Execution of Regular DO Loops on Asynchronous

Multiprocessors!

Pei Ouyang?

Computer Science Department
Courant Institute of Mathematical Sciences
New York University
New York, NY 10012-1185

Abstract

This paper studies issues concerning parallel execution of regular Fortran DO loops on an asynchronous shared-
memory multiprocessor, where each iteration is the basic unit to be executed by a single processing element.
An iteration is a dependent predecessor of another iteration if execution of the latter iteration has to wait until
execution of the former iteration has completed. During the execution of a DO loop, an iteration will pass
through four states, namely, idle, pending, ready, and finished states. An iteration is idle if none of its dependent
predecessors have completed; an iteration is pending if some of its dependent predecessors have completed, but
not all; an iteration is ready if all its dependent predecessors have completed, but itself has not; otherwise, an
iteration is finished. In addition, an iteration without any dependent predecessors is called an initial iteration,
which can only have ready and finished states. Via describing an execution scheme, this paper studies the
characteristics of Fortran DO loops which are related to the efficiency of the execution. Specifically, this paper
investigates (1) the number of initial iterations, (2) the maximum number of ready iterations at any instances
during the execution, (3) the maximum number of pending iterations at any instances during the execution, (4)
a hash function to disperse different pending iterations, and (5) the parallel execution time.

1This research was partially supported by NSF under grant number CCR-89-6949.
2 Author’s electronic addresses: ouyang@spunky.cs.nyu.edu, (212) 998-3083.

1 Introduction

As DO loops account for the major parallelism
in Fortran programs, how to execute a DO loop
efficiently in parallel environments is an impor-
tant issue. Researches on executing DO loops
have been done for various environments, includ-
ing systolic arrays[6], vector processors[2,8], VLIW
processors[1,11], synchronous multiprocessors[3], and
asynchronous multiprocessors|[7,9].

There are many DO loops where the dependence dis-
tances between iterations can be determined at compil-
ing time[6,9]. Let us call this type of DO loops regular
DO loops. This paper studies issues concerning execut-
ing regular Fortran DO loops on asynchronous shared-
memory multiprocessors such as Ultracomputer[4]. Al-
though executing DO loops on environments such as
vector processors and VLIW processors has appealing
results, the execution of DO loops on asynchronous
shared-memory multiprocessors is interesting because
which might be the only available machines. In addi-
tion, when the DO loops contain IF statements whose
conditions are hard to be accurately predicted true or
false at compiling time, it is hard to execute DO loops
efficiently on vector processors and VLIW processors.

The execution scheme used in this paper is quite
straightforward: each execution unit is an iteration®
and is scheduled to be executed by a free processor
greedily. Although the concept of the scheme is simple,
several nontrivial issues have to be considered, namely,
what is the space needed to implement such scheme,
how does one execution unit inform its dependent suc-
cessors in an efficient way, and how to determine if
the parallel execution is superior to the sequential ex-
ecution. Such issues of executing regular Fortran DO
loops on asynchronous shared-memory multiprocessors
cannot be found in the existent literatures and are the
subjects of this paper.

The organization of this paper is as follows. Section
2 defines the model and terms used in our discussion, as
well as presents an overview of our execution scheme.
In section 3, the data structure used in our scheme is
examined in detail. Specifically, the number of initial,
ready, and pending iterations are calculated, and a hash
function to disperse different pending iterations are pre-
sented. Section 4 shows the time needed to execute a
DO loop under our execution scheme. Finally, section
5 gives a conclusion.

1If the execution time of a single iteration is too small when
compared to the synchronization time, several iterations can be
grouped into an execution unit[5]. This is another subject of
researches and we will not discuss it here.

2 Background

The loops that will be considered in this paper are nor-
malized DO loops as below:

DO 5L =1, U
DO I, =1, Us

Do i1, =1, U,
loop body
ENDDO

ENDDO
ENDDO

Our execution scheme takes each iteration as the ba-
sic unit to be scheduled for execution. In other words,
there are totally [];_, U; execution units in the above
loop. For convenience of our presentation, an itera-
tion will be represented by its values of induction vari-
ables. For example, iteration [i1,i,...,%,] means the
iteration when induction variable I is equal to i, for
1 < k < n. Furthermore, the nested DO loop will be
modelled by an iteration space and several dependence
vectors. The iteration space corresponding to the above
loop is the Cartesian space [1,Uy] x [1, Ua] x - - -x [1, Up],
and a dependence vector d; = [d;1,...,d;,] for the
above loop is used to describe that iteration [s1, ..., s,]
must be executed after iteration [s1 —d;1,. .., $p —dsn]-
We call iteration [s; — d;1,..., 8, — din] the depen-
dent predecessor of iteration [s1,...,s,]. In our exe-
cution scheme, an iteration can be executed only af-
ter all its dependent predecessors have been completed.
During the execution of a DO loop, an iteration will
pass through four states, namely, idle, pending, ready,
and finished states. An iteration is idle if none of its
dependent predecessors have completed; an iteration
is pending if some of its dependent predecessors have
completed, but not all; an iteration is ready if all its
dependent predecessors have completed, but itself has
not; otherwise, an iteration is finished. In addition, an
iteration without any dependent predecessors is called
an initial iteration, which can only have ready and fin-
ished states. It is useful to represent an iteration space
and its associated dependence vectors as a dependence
graph G = (V, E), where each vertex in V corresponds
to an iteration in the iteration space, and < vy, vy > is
in F if the iteration corresponding to v; is a dependent
predecessor of the iteration corresponding vs. A longest
path of G is a path p = vguvy ...v; such that v; € V for
0 <1<, <v,vig1 > FEfor 0 <i:<[1—1, and
[is the maximum over all such paths. Note that the

parallel execution time of a DO loop can be expressed
as a function of the length of the longest path.

Example 1 Consider the following program:

DO I, = 1,17
DO I, = 1,17
a([l, 12) = a(h - 1,[2 - 3) + a(h - 3,[2 - 1)
ENDDO
ENDDO

The associated iteration space is [1,17] x [1,17], and
the associated dependence vectors are [1,3] and [3, 1].
In figure 1, the iteration space is represented by a 17 x
17 grid. All the iterations shown in figure 1(a) by s
are initial iterations, and all the iterations shown in
figure 1(b) by (O’s can be at ready state simultaneously.
Note that the number of (O’s in figure 1(b) is also the
maximum number of ready iterations at any instances
during the execution. Finally, also shown in figure 1(b)
by a dashed line is one of the DO loop’s longest paths,
which have the length equal to 8. O

Now let us give an overview of our execution scheme.
The execution scheme uses the following three “pools”
to store iterations:

e INIT: a data structure used to store initial itera-
tions.

e READY: a FIFO queue used to store ready itera-
tions.

e PENDING: a data structure used to store pending
iterations.

Note that an iteration can be stored by its induction
variables instead of the whole loop body. The execu-
tion scheme is as follows. A free processor first try to
fetch an iteration from INIT to execute. If INIT is
empty, then an iteration is fetched from the READY.
If READY is also empty, then the corresponding nested
DO loop has been finished. Whenever a processor fin-
ishs executing an iteration ci, it installs each dependent
successor st as follows:

Algorithm 1
Try to find the entry for s: in PENDING;
if si is not in PENDING then
if s has no other dependent predecessors then
install sz in READY;
else
install sz in PENDING;
endif
else
At the si entry in PENDING, mark ¢z finished;

if si has no other unfinished dependent
predecessors then
move s: from PENDING to READY;
endif
endif;
O

The above execution scheme is quite naive but seems
unavoidable in the execution of nested DO loops under
asynchronous shared-memory multiprocessor environ-
ments. However, some techniques can be imposed on
this execution scheme to improve the performance. As
mentioned in section 1, the iterations can be grouped
into larger execution units to compromise between com-
putation and synchronization times. In addition, the
data structure READY can be implemented as a pri-
ority queue where the priority of a ready iteration is a
function of its expected execution time, the number of
its dependent successors, the length of the longest path
to an iteration without dependent successors, and so
forth. This paper will not discuss these techniques, yet
which can be applied to our scheme easily when needed.

3 Properties of Initial, Ready,
and Pending Iterations

In this section, characteristics of initial, ready, and
pending iterations are studied. First of all, our exe-
cution scheme needs to identify initial iterations and
put them in the data structure INIT. A naive method
to find all such iterations would be sweeping through
each of the iterations to check if it has dependent pre-
decessors. This is described by the following algorithm:

Algorithm 2

for each iteration [I1, ..., I,] in the iteration space

[1,U1] x -+ x [1,U,] do
For each dependence vector d; = [d;1, d;2, - - ., din],
for 1 < i< m, check if [Iy — d;s1, ..., In — din] is

within the range [1, U] x -+ x [1, Uy]:
If any dependence vector makes the condition
satisfied, then the iteration [y, ..., I,] should
not be put in INIT;
otherwise, [I1, ..., I,] should be put in INIT;
end /x for x/
O

In spite of the simplicity of the above algorithm, the
time needed to execute the algorithm is O(m [[;_, U;).
Much time can be saved if we can avoid scanning non-
initial iterations. Therefore, we need to know which
iterations are initial iterations. From Example 1 in
Section 2, it can be observed that initial iterations

1718
h
h
g
h
h
h
h
g
th
th
th
I
I
(Bt
(Bt
IDDDFTFTDFTFTFTFTDFTFTFTDDD
1 17

(a)

17 ¢ 7

(b)

Figure 1: The initial iterations, ready iterations, and longest path of a DO loop with iteration space [1, 17] x[1, 17]

and dependence vectors [1,3] and [3, 1].

locate at the “borders” of the iteration space. For
example, consider an iteration space [1,10] x [1,10].
For a dependence vector [2,0], the set of iterations
{[z,y]|1 < 2 < 2,1 < y < 10} will not depend on
any other iterations via the dependence vector [2,0].
Hence this set of iterations will consist of all the initial
iterations if there is only one dependence vector [2,0].
Suppose we have another dependence vector [1,—3],
then the set of iterations {[z,y]|1 < 2z < 1,1 <y <
10} U {[z,y]|1 < 2 < 10,8 < y < 10} will not de-
pend on any other iterations via the dependence vector
[1,—3]. As an initial iteration does not depend on any
other iterations via any dependence vectors, the set of
initial iterations for the dependence vectors [2,0] and
[1,—3]is {[z,3) [1< 2 < 2,1 <y < 1000 ({41 <
r<1,1<y<10bU{fz,y]|1 <2z <10,8 <y < 10}).
The following theorem formally state which iterations
are initial iterations:

Theorem 1 LetS = [1, U] x[1,Us]x - -x[1,U,] be the
iteration space, d; = [di1,d;a, ..., din], for 1 < i < m,
be m dependence vectors. Let

{le1, - en) € S|1 <¢j < dyj} if di; > 0
=10 i dij = 0
{[61:~-~;€n]ES|U]'—|—dij<ej§Uj} if dij <0

Then an iteration k is in I = (-, U;'L:1 Lij if and only
iof iteration k is an initial iteration in S.

proof. If k = [k1,... ks] is in I, we show that it is
impossible that k& depends on any other iterations in
the iteration space S. Suppose on the contrary that k
depends on some other iteration, then there must exist
an iteration k' = [kY, ..., k}] such that & = k' + d, for
some fixed s. Since k € ﬂ;nzl U;zl L;j, k must be in I
for some fixed t. Since k = k'+d;, we have k; = kj+d,;.
However,

o if dst >0,then k’; :kt_dst S dst—dstzo;
o if dg; =0, then I;; =0, k cannot be in Iy;
L] ifdst<0,then k;:kt_dst>Ut+dst_dst:Ut~

These cases imply that k& cannot depend on any other
iterations in S, contradicting to our assumption. Hence
we conclude that k£ does not depend on any other iter-
ations in S.

Conversely, if k & I, then k & U;'L:1 I,; for some fixed
s. In other words, k£ ¢ I,; for all 1 < j < n. Let us
consider the following cases:

o if dy; > 0, then dy; < k; < Uj;
[ldeJ :0, then 1 SI{?J < Uj;
[lfdsJ < 0, then 1 S]{?J < U; —I—ds]'.

Define k' = [ky — ds1, ..., kn — dsp]. Tt is clear that &'
must be in the iteration space S and k = k' + d;. That
is, k depends on k’. This completes our proof. O

An algorithm generating all the initial iterations is
described next. For clarity, let us describe the al-
gorithm by an example first. Consider an iteration
space [1,10] x [1,10] x [1,10] and dependence vectors
dy =10,2,3],ds =[1,—1,2] and d3 = [3, 1, 1]. Let d; be
denoted by [d;1, d;2, d;3] for 1 < i < 3. The algorithm
recursively divide each dimension into regions until it
reaches the last dimension. Initially, dimension 1 is di-
vided into three regions [1,1], [2,3], and [4,10] according
to dy1, d21 and d3;. By doing this way, we have

e For each iteration in the subspace [1,1] x [1, 10] x
[1,10], it may depend on other iterations only via

dy;

e For each iteration in the subspace [2,3] x [1, 10] x
[1,10], it may depend on other iterations only via
dy or ds;

e For each iteration in the subspace [4,10] x [1, 10] x
[1,10], it may depend on other iterations via dj,
dz, or d3.

With dimension 1 restricted to the region [1, 1], dimen-
sion 2 will be divided, using dis only, into [1,2] and
[3,10]. By doing this way, we have

e For each iteration in the subspace [1,1] x [1,2] x
[1,10], it may not depend on any other iterations;

e For each iteration in the subspace [1,1] x [3, 10] x
[1,10], it may depend on other iterations only via

dy.

Finally, with dimension 1 and 2 restricted to the re-
gion [1,1] and [1,2] respectively, initial iterations in the
region [1, 1] x [1,2] x [1, 10] are generated. Table 1 sum-
marizes the generation procedure for this example and
Algorithm 3 describes the general procedure.

Algorithm 3 Let [1, U] x [1,Us] x - - - x [1, Uy] be the
iteration space, d; = [d;1,d;9, ..., di], for 1 < i < m,
be m dependence vectors. The algorithm will generate
the initial iteration indices by recursive calls to the pro-
cedure iter(k,D). Let z1,...,2n,¥1,...,Yn be global
variables. At the main routine, iter(l, {di,...,dn}) is

called.

procedure iter(k, D)
/* k is the depth of the loop under considered */
/* D is a set containing dependence vectors */
if k = n then
zn, = max ({1} U {U, + din + 1|d; € D,d;, <0})
generate iterations in the Cartesian space
[rla yl] XX [;L‘n, yn],

else
TI{[f(dzk), dz]ldz € D, d;y 75 0, |dzk| < Uk} where
dip if djp, >0
Hdi) = { Uk +dip if dig < 0
D' ={dieD|-U, <di <0 };
finished = false;
yr = 0;
while (not finished) do
Ty =yp + 1;
if T'= 0 then
yr = Uk;
else
yr = smallest(T"); /* smallest(T") is the
smallest value among all f(d;;)’s in the
elements of T'. x/
iter(k+1, D');

if T'= 0 then
finished = true,;
else

for each [f(di),d;] € T that f(dix) = y do
if d;;, > 0 then
insert d; into D’;
else /* d;r, < 0 %/
delete d; from D';
endif
remove [f(d;), d;] from T
end
endif
end /x while x/
endif

O

The above algorithm is faster than algorithm 1 be-
cause those iteration indices which do not belong to
INIT are not generated. However, algorithm 3 does
waste time for sweeping through “empty blocks” when
the last dimension n is empty. In this case, algorithm 3
can be revised so that the role of dimension n is replaced
by a nonempty dimension k where zj, is always less than
or equal to yi. In addition, generating the INIT need
not be accomplished at compiling time. Algorithm 3
can be updated to fit into a run-time self-scheduling
scheme, which eliminates the space needed for INIT.

Next we consider the space requirement for the data
structure READY. To determine the space require-
ment, we have to know the maximum number of ready
iterations at any instances during the execution:

Theorem 2 Let S = [1, U] x[1,Us]x---x[1,Uy] be the
iteration space, d; = [di1,d;2, ..., din], for 1 < i < m,
be m dependence vectors. Then the marimum number
of ready iterations at any instances during the execu-
tion s less than or equal to mim{l_[?:1 U; — H?:l(Uj -
|dij[) |1 <@ <m}.

dimension 1 dimension 2 dimension 3

{di1,do1, dai} | [L1] || {d1a} [1,2] 1 [1,10]
(3,10] || {d1s} [1,3]

[2,3] {d12,d2s} 1,2 {das} 1,2

3,9 {dy3,d23} 1,2

10,10] || {d13} 1,3

[4,10] || {d12,d2a,ds2} | [1,1] {das} [1,2]

[2,2] {da3, dss} [1,1]

10,10] || {d1s, dss} 1,1

Table 1: Generating initial iterations for the iteration

di =1[0,2,3],dy = [1,—1,2] and ds = [3,1, 1].

proof. Let I;; be the same as in theorem 1. Then for
each dependence vector d;, Uj_;I;; is the set of itera-
tions which do not depend on any other iterations via
d;. In addition, note that when each iteration com-
pletes, at most one iteration can be activated via de-
pendence vector d;. Therefore, the maximum number
of ready iterations at any instances during the execu-
tion is less than or equal to min{ [U}_; [;; ||1 < i < m},
where | U7_; I;; | denotes the size of the set U}_, /;;.

Without loss of generality, we assume that d;; > 0
for 1 < i < m, and 1 < k < n below in computing
the value of | U7_; I;j[. According to the definition
of Ijj, we have U7_;I;; = UF_{[z1,...,2,] € S|1 <
vj <dij} = A{[zr, .. @0] € S| Vio (1 <z <dij)} =
S—{[z1,...,za] € S|A}=1(dij < z; < Uj)}. Therefore,
we have | U?:l Iij | = H;Il U]' — H?:l(Uj — d”) This
completes our proof. O

i,From Theorem 2, it is enough to allocate
e min{[J7_, Uj = [T, (U; = |dig[) |1 < i < m} unit
space to READY, where ¢ is a constant representing
the space need for each entry of iterations. Note that
the value obtained in Theorem 2 also represents the
maximum number of processing elements that can be
used simultaneously under our execution scheme.

Now let us determine the space required by PEND-
ING. To do this, we have to know the maximum possi-
ble number of pending iterations at any instances dur-
ing the execution:

Theorem 3 Let S = [1, U] x[1,Us]x- - -x[1,U,] be the
iteration space, d; = [di1,d;2, ..., din], for 1 < i < m,
be m dependence vectors. Then the number of pending
iterations at any instances during the erecution cannot

exceed 2221(1_[;:1 Uj — H;L:1(Uj = |di;1))-

proof. When an iteration becomes pending, it must
be “activated” by one of its dependent predecessors.
For a dependence vector d;, the number of pend-

space [1,10] x [1,10] x [1,10] and dependence vectors

ing iterations that are activated by d; cannot exceed
[Ti=1 Uj — 1=, (U;j — |dsj]), as can be seen from The-
orem 2. Therefore, the total number of pending itera-
tions cannot exceed Y ;L ([T7=, Uj —[Ti=1(Uj = |dij|))-
O

;From the above theorem, it is enough to allo-
cate ¢ ;% ([T5=; Uy — [T=1(Uj — |dij])) unit space to
PENDING, where ¢ is a constant representing the space
need for each entry of iterations.

In addition to deciding the space bound for PEND-
ING, we also need an access scheme to accomplish the
action “try to find the entry for s in PENDING” in al-
gorithm 1. The following algorithm describes the access
scheme:

Algorithm 4 Let ¢ [c1, .-, ¢n] [Ezn:l di1,

coy oot din]. Assume that |¢;| < U; for 1 <4 < n,
which should account for most cases in practice. We
will represent PENDING as a hash table with entries

indexed by 1,2,..., P, where P is equal to H;L:1 U; —
H?:1(Uj — |¢j]). Then an iteration [z, ..., z,] will be

assigned to a bucket of the entry indexed by r, where r
is computed as below (assume that ¢; > 0for1 <j<n
for clarity):?

/* Find the initial iteration [y1, ..., y,] which is the
ancestor of [#1, ..., 2,] via dependence vector ¢ */
a=min{|Z=] |1 < j<n, ¢ #0};
J
p= min{j“%?” =aforl <j<mnandc; #0};
[, .

JUn] = (@1 —axcy, ..., 2q —ax*cpl;

/* find s, the sum of sizes from block 1 to block p — 1,

where block 7 is the Cartesian space [¢; + 1, U] x - -
X [ei—1+ 1, Uimq] x [Le] x [, Uig1] x -+ x [L,Up] */
s = Y I (T2 — ei)ei [Timign Us);

/* find ¢, the address of [y, ..., y,] within block p,

2We will define Ese¢f(s) = 0 and Hse¢f(s) =1.

where block p is the Cartesian space [¢; + 1,U3] x - -+
X[ep—1 + 1, Upa] X [1, ep] X [1, Upga] x - - - x [1, Up] */

let [z1,...,2zn] =1 — €1, -, Yp=1 — Cp—1,Up, - - -, Un);
let [vy,...,vn] =
[Ul_cla~~~;Up—1_cp—lacanp+17~~~aUn];
n n
t=>(z—1) Hj:i+1 Y5 5
r=s+t+1;
O

Each of the initial iterations for the vector ¢ will
be mapped to a unique number in the range from 1
to P, which can be observed from the fact that the
algorithm in essence just divides the initial iterations
for dependence vector ¢ into at most n n-dimensional
“blocks”, and then orders the iterations in each block
according to row-major order. With this access scheme,
it is expected that each entry of the hash table will
usually store only one iteration. This is because in
most cases, all the dependent predecessors of iteration
I+dy+ ...+ d, have iteration I as a dependent an-
cestor. Hence when iteration [is pending, iteration
I+di+...+d, cannot become pending as it requires
at least one of its dependent predecessor be finished,
which in turn requires iteration I be finished. An en-
try of the hash table may contain more than one it-
erations only when those iterations near the iteration
space boundaries are being executed and some compo-
nents of dependence vectors are negative. For example,
for the iteration space [1,10] x [1,10] x [1,10] and de-
pendence vectors [0,1,—2],[1, -2, 1], and [1,0, 2], itera-
tion [2, 2, 2] and iteration [4, 1, 3] may be at the pending
states simultaneously.

Finally, to support the above access scheme, we prove
that the number of entries in PENDING is less than or
equal to the bound we got in Theorem 3, i.e., H?ﬂ U; —
H?:1(Uj - IEZ’L dij|) < 2?1:1(1_[?:1 Uj — H?:l(Uj -

|dij|)). We need a lemma first:

Lemma 4 Let [1,Ui] x --- x [1,U,] be the iter-
ation space, di = [di1,d12,...,d1n] and dy =
[d21,da2, .. ., d2,] be two dependence vectors. Also as-
sume that U; > |duj| + |doj] for 1 < j < n. Then we
have [T, (Uj —|di;]) + 152, (U = ldog [) = [T =, (U5 —
dij + daj|) <=1 Uj-

proof. See appendix. O

With this lemma, we now show that the number of
entries in PENDING is less than or equal to the bound
we got in theorem 3:

Theorem 5 LetS = [1,U1]x[1,Us]x---x[1,Up] be the
iteration space, d; = [di1,d;2, ..., din], for 1 < i < m,
be m dependence vectors. Assume that U; > Y 00| |dyj|

for 1 < j < n. Then we have H;:1 U; — H?:l(Uj -
|Zi:1 diy’|) < Zi:1(H]’:1 U; — Hj:l(Uj - |du|))

proof.
H7=1UJ - H;=1(UJ - |E:Z1di1|)

< (H7=1UJ - H;;l(UJ - |d1J|))
+(H7=1UJ - H:=1(UJ - IEfidel))

< (H7=1UJ - Hzl:l(UJ - |d1J|))
A2, Us — T1= (U5 = 1das])
+(H7=1U] - H;;l(UJ - |E?;3dij|))

< .

< EZ](H;L:lUJ - H7=1(UJ = |dij]))

O

4 Execution Time of DO Loops

In this section, we will consider when the parallel ex-
ecution is superior to the sequential execution of the
nested DO loops. Because of the synchronization cost,
parallel execution of a nested DO loop is not necessar-
ily faster than sequential execution of the same loop.
Therefore, the compiler should estimate both parallel
and sequential time to make the right choice.

Let t denote the average execution time of an iter-
ation, s denote the synchronization time required by
algorithm 1, and ! denote the number of iterations on
the longest path in the dependence graph. Then the
sequential execution time is ¢ []'_; U; and the parallel
execution time is (t + ms)!, where n is the depth of
the nested DO loop, U;’s are the upper bounds of in-
duction variables, and m is the number of dependence
vectors. Therefore, parallel execution is preferred to
sequential execution when (¢t + ms)l < ¢t[[_, U;, i.e.,
when 7% < M -1

The remaining question now is how to find the value
of [, that is, the length of the longest path in the depen-
dence graph. First of all, let us define the set of source
iterations, C', for the longest path. For each iteration
$; = [Si1, ..., 8in] € C, 545 could only be either 1 or Uj.
Specifically, s;; could be 1 only when there exists some
d;; > 0, s;; could be U; only when there exists some
d;; < 0. If for some fixed dimension j and all depen-
dence vectors d;, d;;’s are all zeros, then dimension j
can be regarded as nonexistent in solving this problem.
The following theorem tells us how to find the upper
bound of the longest path:

Theorem 6 Let S =[1,U1] x ---x [1,U,] be the itera-
tion space, d; = [di1, ..., din], for 1 < i< m, be m de-
pendence vectors. In addition, let C' = {s1,82,...,84}

be the set of source iterations. Then the length of
the longest path in the dependence graph cannot exceed
max{vy,...,vq}, where v; is obtained by solving the fol-
lowing integer programming problem:

max vi=Z=e1+x2+ ...+,

subject to
1§5ik+ET:1dejk§Uk forl1<k<n
z; >0 for1<j<m

proof. In a dependence graph, any iteration reachable
from s; can be expressed as s;+x1di1+xads+- - +xmdny,,
where z; is greater than or equal to 0 for 1 < j < m.
According to the definition of the longest path, all the
iterations in a longest path must be within the iteration
space S. Specifically, the “sink” iteration of the longest
path must be within the iteration space S also. That
is,
m
1< s + erdjk < Uy
ji=1

forl<k<n

Therefore, the length of the longest path starting from
s; in the dependence graph cannot exceed the value v;
defined by the above integer programming problem.

Now we show that considering only the source iter-
ations in C' is sufficient. Suppose there is a longest
path from a = [a1,...,a,] to a + Z _, z;dj, where
1 < ap < U for some k. Let us con81der the following
cases:

o If 1 < ap < ak—i—z _y xjdjp < Uy, then there
must exist some d; such that djr > 0. Con-
sequently, there must exist some s; € C such
that s;z = 1. In addition, it is obvious that
1<1+Z -y zjdjp < Up.

o If 1 < ay + E]’:1 zjd;r < ap < Uy, then there
must exist some d; such that d;; < 0. Con-
sequently, there must exist some s; € C such
that s;z = Up. In addition, it is obvious that
1< Ug +Z]T'n:1 .Z‘jdjk < Ug.

o If 1 < ap = a —}—E;nlxjdjk < Uy, then we
have 1 = 1—}—2 _1xjdjp < Up and 1 < Uy +
E]:1 zjdjr = Up.

All these cases imply that we can find a longest path
with its source iteration in C' and having the length no
less than #1 + - - - + ®,,. This completes our proof. 0O

Some comments follows. First, since the leftmost
nonzero entry of a dependence vector is always positive,
the graph is acyclic. As a consequence, the maximum
value of the integer programming problem is always
bounded. Second, efficiency can be improved by using
linear programming methods such as simplex method to

find the value of I. For large U;’s and small d;;’s, which
should be the common cases, the error is expected to be
small. Finally, since most nested DO loops have depth
less than or equal to 3 [10], it is usually that no more
than 4 source iterations need to be considered 3.

5 Conclusion

In an asynchronous multiprocessor, executing a nested
DO loop involves scheduling iterations to be executed
as soon as possible. This kind scheduling is necessary
even if grouping is applied. Although the concept is
easily understood, the implementation of such execu-
tion scheme involves several issues. This paper first
sketches the execution scheme in section 2, and then
discusses the implementation issues in section 3, where
the space bound for the implementation is found, as
well as an addressing scheme is proposed. Because of
the synchronization costs, parallel execution of a nested
DO loop is not necessarily beneficial. The choice of
whether or not executing a DO loop in parallel is stud-
ied in section 4, where finding the length of the longest
path in a dependence graph is transformed to a couple
of integer programming problems.

Some issues remain to be studied. First, it is pre-
ferred to find a lower space bound for the data structure
PENDING, as well as its associated addressing scheme.
Second, a more efficient and accurate algorithm to find
the length of the longest path for a dependence graph
is wanted. Thirdly, we would like to extend our execu-
tion scheme to more generic DO loops where an outer
loop can contain several single statements and other
DO loops inside. Finally, to improve the efficiency of
the execution, it is also important to consider hardware
supports for execution schemes.

References

[1] Alexander Aiken, and Alexandru Nicolau, “Op-
timal Loop Parallelization,” SIGPLAN Conf. on
Programming Language Design and Implementa-
tion, Atlanta, Georgia, pp. 308-317, June 1988.

John R. Allen, and Ken Kennedy, “PFC: A Pro-
gram to Convert Fortran to Parallel Form,” Proc.
First International Conference on Supercomput-

ing, Athens, Greece, pp. 186-203, June 1987.
(3]

Ron Cytron, “Compile-Time Scheduling and Opti-
mization for Asynchronous Machines,” Ph.D. the-

3Note that for all source iterations, the value of the first di-
mension is always 1.

sis, Department of Computer Science, University
of Illinois at Urbana-Champaign, October 1984.

Allan Gottlieb “An Overview of the NYU Ultra-
computer Project,” Ultracomputer Note #100, Ul-
tracomputer Research Laboratory, Courant Insti-

tute of Mathematical Sciences, New York Univer-
sity, April 1987.

Chung-Ta King, and Lionel M. Ni, “Grouping in
Nested Loops for Parallel Execution on Multicom-
puters,” Proc. Int. Conf. Parallel Processing, vol.

2, pp. 31-38, 1989.

Peizong Lee, and Zvi M. Kedem, “Mapping Nested
Loop Algorithms into Multi-dimensional Systolic
Arrays,” IFEFE Trans. Parallel and Distributed
Systems, vol. 1, No. 1, pp. 64-76, January 1990.

Samuel P. Midkiff, and David A. Padua, “Compiler
Generated Synchronization for Do Loops,” Proc.
Int. Conf. Parallel Processing, pp. 544-551, 1986.

David A. Padua, and Michael J. Wolfe, “Ad-
vanced Compiler Optimizations for Supercomput-
ers,” Commaunication of ACM,vol.29:12, pp. 1184-
1201, Dec. 1986.

Weijia Shang, and Jose A. B. Fortes, “Partitioning
of Uniform Dependency Algorithms for Paralle Ex-
ecution on MIMD/Systolic Systems,” TR-EE 88-
18, School of Electrical Engineering, Purdue Uni-
versity, April 1988.

Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew, “An
Empirical Study on array Subscripts and Data De-
pendencies,” Proc. Int. Conf. Parallel Processing,
vol. IT, pp. 145-152, 1989.

Amr Zaky, and P. Sadayappan, “Optimal Static
Scheduling of Sequential Loops on Multiproces-
sors,” Proc. Int. Conf. Parallel Processing, 1989.

Appendix

Proof of Lemma 4.

Define Ay = {j|1 < j <k, dyjdo; <0, and |dyij| > |doj|}, Br = {j|1 < j <k, dijdo; < 0, and |dy;| > |dy;|},

and Cy = {j|1 < j <k, dijds; > 0}. We prove by induction on k that

k k k
[T21(Uj = ldui]) + T1; 21 (Uj = |doj|) = TT; 21 (Uj = |dij + da;)
k
< 21U = 1jea, (Uj = ldujl + |d2; DI e s, (Ui — ldoi| + 1d1; DI e, (Us — Idij] — |da2;])
+1Liea, (Ui = 1diiDIjep, (Ui = ld2i D Liec, (Uj — Ida| = [daj])
When k£ =1, (1) is true since, by the definition of dependence vectors, di; > 0 and da; > 0.

Suppose (1) is true when k = p — 1, we prove that (1) is still true when k& = p.
Case 1: djpdap > 0:

(Up - |d1p|) f;;(Uj - |d1j|) + (Up - |d2p|) f;;(Uj - |d2j|) - (Up - |d1p + d2p|) f;;(Uj - |d1j + d2j|)
= Up(1:11([]] - |d1]|) + HP;;(UJ - |d21|) - P;;(UJ - |d1] + d2]|))
J J J
- |d1p|Hp;11(UJ - |d1]|) - |d2p|Hp;11(UJ - |d2]|) + (|d1p| + |d2p|) p;l(UJ - |d1J + d2]|)
J J J

< Up(f;llUJ - HJGA,,_l(UJ - |d1]| + |d2J|)HJ€BP_1(UJ - |d2J| + |d1J|)H]€cp_1(UJ - |d1J| - |d2]|)
+ HJGAP_I(UJ - |d1]|)H]€Bp_1(U] - |d2]|)H]€CP_1(UJ - |d1J| - |d2J|))
- |d1p| p;ll(UJ - |d1]|) - |d2p| p;ll(UJ - |d2]|) + (|d1p| =+ |d2p|) p;ll(UJ - |d1J + d2]|)
J J J
[by induction hypothesis]
< IS0

= (Up = ldip| = 2p [T, s, , (U = ldss] +1des DL, , (U = sl + VDL, , (U = I =1)
+UplLen, , (Ui = 1d;D[Ten,_, (U5 = ld2; D[Tce, , (Us = 1] = lda;)

_ |d1p|HJ€AP_1(UJ — |d1]|)H]€Bp_1(U; - |d2J|)H]eCP_1(UJ = |di;| = |d2;1)

- |d2P|H]€Ap_1(UJ - |d1J|)H]eB,,_1(UJ - |d2]|)HJ€Cp—1(UJ ~ ldu] = Ida)

[because Hf;ll(U] = |duj +do;]) =

[ea, . U = ldu| +1d2s D Les, , (U = ldasl + a0 ec, _, (U5 = ldss] = [d231),

yen,_, U = 1d2s) < T, (Vs = I, ~TLen,, (Vs = ldn]) < T e, (Us = lday]),

_HJGCP_I(UJ - |d1J|) < _HJGCP_I(UJ = ldij| = |d2J|)a _HJGCP_I(UJ - |d21|) < _HJGCP_I(UJ = |dij| = |d21|)]

= f=1UJ - HJGAP(UJ - |d1]| + |d21|)H]eB,,(UJ - |d2J| + |d1]|)H]€cP(UJ - |d1]| - |d21|)
+1Lea, (Ui = 143D es, (Us = ld2D[T ec, (Us = Idij] = |d2;1)

Case 2: dipdy, < 0 and |dip| > |dapl:

(Up - |d1p|) f;ll(UJ - |d1J|) + (Up - |d2p|) f;ll(UJ - |d2J|) - (Up - |d1p =+ d2p|) f;ll(UJ - |d1] + d2]|)

= Up(p_l(UJ - |d1]|) + p_l(UJ - |d2]|) - p_l(UJ - |d1J + d2]|))

j=1 j=1 Jj=1

- |d1p| p;l(UJ - |d1J|) - |d2p| p;l(UJ - |d2J|) + (|d1p| - |d2P|) p;l(UJ - |d11 + d2J|)
J J J

< U ~TLea, (U =il +1desD e, , (Vs = ldos] + d,D e, (U = lds,] = |d2,])
+ HJGAP_l(UJ - |d11|)HJeB,,_1(UJ - |d21|)HJecp_1(UJ = ld1;] = |do;]))
- |d1p|H§:11(UJ - |d1J|) - |d2P|H§:11(UJ - |d2J|) + (|d1p| - |d2p|) f;ll(UJ = ldij + d2J|)
[by induction hypothesis]
< U0

- (Up - |d1p| + |d2P|)H]€AP_1(UJ - |d1J| + |d2J|)H]€BP_1(U] - |d2J| + |d1J|)H]€cp_1(UJ - |d1]| - |d2]|)

+ UPHJGAP_l(UJ - |d1J|)HJeBP_1(UJ - |d2J|)HJecp_1(UJ = |da;] — |da;1)
- |d1P|H]eAP_1(UJ - |d1J|)H]eBP_1(UJ - |d2J|)H]eCp_1(UJ = |dij| = |d2;1)
[because Hf;ll(Uj —|d1y + doy|) =
Mea,_, (Us 1| + a2 T s, , (U5 = das] + 1dusDI e, , (Us = ldas| = ld]),
_HJGBP_I(UJ = |dij]) < _HJGBP_I(UJ = |dz;1), _HJGCP_I(UJ = |dyy]) < _HJGCP_I(UJ = |da| = |dz;1),
—|dep | [TI2, (U = Id2s]) <0]
= 21U — HJGAP(UJ = ldi;[+ |d2J|)HJ€BP(UJ = |d2;| + |d1J|)H]eCP(UJ = [di;| = |d2;1)

j=1

+ HJGAP(UJ - |d1J|)H]eBP(UJ - |d2J|)H]eCP(UJ - |d1J| - |d2J|)

Case 3: dipds, < 0 and |dap| > |dip|: This case is similar to case 2 and hence is omitted.
This completes our proof of inequality (1). Since [T, 4, (Uj —|d1j[+|d2;|) [1; ¢ g, (Uj —|d2;|+d1;]) Hjeck(UJ -
Idij| = Idoj) 2 TTjea, (Ui = ld1i1) [T em, (Us — ld2]) IL[jeCk(Uj — |dyj| — |ds;]) for any k, the lemma is proved by

setting k to n. d

10

