computed.

� Sliding Window Size This is the time interval
over which statistics are reported to the user. If
the sliding window size is 1 hour, then the re-
ported correlations are those over the past hour.

� Duration over Threshold Some users might be
interested in only those pairs with correlation co-
eÆcients above the threshold for a pre-de�ned pe-
riod. For example, a trader might ask \Has the
one hour correlation between two stocks been over
0.95 during the last 10 minutes?" This parameter
provides such users with an option to specify a
minimum duration. A longer duration period of
highly correlated streams indicates a stronger re-
lationship between the streams while a shorter one
might indicate an accidental correlation. For ex-
ample, a longer duration might give a stock mar-
ket trader more con�dence when taking advantage
of such potential opportunities. A longer duration
also gives better performance because we can up-
date the correlations less frequently.

� Range of Lagged Correlations In addition
to synchronized correlations, StatStream can also
detect high-value lagged correlations. This pa-
rameter, i.e. TM in section 3.7, speci�es the range
of the lagged correlations. For example, if the
range is 10 minutes and the basic window is 2 min-
utes, the system will examine cross-correlations
and autocorrelations for streams with lags of 2,4,8
and 10 minutes.

5 Empirical Study

Our empirical studies attempt to answer the following
questions.

� How great are the time savings when using the
DFT approximate algorithms as compared with
exact algorithms? How many streams can they
handle in real time?

� What's the approximation error when using DFT
within each basic window to estimate correlation?
How does it change according to the basic and
sliding window sizes?



� What is the pruning power of the grid structure
in detecting high correlated pairs? What is the
precision?

We perform the empirical study on the following
two datasets on a 1.5GHz Pentium 4 PC with 128 MB
of main memory.

� Synthetic Data The time series streams are gen-
erated using the random walk model. For stream
s,

si = 100 +

iX
j=1

(uj � 0:5); i = 1; 2; :::

where uj is a set of uniform random real numbers
in [0; 1].

� Stock Exchange Data The New York Stock Ex-
change (NYSE) Trade and Quote (TAQ) database
provides intraday trade and quote data for all
stocks listed on NYSE, AMEX, NASDAQ, and
SmallCap issues. The database grows at the rate
of 10GB per month. The historical data since
1993 have accumulated to 500GB. The data we
use in our experiment are the tick data of the ma-
jor stocks in a trading day. The 300 stocks in this
dataset are heavily traded in NYSE. During the
peak hours, there are several trades for each stock
in a second. We use the price weighted by volume
as the price of that stock at that second. In a
second when there is no trading activities for a
particular stock, we use the last trading price as
its price. In this way, all the stock streams are up-
dated every second, corresponding to a timepoint.
The sliding window will vary from half an hour to
two hours (1,800 to 7,200 timepoints). In practice
the actual choice of the sliding windows will be up
to the user. The lengths of the basic windows are
half a minute to several minutes, depending on
the number of streams to be monitored and the
computing capacity.

5.1 Speed Measurement

Suppose that the streams have new data every second.
The user of a time series stream system asks himself
the following questions:

1. How many streams can I track at once in an online
fashion? (Online means that even if the data come
in forever, I can compute the statistics of the data
with a �xed delay from their occurrence.)

2. How long is the delay between a change in corre-
lation and the time when I see the change?

Our system will compute correlations at the end of
each basic window. As noted above, the computation

Figure 2: Comparison of the number of streams that
the DFT and Exact method can handle

for basic window i must �nish by the end of basic win-
dow i + 1 in order for our system to be considered
on-line. Otherwise, it would lag farther and farther
behind over time. Therefore, some of the correlations
may be computed towards the end of the basic window
i+ 1. The user perceives the size of the basic window
as the maximum delay between the time that a change
in correlation takes place and the time it is computed.

The net result is that the answers to questions (1)
and (2) are related. We can increase the number of
streams at the cost of increasing the delay in reporting
correlation.

Figure 2 shows the number of streams vs. the min-
imum size of the basic window for a uniprocessor and
with di�erent algorithms. In the DFT method, we
choose the number of coeÆcients to be 16.

Using the exact method, given the basic window
size b, the time to compute the correlations among Ns

streams with b new timepoints is T = k0bN
2
s . Because

the algorithm must �nish this in b seconds, we have

k0bN
2
s = b) Ns =

q
1

k0
.

With the DFT-grid method, the work to monitor
correlations has two parts: (1)Updating digests takes
time T1 = k1bNs; (2)Detecting correlation based on
the grid takes time T2 = k2N

2
s . To �nish these two

computations before the basic window ends, we have
T1+T2 = b. Since T2 is the dominating term, we have

Ns �
q

b
k2
. Note that because of the grid structure,

k2 << k0. Also, the computation with data digests
is much more IO eÆcient than the exact method on
the raw streams. From the equation above, we can in-
crease the number of streams monitored by increasing
the basic window size, i.e., delay time. This tradeo�
between response time and throughput is con�rmed in
the �gure. The number of streams handled by our sys-
tem increases with the size of the basic window, while
there is no perceivable change for the exact algorithm.

The wall clock time to �nd correlations using
the DFT-grid method is much faster than the exact
method (Figure 3a). The time is divided into two
parts: detecting correlation and updating the digest



Figure 3: Comparison of the wall clock time

(Figure 3b).
The experiments on the processing time for the

DFT-grid method also provide a guideline on how to
choose the size of the basic window. Given a speci�c
computing capacity, �gure 4 show the processing time
for di�erent basic window sizes, when the numbers of
streams are 5,000 (Figure 4a) and 10,000 (Figure 4b).
Note that the wall clock time to detect correlation does
not change with the size of the basic window, while the
wall clock time to update the digest is proportional to
the size of the basic window. Therefore the processing
time is linear to the size of the basic window. Because
the processing time must be shorter than the basic
window time for our system to be online, we can de-
cide the minimum basic window size. From �gure 4 to
monitor 5,000 streams the minimum basic window size
is 25 seconds. Similarly, the basic window time should
be no less than 150 seconds for 10,000 streams.

5.2 Precision Measurement

Because the approximate correlations are based on
DFT curve �tting in each basic window, the preci-
sion of the computation depends on the size of the
basic window. Our experiments on the two data sets
(Figure 5) show that errors increase with larger basic
window size and decrease with larger sliding window
size, but remain small throughout. This is particularly
noteworthy, because we used only the �rst 2 DFT co-
eÆcients in each basic window.

We also performed experiments to test the e�ective-
ness of the grid structure. The grid structure on DFT
feature space prunes out most of the low-correlated
pairs of streams. The pruning power [17] is the number

Figure 4: Comparison of the wall clock time for di�er-
ent basic window sizes

Figure 5: Average approximation errors for correlation
coeÆcients with di�erent basic/sliding window sizes
for synthetic(above) and real(below) datasets



Figure 6: The precision and pruning power using dif-
ferent numbers of coeÆcients, thresholds and datasets

Table 2: Precision after post processing
Dataset R0.85 R0.85 R0.9 R0.9 S0.85
Tolerance 0.001 0.0005 0.001 0.0005 0.0005
Precision 0.9933 0.9947 0.9765 0.9865 0.9931
Recall 1.0 0.9995 1.0 0.9987 1.0

of pairs reported by the grid, divided by the number
of all potential pairs. Since our system guarantees no
false negatives, the reported pairs include all the high-
correlated pairs and some false positives. We also mea-
sure the quality of the system by precision, which is
the ratio of the number of pairs whose correlations are
above the threshold and reported by StatStream, to
the number of pairs that are reported by StatStream.
Figure 6 shows the precision and pruning power frac-
tion using di�erent numbers of coeÆcients and values
of thresholds for di�erent datasets. R0:85 indicates
the real dataset with threshold of 0:85, S0:9 indicates
the synthetic dataset with threshold of 0:9,etc. The
length of the sliding window is one hour.

Table 2 shows that recall can be traded o� against
precision in post processing. The user may specify
a tolerance t such that the system will report those
pairs with approximate correlation coeÆcients larger
than threshold� t.

6 Related Work

There is increasing interest in data streams. In the the-
oretical literature, Datar et. al [7] study the problem
of maintaining data stream statistics over sliding win-

dows. Their focus is single stream statistics. They pro-
pose an online data structure, exponential histogram,
that can be adapted to report statistics over sliding
windows at every timepoint. They achieve this with a
limited memory and a tradeo� of accuracy. Our online
basic window synopsis structure can report the precise
single stream statistics for those timeponts that fall at
basic window boundaries with a delay of the size of
a basic window, but our multi-stream statistics also
trade accuracy against memory and time.

Gehrke et al. [11] also study the problem of mon-
itoring statistics over multiple data streams. The
statistics they are interested in are di�erent from ours.
They compute correlated aggregates when the number
of streams to be monitored is small. A typical query in
phone call record streams is the percentage of interna-
tional phone calls that are longer than the average du-
ration of a domestic phone call. They use histograms
as summary data structures for the approximate com-
puting of correlated aggregates.

Recently, the data mining community has turned
its attention to data streams. A domain-speci�c lan-
guage, Hancock[6], has been designed at AT&T to
extract signatures from massive transaction streams.
Algorithms for constructing decision trees[8] and clus-
tering [15] for data streams have been proposed. Re-
cent work of Manku et al.[20], Greenwald et al.[14]
have focused on the problem of approximate quantile
computation for individual data streams. Our work is
complementary to the data mining research because
our techniques for �nding correlations can be used as
inputs to the similarity-based clustering algorithms.

The work by Yi et al.[28] for the online data mining
of co-evolving time sequences is also complementary
to our work. Our approximation algorithm can spot
correlations among a large number of co-evolving time
sequences quickly. Their method, MUSCLES can then
be applied to those highly correlated streams for linear
regression-based forecasting of new values.

Time series problems in the database community
have focused on discovering the similarity between an
online sequence and an indexed database of previ-
ously obtained sequence information. Traditionally,
the Euclidean similarity measure is used. The orig-
inal work by Agrawal et al. [2] utilizes the DFT to
transform data from the time domain into frequency
domain and uses multidimensional index structure to
index the �rst few DFT coeÆcients. In their work,
the focus is on whole sequence matching. This was
generalized to allow subsequence matching [9]. Ra�ei
and Mendelzon[24] improve this technique by allow-
ing transformations, including shifting, scaling and
moving average, on the time series before similarity
queries. The distances between sequences are mea-
sured by the Euclidean distance plus the costs asso-
ciated with these transformations. Our work di�ers
from them in that (1)In [2, 9, 24, 19], the time series



are all �nite data sets and the focus is on similarity
queries against a sequence database having a precon-
structed index. Our work focuses on similarity detec-
tion in multiple online streams in real time. (2)We use
the correlation coeÆcients as a distance measure like
[19]. The correlation measure is invariant under shift-
ing and scaling transformations. Correlation makes
it possible to construct an eÆcient grid structure in
bounded DFT feature space. This is what enable us
to give real time results. [19] allows false negatives,
whereas our method does not.

Other techniques such as Discrete Wavelet Trans-
form (DWT) [5, 26, 22, 12], Singular Value Decom-
position (SVD)[18] and Piecewise Constant Approxi-
mation (PCA)[27, 17] are also proposed for similarity
search. Keogh et al. [17] compares these techniques
for time series similarity queries. The performance of
these techniques varied depending on the characteris-
tics of the datasets, because no single transform can
be optimal on all datasets. These techniques based on
curve �tting are alternative ways of computing digests
and could be used in our sliding window/basic window
framework.

7 Conclusion

Maintaining multi-stream and time-delayed statistics
in a continuous online fashion is a signi�cant challenge
in data management. Our paper solves this problem in
a scalable way that gives a guaranteed response time
with high accuracy.

The Discrete Fourier Transform technique reduces
the enormous raw data streams into a manageable syn-
optic data structure and gives good I/O performance.
For any pair of streams, the pair-wise statistic is com-
puted in an incremental fashion and requires constant
time per update using a DFT approximation. A slid-
ing/basic window framework is introduced to facili-
tate the eÆcient management of streaming data di-
gests. We reduce the correlation coeÆcient similar-
ity measure to a Euclidean measure and make use of
a grid structure to detect correlations among thou-
sands of high speed data streams in real time. Ex-
periments conducted using synthetic and real data
show that StatStream detects correlations eÆciently
and precisely.
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