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PREFACE

In a paper by Cai, Casarin, Elliott, and Widlund [5], three algorithms were

presented based on the overlapping Schwarz methods for Helmholtz's equation.

The algorithms are called Algorithm 1, Algorithm 2, and Algorithm 3 in increasing

order of sophistication. Algorithm 3, which is a new type of overlapping Schwarz

methods, converges the fastest to the solution of the equation but its analysis and

implementation is complicated by the fact that jumps are allowed in the iterates

across the domain interfaces. This new algorithm was inspired by the thesis of

Despr�es [10] and it can be considered as an overlapping version of Despr�es' method.

In this dissertation, we focus on Algorithm 3 which is also called the Discon-

tinuous Overlapping Schwarz Method (OSM-D) in Casarin and Widlund [7]. The

discontinuity of the iterates of Algorithm 3 (OSM-D), which is the fundamental dis-

tinction from the classical algorithms, is implemented by allowing multiple values

on the arti�cial interfaces. To handle this important property, we use a saddle-

point approach. We study the basic properties and formulation of Algorithm 3

(OSM-D) and develop a convergence theory for simple problems as well as more

complicated problems using a formulation based on Lagrange multipliers. Several

numerical results including some for multi-level variants of Algorithm 3 (OSM-D)

are also presented and analyzed.
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ABSTRACT

A new type of overlapping Schwarz methods, the overlapping Schwarz algo-

rithms using discontinuous iterates is constructed from the classical overlapping

Schwarz algorithm. It allows for discontinuities at each arti�cial interface. The

new algorithm, for Poisson's equation, can be considered as an overlapping ver-

sion of Lions' Robin iteration method for which little is known concerning the

convergence. Since overlap improves the performance of the classical algorithms

considerably, the existence of a uniform convergence factor is the fundamental

question for our new algorithm.

The �rst part of this thesis concerns the formulation of the new algorithm. A

variational formulation of the new algorithm is derived from the classical algo-

rithms. The discontinuity of the iterates of the new algorithm is the fundamental

distinction from the classical algorithms. To analyze this important property, we

use a saddle-point approach. We show that the new algorithm can be interpreted

as a block Gauss-Seidel method with dual and primal variables.

The second part of the thesis deals with algebraic properties of the new algo-

rithm. We prove that the fractional steps of the new algorithm are nonsymmetric.

The algebraic systems of the primal variables can be reduced to those of the dual

variables. We analyze the structure of the dual formulation algebraically and an-

alyze its numerical behavior.

The remaining part of the thesis concerns convergence theory and numerical

results for the new algorithm. We �rst extend the classical convergence theory,

without using Lagrange multipliers, in some limited cases. A new theory using

Lagrange multiplier is then introduced and we �nd conditions for the existence of

vi



uniform convergence factors of the dual variables, which implies convergence of the

primal variables, in the two overlapping subdomain case with any Robin boundary

condition. Our condition shows a relation between the given conditions and the

arti�cial interface condition. The numerical results for the general case with cross

points are also presented. They indicate possible extensions of our results to to

this more general case.
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Chapter 1

Introduction

1.1 An Overview

The numerical solution of partial di�erential equations often leads to quite large,

sparse linear systems. Domain decomposition methods are general exible iterative

methods for solving such problems. Domain decomposition algorithms are divided

into two classes, those that use overlapping domains, which are often referred

to as Schwarz methods, and those that use nonoverlapping domains, which are

called iterative substructuring methods. The discrete approximation to a partial

di�erential equation is obtained iteratively by solving problems associated with

each subdomain and passing information between neighbors. Numerous domain

decomposition methods have been designed, studied, and implemented in last two

decades. Two books by Smith, Bj�rstad, and Gropp [43] and Quarteroni and

Valli [40] have appeared recently, and almost yearly international conferences are

being held; see [16, 8, 9, 17, 22, 39, 23, 18, 4, 28, 24, 46].

The �rst domain decomposition method is the alternating method of H. A.

Schwarz [42]. At the core of that work is a proof that the iterative method converges

1



in the maximum norm at a geometric rate. In his work in the 1980's [25, 26], P. L.

Lions analyzed the convergence of Schwarz methods using two di�erent methods,

a maximum principle and Hilbert spaces. He also established the convergence of

certain nonoverlapping domain decomposition methods by using energy estimate;

see [27]. Since he used the Robin boundary condition on the arti�cial interfaces,

we will call this algorithm the Robin iteration method; see [40]. In contrast with

other domain decomposition algorithms, we have little information about the rate

of convergence of the Robin iteration method. B. Despr�es applied this idea to a

more complicated example, Helmholtz's equation in his thesis [10].

In 1998, Cai, Casarin, Elliott, and Widlund presented a new family of over-

lapping Schwarz methods which uses discontinuous iterates. The idea of the new

algorithm was inspired by Despr�es' thesis and can be considered as the overlap-

ping version of Despr�es' algorithm. This new algorithm is quite e�ective for solving

Helmholtz's equation but its analysis and implementation is complicated by the

fact that it allows the discontinuity across the arti�cial interfaces.

In this thesis, we concentrate on overlapping Schwarz algorithms using

discontinuous iterates for Poisson's equation, which can be considered as an

overlapping version of Lions' Robin iteration method. Here, the discontinuity of

the iterates of the new algorithm, which is the fundamental distinction from the

classical algorithms, is implemented by allowing multiple values on the arti�cial

interfaces. To analyze and implement this new algorithm, we need a redesign the

data structures and to de�ne new concepts and notations.

The study of new algorithm has posed many interesting questions related to how

far and in what sense the classical theory of domain decomposition methods can be

2



extended to this new setting, such as to what extent there may be a counterpart of

the geometric convergence factor of the classical Schwarz methods and of the energy

estimate of the Robin iteration methods. It is also interesting to see what new

phenomena occur and what new insight this might lend to the classical algorithms.

The �rst questions are related to how to extend the relevant notations of the

classical algorithm to a general setting and how to formulate the new algorithm

carefully to understand the di�erences between the new and classical algorithms.

One focus of this thesis is the extension and interpretation of a new algorithm

inside the classical theory. In Chapter 2 concerns the formulation of the new

algorithm in terms of the classical algorithms. The notations in [5] are revised and

extended to a new setting for Poisson's equation. The new algorithm is derived

from two intermediate algorithms with the new concepts and notations related

to the discontinuity of the iterates, the fundamental distinction from the classical

algorithms. To analyze this important property, we use a saddle-point approach

which is also used for formulating the Finite Element Tearing and Interconnecting

(FETI) method by Farhat and Roux [13]. We show that Algorithm 3 (OSM-D)

can be interpreted as a Block Gauss-Seidel method with dual and primal variables;

a new dual variable can be computed from given primal variables and the dual

variables will then be used to compute a new primal variable.

In Chapter 3, we extend the results of the classical convergence theory without

using Lagrange multiplier in some limited cases. In a special geometry in the two

overlapping subdomain case, we show that the rates of convergence on the two

nonoverlapping parts is better than that of the Robin iteration methods. Inspired

by Nataf [33] and [34], we apply his idea to Poisson problem on several overlap-

3



ping (�nite) strips and we extend this results to a general quadrilateral which is

conformally equivalent to a rectangular domain.

In Chapter 4, we analyze the algebraic structure of the new algorithm. In

classical theory, each fractional step is symmetric with respect to the L2 inner

product. However, the fractional steps of the new algorithm are nonsymmetric

in general. Therefore, it is impossible to apply the classical conjugate gradient

method. The algebraic convergence theory of overlapping Schwarz methods in [3]

is applied.

The algebraic systems of the primal variables can be reduced to those of the

dual variables. In the two overlapping subdomain case, the dual system results

in a block 2-cycle matrix. We analyze the structure of the subblock matrices

algebraically and check their numerical behavior in Chapter 5.

A convergence theory using the Lagrange multipliers is introduced in Chapter 6.

First, we prove the convergence of the new algorithm in a special geometry. We

�nd a condition for the existence of a uniform convergence factor for the dual

variables, which implies convergence of the primal variables, in the two overlapping

subdomain case with any Robin boundary condition. This result shows a relation

between the arti�cial interface condition and the other conditions which are related

to the geometry and the overlap. This new idea is extended to the general two

overlapping subdomain case with any Robin boundary condition. In this general

cases, we also �nd a condition for the existence of a uniform convergence factor.

Several numerical examples and results are presented in Chapter 7. The nu-

merical results for the general case with cross points indicate possible extensions

of this new approach to this more general case.
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We will next provide some mathematical background and establish some nota-

tions which will be needed throughout.

1.2 Sobolev Spaces

In this section, we recall some basic results on Sobolev spaces for our work. For a

description of the general spaces and their properties, see [1, 30].

Let 
 be a bounded Lipschitz region in R
d. The space L2(
) is de�ned as the

closure of C1(
) in the norm,

jjujjL2(
) = (
Z


juj2dx)1=2 <1:

The H1-seminorm and norm of u 2 H1(
) are, respectively,

juj2H1(
) =
Z


jruj2 dx;

jjujj2H1(
) = juj2H1(
) + jjujj2L2(
):

To de�ne traces of Sobolev spaces on boundaries, we also need the fractional

order Sobolev spaces,

H�(
) (0 < � < 1)

de�ned by the completion of C1(
) in the following norm,

jjujjH�(
) = (jjujjL2(
 + jujH�(
))
1=2;

where

jujH�(
) =
Z



Z



ju(x)� u(y)j2
jx� yjd+2� dx dy:

A more detail introduction to the important tools used in domain decomposition

theory can be found in [41, 6, 44].
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1.2.1 Trace Theorems

For a continuous function u on 
, the trace of u can be simply de�ned by restricting

u to @
. The trace theorems extend this de�nition to more general functions; see [1]

for the general theory.

Theorem 1.1 If 
 is a Lipschitz domain and u 2 Hs(
), 1=2 < s � 1, then,

0u = u j@
2 Hs�1=2(@
):

Moreover, the restriction operator from Hs(
) to Hs�1=2(@
) is onto and contin-

uous,

jj0ujjHs�1=2(@
) � C(s;
)jjujjHs(
);

where C(s;
) is a constant that depends only on s and 
.

In Chapter 6, we will use a variant of this result.

Theorem 1.2 If 
 is a Lipschitz domain, then

j0uj2H1=2(@
) � Cjuj2H1(
);

and

jj0ujj2L2(@
) � CT (juj2H1(
) + jjujj2L2(
)):

1.2.2 Poincar�e and Friedrichs Inequalities

The Poincar�e and Friedrichs inequalities are important to establish the equivalence

of certain norms. Their proofs are using Rellich's theorem, i.e., that the unit ball

of Hm(
) is relatively compact in Hm�1(
). These results are used in the proof

of the existence of weak solutions of elliptic boundary value problems; see [29].
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In particular, when considering domain decomposition methods, we are inter-

ested in formulations of these inequalities which specify the dependence of the

constants on the domain 
; see [35] for elementary proofs. Let 
 2 Rd and let H


be the diameter of 
.

Theorem 1.3 (Poincar�e's Inequality) There exists a constant C(
) that de-

pends on 
 but is invariant under dilation of 
, such that

jjujj2L2(
) � C(
)H2

(juj2H1(
) +

1

Hd+2



j
Z


udxj2); 8u 2 H1(
):

When we study elliptic problem with Dirichlet boundary conditions on parts of

boundary � � @
, we need to consider a Sobolev spaceH1
�(
) = fu 2 H1(
)juj� =

0g. The Poincar�e'-Friedrichs' Inequality gives an equivalence of norms on this

space. The idea of its proof can be found in [35] and we can also �nd a proof in

[41].

Theorem 1.4 (Poincar�e-Friedrichs' Inequality) Let � � @
 with positive

measure. Then,

jjujj2L2(
) � C(
;�)H2

(juj2H1(
) +

1

H

(
Z
�
0u d�)

2); 8u 2 H1(
);

where C(
;�) is a constant that is invariant under dilation of 
 and �.

In Chapter 6, we will use the classical Friedrichs' Inequality,

Theorem 1.5 (Friedrichs' Inequality) If � � @
 with positive measure. Then,

jjujj2L2(
) � CF (juj2H1(
) +
Z
�
juj2 d�); 8u 2 H1(
):

where CF depends on 
 and �.
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Corollary 1.1 If � � @
 with positive measure. Then, the H1-seminorm is an

equivalent norm on H1
�(
), i.e.,

jjujjH1(
) � CjujH1(
); 8u 2 H1
�(
):

1.3 Symmetric Positive De�nite Matrices

The following properties of symmetric positive de�nite matrices will be used in

Chapter 5; see [20, 21] for a general theory.

Theorem 1.6 The product of two symmetric positive de�nite matrices A and B

is a diagonalizable matrix, whose eigenvalues are all real and positive.

Theorem 1.7 If a matrix A is symmetric positive de�nite and a matrix B is

Hermitian, then there exists a nonsingular square matrix C such that C�BC is

diagonal and C�AC = I.

From these theorems, we can prove the following two theorems.

Theorem 1.8 Let A and B be Hermitian matrices, and suppose that A is positive

de�nite. Then A�B is positive de�nite if and only if all eigenvalues of BA�1 are

less than 1.

Proof By Theorem 1.7, we can �nd a nonsingular square matrix ~C whose

inverse is C in Theorem 1.7 such that A = ~CI ~C� and B = ~CD ~C� where D =

diag(d1; d2; � � � ; dn) is diagonal. Then A � B is positive de�nite if and only if

~C(I � D) ~C� > 0, which is the case if and only if di < 1 for i = 1; 2; � � �. Since

BA�1 = ~CD ~C� ~C��1 ~C�1 = ~CD ~C�1, the eigenvalues of BA�1 are less than 1.
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Theorem 1.9 Let A and B be Hermitian square matrices, and suppose that A is

positive de�nite. Then A + B is positive de�nite if and only if all eigenvalue of

BA�1 are greater than �1.

Proof Similar to that of Theorem 1.8.

1.4 M-matrices and H-matrices

The following properties ofM -matrices and H-matrices will be used in Chapter 4;

see [19, 20, 36] for a general theory.

A order relation in the algebra of all real matrices is de�ned by elementwise

inequalities; For A = (a��) and B = (b��),

A > B , a�� > b��; 8�; 8�;

A � B , a�� � b��; 8�; 8�:

De�nition 1.1 An N-by-N matrix A = (a��) is an M-matrix if

a�� > 0 1 � � � N; a�� � 0 8� 6= �; (1.1)

and

A is regular ( A�1 exists) and A�1 � 0; (1.2)

where 0 is zero matrix.

De�nition 1.2 An N-by-N matrix A = (a��) is an H-matrix if its comparison

matrix B = (b��) =< A > is an M-matrix, where

b�� = ja��j; b�� = �ja��j � 0 8� 6= �: (1.3)
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De�nition 1.3 An N-by-N matrix A = (a��) is strictly diagonally dominant if

ja��j >
X
� 6=�

ja��j 1 � � � N; (1.4)

and weakly diagonally dominant if

ja��j �
X
� 6=�

ja��j 1 � � � N: (1.5)

Theorem 1.10 Let the N-by-N matrix A be strictly diagonally dominant and let

the sign conditions (1.1) be satis�ed. Then A is an M-matrix.

We also have the following theorem,

Theorem 1.11 (a) A strictly diagonally dominant matrix is an H-matrix.

(b) A positive de�nite matrix satisfying the condition in (1.1) is an M-matrix.

(c) An Hermitian M-matrix is positive de�nite.

1.5 Strengthened Cauchy-Schwarz Inequalities

The following Strengthened Cauchy-Schwarz (or Cauchy-Buniakowskii-Schwarz

(C.B.S.)) inequality will be used to prove the convergence of a general domain

case in section 6.2.5 ; see [11] for details.

Theorem 1.12 Given a �nite-dimensional Hilbert space H, an inner product (�; �)
on H and two subspaces H1, H2 of H such that

H1 \H2 = f0g;

then there exists

 = (H1; H2) 2 (0; 1);
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such that for all h1 2 H1 and h2 2 H2 the following strengthened C.B.S.-inequality

holds:

j(h1; h2)j � kh1kkh2k (1.6)

where the norm is induced by the inner product

khk =
q
(h; h):

Corollary 1.2 Let M be a symmetric positive de�nite matrix, and let U and V

be disjoint vector subspaces of the space on which M operates. Then there exists a

 2 [0; 1) such that

(utMv)2 � 2utMuvtMv 8u 2 U; v 2 V: (1.7)
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Chapter 2

Discontinuous Overlapping
Schwarz Methods for Poisson's
Equation

2.1 Overlapping Schwarz Algorithms for solving

Helmholtz's Equation

In a paper by Xiao-Chuan Cai, Mario A. Casarin, Jr, Frank W. Elliott, Jr, and

Olof B. Widlund [5], three domain decomposition methods were introduced for

the solution of Helmholtz's equation. They are based on the overlapping Schwarz

method and are called Algorithm 1, Algorithm 2, and Algorithm 3 in increas-

ing order of sophistication. Algorithm 1 is the classical overlapping multiplicative

Schwarz algorithm which uses Dirichlet boundary conditions at each arti�cial in-

terface and it is known to be successful for solving Poisson's problem. However,

Algorithm 1 is unsuccessful in solving Helmholtz's problem. Algorithm 2 improves

on Algorithm 1 by using approximate Sommerfeld boundary conditions at each

arti�cial interface while maintaining continuity of the iterates. Algorithm 3 is con-

structed from Algorithm 2 and allows discontinuities at each arti�cial interface.
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Algorithm 3 is a new family of domain decomposition methods which uses discon-

tinuous iterates. The idea of Algorithm 3 was inspired by the thesis of Despr�es

[10].

The basic domain decomposition algorithm considered by Despr�es is de�ned as

follows. The model problem of a Helmholtz's equation with Sommerfeld boundary

condition is given by

��u� (k(x))2u = f in 
; (2.1)

@u

@n
� iku = g on @
;

where k is a real parameter. The given region 
 is divided into two nonover-

lapping subregions 
1 and 
2, and the iteration is advanced by simultaneously

solving

��un+1j � k2un+1j = f in 
j;

@un+1j

@nj
� ikun+1j = �@u

n
out

@nout
� ikunout on �; (2.2)

@un+1j

@nj
� ikun+1j = g on @
;

in the two subregions. Here � is the arti�cial interface which is the intersection of

@
1 and @
2. We also de�ne nj as the outward normal of 
j with nout = �nj and
where unout is the previous approximate solution outside 
j.

Algorithm 3 is an overlapping version of Despr�es' method and quite e�ective in

di�erent contexts for solving Helmholtz's equation. For experimental results; see

Casarin, and Widlund [7], [5].
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2.2 Continuous and Discontinuous Overlapping

Schwarz Methods

In this thesis, we will study the convergence of Algorithm 3 for solving Poisson's

equation. The di�erence between Algorithm 2 and Algorithm 3 is whether the

continuity of the iterates is maintained or not. There are two basic alternatives:

1. the new values replace the old ones on each arti�cial interface.

2. the new and the old values are kept.

Algorithm 2 results from the �rst choice and Algorithm 3 from the second. In

[7], Algorithm 3 is called the Discontinuous Overlapping Schwarz Method

(OSM-D). So, it hereafter will be called Algorithm 3 (OSM-D). Also Algorithm

2 will be called the Continuous Overlapping Schwarz Method (OSM-C).

2.3 Variational Formulation of Algorithm 3

(OSM-D)

Algorithm 3 (OSM-D) is designed to take advantage of discontinuities and is de-

rived from the associated continuous Algorithm 2 (OSM-C). To understand Algo-

rithm 3 (OSM-D), we �rst review the variational form of Poisson's equation with

Robin boundary conditions and also derive the classical algorithm and Algorithm

2 (OSM-C).

We consider the following problem :

��u = f in 
; (2.3)

u+ �
@u

@n
= g on @
;

where 
 is a bounded region which is decomposed into several overlapping subre-
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gions. Using Green's formula, we convert (2.3) into the following variational form:

Find u 2 H1(
) such that,

a(u; v) =
Z


ru � rv + 1

�

Z
@

u v (2.4)

=
Z


f v +

1

�

Z
@

g v 8v 2 H1(
):

Restricting u and v to elements of an appropriate space V h of P 1 �nite element

function, the bilinear form of (2.4) can be written in matrix form as

utAv = a(u; v): (2.5)

2.3.1 Classical Algorithm for solving Poisson's equation

The one-level basic overlapping multiplicative Schwarz method is constructed from

a collection of overlapping subregions f
jg, which covers the given region 
, and

their boundaries @
j. The boundary @
j consists of �j, which is the part of the

given boundary @
, and the arti�cial interface �j which is a common part of @
j

and other neighboring subregions. The classical multiplicative Schwarz method,

known here as Algorithm 1, imposes a Dirichlet condition on the arti�cial interface

�j,

un+1j = (ucj)
n on �j:

We split the bilinear form a in (2.4) into the local bilinear forms aj and a
c
j de�ned

by,

a(u; v) = aj(u; v) + acj(u; v);

aj(u; v) =
Z

j
ru � rv + 1

�

Z
�j
u v (2.6)

acj(u; v) =
Z

cj

ru � rv + 1

�

Z
�cj

u v:
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The associated splitting matrices are derived simply from (2.6),

A = Aj + Ac
j; utAjv = aj(u; v); utAc

jv = acj(u; v): (2.7)

Let Rj be the rectangular restriction matrix, modi�ed from Smith, Bj�rstad, and

Gropp [43], that returns the vector of values de�ned in the interior of 
j and the

part of the given boudary @
 \ @
j , i.e.,

u
j[@
j = Rju =
�
I 0

� u(
j[�j)
u(
cjn�j)

!
: (2.8)

The local matrices, Bj, B
c
j are represented in terms of the splitting matrices Aj,

Ac
j and the restriction matrices, Rj,R

c
j.

Bj = RjAj(Rj)
t; Bc

j = Rc
jA

c
j(R

c
j)
t:

The j-th fractional step of the classical multiplicative Schwarz method can be

written as

u(n+j=p) = u(n+(j�1)=p) + A+
j (b� Au(n+(j�1)=p)); (2.9)

with A+
j = (Rj)

t(Bj)
�1(Rj). In the classical method, the matrix A+

j restricts the

residual to 
j [ �j, solves the problem on the subdomain for a correction, and

then extends it by zero onto the entire domain 
.

2.3.2 Algorithm 2 (OSM-C) for solving Poisson's equation

In Algorithm 2 (OSM-C), we use a Robin boundary condition, a more general

boundary condition, on �j given by

un+1j + ~�
@un+1j

@nj
= (ucj)

n � ~�
@(ucj)

n

@ncj
on �j: (2.10)
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To construct a local problem on each subdomain 
j from (2.10), we split the

bilinear form a in (2.4) into local bilinear forms aj and acj de�ned by,

a(u; v) = aj(u; v) + acj(u; v);

aj(u; v) =
Z

j
ru � rv + 1

�

Z
�j
u v +

1

~�

Z
�j
u v (2.11)

acj(u; v) =
Z

cj

ru � rv + 1

�

Z
�cj

u v � 1

~�

Z
�cj

u v;

where ~� is a constant in a Robin boundary condition on the arti�cial interface,

and which is not necessarily identical to �. The associated splitting matrices are

derived simply from (2.11),

A = Aj + Ac
j; utAjv = aj(u; v); utAc

jv = acj(u; v): (2.12)

To de�ne the local matrices in terms of matrices of smaller size, we introduce

some additional notations modi�ed from Smith, Bj�rstad, and Gropp [43]. Let Rj

be the rectangular restriction matrix that returns the vector of values de�ned in

the interior and the boundary of 
j, i.e.,

u
j[@
j = Rju =
�
I 0

� u(
j[@
j)
u(
cjn�j)

!
: (2.13)

The local matrices, Bj, B
c
j are represented in terms of the splitting matrices Aj,

Ac
j and the restriction matrices, Rj,R

c
j.

Bj = RjAj(Rj)
t; Bc

j = Rc
jA

c
j(R

c
j)
t:

The j-th fractional step of the multiplicative Schwarz method can be written

as

u(n+j=p) = u(n+(j�1)=p) + (Rj)
t(Bj)

�1(Rj)(b� Au(n+(j�1)=p)): (2.14)
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A local solver is de�ned by A+
j = (Rj)

t(Bj)
�1(Rj).

We now de�ne a square projection matrix Pj with zero entries except for the

diagonal elements corresponding to the indices of 
j [@
j . The projection matrix

Pj is written in terms of the restriction matrix Rj as Pj = (Rj)
tRj. With this

notation, the j-th fractional step of Algorithm 2 (OSM-C) can be rewritten as

u(n+j=p) = P c
j u(n+(j�1)=p) + PjA

+
j (b� Ac

ju(n+(j�1)=p)): (2.15)

In Algorithm 2 (OSM-C), the matrix A+
j restricts the residual to 
j [ @
j ,

solves the problem on the subdomain for a correction, and then extends it by zero

onto the entire domain 
. Thus, in this j-th fractional step x(n+j=p) is updated

only on 
j [ @
j . To maintain continuity, we overwrite the old values by the new

values on the arti�cial interfaces in Algorithm 2 (OSM-C). Therefore, Algorithm 2

(OSM-C) is easy to implement because it does not require multiple values on the

arti�cial interfaces.

We note that Algorithm 2 (OSM-C) is constructed from the local bilinear forms

(2.11). Considering these forms, we can rewrite equation (2.4) using local bilinear

forms as

Z

j
runew � rv + 1

�

Z
�j
unew v +

1

~�

Z
�j
unew v +

Z

cj

ruold � rv (2.16)

+
1

�

Z
�cj

uold v � 1

~�

Z
�j
uold v =

Z


f v +

1

�

Z
@

g v 8v 2 H1(
):

On �j the arti�cial interface of j-th step, the old values are overwritten by the new

values and are lost.
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2.3.3 Multiple values on the interface

With multiple values on the arti�cial interface, the approximate solution un+j=p in

the j-th fractional step is updated only on 
j [ @
j and de�ned by,

un+j=p =

(
unew on 
j [ @
j

uold on 
c
j

From (2.4) and (2.16), the residual corresponding to un+i=p given by,

a(un+j=p; v)�
Z


f v � 1

�

Z
@

g v =

1

~�

Z
�i
(uold � unew) v =

1

~�

Z
�i
[u] v; (2.17)

where [�] means the jump across the interface. Let U be exact solution. The error

is de�ned as en+j=p = un+j=p � U and we get the following equation,

a(en+j=p; v) = a(un+j=p; v)� a(U; v) =
1

~�

Z
�i
[u] v:

If [u] = 0 then e = 0. So continuity implies convergence.

With multiple values on the arti�cial interfaces, we can compute the residual

from only the jumps on the arti�cial interfaces. Therefore, the original problem

can be reduced to a problem of small size on the arti�cial interfaces. From this

observation, we see a similarity to algorithms such as FETI. Since the residual has

nonzero values in 
c
j without multiple values on the arti�cial interfaces, Algorithm

2 (OSM-C) cannot be formulated only in terms of the values on the arti�cial

interfaces. We now introduce Algorithm 3 (OSM-D) which allows multiple values

on the arti�cial interfaces.

2.3.4 Atomic Subdomains

The Algorithm 3 (OSM-D) can be derived from Algorithm 2 (OSM-C) by allowing

discontinuities across the arti�cial interfaces �j. Since discontinuities are allowed,
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Figure 2.1: Three atomic subdomains and two overlapping subdomains

the variational form in (2.4) must be rewritten in terms of broken forms de�ned

on a collection of certain subsets of the 
j's, and the data structure should be

redesigned and a proper function space, with multiple values on the interfaces

f�jg, needs to be constructed. We need to de�ne a good subset structure which

maintains the independent structure for each member of a collection of the subsets

with multiple values on each interface.

Since each subdomain is open and every pair of neighboring subregions has

a nonempty intersection, we can construct a family of disjoint open sets such

that each member is a proper subset of one or more subdomains. We choose the

collection of the largest open sets satisfying this condition. We call the elements

of such a family of subsets the atomic subdomains f
qg.
We will use the following notations. We hereafter use the superscript notation

for the quantities related to the atomic subdomains and subscripts for those of the
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original subdomains. Quantities with tilde are de�ned on a region including the

arti�cial interfaces where we have multiple values.

We �rst consider a product space ~V associated with f
qg. Since ~V is de�ned

independently on each 
q, the total function spaces ~V can be identi�ed with the

direct product of all continuous function spaces V q de�ned on the 
q,

~V =
naM
q=1

V q; (2.18)

where na is the number of atomic subdomains.

~u 2 ~V can be interpreted as (u1; � � � ; uq; � � � ; una) with uq 2 V q. Let V be the

continuous function space on 
. Since V is a proper subspace of ~V , we also de�ne

a function ~R from the continuous function space V to the discontinuous function

space ~V as a direct product of the ~Rq, the restricted embeddings onto atomic

subdomain 
q, de�ned by

~R =
naM
q=1

~Rq; (2.19)

2.3.5 Continuous and Discontinuous Arti�cial Interfaces

In each fractional step, the discontinuity of the values on each arti�cial interface

depends on its geometric relation to the subdomain of the fractional step. We

consider a simple example. In Algorithm 3 (OSM-D), we use the three function

spaces of the three atomic subdomains in the two overlapping subdomain case.

In the �rst fractional step, we make the iterates continuous across �2 with no

constraints across �1. In the second fractional step, we make the iterates continuous

across �1 with no constraints across �2. Thus we need a product space of three
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independent atomic subspaces for Algorithm 3 (OSM-D),

~V = V 1
M

V 12
M

V 2:

In fact, we use two proper subsets of ~V in Algorithm 3 (OSM-D), namely

~V1 = V1
M

V 2 ~V2 = V2
M

V 1:

Therefore, we have the following relations,

V � ~V1 � ~V ; V � ~V2 � ~V :

The two fractional steps of Algorithm 3 (OSM-D), in the case of two overlapping

subdomains, have two di�erent kinds of arti�cial interfaces, those that are hereafter

called the continuous arti�cial interfaces, which are located inside the subdo-

main and have the same values on the corresponding boundaries of the atomic

subdomains in the subdomain, and those that are hereafter called the discontin-

uous arti�cial interfaces, which are also formed by the part of the boundaries

of the subdomain of the fractional step.

In a general partitioning with cross points, the discontinuity exists on the part

of the arti�cial interface which is not included in the subdomain where the solu-

tion is updated. For the sake of convenience, we hereafter de�ne the concept of

discontinuous arti�cial interfaces and continuous arti�cial interfaces on the closure

of the subdomain of the fractional step. Therefore, in each fractional step, we al-

ways have a set of discontinuous arti�cial interfaces and another set of continuous

arti�cial interfaces.
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2.3.6 Algorithm 3 (OSM-D) for solving Poisson's equation

The multiple values on the arti�cial interfaces are an essential part of Algorithm 3

(OSM-D), but the multiple value formulation results in complicated data structure

for Algorithm 3 (OSM-D). We now construct the local matrices of Algorithm 3

(OSM-D) in terms of the discontinuous arti�cial interfaces and the continuous

arti�cial interfaces discussed in previous section.

From the formulas (2.10) and (2.11), we can construct an overall structure of

the local matrices for all atomic subdomains as follows. The discontinuous arti�cial

interfaces in the j-th fractional step for 
j can be de�ned as the faces of contact to


c
j. For each atomic subregion 
q, the continuous arti�cial interfaces in the j-th

fractional step for 
j can be de�ned as the part of the boundary of the atomic

subdomains in 
j which have faces of contact to certain 
i with i 6= j but is not

part of @
j .

We therefore de�ne a form ~a
q as in (2.4) with ~u 2 ~V and v 2 V and given by,

~a
q( ~Rq(~u); v) =
Z

q
ruq � rv + 1

~�

Z
�q
uq v +

1

~�

Z
�q+

uq v � 1

~�

Z
�q
�

uq v; (2.20)

where

�q+ = @
q \ f[kf@
c
kj
q � 
kgg; (2.21)

�q� = @
q \ f[kf@
kj
q � 
c
kgg;

�q = @
q \ @
 k = 1; � � � ; ns; q = 1; � � � ; na;

where ns is the number of subdomains and ~� can di�er from � on the arti�cial

interfaces. The bilinear form (2.11) can be written on each subregion as

~a
j (~u; v) =
X


q�
j

~a
q(u
q; v); ~a
cj (~u; v) =

X

q�
cj

~a
q(u
q; v): (2.22)
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We consider ~P 1 discontinuous �nite element function ~V h, permitting multiple

values on the arti�cial interfaces. The discretized associated function space of ~V ,

can be de�ned by the direct product of the function spaces (V q)h, which are �nite

element space which have degrees of freedom associated with the atomic subregion


q, and where

~V h =
naM
q=1

(V q)h: (2.23)

An element of ~V h, ~u, can be interpreted as (u1; � � � ; uq; � � � ; una) with uq 2 (V q)h.

Assuming v to be an element of V h, the continuous �nite element function space,

~a
q can be given, in matrix form on each atomic subregion 
j, by

(uq)t ~A
qv = ~a
j (u
q; v): (2.24)

The matrix form ~Aj, de�ned on 
j [ @
j , a union of atomic subdomains can

be rede�ned using (2.22) as,

~Aj =
X


q�(
j[@
j)

~A
q : (2.25)

Since ~V h allows multiple values on the interface, the number of degrees of

freedom of Algorithm 3 (OSM-D) is bigger than that of Algorithm 2 (OSM-C)

for the same problem and Algorithm 3 (OSM-D) also requires di�erent, more

complicated data structures. To formulate Algorithm 3 (OSM-D), we need to

introduce additional matrix forms. Let Rq be the rectangular restriction matrix

for each atomic subdomain that returns the vector of values de�ned in the interior

and on the boundary of 
q, i.e.,

uq = Rq~u =
�
~I ~0

� ~u
q
~u(
q)c

:

!
(2.26)
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The total restriction matrix ~R is

~R =
�
(R1)t � � � (Rna)t

�t
: (2.27)

For each atomic subregion 
q, we can de�ne a smaller local matrix Bq in terms

of ~A
q and Rq as,

Bq = Rq ~A
q(R
q)t: (2.28)

From these local matrices, we can construct a partitioned matrix ~� de�ned by,

~� = diag
�
B1 � � � Bna

�
:

The square projection matrix ~Pj is de�ned as the square matrix which has zero

entries, except for the diagonal entries corresponding to all indices corresponding

to [
q such that 
q � (
j [ @
j). The following two equations relate the Aj of

Algorithm 2 and the ~Aj of Algorithm 3 (OSM-D),

Aj = ( ~R)t ~Pj ~Aj
~R; Ac

j = ( ~R)t(~I � ~Pj) ~Aj
~R:

The j-th fractional step of Algorithm 3 (OSM-D) is built from that of Algorithm

2 and is de�ned by,

~u(n+j=p) = ~P c
j ~u(n+(j�1)=p) + ~Pj ~RA

+
j (b� ~Rt ~P c

j
~�~u(n+(j�1)=p)): (2.29)

The residual of each fractional step is computed from the contribution from each

atomic subdomain using ~A which is a discontinuous version of A in (2.5). In this

case, each atomic subregion contributes separately to ~A in the matrix computa-

tions. Computational results with Algorithm 3 (OSM-D), which will be described

in Chapter 7, show that Algorithm 3 converges under a variety of conditions.
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2.4 A Saddle-Point Approach

There are many papers regarding the Finite Element Tearing and Interconnecting

(FETI) method including Charbel Farhat and Fran�cois-Xavier Roux [12] and [13].

The FETI method is a special iterative substructuring method where Lagrange

multipliers are used to enforce the continuity conditions across the arti�cial in-

terface. Since we allow a discontinuity across the interface between neighboring

atomic subregions, we will try to study the convergence of Algorithm 3 (OSM-D)

using a Lagrange multiplier formulation.

The variational problem (2.4) with two overlapping subdomains is equivalent

to the following: Given f and g, �nd the function u that is a stationary point of

the functional

J(v) =
1

2
a(v; v)� (v; f)� 1

�
(v; g)@
; with (2.30)

(v; f) =
Z


f � v (v; g)@
 =

Z
@

g � v:

We will use the following notations. Let 
1 and 
2 be two overlapping sub-

domains which are embedded in 
 such that 
 = 
1 [ 
2. We then have three

atomic subregions 
1, which is the nonoverlapping part of 
1, 

2, which is the

nonoverlapping part of 
2, and 
12, which is the overlapping part of 
1 and 
2.

Let �1 = 

12 \ 
2 and �2 = 


12 \ 
1 and let �i = 
i [ @
 for any 
i contiguous

to @
. The outward normal of 
i is ni, i = 1; 2.

Solving the above problem is equivalent to �nding the three functions u1, u2,

and u12 that are stationary points of the functionals:

J1(v1) =
1

2
a(v1; v1)
1 � (v1; f)
1 � 1

�
(v1; g)@
1; (2.31)
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J2(v2) =
1

2
a(v2; v2)
2 � (v2; f)
2 � 1

�
(v2; g)@
2;

J12(v12) =
1

2
a(v12; v12)
12 � (v12; f)
12 � 1

�
(v12; g)@
12;

where

a(u1; v1)
1 =
Z

1
ru1 � rv1 + 1

�

Z
�1
u1 v1 � 1

~�

Z
�1
u1 v1;

a(u2; v2)
2 =
Z

2
ru2 � rv2 + 1

�

Z
�2
u2 v2 � 1

~�

Z
�2
u2 v2;

a(u12; v12)
12 =
Z

12
ru12 � rv12 + 1

�

Z
�12

u12 v12 +
1

~�

Z
�1[�2

u12 v12;

(v1; f)
1 =
Z

1
f v1; (v1; g)@
1 =

Z
�1
g v1;

(v2; f)
2 =
Z

2
f v2; (v2; g)@
2 =

Z
�2
g v2;

(v12; f)
12 =
Z

12

f v12; (v12; g)@
12 =
Z
�12

g v12;

that satisfy the continuity conditions across the two interfaces,

u1 = u12 on �1 u12 = u2 on �2: (2.32)

Solving the variational problems in (2.31) with the continuity conditions (2.32) is

equivalent to �nding the saddle point of the Lagrangian

J�(v1; v2; v12; �1; �2)

= J1(v1) + J2(v2) + J12(v12) + (v12 � v1; �1) + (v12 � v2; �2);

(v12 � v1; �1) =
Z
�1
�1(v

12 � v1); (v12 � v2; �2) =
Z
�2
�2(v

12 � v2):

This means �nding functions u1, u2, and u12 and Lagrange multiplier �1 and �2

that satisfy

J�(u1; u2; u12; �1; �2) � J�(u1; u2; u12; �1; �2) � J�(v1; v2; v12; �1; �2); (2.33)

for any admissible v1, v2, v12, �1, and �2.
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2.5 An Algebraic Formulation of Algorithm 3

(OSM-D)

2.5.1 Notations in the Two Overlapping Subdomain Case

Ω Ω  Ω
1 12

2

Γ Γ
12

Figure 2.2: An illustration of the two overlapping subdomain with two arti�cial
interfaces which is allowed to have discontinuity (multiple values)

To construct an algebraic formulation of Algorithm 3 (OSM-D) for the two

overlapping case, we will use the following notations. Within the three atomic

subdomains 
1, 
12, and 
2, we denote the number of interior and boundary

nodal unknowns except the unknowns on the two arti�cial interfaces by n1a, n
12
a ,

and n2a respectively and the number of the two arti�cial interfaces �1 and �2 nodal

unknowns by nI1 and nI2. We also de�ne the number of interior and boundary

nodal unknowns except the unknowns on the arti�cial interfaces of two subdomain


1 = 
1 [ 
12 [ �2, and 
2 = 
12 [ 
2 [ �1 by ns1 and ns2 respectively. With

a certain numbering, we have the following two connectivity matrices for the two

Lagrange multipliers on the two arti�cial interfaces,

I1 =
�
01 I122

�
; I2 =

�
I121 02

�
;

Ic2 =
�
01 I122

�
; Ic1 =

�
I121 02

�
;
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where 0i is an nIi � nia; i = 1; 2; and 0i is an nIi � nsi ; i = 1; 2; zero matrix and I12i

is the nIi � nIi ; i = 1; 2; identity matrix between the atomic subdomains 
12 and


i; i = 1; 2; respectively.

To formulate a two overlapping subdomain problem, we need to de�ne the fol-

lowing submatrices as well as matrix forms A1, A2, and A12 and the local matrices

B1, B2, and B12 of section 2.3.6,

~� = diag
�
B1 B12 B2

�
;

~B1 = diag
�
B1 B12

�
; ~B2 = diag

�
B12 B2

�
;

~f1 =
�
f 1 f 12

�t
; ~f2 =

�
f 12 f 2

�t
;

Bc
1 = B2; Bc

2 = B1; f c1 = f 2; f c2 = f 1;

with

~f =
�
f 1 f 12 f 2

�t
; f = ~Rt ~f; (2.34)

and the following vector notations for the solution,

~u1 =
�
u1 u12

�
; ~u2 =

�
u12 u2

�
; uc1 = u2; uc2 = u1: (2.35)

The two fractional steps of Algorithm 3 (OSM-D) can be written as two prob-

lems with two positive de�nite matrices B1 and B2,

B1 = ~Rt ~B1; B2 = ~Rt ~B2; f1 = ~Rt ~f1; f2 = ~Rt ~f2; u1 = ~Rt ~u1; u2 = ~Rt ~u2;

(2.36)

The �rst problem is related to the �rst fractional step and is the following,

B1u1 = f1 + (I1)
T�2; Bc

1u
c
1 = f c1 � (Ic1)

T�2; I1u1 = Ic1u
c
1; (2.37)
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the other is,

B2u2 = f2 + (I2)
T�1; Bc

2u
c
2 = f c2 � (Ic1)

T�1; I2u2 = Ic2u
c
2: (2.38)

We note that the notations and ideas of this section can be generalized to the

case of general overlapping subdomains with regions with cross points.

2.5.2 Algebraic System for the Two Overlapping Subdo-
main Case

Assuming that u1, u2, and u12 are elements in the appropriate spaces, the problems

in section 2.4 results in a discrete problem and the following algebraic system:

B1u1 = f 1 � (I1)T�1; B2u2 = f 2 � (I2)T�2; (2.39)

B12u12 = f 12 + (I121 )T�1 + (I122 )T�2

I1u1 = I121 u12; I2u2 = I122 u12

or 0
BBBBBB@

B1 0 0 (I1)T 0
0 B12 0 �(I121 )T �(I122 )T

0 0 B2 0 (I2)T

I1 �I121 0 0 0
0 �I122 I2 0 0

1
CCCCCCA

0
BBBBBB@

u1

u12

u2

�1
�2

1
CCCCCCA
=

0
BBBBBB@

f 1

f 12

f 2

0
0

1
CCCCCCA
: (2.40)

In this setting, the Lagrange multipliers �1 and �2 measure the error between

the exact solution,

U = (U1; U12; U2); with B1U1 = f 1; B2U2 = f 2; B12U = f 12

and the approximate solution,

~u = (u1; u12; u2):
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Given the continuity of u1 and u12 in the �rst fractional step, we have

B1u1 = Rt
1(B

1u1 +B12u12)

= Rt
1(f

1 + f 12 + (I122 )T�2) = f1 + (I122 )T�2:

Given the continuity of u2 and u12 in the second fractional step, we have

B2u2 = Rt
2(B

2u2 +B12u12)

= Rt
2(f

2 + f 12 + (I121 )T�1) = f2 + (I121 )T�1:

Finally, if we have continuity across both interfaces,

Au = Rt(B1u1 +B12u12 +B2u2)

= Rt(f 1 � (I1)T�1 + f 12 + (I121 )T�1 + (I122 )T�2 + f 2 � (I2)T�2)

= Rt(f 1 + f 12 + f 2) = f:

We note that the notations and ideas of this section can be generalized to the

case of general overlapping subdomains for regions with cross points.

2.5.3 Algorithm 3 (OSM-D) as a Block Gauss-Seidel method

In this section, we will study Algorithm 3 (OSM-D) for two overlapping subdomains

as a Block Gauss-Seidel method. For given u1n, u
12
n , and u

2
n, a new value �n2 can be

obtained from the following equation,

�n2 = I2(f 2 � B2u2n) = Ic1(f
2 �B2u2n):

Given �n2 , the �rst fractional step can be written as in section 2.5.2,

u
n+1=2
1 = (B1)

�1(f1 + (I1)
T�n2 ))

= (B1)
�1(f1 + (I1)

T I2(f 2 �B2u2n))

= (B1)
�1(f1 + (I1)

T Ic1(f
2 �B2u2n)):
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The last part of the previous equations matches Algorithm 3 (OSM-D) which allows

new and old data on the arti�cial interface between 
2 and 
c
2 = 
1. Since the

Lagrange multiplier �n2 is obtained from the continuous fractional solution un in


2, the old and new values of un on the arti�cial interface of 
2 are equal and we

can use either of them. Since we will update the fractional solution un+1=2 in 
1, it

is reasonable to use the outside interface values which keep their value in the next

fractional step and a�ects the new fractional solution. From the previous step, we

have the fractional solution u1n+1=2 and u12n+1=2. Also �
n+1=2
1 can be obtained from

the equation,

(I1)T�1 = f 1 � B1u1; (2.41)

which can be used to rewrite the next equation for �
n+1=2
1 and u1n+1=2,

�
n+1=2
1 = I1(f 1 �B1u1n+1=2) = Ic2(f

1 � B1u1n+1=2):

The second fractional step begins with �
n+1=2
1 and we get u12n+1 and u

2
n+1 using the

same process,

un+12 = (B2)
�1(f2 + (I2)

T�
n+1=2
1 )

= (B2)
�1(f2 + (I2)

T I1(f 1 �B1u1n+1=2))

= (B2)
�1(f2 + (I2)

T Ic2(f
1 � B1u1n+1=2)):

We need the last equation for the same reason as explained in the paragraph below

the equation for u
n+1=2
1 . If we add the following relation,

u1n+1 = u1n+1=2; (2.42)
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and we then obtain un+1. Finally, we need to get �n+12 used in the next iteration

step for un+3=2,

�n+12 = I2(f 2 �B2u2n+1) = Ic1(f
2 �B2u2n+1):

The two vectors �1 and �2 play a main role in communicating data between the two

fractional steps and updating the data. Therefore, the convergence of Algorithm

3 (OSM-D) is strongly related to that of the Lagrange multipliers �1 and �2.

It happens when the two vectors �1 and �2 reach the exact Lagrange multiplier

values of the exact solution. We will therefore study the behavior of the Lagrange

multipliers which is related to the data on the arti�cial interfaces.

The notation and idea of this section can be generalized to the case of the sev-

eral overlapping subdomains. For an algebraic formulation as a block Gauss-Seidel

method, Lagrange multipliers are essential. There is no di�erence between Algo-

rithm 2 (OSM-C) and Algorithm 3 (OSM-D) for overlapping subdomains without

cross points. However, with cross point, Algorithm 2 (OSM-C) does not maintain

the old value on the boundary of the complementary subdomain which is essen-

tial to produce suitable Lagrange multipliers. Therefore, Algorithm 2 (OSM-C),

cannot in the general case be formulated using the methods of this section.

2.6 Derivation of the fractional steps

We want to show that Algorithm 3 (OSM-D) in (2.29) is identical to the process

given by the Block Gauss-Seidel algorithm in the previous sections. The frac-

tional steps of Algorithm 3 (OSM-D) for two overlapping subdomains are written
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according to equation (2.29) as,

~un+1=2 = ~P c
1 ~un + ~P1 ~RA

+
1 (b� ~Rt ~P c

1
~�~un)

~un+1 = ~P c
2 ~un+1=2 + ~P2 ~RA

+
2 (b� ~Rt ~P c

2
~�~un+1=2):

We will also check the structure of the Lagrange multipliers and the fractional

steps. Since we have used matrices which have smaller dimension than the matrices

in (2.29), we need the following identities

(I1)
T Ic2 = R1

~Rt ~P c
1 ; (I2)

T Ic1 = R2
~Rt ~P c

2 : (2.43)

From these identities, we have the following relation,

(B1)
�1 = ~P1 ~RA

+
1
~Rt ~P1; (B2)

�1 = ~P2 ~RA
+
2
~Rt ~P2:

We write the fractional solution u
n+1=2
1 for each subdomain as,

u
n+1=2
1 = (B1)

�1(f1 + (I1)
T�n2 )

= (B1)
�1(f1 + (I1)

T I2(f 2 � B2u2n))

= (B1)
�1(f1 +R1

~Rt ~P c
1 (f

2 � B2u2n))

= (B1)
�1(R1

~Rt ~P1 ~f + R1
~Rt ~P c

1
~f � R1

~Rt ~P c
1
~�un)

= (B1)
�1R1( ~R

t ~f � ~Rt ~P c
1
~�un)

= (B1)
�1R1(b� ~Rt ~P c

1
~�~un);

and un+12 is also obtained similarly,

un+12 = (B2)
�1R2(b� ~Rt ~P c

2
~�~un+1=2): (2.44)

We can now see the relation between the discontinuous and continuous function

spaces in Algorithm 3 (OSM-D). The operator ~R and the transpose ~Rt communi-

cate the data between the discontinuous and continuous spaces with the projection
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operators ~P1, ~P2, ~P
c
1 , and ~P c

2 . In each fractional step, we keep the old values out-

side the subregion where the solution is updated by new values. We can therefore

see that the algorithm (2.29) and algorithm of the previous sections are identical.
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Chapter 3

Convergence Theory for
Overlapping Strips and General
Quadrilaterals

3.1 Introduction

In this chapter, we develop a theory of the convergence of Algorithm 3 (OSM-

D) for several overlapping strips without cross points. In section 3.2, we review

the convergence in the nonoverlapping subdomain case. In section 3.3, we study

conditions for convergence of Algorithm 3 in the case of two overlapping general

subdomains. In section 3.4, we show the convergence of Algorithm 3 (OSM-D)

for two overlapping rectangular subdomains. In section 3.5, we show that the

convergence is geometric for the case of several strips. The basic idea of that

section is inspired by Nataf [33] and [34]. In the �nal section 3.6, we extend the

results to a general quadrilateral which is conformally equivalent to a rectangular

domain.
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3.1.1 Basic idea and Notation

We begin this chapter by introducing the basic idea. We consider the Poisson

problem with Robin boundary condition as in Chapter 1 and we will also use the

de�nitions and notations therein. The main idea in this chapter is the energy

estimate used in [27]. In nonoverlapping subdomain case, P. L. Lions has proven

the convergence of the Robin iteration method using such an energy estimate. We

will study the extension of this methods for the overlapping subdomain cases.

Let 
 be a bounded open set inR2. We also assume that the various boundaries

including the original boundary and arti�cial interfaces are smooth enough to

de�ne an outward normal n for the di�erent subdomains. We consider a harmonic

function, i.e., a function v such that

��v = �(@
2v

@x2
+
@2v

@y2
) = 0: (3.1)

Multiplying by v and using Green's identity and the identity

AB =
1

4
[(A+ B)2 � (A� B)2];

we have,

jvj2H1(
) =
Z Z



(
@v

@x
)2 + (

@v

@y
)2d
 =

Z
@

v
@v

@n
dS (3.2)

=
1

4~�

Z
@

(v + ~�

@v

@n
)2dS � 1

4~�

Z
@

(v � ~�

@v

@n
)2dS:

Since we use the concept of subdomains and atomic subdomains in this chapter,

we need to use the separate notations for the two di�erent kinds of domains. Let

u
n+j=p
i be the j-th approximation of u in 
i (a subdomain) and (ui)n+j=p be the

j-th approximation of u in 
i (an atomic subdomain) at step n. With the error
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e
n+j=p
i = ui � u

n+j=p
i , e

n+j=p
i is the j-th error of u in 
i and (ei)n+j=p the j-th error

of u in 
i at step n. The outward normal of 
i is ni and of 

i is ni. Now we de�ne

the following,

A
n+j=p
j =

1

4~�

Z
�j
(e

n+j=p
j + �

@e
n+j=p
j

@nj
)2dS; (3.3)

(Aj)n+j=p =
1

4~�

Z
�j
((ej)n+j=p + �

@(ej)n+j=p

@nj
)2dS;

B
n+j=p
j =

1

4~�

Z
�j
(e

n+j=p
j � �

@e
n+j=p
j

@nj
)2dS;

(Bj)n+j=p =
1

4~�

Z
�j
((ej)n+j=p � �

@(ej)n+j=p

@nj
)2dS;

E
n+j=p
j =

Z Z

i
(
@e

n+j=p
j

@x
)2 + (

@e
n+j=p
j

@y
)2d
;

(Ej)n+j=p =
Z Z


j
(
@(ej)n+j=p

@x
)2 + (

@(ej)n+j=p

@y
)2d
:

3.2 Convergence on Two Nonoverlapping Gen-

eral Subdomains

Let uni be an approximation of u in 
i at step n and let un+1i be the solution of

��un+1=21 = f1 in 
i

u
n+1=2
1 + ~�

@u
n+1=2
1

@n1
= un2 � ~�

@un2
@n2

on �1 (3.4)

u
n+1=2
1 = g1 on �1:

and

��un+12 = f2 in 
i

un+12 + ~�
@un+12

@n2
= u

n+1=2
1 � ~�

@u
n+1=2
1

@n1
on �2

un+12 = g2 on �2:
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With the error eni = ui � uni , we can take fi = 0 and gi = 0. From (3.2), we have,

En+1
1 +Bn+1

1 = An+1
1 ; En+1

2 +Bn+1
2 = An+1

2 : (3.5)

From (3.4), we have,

An+1
1 = Bn

2 ; An+1
2 = Bn+1

1 : (3.6)

By summing over n = 1; 2 in (3.5) with (3.6), we have,

En+1
1 + En+1

2 +Bn+1
2 = Bn

2 : (3.7)

By summing over n = 0; � � � ;M � 1, we have,

MX
n=1

(En
1 + En

2 ) +BM
2 = B0:

By summing over M , we �nally have,

1X
n=1

(En
1 + En

2 ) = B0 <1:

Therefore, we �nd,

lim
n!1

(En
1 + En

2 ) = 0:

Since fEn
i g is a sequence of H1 seminorms and the boundary condition is zero, we

can use Friedrichs' inequality and �nally have,

lim
n!1

jjeni jjH1 = 0; i = 1; 2:

Remark: The convergence for general nonoverlapping domain case has been

proved by P.L. Lions; see [27].
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3.3 A Condition for Convergence on Two Over-

lapping General Subdomains

Let un+1i be the solution of

(1) given (u1)0 2 H1(
1); (u12)0 2 H1(
12); (u2)0 2 H1(
2)

(2) 8n � 0; ��un+1=21 = f1 in 
1

u
n+1=2
1 + ~�

@u
n+1=2
1

@n1
= (u2)n � ~�

@(u2)n

@n2
on �1

u
n+1=2
1 + �

@u
n+1=2
1

@n1
= g1 on �1 [�12

(3) ��un+12 = f2 in 
2

un+12 + ~�
@un+12

@n2
= (u1)n+1=2 � ~�

@(u1)n+1=2

@n1
on �2

un+12 + �
@un+12

@n2
= g2 on �12 [ �2:

With the error e
n+i=2
i = ui � u

n+i=2
i (or (ei)n+i=2 = ui � (ui)n+i=2), we can take

fi = 0 and gi = 0. From (3.2), we have,

An+1=2
1 > Bn+1=2

1 ; Bn+1=2
2 > An+1=2

2

An+1
1 > Bn+1

1 ; Bn+1
2 > An+1

2 ;

(En+1=2)1 < E
n+1=2
1 ; (En+1)2 < En+1

2 :

For Algorithm 3 (OSM-D), we have,

A
n+1=2
2 = An+1

2 ; An+1
1 = A

n+3=2
1 :

If the following relations are true,

A
n+1=2
1 > B

n+1=2
2 ; An+1

2 > Bn+1
1 ; (3.8)
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then, we have,

A
n+1=2
1 > A

n+1=2
2 ; An+1

2 > An+1
1 ;

and we obtain,

A
n+1=2
1 > A

n+3=2
1 : (3.9)

This is the fundamental idea. In contrast with the nonoverlapping case, which

allows comparison of the quantities on the same arti�cial interfaces, we need to

compare certain quantities on two di�erent arti�cial interfaces in the two overlap-

ping subdomain case. Therefore the relation between the two arti�cial interfaces

is required in the study of the convergence of Algorithm 3 (OSM-D).

3.4 Convergence on a Rectangular Domain

In this section, we will develop a convergence proof of Algorithm 3 (OSM-D) for a

rectangular domain. For the �rst fractional step, we have

�en+1=2 = en+1=2xx + en+1=2yy = 0 in D1; (3.10)

where D1 is the rectangle f(x; y)j0 < x < 1; 0 < y < l�1g whose east side

f(x; y)jx = 1; 0 � y � l�1g, west side f(x; y)jx = 0; 0 � y � l�1g, and south

side f(x; y)j0 � x � 1; y = 0g have homogeneous boundary condition. The north

side f(x; y)j0 � x � 1; y = l�1g has the following nonhomogeneous Robin boundary
condition for a given en,

en+1=2 + ~�
@en+1=2

@y
= en + ~�

@en

@y
: (3.11)

The second fractional step can be written as follows,

�en+1 = en+1xx + en+1yy = 0 in D2; (3.12)
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where D2 is the rectangle f(x; y)j0 < x < 1; l�2 < y < 1g whose east side

f(x; y)jx = 1; l�2 � y � 1g, west side f(x; y)jx = 0; l�2 � y � 1g, and north

side f(x; y)j0 � x � 1; y = 1g have homogeneous boundary condition. The south

side f(x; y)j0 � x � 1; y = l�2g has the following nonhomogeneous Robin boundary
condition for a given en+1=2,

en+1 � ~�
@en+1

@y
= en+1=2 � ~�

@en+1=2

@y
: (3.13)

3.4.1 A Basic Computation

In this section, we will carry out the basic computation to support the results of

the following sections. We will consider the following quantity,

G(y) =
1

~�

Z 1

0
ju+ ~�uyj2dx: (3.14)

We have the following expression for its �rst derivative,

H(y) = G0(y) = 2
Z 1

0
(
1

~�
uuy + juyj2 + u uyy + ~�uy uyy) dx

= 2 (
1

~�
A0 +B0 + ~�C0):

We also need the �rst derivative of H at y,

H 0(y) = 2
Z 1

0
(
1

~�
(juyj2 + u uyy) + (3 uy uyy + u uyyy) + ~� (juyyj2 + uy uyyy)) dx

= 2
1

~�
(A1 + A2) + 2 (3B1 +B2) + 2 ~� (C1 + C2):

H(y) � 0 since

� A0 =
R 1
0 u uydx � 0 since A0

0 = 2 (
R 1
0 juyj2 + juxj2dx), with A0(0) = 0.

� B0 =
R 1
0 (juyj2 + u uyy)dx � 0 since

R 1
0 (juyj2 + u uyy)dx =

R 1
0 (juyj2 + juxj2)dx:
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� C0 =
R 1
0 uy uyydx = � R 10 uy uxxdx � 0 since C 0

0 =
R 1
0 juyyj2 + juxyj2 dx, with

C0(0) = 0.

H 0(y) � 0 since

� A1 =
R 1
0 juyj2dx � 0.

� A2 =
R 1
0 u uyydx � 0 since

R 1
0 u uyydx = � R 10 u uxxdx = R 1

0 juxj2dx � 0.

� B1 =
R 1
0 uy uyydx = C0 � 0.

� B2 =
R 1
0 u uyyydx � 0 since B0

2(y) =
R 1
0 (juxyj2 + juxxj2) dx with B2(0) = 0.

� C1 =
R 1
0 juyyj2dx � 0.

� C2 =
R 1
0 uy uyyydx � 0 since

R 1
0 uy uyyydx =

R 1
0 juxyj2 dx � 0.

Therefore, H 0(y) � 0 is true. The function H(y) is also a strictly monotonically

increasing function.

3.4.2 The di�erence between A
n+i=2
1 and A

n+i=2
2 as a function

of the size of the overlap

Without loss of generality, we will compare A
n+1=2
1 and A

n+1=2
2 in the �rst fractional

step,

Gn+1=2(l�1) = A
n+1=2
1 =

1

4~�

Z
�1
(en+1=2 + ~�

@en+1=2

@n
)2dS

Gn+1=2(l�2) = A
n+1=2
2 =

1

4~�

Z
�2
(en+1=2 + ~�

@en+1=2

@n
)2dS:

From the mean value theorem for Gn+1=2, we have

Gn+1=2(l�1)�Gn+1=2(l�2) = (Gn+1=2)0(z)(l�1 � l�2)

= Hn+1=2(z)(l�1 � l�2); l�2 < z < l�1 :

From the results of subsection 3.4.1, we have,

Hn+1=2(l�2) < Hn+1=2(z) < Hn+1=2(l�1): (3.15)
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Therefore, we have,

Hn+1=2(l�2)(l�1 � l�2) < Gn+1=2(l�1)�Gn+1=2(l�2) < Hn+1=2(l�1)(l�1 � l�2):

From this, we have,

Gn+1=2(l�1)

Gn+1=2(l�2)
> (1 +

(Gn+1=2)0(l�2)

Gn+1=2(l�2)
(l�1 � l�2));

Gn+1=2(l�2)

Gn+1=2(l�1)
> (1� (Gn+1=2)0(l�1)

Gn+1=2(l�1)
(l�1 � l�2)):

Let l = l�1 � l�2 be the size of the overlap and let D�
1 = (log(G�)0(l�1) and

D�
2 = (log(G�)0(l�2), respectively. Since D

�
1 > 0 and D�

2 > 0, we have,

(1�D
n+1=2
1 l)Gn+1=2(l�1) < Gn+1=2(l�2) < (1 +D

n+1=2
2 l)�1Gn+1=2(l�1): (3.16)

For the second fractional step, we have a similar formula,

(1�Dn+1
2 l)Gn+1(l�2) < Gn+1(l�1) < (1 +Dn+1

1 l)�1Gn+1(l�2): (3.17)

3.4.3 Convergence rate for a single fractional step

In this section, we compare the two quantities A
n+1=2
1 and A

(n+1)+1=2
1 . We have the

following relations for Algorithm 3 (OSM-D),

A
n+1=2
2 � An+1

2 = A
n+1=2
2 � B

n+1=2
2 = (En+1=2)1 > 0; (3.18)

An+1
1 � A

(n+1)+1=2
1 = An+1

1 �Bn+1
1 = (En+1)2 > 0:

From the results above, we have,

A
n+1=2
1 > (1 +D

n+1=2
2 l)A

n+1=2
2

> (1 +D
n+1=2
2 l)(1 +Dn+1

1 l)An+1
1 + (1 +D

n+1=2
2 l)(En+1=2)1

> (1 +D
n+1=2
2 l)(1 +Dn+1

1 l)A
(n+1)+1=2
1

+ (1 +D
n+1=2
2 l)(1 +Dn+1

1 l)(En+1)2 + (1 +D
n+1=2
2 l)(En+1=2)1;
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and

An+1
2 > (1 +Dn+1

1 l)(1 +D
(n+1)+1=2
2 l)A

(n+1)+1
2

+ (1 +Dn+1
1 l)(1 +D(n+1)+1=2

2 l)(E(n+1)+1=2)1 + (1 +Dn+1
1 l)(En+1)2;

with

(1 +D
n+1=2
2 l)�1(1 +Dn+1

1 l)�1 < 1;

(1 +Dn+1
1 l)�1(1 +D

(n+1)+1=2
2 l)�1 < 1:

The convergence rate factors thus depend on the overlapping size.

3.4.4 The convergence of Algorithm 3 (OSM-D)

If we apply the idea in the previous section for n = 0, we have,

A
1=2
1 > (1 +D

n+1=2
2 l)(1 +Dn+1

1 l)A
(n+1)+1=2
1

+
i=nX
i=0

(
j=iY
j=0

(1 +D
j+1=2
2 l)(1 +Dj+1

1 l))(Ei+1)2

+
i=nX
i=0

(
j=i�1Y
j=0

(1 +D
j+1=2
2 l)(1 +Dj+1

1 l))(1 +D
i+1=2
2 l)(Ei+1=2)1;

and

A1
2 > (1 +Dn+1

1 l)(1 +D
(n+1)+1=2
2 l)A

(n+1)+1
2

+
i=nX
i=0

(
j=iY
j=0

(1 +Dj+1
1 l)(1 +D

(j+1)+1=2
2 l))(E(i+1)+1=2)1

+
i=nX
i=0

(
j=i�1Y
j=0

(1 +Dj+1
1 l)(1 +D

(j+1)+1=2
2 l))(1 +Di+1

1 l)(Ei+1)2:

Finally we can let n go to in�nity and we have,

A
1=2
1 >

i=1X
i=0

(
j=iY
j=0

(1 +D
j+1=2
2 l)(1 +Dj+1

1 l))(Ei+1)2

+
i=1X
i=0

(
j=i�1Y
j=0

(1 +D
j+1=2
2 l)(1 +Dj+1

1 l))(1 +D
i+1=2
2 l)(Ei+1=2)1;

45



and

A1
2 >

i=1X
i=0

(
j=iY
j=0

(1 +Dj+1
1 l)(1 +D

(j+1)+1=2
2 l))(E(i+1)+1=2)1

+
i=1X
i=0

(
j=i�1Y
j=0

(1 +Dj+1
1 l)(1 +D

(j+1)+1=2
2 l))(1 +Di+1

1 l)(Ei+1)2:

This means that

(
j=nY
j=0

(1 +D
j+1=2
2 l)(1 +Dj+1

1 l))(En+1)2 ! 0 as n!1;

and that

(
j=nY
j=0

(1 +Dj+1
1 l)(1 +D

(j+1)+1=2
2 l))(E(n+1)+1=2)1 ! 0 as n!1:

and that

(En+1)2 ! 0; (E(n+1)+1=2)1 ! 0 as n!1: (3.19)

Since f(En)1g and f(En+1=2)2g are sequences of H1 seminorms over 
1 and 
2

respectively and the original boundary condition is zero, we can use Friedrichs'

inequality and we �nally have,

lim
n!1

jjenjjH1(
1) = 0; lim
n!1

jjen+1=2jjH1(
2) = 0: (3.20)

Compared with the nonoverlapping case, we just have shown that we have a better

rate of convergence on the two parts that are covered only once since the weighted

values converge to zero and the weights are strictly greater than 1. We will extend

the geometric convergence result for Algorithm 3 (OSM-D) on two overlapping

strip subdomains in the next section. Using conformal mapping and the results in

this section, we can extend the result on the convergence of Algorithm 3 (OSM-D)

to a more general domain, see section 3.6.
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3.5 Geometric Convergence on Several Strips

We will now show the geometric convergence of Algorithm 3 (OSM-D) for several

overlapping strips following F. Nataf [33] and [34]. The author of these pa-

pers uses open boundary condition for the convection-di�usion equation with an

approximate factorization of the convection-di�usion operator and proves the con-

vergence on several overlapping strips for convection-di�usion equations. Since we

use a Robin boundary condition, we can �nd certain similarity between these two

di�erent cases. To apply the idea of [33] and [34], we will consider the following

factorization of the operator �� in the two-dimensional case,

��e = �( @
@y

+ i
@

@x
) (

@

@y
� i

@

@x
)e: (3.21)

In this section, we assume the domain 
 is a unit square. We also assume zero

Dirichlet boundary condition on the two boundary segments f(x; y)j0 � x � 1; y =

0g [ f(x; y)j0 � x � 1; y = 1g and zero Robin boundary condition with � = ~�

on the other two boundary segments f(x; y)j0 � y � 1; x = 0g [ f(x; y)j0 � y �
1; x = 1g. We have the following simple boundary conditions on the two di�erent

sides of the arti�cial interfaces �j,

e+ ~�ey = ~�(ey +
e

~�
); on the top side;

e� ~�ey = �~�(ey � e

~�
) on the bottom side:

So we have the following equation for the factorization of the operator,

��e = �( @
@y

+
1

~�
)(
@

@y
� 1

~�
)(e)� (

1

~�2
+

@2

@x2
)(e): (3.22)
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We multiply (3.22) by ey� e
~�
and integrate over the unit square. Since the following

relation holds,

@(jvj2)
@y

= 2
@v

@y
v; (3.23)

we have the following equation,

� 1

2

Z 1

0
jey � e

~�
j2jy=1 dx + 1

2

Z 1

0
jey � e

~�
j2jy=0 dx (3.24)

�
Z 1

0

Z 1

0

1

~�
jey � e

~�
j2 dydx�

Z 1

0

Z 1

0
(
e

~�2
+ exx) (ey � e

~�
) dydx = 0:

Similarly, multiplying (3.22) by �(ey + e
~�
) gives the following equation,

+
1

2

Z 1

0
jey + e

~�
j2jy=1 dx� 1

2

Z 1

0
jey + e

~�
j2jy=0 dx (3.25)

�
Z 1

0

Z 1

0

1

~�
jey + e

~�
j2 dydx+

Z 1

0

Z 1

0
(
e

~�2
+ exx) (ey +

e

~�
) dydx = 0:

We add the two equation in (3.24) and (3.25) and apply integration by part to the

last term, and obtain,

� 1

2

Z 1

0
jey � e

~�
j2jy=1 dx+ 1

2

Z 1

0
jey � e

~�
j2jy=0 dx

+
1

2

Z 1

0
jey + e

~�
j2jy=1 dx� 1

2

Z 1

0
jey + e

~�
j2jy=0 dx

� 2

~�

Z 1

0

Z 1

0
(jeyj2 dydx� 2

~�

Z 1

0

Z 1

0
jexj2) dydx = 0:

Finally, we have the following relation,

2

~�

Z 1

0

Z 1

0
jeyj2 dydx+ 2

~�

Z 1

0

Z 1

0
jexj2 dydx (3.26)

+
1

2

Z 1

0
jey � e

~�
j2jy=1 dx+ 1

2

Z 1

0
jey + e

~�
j2jy=0 dx

=
1

2

Z 1

0
jey � e

~�
j2jy=0 dx+ 1

2

Z 1

0
jey + e

~�
j2jy=1 dx:
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3.5.1 Nonoverlapping Strips

In this case, we can de�ne the subdomains by,


(m) = f(x; y)j0 � x � 1; l�2(m) � y � l�1(m)g m = 1; � � � ; N;

with l�1(m) = l�2(m+1) l�2(1) = 0 and l�1(N) = 1:

We can apply the same computation for each of the subdomains and have the

following equation,

2

~�

Z 1

0

Z l�1(m)

l�2(m)

jeyj2dydx+ 2

~�

Z 1

0

Z l�1(m)

l�2(m)

jexj2dydx (3.27)

+
1

2

Z 1

0
jey � e

~�
j2jy=l�1(m)

dx+
1

2

Z 1

0
jey + e

~�
j2jy=l�2(m)

dx

=
1

2

Z 1

0
jey � e

~�
j2jy=l�2(m)

dx+
1

2

Z 1

0
jey + e

~�
j2jy=l�1(m)

dx:

To show the convergence of Algorithm 3 (OSM-D), we de�ne the following,

An
m(y) =

1

2

Z 1

0
jeny +

en

~�
j2 dx; Bn

m(y) =
1

2

Z 1

0
jeny �

en

~�
j2 dx; (3.28)

En
m =

2

~�

Z 1

0

Z l�1(m)

l�2(m)

jeny j2dydx+
2

~�

Z 1

0

Z l�1(m)

l�2(m)

jenxj2dydx:

We have the following relation from the boundary condition of Algorithm 3 (OSM-

D),

An
m(l�1(m)) = An�1

m+1(l�1(m)) = An�1
m+1(l�2(m+1)); m � N � 1

Bn
m(l�2(m)) = Bn

m�1(l�2(m)) = Bn
m�1(l�1(m�1)); 2 � m

An
N(l�1(N)) = 0; and Bn

1 (l�2(1)) = 0:

Equation (3.27) can be written as,

En
m +Bn

m(l�1(m)) + An
m(l�2(m)) = Bn

m(l�2(m)) + An
m(l�1(m))

= Bn
m�1(l�1(m�1)) + An�1

m+1(l�2(m+1)):
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Summing over m, we obtain,

X
m

(En
m +Bn

m(l�1(m)) + An
m(l�2(m))) =

X
m

(Bn
m�1(l�1(m�1)) + An�1

m+1(l�2(m+1))):

Summing this equation over n, we have the following,

X
n

(
X
m

En
m) +

X
n

(
X
m

Bn
m(l�1(m))) +

X
n

(
X
m

An
m(l�2(m)))

=
X
n

(
X
m

Bn
m�1(l�1(m�1))) +

X
n

(
X
m

An�1
m+1(l�2(m+1))):

By cancellation, we �nally have the following,

X
n

(
X
m

En
m) =

X
m

A0
m+1(l�2(m+1))): (3.29)

Therefore

lim
n!1

jenjH1 = lim
n!1

(
X
m

En
m) = 0: (3.30)

Since the original boundary condition is zero, we can use Friedrichs' inequality and

�nally have,

lim
n!1

jjenjjH1 = 0: (3.31)

3.5.2 Several Overlapping Strips

In this case, we de�ne the subdomains by a uniform subdomain size L and a

uniform overlap of Æ between neighboring subdomains,


m = f(x; y)j0 � x � 1; l�2(m) � y � l�1(m)g m = 1; � � � ; N;

with L = l�1(m) � l�2(m) Æ = l�1(m) � l�2(m+1) ; l�2(1) = 0 and l�1(N) = 1:

We de�ne the function G(y) as follows,

G(y) =
Z 1

0
jej2 dx: (3.32)

50



The function G(y) has �rst and second derivatives given by

G0(y) = 2
Z 1

0
e ey dx and G00(y) = 2

Z 1

0
(e eyy + jeyj2) dx: (3.33)

By integration by part, we �nd

1

2
G00 =

Z 1

0
(e eyy + jeyj2) dx =

Z 1

0
(jexj2 + jeyj2) dx � 0:

We introduce H(y) as the solution of the following ordinary di�erential equation,

H 00 = 0 H(0) = G(0) H(L) = G(L): (3.34)

We have,

H(y) = G(0)(1� 1

L
y) +

G(L)

L
y: (3.35)

We also have the following inequality,

(H 00 �G00) = �G00 � 0: (3.36)

From this equation, we conclude that G(y) � H(y) and we have the following

inequality,

G(y) � G(0)(1� 1

L
y) +G(L)

y

L
: (3.37)

We will use the same notations and boundary conditions as in (3.27) and (3.28) in

this section. We also have the following,

An
m(l�1(m)) = An�1

m+1(l�1(m)); m � N � 1 (3.38)

Bn
m(l�2(m)) = Bn

m�1(l�2(m)); 2 � m

An
N(l�1(N)) = 0; and Bn

1 (l�2(1)) = 0:

We now de�ne the following function in each subdomain 
m,

W n
m(x; y) = ey +

en

~�
Zn
m(x; y) = ey � en

~�
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SinceW n
m(x; y) and Z

n
m(x; y) also are harmonic with zero value on the two boundary

segments f(x; y)j0 � x � 1; y = 0g [ f(x; y)j0 � x � 1; y = 1g, we can apply the

inequality in (3.37) and we have the following relations,

An
m(l�1(m)) � (1� Æ

L
)An

m(l�2(m+1)) + (
Æ

L
)An

m(l�1(m+1)) (3.39)

Bn
m(l�2(m)) � (

Æ

L
)Bn

m(l�2(m�1)) + (1� Æ

L
)Bn

m(l�1(m�1)):

Now we want to show the following from the previous results for 0 � j � N � 2,

NX
m=1

En
m +

jX
i=0

(
Æ

L
)iBn

N�i(l�1(N�i)) +
NX

m=1

An
m(l�2(m)) (3.40)

� (
Æ

L
)j+1

N�1�jX
m=2

Bn
m(l�2(m)) + (� Æ

L
)j+1

N�1�jX
m=1

Bn
m�1(l�1(m))

+ (1� Æ

L
)
j+1X
i=1

(
NX

m=1

An�i
m (l�2(m)) (

Æ

L
)i�1) + (

Æ

L
)j+1

N�1X
m=j+2

An�2�j
m+1 (l�1(m)):

We will use mathematical induction. We will begin with the case of j = 0.

3.5.3 Geometric Convergence

(I) j=0:

We sum (3.27) over m and use the last relation of (3.38) to obtain,

NX
m=1

En
m +

NX
m=1

Bn
m(l�1(m)) +

NX
m=1

An
m(l�2(m))

=
NX

m=1

Bn
m(l�2(m)) +

NX
m=1

An
m(l�1(m))

=
NX

m=2

Bn
m(l�2(m)) +

N�1X
m=1

An
m(l�1(m)):

From the relations in (3.38), we have,

NX
m=1

En
m +

NX
m=1

Bn
m(l�1(m)) +

NX
m=1

An
m(l�2(m))

=
NX

m=2

Bn
m�1(l�2(m)) +

N�1X
m=1

An�1
m+1(l�1(m)):
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Applying relation (3.39), we have,

NX
m=1

En
m +

NX
m=1

Bn
m(l�1(m)) +

NX
m=1

An
m(l�2(m))

�
NX

m=2

(
Æ

L
)Bn

m�1(l�2(m�1)) +
NX

m=2

(1� Æ

L
)Bn

m�1(l�1(m�1))

+
N�1X
m=1

(1� Æ

L
)An�1

m+1(l�2(m+1)) +
N�1X
m=1

(
Æ

L
)An�1

m+1(l�1(m+1)):

From the last relation of (3.38) and simpli�cation, we obtain,

NX
m=1

En
m +Bn

N (l�1(N)) +
NX

m=1

An
m(l�2(m))

� (
Æ

L
)
N�1X
m=2

Bn
m(l�2(m)) + (� Æ

L
)
N�1X
m=1

Bn
m(l�1(m))

+ (1� Æ

L
)

NX
m=1

An�1
m (l�2(m)) + (

Æ

L
)
N�1X
m=2

An�1
m (l�1(m)):

From the relation (3.38), we have,

NX
m=1

En
m +Bn

N (l�1(N)) +
NX

m=1

An
m(l�2(m))

� (
Æ

L
)
N�1X
m=2

Bn
m(l�2(m)) + (� Æ

L
)
N�1X
m=1

Bn
m�1(l�1(m))

+ (1� Æ

L
)

NX
m=1

An�1
m (l�2(m)) + (

Æ

L
)
N�1X
m=2

An�2
m+1(l�1(m)):

(II) j to j+1:

We will now show the general step in the mathematical induction. We suppose

the inequality holds for some j; we want to show it also holds with j + 1. From

the relation in (3.39) and the assumption follows,

NX
m=1

En
m +

jX
i=0

(
Æ

L
)iBn

N�i(l�1(N�i)) +
NX

m=1

An
m(l�2(m)) (3.41)
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� (
Æ

L
)j+1

N�1�jX
m=2

((
Æ

L
)Bn

m�1(l�2(m�1)) + (1� Æ

L
)Bn

m�1(l�1(m�1))))

+ (� Æ

L
)j+1

N�1�jX
m=1

Bn
m�1(l�1(m)) + (1� Æ

L
)
j+1X
i=1

(
NX

m=1

An�i
m (l�2(m)) (

Æ

L
)i�1)

+ (
Æ

L
)j+1

N�1X
m=j+2

((1� Æ

L
)An�2�j

m+1 (l�2(m+1)) + (
Æ

L
)An�2�j

m+1 (l�1(m+1))):

After simpli�cation, we have,

NX
m=1

En
m +

jX
i=0

(
Æ

L
)iBn

N�i(l�1(N�i)) +
NX

m=1

An
m(l�2(m))

� (
Æ

L
)j+2

N�2�jX
m=1

Bn
m(l�2(m)) + (� Æ

L
)j+2

N�2�jX
m=1

((
Æ

L
)Bn

m(l�1(m))

+ (� Æ

L
)j+1Bn

N�1�j(l�1(N�1�j)) + (1� Æ

L
)
j+2X
i=1

(
NX

m=1

An�i
m (l�2(m)) (

Æ

L
)i�1)

+ (
Æ

L
)j+2

N�1X
m=j+3

An�2�j
m (l�1(m)):

From (3.38), we have,

NX
m=1

En
m +

j+1X
i=0

(
Æ

L
)iBn

N�i(l�1(N�i)) +
NX

m=1

An
m(l�2(m))

� (
Æ

L
)j+2

N�2�jX
m=1

Bn
m(l�2(m)) + (� Æ

L
)j+2

N�2�jX
m=1

((
Æ

L
)Bn

m(l�1(m))

+ (1� Æ

L
)
j+2X
i=1

(
NX

m=1

An�i
m (l�2(m)) (

Æ

L
)i�1) + (

Æ

L
)j+2

N�1X
m=j+3

An�3�j
m+1 (l�1(m)):

So we have proved the inequality in (3.40) for j + 1.

(III) Geometric convergence:

We have the following inequality from (3.40) with j = N � 2 and the relation

(3.38),

NX
m=1

En
m +

N�1X
i=0

(
Æ

L
)iBn

N�i(l�1(N�i)) +
NX

m=1

An
m(l�2(m)) (3.42)
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� (1� Æ

L
)
N�1X
i=1

(
NX

m=1

An�i
m (l�2(m)) (

Æ

L
)i�1):

We de�ne the following,

Cn = sup0�i�N�2
NX

m=1

An�i
m (l�2(m)): (3.43)

We prove that

(i) Cn � Cn�1: From (3.42),

NX
m=1

An
m(l�2(m)) � (1� Æ

L
)
N�1X
i=1

Cn�1 (
Æ

L
)i�1) � (1� (

Æ

L
)N�1)Cn�1

� Cn�1 for 1 � i � N � 1:

The following relation is obvious from the de�nition of Cn,

NX
m=1

An�i
m (l�2(m)) � Cn�1 for 1 � i � N � 1: (3.44)

(ii) Cn�1+�(N�1) � (1� ( Æ
L
)N�1)�Cn�1: From equation (3.42),

NX
m=1

An+j
m (l�2(m)) � (1� (

Æ

L
)N�1)Cn�1�j

� (1� (
Æ

L
)N�1)Cn�1 for j � 0:

From which, we have,

Cn+N�2 � (1� (
Æ

L
)N�1)Cn�1 for n � N � 1: (3.45)

Finally, we have,

Cn�1+�(N�1) � (1� (
Æ

L
)N�1)Cn�1+(��1)(N�1)

� (1� (
Æ

L
)N�1)�Cn�1 for n � N � 1:
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So we have the relation,

Cn+N�1 � (1� (
Æ

L
)N�1)Cn for n � N � 1: (3.46)

From this inequality, we can see that Algorithm 3 (OSM-D) with several overlap-

ping strip subdomains converges geometrically in a certain sense.

3.6 Convergence using a Conformal Mapping

3.6.1 Quadrilaterals and their Conformal Module

In this section, we consider a more general domain which is the image under a

conformal mapping of a certain rectangular domain. We consider the conformal

mapping for a bounded domain with a Jordan curve � as its boundary which is

a union of 4 analytic arcs �j (j = 1; 2; 3; 4) and such that the conformal mapping

is continuous over the closed domain 
0 = 
0 [ �0. Here 
0 is a Jordan domain

in the complex (or two-dimensional Euclidean) w-plane (w = x0 + iy0or (x0; y0)),

and we consider a system consisting of 
0 and four distinct points w1 ((x
0
1; y

0
1)), w2

((x02; y
0
2)), w3 ((x

0
3; y

0
3)), w4 ((x

0
4; y

0
4)) in a counter-clockwise order on its boundary

@
0 = �0. Such a domain is said to be a quadrilateral Q0 (see [37, 38, 15]) and is

denoted by

Q0 := f
0jw1(x
0
1; y

0
1); w2(x

0
2; y

0
2); w3(x

0
3; y

0
3); w4(x

0
4; y

0
4)g: (3.47)

The conformal module m(Q0) of Q0 is de�ned as follows. Let 
 = Rh denote a

rectangle of the form


 = Rh := f(x; y)j0 < x < a; 0 < y < bg h = a=b; (3.48)
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in the z-plane (z = x + iy). Then m(Q0) is the unique value of h for which Q0 is

conformally equivalent to the rectangular quadrilateral

Qh := f
 = Rhjz1 = 0(x1 = 0; y1 = 0); z2 = 1(x2 = 1; y2 = 0);

z3 = 1 + ih(x3 = 1; y3 = h); z4 = ih(x4 = 0; y4 = h)g:

This means, for h = m(Q0), there exists a unique conformal map

Ω’
Ω

F

Figure 3.1: An example of the conformal mapping between a rectangular domain
and a general quadrilateral

F : 
! 
0 or F (x; y) = (x0(x; y); y0(x; y)); (3.49)

which takes the four vertices of 
, zj; j = 1; 2; 3; 4, respectively, onto the four

corner points of 
0, i.e.,

F (z1) = w1; F (z2) = w2; F (z3) = w3; F (z4) = w4

Figure 3.1 shows an example of such an F . Since F is a conformal mapping, we

can de�ne F�1 as another conformal mapping de�ned by,

F�1(w1) = z1; F
�1(w2) = z2; F

�1(w3) = z3; F
�1(w4) = z4
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3.6.2 Conformal Mapping

To establish the convergence of Algorithm 3 (OSM-D) on a general quadrilateral,

we need to consider several quantities on such a region. Since the results have been

established for a rectangular domain, we use the conformal mapping in our analysis.

The di�erence between two quantities corresponding to the two domains should

result from the conformal mappings F and F�1. We can de�ne the conformal

mapping F and F�1 as,

F (x; y) = (x0(x; y); y0(x; y)) F�1(x0; y0) = F�1(x(x0; y0); y(x0; y0)): (3.50)

Also we de�ne the error vector e(x; y) on the rectangular domain and e0(x0; y0) on

the general quadrilateral can be written as follows,

e(x; y) = e0(x0(x; y); y0(x; y))

e0(x0; y0) = e(x(x0; y0); y(x0; y0)):

The normal derivative on the general quadrilateral

The normal derivative is given by

@(e0)�

@n0
= r(e0)� � n0 (3.51)

To know the relation between the normal derivative on the general quadrilateral,

@(e0)�

@n0
, and the corresponding normal derivative on the rectangular domain @e�

@n
, we

need to develop a relation re and r(e0). From a routine calculation, we have

(r(e0))t = ((e0)x0; (e
0)y0) = (ex; ey)

 @x
@x0

@x
@y0

@y
@x0

@y
@y0

!
= (re)t

 @x
@x0

@x
@y0

@y
@x0

@y
@y0

!
:

Since F is a conformal mapping, it preserve angles. Therefore the normal direction

vectors on the arti�cial interfaces on the rectangular domain map on to the normal
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direction vectors on the arti�cial interfaces on the general quadrilateral. Thus, we

have,

n0 = (
@x0

@n
;
@y0

@n
)=

s
j@x

0

@n
j2 + j@y

0

@n
j2: (3.52)

From the Cauchy-Riemann equations, we have

j@x
0

@n
j2 + j@y

0

@n
j2 = jF 0(z)j2; (3.53)

and therefore,

n0 = (
@x0

@n
;
@y0

@n
)=jF 0(z)j: (3.54)

From this result, we have,

@(e0)�

@n0
=
@e�

@n
=jF 0(z)j: (3.55)

3.6.3 The three factors of the (A0)�� on the arti�cial inter-
face �0

�

Since we consider the conformal mapping F between the rectangular domain and

the general quadrilateral, there exists a C1 mapping (path) between the arti�cial

interface on the rectangular domain and that of the general quadrilateral. Let this

C1 mapping (path) between the standard interface of the rectangular domain ��

and that of the general quadrilateral �0� be given by,

� : �� = f(x; y)j0 � x � 1; y = y0g ! �0� � R2: (3.56)

Since the conformal mapping F is de�ned on the rectangular domain, we can

consider e0(x0; y0) on the arti�cial interface as a function of one variable t. Let

F 0(��) be �
0
�. Therefore, the arti�cial interface of the general quadrilateral �

0
� can
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be considered as the path over a certain interval [0; 1] and we need to review the

de�nition of path integrals. We have,

Z
�
f d� =

Z b

a
f(�(t))j�0(t)jdt (3.57)

From the de�nition of the complex derivative, we have the following relation,

j�0(t)j = jF 0
�(z)j; (3.58)

on the arti�cial interfaces. From the result above, we have,

Z
�0
�

ju0j2dS 0 =
Z
��

juj2jF 0
�(z)jdS; (3.59)

Z
�0
�

j @e
0

@n0
j2dS 0 =

Z
��

j@e
�

@n
=jF 0

�(z)jj2jF 0
�(z)jdS =

Z
��

j@e
�

@n
j2=jF 0

�(z)jdS;
Z
�0
�

e0
@e0

@n0
dS 0 =

Z
��

e
@e�

@n
=jF 0

�(z)jjF 0
�(z)jdS =

Z
��

e
@e�

@n
dS:

The third quantity is preserved under the conformal mapping and equals the

Dirichlet integral given in (3.2); we have just shown that the Dirichlet integral

is invariant under the conformal mapping.

(A0)�� on the arti�cial interfaces

From the previous results, we have

1

4~�

Z
�0
�

(e0 + ~�
@e0

@n0
)2dS 0

=
1

4~�

Z
�0
�

j @e
0

@n0
j2dS 0 + 1

2

Z
�0
�

e0
@e0

@n0
dS 0 +

~�

4

Z
�0
�

j @e
0

@n0
j2dS 0

=
1

4~�

Z
��

juj2jF 0(z)jdS +
1

2

Z
��

e
@e�

@n
+

~�

4

Z
��

j@e
�

@n
j2=jF 0(z)jdS

From the property of conformal mappings, we have

9�; � � 1;
1

�
� jF 0

�(z)j � �
1

�
� 1

jF 0
�(z)j

� �: (3.60)
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From this, we have,

1

�
A�
� � (A0)�� � �A

�
�: (3.61)

In the case of two overlapping subdomains, we have two arti�cial interface, �01 and

�02. Therefore, we can �nd a uniform constant,

 = maxf1; 2g; (3.62)

with the following property,

1


A1
� � (A0)1� � A1

�

1


A2
� � (A0)1� � A2

�: (3.63)

3.6.4 Convergence and Geometric Convergence on over-
lapping Quadrilaterals

From (3.19), we have the following results for the standard rectangular domain,

(En+1)2 ! 0 (E(n+1)+1=2)1 ! 0 as n!1:

From the result of the previous section,

(En+1)2 = ((E 0)n+1)2; (E(n+1)+1=2)1 = ((E 0)(n+1)+1=2)1;

and we have,

((E 0)n+1)2 ! 0 ((E 0)(n+1)+1=2)1 ! 0 as n!1:

Therefore, we have the same result as in section 3.4.

From the section 3.5, we have geometric convergence of the following quantity,

Cn = sup0�i�N�2
NX

m=1

An�i
m (l�2(m)); (3.64)
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with the following relation

Cn+N�1 � (1� (
Æ

L
)N�1)Cn for n � N � 1; (3.65)

with N is the number of the overlapping subdomains.

We have established the following relation in the previous section,

1

�
A�
� � (A0)�� � �A

�
�: (3.66)

Since we have N overlapping subdomains in the general cases, we have

 = maxf1; � � � ; Ng; (3.67)

with

1


Ak
� � (A0)k� � Ak

� 8k = 1; � � � ; N: (3.68)

Because of the following relation,

An�i
m (l�2(m)) = Gn�i

m (l�2(m)); (3.69)

we have

1


C� � (C 0)� � C�: (3.70)

Therefore,

(C 0)n+N�1 � Cn+N�1

� (1� (
Æ

L
)N�1)Cn for n � N � 1

� ()2(1� (
Æ

L
)N�1)(C 0)n for n � N � 1:

From this inequality, we see that Algorithm 3 (OSM-D) converges geometrically

in the general overlapping quadrilaterals if

()2(1� (
Æ

L
)N�1) < 1: (3.71)
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We have  � 1 and the value depends on the behavior of the conformal mapping

F on the arti�cial interfaces ��. With a certain overlapping size Æ, the value

(1� ( Æ
L
)N�1) < 1. Also a larger overlap will make the value (1� ( Æ

L
)N�1) smaller

and the value of ()2(1 � ( Æ
L
)N�1) decreases. Therefore, given a value of , there

exist a certain value Æ0 which makes,

()2(1� (
~Æ

L
)N�1) < 1; Æ0 � ~Æ � L; (3.72)

hold. Therefore, this result on the geometric convergence of Algorithm 3 (OSM-

D) depends on the conformal mapping between a rectangular domain and the

general domain as well as on the overlapping size. With suÆcient overlapping size,

Algorithm 3 (OSM-D) has geometric convergence in the general quadrilateral and

multiple strip case.
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Chapter 4

Algebraic Properties of Algorithm
3 (OSM-D)

4.1 Nonsymmetry of Algorithm 3 (OSM-D)

4.1.1 The symmetry of the fractional steps of Algorithm 2
(OSM-C)

To establish the symmetry of the symmetric multiplicative Schwarz variant of

Algorithm 2, it is enough to check each step. From formula (2.15), we see that

the mapping is aÆne because of the constant term. So it is suÆcient to check

the linear part of (2.15) which can be computed by subtracting the value of the

fractional step corresponding to a zero input. We get,

Mj = P c
j � PjA

+
j A

c
j: (4.1)

The symmetry of this problem is de�ned with respect to the A-norm: (u; v)A =

utAv. What we want to check is the following property,

utAMjv = (Mju)
tAv:
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We can rewrite (4.1) as,

Mj = I � Pj � PjA
+
j A+ PjA

+
j Aj; since A+

j = (Rj)
t(Bj)

�1(Rj); (4.2)

= I � Pj � Pj(Rj)
t(Bj)

�1(Rj)A + Pj(Rj)
t(Bj)

�1(Rj)Aj;

with Pj = (Rj)
tRj;

= I � Pj � ((Rj)
tRj)(Rj)

t(Bj)
�1(Rj)A+ ((Rj)

tRj)(Rj)
t(Bj)

�1(Rj)Aj;

because of (Rj)
tRj(Rj)

t = (Rj)
t;

= I � Pj � (Rj)
t(Bj)

�1(Rj)A+ (Rj)
t(Bj)

�1(Rj)Aj;

from the two identities Aj = Aj(Rj)
t(Rj) and Bj = RjAj(Rj)

t;

= I � Pj � (Rj)
t(Bj)

�1(Rj)A+ (Rj)
t(Bj)

�1(Bj)(Rj);

and since the second and fourth terms are identically the same;

= I � (Rj)
t(Bj)

�1(Rj)A:

Since

Mj = I � (Rj)
t(Bj)

�1(Rj)A; (4.3)

the relation AMj = (Mj)
tA is clear.

4.1.2 The nonsymmetry of the fractional steps of Algo-
rithm 3 (OSM-D)

The same idea can be applied to (2.29) to provide a formula for Algorithm 3

(OSM-D),

~Mj = ~P c
j � ~Pj ~RA

+
j
~Rt ~P c

j
~�: (4.4)

Equation in (4.4) can be rewritten as,

~Mj = ~I � ~Pj � ~Pj ~RA
+
j
~Rt~� + ~Pj ~RA

+
j
~Rt ~Pj ~�: (4.5)
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Figure 4.1: An illustration of nonsymmetry of Algorithm 3 (OSM-D)

We can �rst try the same computation as (4.2) to check for symmetry of ~� ~Mj. It

is clear that ~I and ~Pj ~RA
+
j
~Rt ~Pj ~� satisfy the symmetry relation. Since ~� is de�ned

as a partitioned matrix and the following equation holds,

 
~I ~0
~0 ~0

! 
~A ~0
~0 ~B

!
=

 
~A ~0
~0 ~B

! 
~I ~0
~0 ~0

!
; (4.6)

it is true that ~� ~Pj = ~Pj ~�. Since we have checked the symmetry of the three terms,

it is now only necessary to check the symmetry condition for ~Pj ~RA
+
j
~Rt~�. The
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symmetry of ~Pj ~RA
+
j
~Rt~� would mean that

~� ~RA+
j
~Rt ~Pj ~� = ~� ~Pj ~RA

+
j
~Rt~�: (4.7)

Comparing ~RA+
j
~Rt ~Pj and ~Pj ~RA

+
j
~Rt, we realize that these cannot be same

because of the discontinuous arti�cial boundary of the subdomain. Since we al-

low a discontinuity on the arti�cial interfaces in Algorithm 3 (OSM-D), we have

multiple values which contribute to the matrix computation in every cycle. The

nonsymmetry of Algorithm 3 (OSM-D) arises from the handling of the data on the

arti�cial interfaces. We recall that since we consider overlapping subregions and

two neighboring subregions have a common atomic subregion, each subregion 
j

has two kinds of interfaces, the continuous arti�cial interfaces and the discontinu-

ous arti�cial interfaces, in the j-th fractional step which updates the data on that

subregion.

We now consider only the discontinuous arti�cial interfaces which is �j, the ar-

ti�cial interface of the subregion 
j. Since Algorithm 3 (OSM-D) allows di�erent

values on the discontinuous arti�cial interfaces, we can again divide the discontin-

uous arti�cial interfaces into two kinds, which is the interface which is a subset

of 
j [ @
 and that which is a subset of the complement of 
j. We call the �rst

inside interfaces and the others outside interfaces. For ~RA+
j
~Rt ~Pj, the ~Pj takes

only data on the inside boundary, ~Rt uses only this data, A+
j restricts, solves, and

extends, and ~R copies the result on both inside and the outside interfaces. However

in ~Pj ~RA
+
j
~Rt, ~Rt combines the data on both interfaces, A+

j restricts, solves, and

extends, ~R copies the result on both interfaces, and ~Pj takes only the result of the

inside interfaces. So the two results are not same. The linear part of Algorithm 3

(OSM-D) is not symmetric in general.
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4.2 The Matrix of Algorithm 3 (OSM-D) of Unit

Square

In this section, we will consider the structure of ~�. We consider the general matrix

of Algorithm 3 on a unit square and n � n overlapping subdomains. With a

uniform size on each overlapping subdomain, we have several di�erent types of

atomic subregions; for example, in the case of the nine overlapping subdomains

with di�erent � and ~�, we have 25 atomic subregions of 16 di�erent types.

A partitioned matrix ~� is de�ned by,

~� = diag
�

~B1(�; ~�) � � � ~Bn(�; ~�)
�
;

where n = the number of atomic subdomains with

Bj(�; ~�) =

0
BBBBBBB@

M(�; ~�) K(�; ~�) 0 � � � 0
K(�; ~�) L(�; ~�) K(�; ~�) 0 � � � 0

...
. . .

...
0 � � � 0 K(�; ~�) L(�; ~�) K(�; ~�)
0 � � � 0 K(�; ~�) M(�; ~�)

1
CCCCCCCA
;

and with

M(�; ~�) =

0
BBBBBBB@

Mc(�; ~�) Mo(�; ~�) 0 � � � 0
Mo(�; ~�) Md(�; ~�) Mo(�; ~�) 0 � � � 0

...
. . .

...
0 � � � 0 Mo(�; ~�) Md(�; ~�) Mo(�; ~�)
0 � � � 0 Mo(�; ~�) Mc(�; ~�)

1
CCCCCCCA
;

L(�; ~�) =

0
BBBBBBBBB@

Md(�; ~�) �1 0 � � � 0
�1 4 �1 0 � � � 0
0 �1 4 �1 0 � � � 0
...

. . .
...

0 � � � 0 �1 4 �1
0 � � � 0 �1 Md(�; ~�)

1
CCCCCCCCCA
;
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and

K(�; ~�) =

0
BBBBBBB@

Mo(�; ~�) � � � 0
0 �1 � � � 0
...

. . .
...

0 � � � �1 0
0 � � � Mo(�; ~�)

1
CCCCCCCA
: (4.8)

Here,

Mc(�; ~�) =

8>>>>>>>><
>>>>>>>>:

1
1 + 1

�
2
3
h

1 + 1
~�
2
3
h

1� 1
~�
2
3
h

1 + 1
�
1
3
h+ 1

~�
1
3
h

1 + 1
�
1
3
h� 1

~�
1
3
h

Mo(�; ~�) =

8><
>:
�1

2
+ 1

�
1
6
h

�1
2
+ 1

~�
1
6
h

�1
2
� 1

~�
1
6
h

Md(�; ~�) =

8><
>:

2 + 1
�
2
3
h

2 + 1
~�
2
3
h

2� 1
~�
2
3
h

The di�erent combinations of subblock matrices produce di�erent partitioned ma-

trices for the di�erent atomic subregions.

4.3 Splitting Theory of Algorithm 3 (OSM-D)

4.3.1 Basic Theory of Splitting

There are many papers on splittings of matrices, including [36, 3, 47]. Let us

consider the iterative solution of the linear equation system

Ax = b; (4.9)

where the square matrix A is nonsingular with real vectors x, b. Many iterative

methods for the linear system considered can be formulated by means of a suitable

splitting of the matrix A,

A =M �N where M is nonsingular ; (4.10)
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and the iterative solution xn is generated, as follows,

Mxn+1 = Nxn + b; n = 1; � � � ; (4.11)

or equivalently

xn+1 =M�1Nxn +M�1b; n = 1; � � � ; (4.12)

with a given initial vector x0.

Theorem 4.1 (The Fundamental Theorem of Linear Iterative Methods) Let H be

an N �N matrix and assume that the equation x = Hx+ d has a unique solution

x�. Then the iterates (4.12) with H = M�1N converge to x� for any x0 if and

only if �(H) < 1 where �(H) is the spectral radius of H.

Proof See Theorem 7.1.1. in [36].

For any matrix A = (aij) 2 Rn�n, we de�ne the matrix jAj = (jaijj) and its

comparison matrix < A >= (�ij) by

�ii = jaiij; �ij = �jaijj; i 6= j:

De�nition 4.1 For a nonsingular matrix A the decomposition A = M � N is

called:

(a) a regular splitting of A if M�1 � 0 (nonnegative) and N � 0;

(b) a nonnegative splitting of A if M�1 � 0, M�1N � 0 and NM�1 � 0;

(c) a weak regular splitting of A if M�1 � 0 and either M�1N � 0 or NM�1 �
0;

(d) a P -regular splitting of A if MT +N � 0 (positive de�nite);
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(e) a strong P -regular splitting of A � 0 if N � 0 (semi positive de�nite);

(f) a M-splitting of A if M is an M-matrix and N � 0;

(g) a H-splitting of A if < M > �jN j is an M-matrix;

(h) a H-compatible splitting of A if < A >=< M > �jN j;

We have the following theorem regarding the uniqueness of the splitting of a

linear iteration matrix.

Theorem 4.2 Let A and T be square matrices such that A and I�T are nonsingu-

lar. Then, there exists a unique pair of matrices B, C, such that B is nonsingular,

T = B�1C, and A = B � C. The matrices are B = A(I � T )�1 and C = B � A.

Proof See [3].

Theorem 4.3 For a nonsingular matrix A,

(a) any regular splitting of A is a nonnegative splitting of A;

(b) any nonnegative splitting of A is a weak regular splitting of A;

(c) any strong P -regular splitting of A � 0 is a P -regular splitting of A;

(d) any M-splitting of A is a regular splitting of A;

(e) any M-splitting of M-matrix A is an H-splitting of A and also as H-

compatible splitting of A;

(f) any H-compatible splitting of H-matrix A is an H-splitting of A.

Proof Easy or see [14] for (d), (e) and (f).

Theorem 4.4 Let A =M �N be a splitting.
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(a) If the splitting is regular or weak regular, then

�(M�1N) < 1 if and only if A�1 � 0;

(b) If the splitting of the symmetric matrix A is P -regular, then

�(M�1N) < 1 if and only if A � 0;

(c) If the splitting is a M-splitting, then

�(M�1N) < 1 if and only if A is an M-matrix;

(d) If the splitting is a H-splitting, then

�(M�1N) � �(< M >�1 jN j) < 1:

Proof See [36, 14].

We need to de�ne the following two norms for the nonnegative or positive

de�nite matrices.

De�nition 4.2 (a) jj � jjA (A-norm): For a positive de�nite matrix A � 0,

jjBjjA = jjA1=2BA�1=2jj

(b) jj � jjw (Weighted max norm): The weighted max norm for the vector y is

de�ned as,

jjyjjw = max
j=1;���;n

j yj
wj

j w > 0;

and the weighted max norm for the matrix B is given by

jjBjjw = sup
jjxjjw=1

jjBxjjw:
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We can �nd more detailed explanation and several theorems on the A-norm and

the weighted max norm in [45]. We will introduce the following basic properties

of the two norms.

Theorem 4.5 (a) Let A � 0 and H be a real square matrix. Then A � HTAH if

and only if jjHjjA < 1.

(b) Let B be a real square matrix and w be a real vector with w > 0, and let

 > 0 be such that

jBjw � w:

Then, jjBjjw � . The inequality is strict if

jBjw < w:

Proof See [45]. From the de�nition above, we have the following comparison

theorem.

Theorem 4.6 Let A =M1 �N1 =M2 �N2 be two splittings.

(a) If the two splittings are regular splittings with A�1 � 0 and M�1
1 � M�1

2 ,

then

�(M�1
1 N) � �(M�1

2 N) < 1:

The inequality is strict if A�1 > 0 and M�1
1 > M�1

2 .

(b) If the two splittings are nonnegative splittings with A�1 � 0 and M�1
1 �

M�1
2 , then

�(M�1
1 N) � �(M�1

2 N) < 1:

The inequality is strict if A�1 > 0 and M�1
1 > M�1

2 .
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(c) If the two splittings are weak splittings with A�1 � 0 and M�1
1 �M�1

2 , then

jjM�1
1 N jjw � jjM�1

2 N jjw < 1:

The inequality is strict if A�1 > 0 and M�1
1 > M�1

2 .

(d) If the two splittings are strong P -regular splittings with A � 0 and 0 �
N1 � N2, then

jjM�1
1 N jjA = �(M�1

1 N) � �(M�1
2 N) = jjM�1

2 N jjA < 1:

The inequality is strict if 0 � N1 � N2.

Proof See [3, 47].

4.3.2 Splitting theory for Multiplicative Schwarz Methods

To de�ne a splitting of the multiplicative Schwarz methods, we need to de�ne the

following concepts of multisplittings which has been discussed in several recent

papers including [32].

De�nition 4.3 A multisplitting of a square matrix A is a collection of triples of

matrices (Mk; Nk; Ek); k = 1; � � � ; n, satisfying:
(a) A =Mk �Nk; k = 1; � � � ; n,
(b) Mk is nonsingular for k = 1; � � � ; n,
(c) Ek; k = 1; � � � ; n, are diagonal matrices with nonnegative entries which sat-

isfy,

nX
k=1

Ek � I:

The iteration to solve Ax = b is de�ned by
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xi+1 =
nX

k=1

Ek(M
�1
k Nkx

i +M�1b):

Using the matrices

H =
nX

k=1

EkM
�1
k Nk; G =

nX
k=1

EkM
�1;

we can express, if G is nonsingular, the multisplitting (Mk; Nk; Ek)
m
k=1 as a (single)

splitting (G�1; G�1H) of A.

In this section, we will review part of the convergence theory in [3]. The

classical multiplicative Schwarz is de�ned as a stationary iteration with given initial

data x0,

xk+1 = Txk + c; k = 0; 1; � � � ;

where

T = (I � Pp)(I � Pp�1) � � � (I � P ) = �1
i=p(I � Pi)

and c is a certain vector. We also de�ne,

Pi = RT
i (RiAR

T
i )

�1RiA:

Therefore to de�ne the classical multiplicative Schwarz methods in terms of a

multisplitting, we need the following expression of each single splittingA =Mi�Ni,

EiM
�1
i = RT

i (RiAR
T
i )

�1Ri

where

Ei = RT
i Ri:
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The general restriction matrix Ri for the i-th subdomain is de�ned as the matrix

whose rows are rows of the identity matrix satisfying the following relation,

Ri = [Iij0]�i;

with Ii the identity matrix for a smaller real space and �i a permutation matrix

on that space.

We also have the following expression for the diagonal matrix Ei,

Ei = �Ti

 
Ii 0
0 0

!
�i:

The given matrix A can be partitioned with Ai a ni � ni principal submatrix

corresponding the i-th subdomain of A:

�iA�
T
i =

 
Ai Ki

KT
i Ac

i

!
;

where Ac
i is the complementary principal submatrix of Ai.

Let A be a symmetric positive de�nite matrix (or a general matrix which has a

positive de�nite principal submatrix). For each i = 1; � � � ; p, we construct matrices
Mi as follows,

Mi = �Ti

 
Ai 0
0 Ac

i

!
�i:

We then have,

EiM
�1
i = RT

i Ri�
T
i

 
A�1
i 0
0 (Ac

i)
�1

!
�i = RT

i [Iij0]�i�Ti
 
A�1
i 0
0 (Ac

i)
�1

!
�i

= RT
i [Iij0]

 
A�1
i 0
0 (Ac

i)
�1

!
�i = RT

i [Aij0]�i = RT
i Ai[Iij0]�i

= RT
i AiRi:
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If we replace Ac
i with any nonsingular matrix C (or a more general matrix which

is singular but for which we can de�ne a generalized inverse), we obtain

~Mi = �Ti

 
Ai 0
0 C

!
�i:

We then have the same process since

Ei
~Mi
�1

= RT
i Ri�

T
i

 
A�1
i 0
0 C+

!
�i = RT

i [Iij0]�i�Ti
 
A�1
i 0
0 C+

!
�i

= RT
i [Iij0]

 
A�1
i 0
0 C+

!
�i = RT

i [Aij0]�i = RT
i Ai[Iij0]�i

= RT
i AiRi:

Let the real vectors x and y be de�ned by

y = (I � EiM
�1
i A)x:

with

x = �i

 
x1
x2

!
and y = �i

 
y1
y2

!
:

We then have that

y2 = x2:

We have the following process for the general partitioned matrix with an invertible

Ai,

 
Ai Ki

KT
i Ac

i

! 
y1
y2

!
=

 
Ai Ki

KT
i Ac

i

! 
y1
x2

!

= �iA�
T
i �iy = �iAy = �iA(I � EiM

�1
i A)x

= �iA(I � �Ti

 
Ii 0
0 0

!
�i�

T
i

 
A�1
i 0
0 (Ac

i)
�1

!
�i�

T
i

 
Ai Ki

KT
i Ac

i

!
�i)�i

 
x1
x2

!

=

 
Ai Ki

KT
i Ac

i

!
(I �

 
Ii 0
0 0

! 
A�1
i 0
0 (Ac

i)
�1

! 
Ai Ki

KT
i Ac

i

!
)

 
x1
x2

!
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=

 
Ai Ki

KT
i Ac

i

!
(I �

 
A�1
i 0
0 0

! 
Ai Ki

KT
i Ac

i

!
)

 
x1
x2

!

=

 
Ai Ki

KT
i Ac

i

!
(I �

 
Ii A�1

i Ki

0 0

!
)

 
x1
x2

!

=

 
0 0
0 �KT

i A
�1
i Ki

! 
x1
x2

!
=

 
0

�KT
i A

�1
i Kix2

!
:

Therefore, we have,

Aiy1 = �Kix2:

If we replace Ac
i with any nonsingular matrix ~Ac

i (or a more general matrix

which is singular but for which we can de�ne a generalized inverse) such that

�i ~A�
T
i =

 
~Ai

~Ki

~KT
i

~Ac
i

!
;

then  
~Ai

~Ki

~KT
i

~Ac
i

! 
y1
x2

!
=

 
0

� ~KT
i
~A�1
i

~Kix2

!
:

Therefore, we have,

~Aiy1 = � ~Kix2:

From this result, we have the following,

Theorem 4.7 Let A be a symmetric positive de�nite matrix. Let x, y be such

that,

y = (I � EiM
�1
i A)x:

Then the following identity holds:

jjyjj2A � jjxjj2A = �(y � x)TEiAEi(y � x) � 0:

Proof See [3].

From the previous computation, we can revise the theorem above to obtain,
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Theorem 4.8 Let ~A be a general matrix which has a nonsingular principal sub-

matrix ~Ai such that

~Ai = Ei
~AEi:

Let x, y satisfy,

y = (I � Ei
~M�1
i A)x:

Then the following identity holds:

yT ~Ay � xT ~Ax = �(y � x)TEi
~AEi(y � x):

Theorem 4.9 Let A be a symmetric positive de�nite matrix. Then the multiplica-

tive Schwarz iteration converges to the solution of Ax = b for any choice of the

initial guess x0. In fact, we have

�(T ) � jjT jjA < 1:

There exists a unique splitting A = B � C such that T = B�1C, and this splitting

is P -regular.

Proof See [3].

We also have the following theorem.

Theorem 4.10 Let A be a symmetric positive de�nite matrix. Let x, y be de�ned

by

y = (I � Ei
~M�1
i A)x;

where ~M is de�ned by

~Mi = �Ti

 
~Ai 0
0 Ac

i

!
�i;
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and ~Ai satis�es,

Ai = ~Ai � ( ~Ai � Ai) with ~AT
i + ~Ai � Ai � 0:

Then the following identity holds:

jjyjj2A � jjxjj2A = �(y � x)TEi( ~M
T
i + ~Mi � A)Ei(y � x) � 0:

Proof See [3].

We have the following convergence theorem,

Theorem 4.11 Let A be a symmetric positive de�nite matrix. Then the multi-

plicative Schwarz iteration with the iteration matrix,

~T = (I � Ep
~M�1
p A)(I � Ep�1

~M�1
p�1A) � � � (I � E1

~M�1
1 A);

with same condition on ~M and ~Ai as in Theorem 4.10, converges to the solution

of Ax = b for any choice of the initial guess x0. In fact, we have

�( ~T ) � jj ~T jjA < 1:

There exists a unique splitting A = B � C such that ~T = B�1C, and this splitting

is P -regular.

Proof See [3].
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4.3.3 Splitting theory for Algorithm 3 (OSM-D)

We will consider Algorithm 3 (OSM-D) with � = ~�. The original matrix A of

Algorithm 3 (OSM-D) is

A =

0
BBBBBBBBBBB@

M K 0 � � � 0
K L K 0 � � � 0
0 K L K 0 � � � 0
...

. . .
...

0 � � � 0 K L K 0
0 � � � 0 K L K
0 � � � 0 K M

1
CCCCCCCCCCCA
; (4.13)

where

M =

0
BBBBBBB@

1 + 1
�
2
3
h �1

2
+ 1

�
1
6
h 0 � � � 0

�1
2
+ 1

�
1
6
h 2 + 1

�
2
3
h �1

2
+ 1

�
1
6
h 0 � � � 0

...
. . .

...
0 � � � 0 �1

2
+ 1

�
1
6
h 2 + 1

�
2
3
h �1

2
+ 1

�
1
6
h

0 � � � 0 �1
2
+ 1

�
1
6
h 1 + 1

�
2
3
h

1
CCCCCCCA
;

L =

0
BBBBBBBBB@

2 + 1
�
2
3
h �1 0 � � � 0

�1 4 �1 0 � � � 0
0 �1 4 �1 0 � � � 0
...

. . .
...

0 � � � 0 �1 4 �1
0 � � � 0 �1 2 + 1

�
2
3
h

1
CCCCCCCCCA
;

K =

0
BBBBBBB@

�1
2
+ 1

�
1
6
h � � � 0

0 �1 � � � 0
...

. . .
...

0 � � � �1 0
0 � � � �1

2
+ 1

�
1
6
h

1
CCCCCCCA
:

From this structure, we have the following properties of A.

� A is strictly diagonally dominant and positive de�nite.

� If � = h
�
� 3, then A satis�es the sign condition and is a M -matrix.

� If � = h
�
� 3, A is a H-matrix.
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Since the local matrix Bi for the i-th fractional step has the same structure as

A with a much smaller size, Bi is not same as Ai. The condition for Theorem 4.11

is given by the following computation,

BT
i +Bi � Ai = 2Bi � Ai

=

0
BBBBBBBBBBB@

M K 0 � � � 0
K L K 0 � � � 0
0 K L K 0 � � � 0
...

. . .
...

0 � � � 0 K L K 0
0 � � � 0 K L K
0 � � � 0 K N

1
CCCCCCCCCCCA
;

with

N =

0
BBBBBBBBB@

2h
3�

h
3�

0 � � � 0
h
3�

4h
3�

h
3�

0 � � � 0
0 h

3�
4h
3�

h
3�

0 � � � 0
...

. . .
...

0 � � � 0 h
3�

4h
3�

h
3�

0 � � � 0 h
3�

2h
3�

1
CCCCCCCCCA
:

If we have the condition � = h
�
� 3=2, then

BT
i +Bi � Ai = 2Bi � Ai � 0:

This is the suÆcient condition for the convergence of Algorithm 3 (OSM-D). With

this condition Algorithm 3 (OSM-D) converges according to Theorem 4.10.

Theorem 4.12 Algorithm 3 (OSM-D) converges in two overlapping subdomain

with h
�
� 3=2.
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Chapter 5

Lagrange Multiplier Formulation

5.1 Lagrange Multipliers for Two Overlapping

Subdomains

We will now consider the relation between the Lagrange multipliers �n1 and �
n+1=2
2

and the fractional solutions ~u
n+1=2
1 and ~un+12 for two overlapping subdomains. From

the relations between these quantities given in chapter 2, we have the following,

�
n+1=2
1 = I1(f 1 � B1u1n+1=2) = I1(f 1 � B1 ~R1u

n+1=2
1 )

= I1f 1 � I1B1 ~R1(B1)
�1f1 � I1B1 ~R1(B1)

�1(I1)
T�n2 ;

�n+12 = I2(f 2 � B2u2n+1) = I2(f 2 �B2 ~R2un+1)2)

= I2f 2 � I2B2 ~R2(B2)
�1f2 � I2B2 ~R2(B2)

�1(I2)
T�

n+1=2
1 ;

where

~R1 =
�
I1 0

�
; ~R2 =

�
0 I2

�
:

Eliminating the superscripts of the fractional steps, this can be written as the

following system,

 
�new1

�new2

!
=

 
H1

H2

!
+

 
0 ��1

��2 0

! 
�old1
�old2

!
; (5.1)
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where

H1 = I1f 1 � I1B1 ~R1(B1)
�1f1; H2 = I2f 2 � I2B2 ~R2(B2)

�1f2

�1 = I1B1 ~R1(B1)
�1(I1)

T ; �2 = I2B2 ~R2(B2)
�1(I2)

T :

The convergence of (5.1) depends on the spectral radius of the following matrix,

� =

 
0 ��1

��2 0

!
: (5.2)

Let � be an eigenvalue and � = (�1; �2)
T the eigenvector corresponding to �,

 
0 ��1

��2 0

! 
�1
�2

!
= �

 
�1
�2

!
: (5.3)

We have the following relations,

�2�1�2 = �2�2; �1�2�1 = �2�1:

We know the following results from [20]:

1. The spectra �(�1�2) and �(�2�1) coincide except for a possible zero eigen-

value:

�(�1�2)nf0g = �(�2�1)nf0g:

2. The spectrum �(J) satis�es the following,

�(�) = �
q
�(�1�2) [ �

q
�(�2�1):

3. The following identity holds for the spectral radii,

%(�) =
q
%(�1�2) =

q
%(�2�1):

Therefore, we need estimates of the eigenvalues of �1�2. We will prove that

�1 = �2; (5.4)
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on a unit square with uniform mesh size and we will obtain,

%(�) =
q
%((�1)2) = %(�1): (5.5)

5.2 Proof that �1 = �2

To begin the proof, we need to develop algebraic expressions for �1 and �2. We

�rst study the structure of these operators.

5.2.1 Matrices for two overlapping subdomains

In this section, we will consider the structure of �1 and �2. We assume that ~�, the

interior parameter, equals �, the original parameter. Because of the relation �1 =

I1B1 ~R1(B1)
�1(I1)

T and �2 = I2B2 ~R2(B2)
�1(I2)

T , we �rst check the structure of

(B1)
�1, (B2)

�1, B1, and B2 . Since we consider the two overlapping subdomain

case on the unit square, we have the following original matrices B1 and B2 which

have the two important properties of being block diagonal and positive de�nite,

B1 = B2 =

0
BBBBBBBBBBB@

M K 0 � � � 0
K L K 0 � � � 0
0 K L K 0 � � � 0
...

. . .
...

0 � � � 0 K L K 0
0 � � � 0 K L K
0 � � � 0 K M

1
CCCCCCCCCCCA
; (5.6)

where

M =

0
BBBBBBB@

1 + 1
�
2
3
h �1

2
+ 1

�
1
6
h 0 � � � 0

�1
2
+ 1

�
1
6
h 2 + 1

�
2
3
h �1

2
+ 1

�
1
6
h 0 � � � 0

...
. . .

...
0 � � � 0 �1

2
+ 1

�
1
6
h 2 + 1

�
2
3
h �1

2
+ 1

�
1
6
h

0 � � � 0 �1
2
+ 1

�
1
6
h 1 + 1

�
2
3
h

1
CCCCCCCA
;
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L =

0
BBBBBBBBB@

2 + 1
�
2
3
h �1 0 � � � 0

�1 4 �1 0 � � � 0
0 �1 4 �1 0 � � � 0
...

. . .
...

0 � � � 0 �1 4 �1
0 � � � 0 �1 2 + 1

�
2
3
h

1
CCCCCCCCCA
;

and

K =

0
BBBBBBB@

�1
2
+ 1

�
1
6
h � � � 0

0 �1 � � � 0
...

. . .
...

0 � � � �1 0
0 � � � �1

2
+ 1

�
1
6
h

1
CCCCCCCA
:

The block matrices B1 and B2 have the following form,

B1 =

 
C G
GT D

!
; B2 =

 
D HT

H C

!
; (5.7)

where

C =

0
BBBBBBBBBBB@

M K 0 � � � 0
K L K 0 � � � 0
0 K L K 0 � � � 0
...

. . .
...

0 � � � 0 K L K 0
0 � � � 0 K L K
0 � � � 0 K L

1
CCCCCCCCCCCA
; G =

0
BBBBBBB@

0 � � � 0
0 � � � 0
...

. . .
...

0 � � � 0
K � � � 0

1
CCCCCCCA

H =

0
BBBBBBB@

0 � � � K
0 � � � 0
...

. . .
...

0 � � � 0
0 � � � 0

1
CCCCCCCA

D =

0
BBBBBBB@

L K 0 � � � 0
K L K 0 � � � 0
...

. . .
...

0 � � � 0 K L K
0 � � � 0 K M

1
CCCCCCCA
;

B1 =

0
BBBBBBB@

M K 0 � � � 0
K L K 0 � � � 0
...

. . .
...

0 � � � 0 K L K
0 � � � 0 K m

1
CCCCCCCA
; B2 =

0
BBBBBBB@

m K 0 � � � 0
K L K 0 � � � 0
...

. . .
...

0 � � � 0 K L K
0 � � � 0 K M

1
CCCCCCCA
;
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where

m = L�M; (5.8)

and

m =

0
BBBBBBB@

1 �1
2
� 1

�
1
6
h 0 � � � 0

�1
2
� 1

�
1
6
h 2� 1

�
2
3
h �1

2
� 1

�
1
6
h 0 � � � 0

...
. . .

...
0 � � � 0 �1

2
� 1

�
1
6
h 2� 1

�
2
3
h �1

2
� 1

�
1
6
h

0 � � � 0 �1
2
� 1

�
1
6
h 1

1
CCCCCCCA
:

Since the matrix B1 is positive de�nite, it is invertible and C and D are also

invertible being principal minors of B1. From the following matrix relation,

 
I 0

�C�1GT I

! 
C G
GT D

! 
I �C�1G
0 I

!
=

 
C 0
0 (D �GTC�1G)

!
;

we know that the matrix D � GTC�1G is positive de�nite and invertible. The

matrix C�GD�1GT is also positive de�nite and invertible by a similar argument.

We now have the following expression for (B1)
�1 the inverse of the block matrix

B1,

(B1)
�1 =

 
C G
GT D

!�1
=

 
C 0 G0

(G0)T D0

!
; (5.9)

where

C 0 = (C �GD�1GT )�1 = C�1 + (C�1G)D0(GTC�1);

D0 = (D �GTC�1G)�1 = D�1 + (D�1GT )C 0(GD�1);

G0 = �(C�1G)D0; (G0)T = �D0(GTC�1):

Now we can directly compute the matrix �1 from the previous formulas,

�1 = I1B1 ~R1(B1)
�1(I1)

T
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=
�
0 � � � 0 I

�
0
BBBB@C �

0
BBBB@

0 � � � 0
...

. . .
...

0 � � � 0
0 � � � M

1
CCCCA

1
CCCCA

�

0
BBBB@
I � � � 0 0 j 0 � 0
...

. . .
... 0 j ...

. . .
...

0 � � � 0 0 j 0 � 0
0 � � � 0 I j 0 � 0

1
CCCCA
0
B@ C 0 j G0

� � �
(G0)T j D0

1
CA

0
BBBBBBBBBBBBBBB@

0
...
0
�
0
...
0
I

1
CCCCCCCCCCCCCCCA

=
�
0 � � � 0 I

�
0
BBBB@C �

0
BBBB@

0 � � � 0
...

. . .
...

0 � � � 0
0 � � � M

1
CCCCA

1
CCCCA
�
C 0 j G0

�

0
BBBBBBBBBBBBBBB@

0
...
0
�
0
...
0
I

1
CCCCCCCCCCCCCCCA

=
�
0 � � � 0 I

�
0
BBBB@C �

0
BBBB@

0 � � � 0
...

. . .
...

0 � � � 0
0 � � � M

1
CCCCA

1
CCCCA

0
BBBB@ G0

0
BBBB@

0
...
0
I

1
CCCCA

1
CCCCA

= KG0
l�1;m +mG0

l;m:

The same idea can be applied to B2 and we have the following relation,

 
I 0

�D�1H I

! 
D HT

H C

! 
I �D�1HT

0 I

!
=

 
D 0
0 (C �HD�1HT )

!
:

The inverse of the block matrix B2 can be expressed as,

(B2)
�1 =

 
D HT

H C

!�1
=

 
D00 (H 0)T

H 0 C 00

!
: (5.10)
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where

D00 = (D �HTC�1H)�1 = D�1 + (D�1HT )C 00(HD�1);

C 00 = (C �HD�1HT )�1 = C�1 + (C�1H)D00(HTC�1);

H 0 = �C 00(D�1H); (H 0)T = �(HTD�1)C 00:

We also �nd, from a similar computation,

�2 = I2B2 ~R2(B2)
�1(I2)

T = KH 0
2;1 +mH 0

1;1:

In the following sections, we will study the subblock matrices G0
l�1;m, G

0
l;m, H

0
2;1,

and H 0
1;1 and show that we obtain �1 = �2.

5.2.2 The inverse of symmetric block tridiagonal matrices

To analyze the structure of �1 and �2, we need to know explicit formulas for the

inverses of B1 and B2. Since the matrix b(B) = B1 = B2 is symmetric and block

tridiagonal, we need a formula for symmetric block tridiagonal matrices.

We assume that block matrix b(A) has the following structure,

b(A) =

0
BBBBBBBBBBB@

D1 �AT
2 0 � � � 0

�A2 D2 �AT
3 0 � � � 0

0 �A3 D3 �AT
4 0 � � � 0

...
. . .

...
0 � � � 0 �An�2 Dn�2 �AT

n�1 0
0 � � � 0 �An�1 Dn�1 �AT

n

0 � � � 0 �An Dn

1
CCCCCCCCCCCA
: (5.11)

We de�ne the following,

( 41 = D1

4i = Di � Ai(4i�1)
�1(Ai)

T

)
;

( P
n = DnP

i = Di � (Ai+1)
T (
P

i�1)
�1Ai+1

)
: (5.12)
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The block matrix b(A) is said to be proper if the matrices Ai are nonsingular; in

our case the matrix b(B) satis�es this condition except when 1
�
= 3

h
.

We have the following theorem if b(A) is proper,

Theorem 5.1 If b(A) is proper, there exist two (nonunique) sequences of matrices

of fUig, fVig such that for j � i

(b(A)�1)i;j = UiV
T
j ; (5.13)

with Ui = A�T
i 4i�1 � � �A�T

2 41 and V T
j =

P�1
1 AT

2 � � �AT
j

P�1
j . In other words,

b(A)�1 can be written as,

b(A)�1 =

0
BBBBBBB@

U1V
T
1 U1V

T
2 U1V

T
3 � � � U1V

T
n

V2U
T
1 U2V

T
2 U2V

T
3 � � � U2V

T
n

V3U
T
1 V3U

T
2 U3V

T
3 � � � U3V

T
n

...
...

...
. . .

...
VnU

T
1 VnU

T
2 VnU

T
3 � � � UnV

T
n

1
CCCCCCCA
: (5.14)

Proof See [31].

Therefore, we know that the submatrices of b(A)�1 are represented as a �nite

products of persymmetric and symmetric submatrices.

5.2.3 Symmetry, persymmetry, and centrosymmetry

In this section, we review the property of each subblock and the whole matrices.

We recall that the matrix b(B) and its submatrix b(B)i;j are symmetric and per-

symmetric. The matrix K is said to be persymmetric if it is symmetric about the

anti-diagonal, i.e. ki;j = kn�j+1;n�i+1 for all i and j; see [19]. This is equivalent to
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requiring that K = EKTE where

E =

0
BBBBBBB@

0 � � � 0 0 1
0 � � � 0 1 0
0 � � � 1 0 0
... � � � ...

...
...

1 � � � 0 0 0

1
CCCCCCCA
: (5.15)

Since b(B) is both symmetric and persymmetric, it also satis�es another prop-

erty; we call it centrosymmetry. The matrix K is said to be centrosymmetric if it

is symmetric about its center point, i.e., kj;i = kn�j+1;n�i+1 for all i and j. This

is equivalent to requiring that K = EKE. We can prove the following properties

easily.

1) If K is symmetric, so is K�1.

2) If K is persymmetric, so is K�1.

3) If K is centrosymmetric, so is K�1.

4) Even if K and P are both symmetric, KP may not be symmetric.

5) Even if K and P are both persymmetric, KP may not be persymmetric.

6) If K and P are both centrosymmetric, so is KP .

From these properties, we know that b(B)�1 is symmetric, persymmetric, and

centrosymmetric but b(B)�1i;j might be neither symmetric nor persymmetric. How-

ever it is centrosymmetric. The Figure 5.1 shows an example. Combining the

symmetry and persymmetry of b(B)�1 and the centrosymmetry of each subblock

matrix b(B)�1ij , we have the following block centrosymmetry of the subblock matrix

b(B)�1ij ,

b(B)�1ij = b(B)�1n�i+1n�j+1: (5.16)
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Figure 5.1: An example of the matrices b(B) and b(B)�1 with n = 5

Theorem 5.2 The matrix b(B)�1 are block centrosymmetric.

ProofWe want to prove that each entry of the two matrices are the same. Let

c(k; l)i;j be the ij entry of b(B)�1k;l . Since b(B)�1 is symmetric, c(k; l)i;j is equal

c(l; k)j;i of b(B)
�1
l;k . Now, we exploit the persymmetry of b(B)�1 and �nd that

c(l; k)j;i of b(B)
�1
l;k is equal to c(n� k + 1; n� l + 1)n�i+1;n�j+1 of b(B)

�1
n�k+1;n�l+1.

Finally, we apply the centrosymmetry of b(B)�1n�k+1;n�l+1 and we have equality

between c(n�k+1; n�l+1)n�i+1;n�j+1 and c(n�k+1; n�l+1)i;j of b(B)�1n�k+1;n�l+1.
Therefore we have equality between c(l; k)i;j of b(B)

�1
l;k and c(n�k+1; n� l+1)i;j

of b(B)�1n�k+1;n�l+1.

From this property, we have equality of �1 and �2. As the subblock matrices,

G0
l�1m and H 0

21 are block symmetric about a center block, so are G0
lm, and H 0

1;1.
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Since we have the relations �1 = KG0
l�1;m +mG0

l;m and �2 = KH 0
2;1 +mH 0

1;1, we

have the relation �1 = �2.

5.3 Spectral radius of F = �

We now assume that the vector z is the eigenvector of �1 with eigenvalue �. The

absolute value of � gives us the required information about the convergence of the

system (5.1). The di�erence between the matrices B1 and C is zero except for

the block submatrix m = L �M . Since M is a principal submatix of a positive

de�nite matrix B1, it is positive de�nite and it can be represented by a Cholesky

decomposition,

M = llT : (5.17)

To analyze the absolute value of eigenvalue j�j, we will use the Woodbury formula

given in [19],

5.3.1 The Woodbury formula

If A = B + UV T , with U and V are n� p matrices, we have,

A�1 = B�1 � B�1U(Ip + V TB�1U)�1V TB�1 with Ip : p� p identity matrix:

(5.18)

Given the relation between B1 and C, we have the following relation,

C = B1 + LLT where L =
�
0 � � � 0 lT

�T
(5.19)

So we have,

C�1 = (B1)�1 � (B1)�1L(Ip + LT (B1)�1L)�1LT (B1)�1

= (B1)�1 � (B1)�1L(Ip + lTm0l)�1LT (B1)�1;
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with m0 = S�1(m) where S(m) is the Schur complement in B1 corresponding to

eliminating all diagonal block except m.

From this result, we have the following expression for �1,

�1 = I1B1 ~R1(B1)
�1(I1)

T

=
�
0 � � � 0 I

�
0
BBBB@C �

0
BBBB@

0 � � � 0
...

. . .
...

0 � � � 0
0 � � � M

1
CCCCA

1
CCCCAG0

0
BBBB@

0
...
0
I

1
CCCCA

=
�
0 � � � 0 I

�
B1 (C�1G)(GTC�1G�D)�1

0
BBBB@

0
...
0
I

1
CCCCA

=
�
0 � � � 0 I

�
B1((B1)�1 � (B1)�1L(Ip + lTm0l)�1LT (B1)�1)

G(GTC�1G�D)�1

0
BBBB@

0
...
0
I

1
CCCCA

=
�
0 � � � 0 I

�
(I � L(Ip + lTm0l)�1LT (B1)�1)0

BBBBBBB@

0 � � � 0
0 � � � 0
...

. . .
...

0 � � � 0
K � � � 0

1
CCCCCCCA
(GTC�1G�D)�1

0
BBBB@

0
...
0
I

1
CCCCA

=
�
0 � � � 0 I

�
(I � L(Ip + lTm0l)�1LT (B1)�1)

0
BBBB@

0
...
0
I

1
CCCCA

K
�
I 0 � � � 0

�
(GTC�1G�D)�1

0
BBBB@

0
...
0
I

1
CCCCA

= (Ip � l(Ip + lTm0l)�1lTm0)K(GTC�1G�D)�11;s
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= (Ip � (M�1 +m0)�1m0)K(GTC�1G�D)�11;s

= (Ip � ((Mm0)�1 + Ip)
�1)K(GTC�1G�D)�11;s

(A�1 � (A+ E)�1) = (A+ E)�1EA�1

= (((Mm0)�1 + Ip)
�1(Mm0)�1)K(GTC�1G�D)�11;s

= (Ip +Mm0)�1K(GTC�1G�D)�11;s

where s is the number of row block matrices of (GTC�1G�D)�1.

We de�ne the spectral norm jj � jj2 as the matrix norm corresponding to the

Euclidean vector norm and which has the following properties; see [21],

1:jjAjj2 =
q
%(AHA) =

q
%(AAH) for all square matrices

2:jjAjj2 = %(A) for all normal matrices.

We know the following relation between the spectral radius and the matrix norm

of any matrix A,

%(A) � jjAjj: (5.20)

Therefore,

%(�1) � jj(�1)jj

= jj(Ip +Mm0)�1K(GTC�1G�D)�11;sjj

= jj(Ip +Mm0)�1jjjjKjjjj(GTC�1G�D)�11;sjj

= jjF1jjjjF2jjjjF3jj;

with

F1 = (Ip +Mm0)�1; F2 = K; F3 = (GTC�1G�D)�11;s: (5.21)
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5.3.2 Eigenvalues and L2 norm of F1 = ((Ip +Mm
0)�1)

5.3.2.1 Eigenvalues of (Mm0)�1

In this section, we consider two special cases.

Case 1: B1 positive de�nite

If we assume that B1 is positive de�nite, then m0 and the other diagonal blocks

of the inverse of B1 are positive de�nite. From the de�nition of m0, m0 = S�1(m),

and we have,

M � (m0)�1 =M � S(m) =M �m +KL0K

= M � (L�M) +KL0K = 2M � L+KL0K

=

0
BBBBBBB@

1
�
2
3
h 1

�
1
3
h 0 � � � 0

1
�
1
3
h 1

�
4
3
h 1

�
1
3
h 0 � � � 0

...
. . .

...
0 � � � 0 1

�
1
3
h 1

�
4
3
h 1

�
1
3
h

0 � � � 0 1
�
1
3
h 1

�
4
3
h

1
CCCCCCCA
+KL0K > 0;

with L0 = S�1(L) where S(L) is the Schur complement of the positive de�nite

upper left block in B1 as in (5.9). Since the �rst matrix is diagonally dominant,

it is positive de�nite and since the second matrix is similar to a subblock of the

inverse of a positive de�nite matrix, it is positive de�nite. From Theorem 1.8, we

know that all eigenvalues of (Mm0)�1 = S(m)M�1 are less than 1.

We now need to consider the term L0 in the next computation. The positive

de�niteness of the matrix B1 is important for that of L0. Even though L is positive

de�nite, it does not give the positive de�niteness of L0. Also, the positive de�nite-

ness of m0 is decided by that of the whole matrix B1 which depends on having a

suÆciently small 1
�
h. Even if m is positive de�nite, it is possible that m0 is not.

Case 2 : L > KL0K
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With this condition, we have

M + (m0)�1 = M + S(m) =M +m�KL0K =M + (L�M)�KL0K

= L�KL0K = S(L) > 0:

From Theorem 1.9, we know that all eigenvalues of (Mm0)�1 = S(m)M�1 are

greater than �1. From the result above we know that all eigenvalues of (Mm0)�1 =

S(m)M�1 are located in (�1; 1).

5.3.2.2 Eigenvalues of (Ip +Mm0)�1

In this section, we consider a special case. Here �(A) is the set of eigenvalues

of the square matrix A.

Case 1 : B1 positive de�nite

If we assume positive de�niteness of B1, we can apply Theorem 1.6 and we

have �((Mm0)�1) � (0; 1).

Then, we have the following,

1. all eigenvalues of Mm0 are in (1;1).

2. all eigenvalues of Ip +Mm0 are (2;1).

3. all eigenvalues of (Ip +Mm0)�1 are (0; 1=2).

So we have %(Ip + Mm0)�1 < 1=2. Even though M and m0 are symmetric

positive de�nite matrices, the matrix Mm0 might not be symmetric. Therefore

we cannot prove a norm bound directly. However, since M is a positive de�nite

matrix, we have the following similarity,

Mm0 = lltm0ll�1: (5.22)
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Table 5.1: Condition number of l.

n=5 n=10 n=15 n=20 n=25
1
�
h = 10�4 1.9662 1.9838 1.9923 1.9957 1.9972

1
�
h = 10�3 1.9653 1.9829 1.9914 1.9948 1.9963

1
�
h = 10�2 1.9561 1.9741 1.9826 1.9859 1.9874

1
�
h = 10�1 1.8720 1.8931 1.9012 1.9043 1.9057

1
�
h = 1 1.4333 1.4559 1.4604 1.4620 1.4626

1
�
h = 101 1.2854 1.3082 1.3131 1.3150 1.3159

1
�
h = 102 1.5438 1.6278 1.6483 1.6562 1.6600

1
�
h = 103 1.5849 1.6803 1.7036 1.7126 1.7169

1
�
h = 104 1.5893 1.6859 1.7095 1.7186 1.7230

Therefore, we have the following,

Ip +Mm0 = l(Ip + ltm0l)l�1: (5.23)

Finally we have,

(Ip +Mm0)�1 = l(Ip + ltm0l)�1l�1: (5.24)

Since the eigenvalues of two similar matrices are the same and (Ip + ltm0l)�1 is

symmetric, we have,

jj(Ip +Mm0)�1jj2 = jjl(Ip + ltm0l)�1l�1jj2
� jjljj2jj(Ip + ltm0l)�1jj2jjl�1jj2
= jjljj2%(Ip + ltm0l)�1)jjl�1jj2
= jjljj2%((Ip +Mm0)�1)jjl�1jj2
= cond(l)%((Ip +Mm0)�1):

Now we want to know the condition number of l and a precise estimate of

%((Ip +Mm0)�1). Table 5.1 is a table of the condition number of l which shows
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Table 5.2: Table for jjF jj2.

n = 31 jjF1jj2 jjF2jj2 jjF3jj2 jjF jj2
� = 100 , ovlp = 27 0.4759 1.000 796.2 0.0171
� = 100 , ovlp = 15 0.4891 1.000 892.4 0.1627
� = 100 , ovlp = 3 0.4890 1.000 1014 0.7116
� = 10 , ovlp = 27 0.4758 1.000 74.99 0.0151
� = 10 , ovlp = 15 0.4889 1.000 87.72 0.1505
� = 10 , ovlp = 3 0.4888 1.000 104.4 0.6674
� = 1 , ovlp = 27 0.4743 1.000 4.779 0.0046
� = 1 , ovlp = 15 0.4872 1.000 7.739 0.0761
� = 1 , ovlp = 3 0.4871 1.000 12.75 0.3873
� = 0:1 , ovlp = 27 0.4605 1.000 0.1445 0.0088
� = 0:1 , ovlp = 15 0.4723 1.000 0.6038 0.1117
� = 0:1 , ovlp = 3 0.4724 1.000 1.942 0.4112
� = 0:01 , ovlp = 27 1.4350 1.000 0.0076 0.0110
� = 0:01 , ovlp = 15 2.7126 1.000 0.0573 0.1553
� = 0:01 , ovlp = 3 2.8609 1.000 0.2326 0.6652

that it is less than 2. Since %((Ip +Mm0)�1) is strictly less than 1=2, this shows

that jjF1jj = jj(Ip +Mm0)�1jj2 < 1.

5.3.2.3 Conclusions and numerical results for the general case

We can conclude that the �rst factor F1 is composed of a product of a positive

de�nite matrix and a symmetric matrix and therefore, it is similar to a symmetric

matrix. Under the condition of positive de�niteness of B1, jjF1jj2 is less than 1.

From Table 5.2, we can see the 2-norm of F1 is not so big in numerical results for

the general case.
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5.3.3 L
2 norm of F2 = K

Consider a positive de�nite matrix P = �K. If 1
�
h < 6, then I � P � 0. So we

have the following,

jjKjj2 = jjP jj2 � jjIjj = 1: (5.25)

The 2-norm of K can be greater than 1 under the condition 1
�
h � 6 which means

a very small �.

5.3.4 Eigenvalues and L2 norm of F3 = (GTC�1G�D)�11;s

5.3.4.1 Eigenvalues of (GTC�1G�D)�11;s

We know that (GTC�1G�D)�1 is a partitioned block of B�1
1 = b(B)�1. The

subblock matrix (GTC�1G�D)�11;s is an o�-diagonal and boundary block matrix.

Table 5.2 shows an example of the 2-norm of the boundary subblock matrices

b(B)�1(n;i) of b(B)
�1 with n = 30. The size of the block matrix (GTC�1G � D)�1

depends on the overlap of the two subdomains. A larger overlap means that the

number s is bigger. The block (GTC�1G�D)�11;s is the block submatrix b(B)
�1
n;n�s+1

of b(B)�1. Therefore, a larger overlap makes jj(GTC�1G�D)�11;sjj2 smaller.
Table 5.2 and other numerical results show that jj(GTC�1G � D)�11;sjj2 is less

than 1 for small �. Since the matrix b(B) is a M-matrix, its inverse b(B)�1 is a

positive de�nite matrix. With a small 1
�
, the diagonal entries of the matrix b(B)

dominate the o�-diagonal entries. For a large �, jjF3jj2 is relatively large. Also it

is generally not symmetric.

Remark In Chapter 8 of [2], there is a formula for the decay of block subma-

trices of inverses of block tridiagonal positive de�nite square matrices. Theorem

8.33 in [2] shows that an upper bound of the norm of an o�-diagonal subblock
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Figure 5.2: An example of jj � jj2 of boundary sub block matrices b(B)�1n;i of b(B)
�1

with h = 1=30

matrix which is product of two corresponding diagonal sub block and the C.B.S.

(Cachy-Schwarz-Bunyakowski) constant (see [2] section 9.1).

5.3.4.2 L2 norm of (GTC�1G�D)�11;s

The e�ect of F3 looks disastrous for large �. Figure 5.3 shows an example of

log10(�(F3)) with � = 10i; i = �2; �; 2 and n = 31. In this �gure, the eigenvalues

which have magnitude larger than 1 are isolated from other eigenvalues which have

absolute values less than 1.
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Figure 5.3: An example of the spectrum of log10(�(F3)) with � = 10i; i = �2; � � � ; 2
and n = 31.

5.3.5 L2 norm of F = �

Table 5.2 shows the 2-norm of F and its three factors. The table show that even if

one of three is greater than 1, the estimate of the 2-norm of F is still less than 1.

With a small �, the 2-norm of F3 has a good e�ect and from Table 5.2, the product

of the 2-norms of the three factor is less than 1. With a large �, the 2-norm of

F3 is disastrously big but we know from Figure 5.3 that it comes from isolated

eigenvalues and that most other eigenvalues are less than 1.
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Chapter 6

Analysis based on Lagrange
Multipliers

6.1 Basic Concepts and Notations

6.1.1 Splitting of the Error Vector

We de�ne a positive atomic subdomain as an atomic subdomain participating in

all fractional steps and whose corresponding local matrix is positive de�nite. In the

two overlapping subdomain case, we have one positive atomic subdomain which is

the �lled-in region of Figure 6.1.

From the following formula (2.39) for the positive atomic subregion,

B12u12 = f 12 + (I121 )T�1 + (I122 )T�2; (6.1)

we obtain the following formula for the error vector in the overlapping atomic

subregion,

B12e12 = (I121 )T�1 + (I122 )T�2: (6.2)

Since B12 is invertible, we can decompose e12 as,

e12 = e121 + e122 ;
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with

B12e122 = (I122 )T�2 B12e121 = (I121 )T�1: (6.3)

We de�ne a matrix m0 as

m0 = I122 (B12)�1(I122 )T :

Since m0 is positive de�nite, being a principal submatrix of (B12)�1, we have,

jje122 jj2B12 = (e122 )
TB12e122 = (e122 )

T (I122 )T�2

= (�2)
T I122 (B12)�1(I122 )T�2

= (�2)
Tm0�2 = jj�2jj2m0 ;

and

jje121 jj2B12 = (e122 )
TB12e122 = (�1)

Tm0�1 = jj�1jj2m0 : (6.4)

Therefore, a comparison between jj�ijjm0 ; i = 1; 2 is reduced to that between

jje12i jjB12 ; i = 1; 2.

6.1.2 A Relation between the Split Error Vectors

Ω1 Ω 12 2Ω

ΓΓ2 1

Figure 6.1: The positive atomic subregion of two overlapping subdomains
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Let u and v be elements of the appropriate space V 1 of P 1 �nite element

functions. We then have the following identity from the functionals in (2.31),

utB12v =
Z

12
ru � rv + 1

�

Z
�12

u v +
1

~�

Z
�1
u v +

1

~�

Z
�2
u v:

From the relation (6.3), e121 is the solution with nonzero Robin boundary data

on �2 and zero Robin boundary data on �1 and �12 and e122 is the solution with

nonzero Robin boundary data on �1 and zero Robin boundary data on �2 and �
12.

Therefore, we have the following,

(e121 )
TB12e121 =

Z

12
re121 � re121 +

1

�

Z
�12

je121 j2 +
1

~�

Z
�1[�2

je121 j2

=
1

�

Z
�12

e121 (e121 + �
@e121
@n

) +
1

~�

Z
�1[�2

e121 (e121 + ~�
@e121
@n�1

)

=
1

~�

Z
�1
e121 (e121 + ~�

@e121
@n�1

):

We also have,

(e122 )
TB12e122 =

1

~�

Z
�2
e122 (e122 + ~�

@e122
@n�2

):

In addition,

(e12)TB12e12 =
1

~�

Z
�1[�2

e12 (e12 + ~�
@e12

@n�1
):

Therefore,

(e121 )
TB12e122 =

1

~�

Z
�2
e121 (e122 + ~�

@e122
@n�2

);

and

(e122 )
TB12e121 =

1

~�

Z
�1
e122 (e121 + ~�

@e121
@n�1

):

Since the following identity

(e121 )
TB12e122 = (e122 )

TB12e121
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holds, we have,

1

~�

Z
�2
e121 (e122 + ~�

@e122
@n�2

) =
1

~�

Z
�1
e122 (e121 + ~�

@e121
@n�1

):

From Green's identity and the relation between the Robin boundary conditions

and e12i ; i = 1; 2, the identity above can be established directly by noticing that

1

~�

Z
�2
e121 (e122 + ~�

@e122
@n�2

) =
1

~�

Z
�1[�2

e121 (e122 + ~�
@e122
@n�2

)

=
Z

12
re121 � re122 +

1

�

Z
�12[�1[�2

e121 e122

=
1

~�

Z
�1[�2

e122 (e121 + ~�
@e121
@n�2

)

=
1

~�

Z
�1
e122 (e121 + ~�

@e121
@n�1

):

Also we have the following,

1

~�

Z
�1
e121 (e121 + ~�

@e121
@n�1

) +
1

~�

Z
�1
e122 (e121 + ~�

@e121
@n�1

)

=
1

~�

Z
�1
(e121 + e122 ) (e

12
1 + ~�

@e121
@n�1

) =
1

~�

Z
�1
e12 (e121 + ~�

@e121
@n�1

)

=
1

~�

Z
�1
e12 (e12 + ~�

@e12

@n�1
);

and

1

~�

Z
�2
e121 (e122 + ~�

@e122
@n�2

) +
1

~�

Z
�2
e122 (e122 + ~�

@e122
@n�2

)

=
1

~�

Z
�2
(e121 + e122 ) (e

12
2 + ~�

@e122
@n�2

) =
1

~�

Z
�2
e12 (e122 + ~�

@e122
@n�2

)

=
1

~�

Z
�2
e12 (e12 + ~�

@e12

@n�2
):

The two quantities are then reduced to,

1

~�

Z
�2
e12 (e12 + ~�

@e12

@n�2
) = jje122 jj2B12 + (e121 )

TB12e122 ; (6.5)
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and

1

~�

Z
�1
e12 (e12 + ~�

@e12

@n�1
) = jje121 jj2B12 + (e121 )

TB12e122 : (6.6)

Therefore, a comparison between the two integrals above gives us a way of com-

paring jje122 jjB12 and jje121 jjB12 .

6.2 Convergence Theory for the Rectangular Two

Subdomain Case

In this section, we will study the convergence for two overlapping rectangular

subdomains of a unit square (= 
). We will study the convergence of the �rst

fractional step with


1 = f(x; y)j0 � x � 1; 0 � y � Lg;

and we have the same result for the second fractional step.

6.2.1 Basic Properties and Notations for the Boundary
Segments

Without loss of generality, we assume that the Robin boundary condition vanishes

on the following set,

�1 = f(x; y)j(x; 0) [ (x; 1) [ (0; y); 0 � x � 1; 0 � y � Lg:

This means that the following conditions hold on the three di�erent boundary

segments,

�S(x) = u� �uy = 0 on �S
1 = f(x; y)j(x; 0); 0 � x � 1g; (6.7)

�E(y) = u+ �ux = 0 on �E
1 = f(x; y)j(1; y); 0 � y � Lg;
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�W (y) = u� �ux = 0 on �W
1 = f(x; y)j(0; y); 0 � y � Lg:

Therefore we have the following equation for any solution u which has suÆcient

regularity,

�S(x)x = ux � �uyx = 0; �S(x)xx = uxx � �uyxx = 0 on �S
1 ; (6.8)

�E(y)y = uy + �uxy = 0; �E(x)yy = uyy + �uxyy = 0 on �E
1 ;

�W (y)y = uy � �uxy = 0; �W (x)yy = uyy � �uxyy = 0 on �W
1 :

We de�ne the nonoverlapped atomic subdomain 
1 in the �rst fractional step by


1 = f(x; y)j0 � x � 1; 0 � y � lg;

We also introduce notations for the two arti�cial boundaries and the other three

boundary segments for 
1,

�1 = f(x; y)j(x; L); 0 � x � 1g

�2 = f(x; y)j(x; l); 0 � x � 1g

�1
S = f(x; y)j(x; 0); 0 � x � 1g

�1
W = f(x; y)j(0; y); 0 � y � lg

�1
E = f(x; y)j(1; y); 0 � y � lg:

6.2.2 A Basic Tool for the Computation

Let H(y) be the solution of the following ordinary di�erential equation with a

given di�erentiable function G(y),

H 00 = 0 H(0) = G(0) H(L) = G(L):

108



We then have,

H(y) = G(0)(1� 1

L
y) +

G(L)

L
y:

If we have the following inequality,

G00 � 0; (6.9)

then,

(H 00 �G00) = �G00 � 0:

From this equation, we can conclude that G(y) � H(y) and that we have the

following inequality,

G(y) � H(y) = G(0)(1� 1

L
y) +G(L)

y

L
: (6.10)

6.2.3 Basic Computation for � � 0

We now de�ne the function G1(y) as,

G1(y) =
Z 1

0
u2 dx: (6.11)

The function G1(y) has the �rst and second derivatives

G0
1(y) = 2

Z 1

0
u uy dx and G00

1(y) = 2
Z 1

0
(u uyy + u2y) dx:

Therefore, by integration by parts and using the relation in (6.7),

G00
1(y) = 2

Z 1

0
u uyy + u2y dx = �2

Z 1

0
u uxx dx+ 2

Z 1

0
u2y dx

= �2u ux(1) + 2u ux(0) + 2
Z 1

0
u2x dx+ 2

Z 1

0
u2y dx

(� > 0) : =
2

�
(u2(1) + u2(0)) + 2

Z 1

0
u2x dx+ 2

Z 1

0
u2y dx � 0;

or

(� = 0) : = 2(
Z 1

0
u2x dx+

Z 1

0
u2y dx) � 0:
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We then de�ne H1 as,

H1(y) = G1(0)(1� 1

L
y) +

G1(L)

L
y: (6.12)

From the relation in (6.9) and (6.10), we have,

G1(y) � H1(y) = G1(0)(1� 1

L
y) +G1(L)

y

L
:

We now de�ne another function G2(y) as,

G2(y) =
Z 1

0
u uy dx: (6.13)

The function G2(y) has the �rst and second derivatives

G0
2(y) =

Z 1

0
u2y dx+

Z 1

0
u uyy dx;

and

G00
2(y) = 3

Z 1

0
uy uyy dx+

Z 1

0
u uyyy dx:

To check (6.9), we need to consider the following two terms separately,

K1(y) =
Z 1

0
uy uyy dx; K2(y) =

Z 1

0
u uyyy dx: (6.14)

For the �rst term,

K 0
1(y) =

Z 1

0
u2yy dx+

Z 1

0
uy uyyy dx =

Z 1

0
u2yy dx�

Z 1

0
uy uxxy dx (6.15)

=
Z 1

0
u2yy dx+

Z 1

0
u2xy dx� uyuxy(1) + uyuxy(0)

(� > 0) : =
Z 1

0
u2yy dx+

Z 1

0
u2xy dx+

1

�
(u2y(1) + u2y(0)) � 0;

or

(� = 0) : =
Z 1

0
u2yy dx+

Z 1

0
u2xy dx � 0:
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from the properties in (6.8).

For the second term,

K 0
2(y) =

Z 1

0
uy uyyy dx+

Z 1

0
u uyyyy dx � �

Z 1

0
u uxxyy dx (by (6.15))

=
Z 1

0
ux uxyy dx� u uxyy(1) + u uxyy(0)

=
Z 1

0
u2yy dx� u uxyy(1) + u uxyy(0) + ux uyy(1)� ux uyy(0)

(� > 0) : � 1

�
(u uyy(1) + u uyy(0)) + ux uyy(1)� ux uyy(0)

= (
1

�
u+ ux) uyy(1) + (

1

�
u� ux) uyy(0) = 0;

or

(� = 0) : �
Z 1

0
u2yy dx � 0:

from the properties in (6.7) and (6.8).

Let L(y) be given by

L(y) = G00
2(y) = K(y) +B(y):

From the results above, we have

L0(y) � 0;

and

L(0) = 3
Z 1

0
uy uyy(0) dx+

Z 1

0
u uyyy(0) dx

(� > 0) : = � 3

�

Z 1

0
u uxx(0) dx�

Z 1

0
u uyxx(0) dx

= � 4

�

Z 1

0
u uxx(0) dx =

4

�
(
Z 1

0
u2x dx� u ux(1) + u ux(0))

=
4

�
(
Z 1

0
u2x dx+ � u2x(1) + �u2x(0)) � 0;

or

(� = 0) : = �3
Z 1

0
uy uxx(0) dx+

Z 1

0
u uyyy(0) dx = 0;
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from the properties in (6.7) and (6.8).

From the computational result above, we have

G00
2(y) = L(y) � 0:

Then, de�ne H2 as,

H2(y) = G1(0)(1� 1

L
y) +

G1(L)

L
y: (6.16)

From the relation in (6.9) and (6.10), we have,

G2(y) � H2(y) = G2(0)(1� 1

L
y) +G2(L)

y

L
: (6.17)

Let G3 be given by,

G3(y) =
1

~�
G1(y) +G2(y):

From the previous result, we have,

G00
3 � 0:

Then de�ne H3 as,

H3(y) = G3(0)(1� 1

L
y) +

G3(L)

L
y: (6.18)

From the relation in (6.9) and (6.10), we have,

G3(y) � H3(y) = G3(0)(1� 1

L
y) +G3(L)

y

L
: (6.19)

As a last part of this section, we have the following inequality

G2(y) =
Z 1

0
u uy dx � 0; (6.20)

with G0
2(y) � 0 from the previous results and,

(� > 0) : G2(0) =
Z 1

0
u uy dx =

1

�

Z 1

0
u2y dx � 0; (6.21)
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or

(� = 0) : G2(0) =
Z 1

0
u uy dx = 0;

from the properties in (6.7).

6.2.4 Analysis for the case of � � 0

The result in this section is important for the analysis of the general Robin bound-

ary condition with two overlapping subdomains as well as for a general number of

subdomains with general Robin boundary conditions on the original boundaries

and the arti�cial interfaces.

We begin this section with the following basic property of harmonic functions,

Z Z


e2x + e2yd
 =

Z
@

e
@e

@n
dS: (6.22)

From the relation (6.22), we have the following equation with zero Robin boundary

conditions on �1
S, �

1
W , and �1

E with � > 0,

Z Z


e2x + e2yd
 =

Z
@

e
@e

@n
dS =

Z
�2
e
@e

@n
dx +

Z
�1

e
@e

@n
dx

=
Z
�2
e ey dx�

Z
�1
S

e ey dx�
Z
�1
W

e ex dy +
Z
�1
E

e ex dy

=
Z
�2
e ey dx� 1

�

Z
�1
S

e2 dx� 1

�

Z
�1
W

e2 dy � 1

�

Z
�1
E

e2 dy:

Since the H1� semi-norm is nonnegative, we have the following inequality,

Z
�2
e ey dx � 1

�

Z
�1
S

e2 dx+
1

�

Z
�1
W

e2 dy +
1

�

Z
�1
E

e2 dy >
1

�

Z
�1
S

e2 dx: (6.23)

We have the following with the general Robin boundary condition with the

notation above,

1

~�

Z
�2
e12 (e12 + ~�

@e12

@n�2
) = �

Z
�2
e12 e12y dx+

1

~�

Z
�2
je12j2 dx; (6.24)
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and

1

~�

Z
�1
e12 (e12 + ~�

@e12

@n�1
) =

Z
�1
e12 e12y dx+

1

~�

Z
�1
je12j2 dx: (6.25)

From the result of (6.19) and (6.7), we have,

Z
�2
e12 e12y dx+

1

~�

Z
�2
je12j2 dx

� C0 (
Z
�1
S

e12 e12y dx+
1

~�

Z
�1
S

je12j2 dx) + C1 (
Z
�1
e12 e12y dx+

1

~�

Z
�1
je12j2 dx)

= C0 (
1

�
+

1

~�
)
Z
�1
S

je12j2 dx+ C1 (
Z
�1
e12 e12y dx+

1

~�

Z
�1
je12j2 dx)

with

C0 = (1� l

L
); C1 =

l

L
; C0 + C1 = 1; 0 < C0 < 1; 0 < C1 < 1:

We have the following inequality using (6.23)

�
Z
�2
e12 e12y dx+

1

~�

Z
�2
je12j2 dx (6.26)

=
Z
�2
e12 e12y dx+

1

~�

Z
�2
je12j2 dx� 2

Z
�2
e12 e12y dx

� C1 (
Z
�1
e12 e12y dx+

1

~�

Z
�1
je12j2 dx) + C0 (

1

�
+

1

~�
)
Z
�1
S

je12j2 dx� 2
Z
�2
e12 e12y dx

< C1 (
Z
�1
e12 e12y dx+

1

~�

Z
�1
je12j2 dx) with C0 (

1

�
+

1

~�
) � 2

�
:

For � = 0, we have the following results,

1

~�

Z
�2
e12 (e12 + ~�

@e12

@n�2
) = �

Z

1
re1 � re1 + 1

~�

Z
�2
je12j2; (6.27)

and

1

~�

Z
�1
e12 (e12 + ~�

@e12

@n�1
) =

Z

1
re1 � re1 + 1

~�

Z
�1
je12j2: (6.28)

From the result above and (6.20), we have the following results with ~� � �(2�C0
C0

),

1

~�

Z
�2
e12 (e12 + ~�

@e12

@n�2
) < C1(

1

~�

Z
�1
e12 (e12 + ~�

@e12

@n�1
))

< (
1

~�

Z
�1
e12 (e12 + ~�

@e12

@n�1
));
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with C1 =
l
L
< 1 which is the ratio between the original length and the overlapped

length which has a smaller value with more overlap. From (6.5), we have,

jje122 jj2B12 < jje121 jj2B12 :

Finally we have,

jj�1jj2m0 < jj�2jj2m0: (6.29)

Therefore the norm of the Lagrange multipliers decreases strictly in Algorithm 3

(OSM-D).

6.2.5 Geometric Convergence of the Lagrange Multipliers

The main results of the inequalities (6.29) is that there exist a uniform factor

which is strictly less than 1 and is independent of the error vector. To prove

the convergence of Algorithm 3 (OSM-D), we need to compare the two quantities

jje122 jj2B12 , and jje121 jj2B12 . In the subsection 6.2.4, we have studied the relation of two

other quantities jje122 jj2B12 + (e121 )
TB12e122 and jje121 jj2B12 + (e121 )

TB12e122 . Therefore,

we can simplify the problem as the follows, If we know that

A+ C < �(B + C) with � < 1; (6.30)

then is it possible to �nd a uniform factor � < 1 such that

A < �B ?

This statement is generally not true.

However, we can prove this in our case from the strengthened C.B.S. inequality

in 1.5. Let V (�1) be the vector space with an element e1 2 V (�1) which corre-

sponds to the Lagrange multiplier �1 on the discontinuous arti�cial interface �1
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such that,

B12e1 = (I121 )T�1 8e1 2 V (�1):

We also de�ne V (�2) as

B12e2 = (I122 )T�2 8e2 2 V (�2):

We then have,

V (�1) \ V (�2) = f0g:

Therefore, the following strengthened C.B.S.-inequality holds:

j(e1; e2)B12 j � �jje1jjB12 jje2jjB12 ; 8e1 2 V (�1); 8e2 2 V (�2) � < 1: (6.31)

We can identify each term in (6.30) as,

A = jje122 jj2B12 ; B = jje121 jj2B12 ; C = (e121 )
TB12e122 ; � = C1 =

y

L
< 1:

From (6.31), we have,

jCj � �
p
AB; with � < 1: (6.32)

The inequality (6.30) can be rewritten as,

A + (1� �)C < �B:

If C � 0, then we have A < �B.

If C < 0, we have the following from (6.32),

0 < �C � �
p
AB:

We also have,

A+ (�� 1)(�C) < �B;

116



which implies

A

B
+ (�� 1)�

s
A

B
< �:

Finally, we have

0 <

s
A

B
< b;

with

b =
(1� �)� +

q
�2(1� �)2 + 4�

2
< 1:

Therefore, we have

A < b2B:

Finally we have the main inequality,

jje122 jj2B12 < �jje121 jj2B12 � < 1; (6.33)

where � is independent of the error vectors.

6.2.6 Geometric Convergence of Algorithm 3 (OSM-D) on
Two Overlapping Subdomains

We have studied the behavior of the error vectors with the general Robin boundary

condition on two overlapping subdomains in subsection 6.2.5. From the inequality

(6.33), the Lagrange multiplier converges to zero. The meaning of the Lagrange

multiplier on �1 is the nonzero Robin boundary condition on the discontinuous arti-

�cial interface. Since the other boundary segments have zero Robin conditions, the

error vector on the subdomain depends only on the Lagrange multiplier. We have

compared two Lagrange multipliers, the Lagrange multipliers on the discontinuous

arti�cial interface and that on the continuous arti�cial interface. The Lagrange

multipliers on the continuous arti�cial interface will be the Lagrange multipliers
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on the discontinuous arti�cial interface for next step. Therefore, we have actually

compared two boundary conditions on the new and old problems and a certain

quantity of the new boundary condition is strictly less than that of the old bound-

ary condition. Since the sequence of the quantities of the boundary condition

converges to zero. We obtain a zero Robin boundary condition on all boundary

segments in the limit. Therefore the error vector converges to zero. Since, in

this case, we have a uniform convergence factor, we have geometric convergence of

Algorithm 3 (OSM-D) on two overlapping subdomains

6.3 Convergence Theory for the General Two

Subdomain Case

The main issue for this case is to �nd an inequality similar to (6.29) in the general

two subdomain case. Since we have following two equalities,

1

~�

Z
�1
e12 (e12 + ~�

@e12

@n�1
) =

1

~�

Z
�1
je12j2 +

Z

1
re12 � re12 + 1

�

Z
�1

je12j2; (6.34)

and

1

~�

Z
�2
e12 (e12 + ~�

@e12

@n�2
) =

1

~�

Z
�2
je12j2 � (

Z

1
re12 � re12 + 1

�

Z
�1
je12j2); (6.35)

we want �nd a uniform factor �(
1;

1) < 1 such that

1

~�

Z
�2
e12 (e12 + ~�

@e12

@n�2
) < �(
1;


1) (
1

~�

Z
�1
e12 (e12 + ~�

@e12

@n�1
)): (6.36)

From Friedrichs' Inequality, we have

Z

1
re12 � re12 + 1

�

Z
�1
1

je12j2 � (CF + 1) F (�)
�
je12j2H1(
1)

+ jje12jj2L2(
1)
�
;
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with

F (�) =
1

max (1; �)
:

From the trace theorem, we have the following sequence of inequalities,

Z

1
re12 � re12 + 1

�

Z
�1
1

e12 e12 � (CF + 1) F (�)
�
je12j2H1(
1)

+ jje12jj2L2(
1)
�

> (CF + 1) F (�)
�
je12j2H1(
1) + jje12jj2L2(
1)

�

� (CF + 1) F (�) CT jje12jj2L2(@
1)
> (CF + 1) F (�) CT

Z
�2
je12j2:

The two constants CF and CT depend on the geometry of the subdomain and the

atomic subdomain. With a suÆciently large ~�, we have,

�(
1;

1) =

1

(CF + 1) F (�) CT ~�
< 1:

Finally we have the following results for a suÆciently large ~�,

�(
1;

1)

1

~�

Z
�1
e12 (e12 + ~�

@e12

@n�1
)�

Z
�2
e12

@e12

@n�2
(6.37)

= �(
1;

1)

1

~�

Z
�1
e12 (e12 + ~�

@e12

@n�1
) +

Z

1
re12 � re12 + 1

�

Z
�1
e12 e12

> �(
1;

1)

1

~�

Z
�1
e12 (e12 + ~�

@e12

@n�1
)

> �(
1;

1) (

Z

1
re12 � re12 + 1

�

Z
�1
1

e12 e12)

> �(
1;

1) (CF + 1) F (�) CT

Z
�2
je12j2

=
1

~�

Z
�2
e12 e12:

Therefore, (6.36) holds.
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Chapter 7

Numerical Results

7.1 Two-level Algorithms

The convergence rate of one-level classical Schwarz algorithms deteriorates rapidly

with the number of subdomains. This is due to the fact that in the one-level clas-

sical algorithms, information is passed only between neighboring subdomains. To

overcome this weakness of the algorithms, we can introduce a coarse space which

has a small number of degrees of freedom in each subdomain. The coarse global

problem set over the coarse space provides the mechanism for global communica-

tion of information between all subdomains in each iteration.

In this section, we will compare three two-level Overlapping Schwarz Algo-

rithms. We will use the notations and de�nitions of Chapter 2.

7.1.1 Two-level Classical Algorithm

The fractional step of the classical overlapping Schwarz algorithm can be written

as,

u(n+j=p) = u(n+(j�1)=p) + A+
j (b� Au(n+(j�1)=p)): (7.1)

120



To facilitate global communication between distant subregions, we can include a

coarse grid correction in the classical overlapping Schwarz algorithm. Let Ac be

a coarse grid discretization of the form a(�; �) in (2.4). Let Rc be a change of

basis map from the coarse grid basis to the �ne grid base. Then the coarse grid

correction in the fractional step is given by ccn which satis�es

ccn = Rc(Ac)�1(Rc)t(b� Aun): (7.2)

From the above equation, a complete listing of the classical overlapping Schwarz

algorithm is

rn := b� Aun (7.3)

ccn := Rc(Ac)�1(Rc)trn

un := un + ccn

un+1=p := un + A+
1 (b� Aun)

� � �

un+1 := u(n+(p�1)=p) + A+
p (b� Au(n+(p�1)=p)):

7.1.2 Two-level Algorithm 2 (OSM-C)

The two-level cycle of Algorithm 2 (OSM-C) has the same form as the classical

overlapping Schwarz algorithm. In the j-th fractional step of Algorithm 2 (OSM-

C), all nodal values in the closure of 
j are changed but all other nodal values

are left unchanged. Using the projection Pj, we modify the listing of the classical

overlapping Schwarz algorithm and obtain

rn := b� Aun
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ccn := Rc(Ac)�1(Rc)trn

un := un + ccn

u(n+1=p) := P c
1un + P1A

+
1 (b� Ac

1un) (7.4)

� � �

un+1 := P c
pu(n+(p�1)=p) + PpA

+
p (b� Ac

pu(n+(p�1)=p)):

7.1.3 Two-level Algorithm 3 (OSM-D)

The two-level cycle of Algorithm 3 (OSM-D) will be derived from (7.4). In the

previous algorithm, we constructed the coarse grid correction from the residual. To

de�ne the coarse grid correction in Algorithm 3 (OSM-D), we need to consider the

special aspects of the residual in Algorithm 3 (OSM-D). Since Algorithm 3 (OSM-

D) allows multiple values on the arti�cial interfaces, the residuals of the fractional

steps are acquired through their contributions from the atomic subregions and

according to (2.17), the residual can also be computed from the jump directly.

Using partitioned matrices ~� and ~A, we have the listing of two-level Algorithm 3

(OSM-D) given by

rn := b� ~Rt ~A~un (7.5)

ccn := Rc(Ac)�1(Rc)trn

~un := ~un + ~Rccn

~u(n+1=p) := ~P c
1 ~un + ~P1 ~RA

+
1 (b� ~Rt ~P c

1
~�~un)

� � �

~un+1 := ~P c
p ~u(n+(p�1)=p) + ~Pp ~RA

+
p (b� ~Rt ~P c

p
~�~u(n+(p�1)=p)):
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Figure 7.1: An example of the four approximate eigenvectors corresponding to
negative real eigenvalues of two level Algorithm 2 (OSM-C) with GMRES on nine
overlapping domain with n = 100, nc = 10, and ovlp = 1

7.1.4 Algorithm 2 (OSM-C) and Algorithm 3 (OSM-D)
with GMRES

As we can see from the listings, Algorithm 2 (OSM-C) and Algorithm 3 (OSM-D)

do not use the conventional residuals in the fractional steps. To apply GMRES

to the two algorithms for solving Ax = b, we need to change to another related

problem. Algorithm 2 (OSM-C) and Algorithm 3 (OSM-D) can be thought of in
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Figure 7.2: An example of error vectors on the arti�cial interfaces and the atomic
subdomains on two overlapping subdomains; e5+1=2 and e6 of 
1 on �2 (solid line),
of 
12 on �2 (dotted line), of 
12 on �1 (dash-dotted line), of 
2 on �1 (dashed
line) in 6-th step with n = 37; ovlp = 3; � = 0:1.

terms of aÆne linear maps,

xn+1 = F (xn) with F (x) =Mx + F (0): (7.6)

If the problem has a solution, it is the �xed point of

(I �M)x = C with C = F (0): (7.7)

We can apply GMRES to equation (7.7).
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Figure 7.3: An example of l2 norm of error vectors on the arti�cial interfaces on two
overlapping subdomains of Algorithm 3 (OSM-D); e� of 
1 on �2 (1), of 


12 on �2
(2), of 
12 on �1 (3), of 


2 on �1 (4) in 1 - 4 iteration with n = 37; ovlp = 3; � = 0:1.
(Here g1 and g2 are two arti�cial interfaces (inside and outside interfaces) for the
�2 and g3 and g4 for �1.)

7.2 Approximate Eigenvalues and Divergence of

Algorithm 2 (OSM-C)

We have implemented several cases of Algorithm 2 (OSM-C) with nine overlapping

subdomains. For �xed n = 100, we used � = ~� = 0:01; 0:1; 1, and 10 for one-level

method with GMRES and two level method with a nc = 10 coarse grid and

GMRES to check the dominating eigenvalues and eigenvectors of the iteration
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Figure 7.4: An example of error vectors on four overlapping subdomains with
n = 37, � = 0:1, ovlp = 3.

operator. To compare the numerical and exact solutions, we used two di�erent

exact solutions with � = ~� = 0:01; 1, and 10. From the computational results, we

�nd.

� If we apply one-level method with GMRES, Algorithm 2 converges for � =

0:01 and diverge for the other values of �. A larger � makes divergence faster.

In the cases of � = 0:1; 1 and 10 we have four eigenvalues which have negative

real part. Their eigenvectors have four spikes at the four cross points. The
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Figure 7.5: An example of error vectors on nine overlapping subdomains of Algo-
rithm 3 (OSM-D) with n = 43, � = 0:1, ovlp = 3.

associated eigenvalues do not change with di�erent exact solutions.

� If we apply two level methods with GMRES, the results are similar to those

of one-level with GMRES. The coarse grid correction does not a�ect the four

eigenvalues which have negative real part and their eigenvectors very much.

An example of the four approximate eigenvectors corresponding to the eigenvalues

with negative real part of two level Algorithm 2 (OSM-C) with GMRES is given

in Figure 7.1.

127



0
20

40
60

0

50
−0.015

−0.01

−0.005

0

 error  α~ = 0.01

0
20

40
60

0

50
0

1

2

x 10
−3

 residual  α~ = 0.01

0
20

40
60

0

50
−2

−1

0

1

 error  α~ = 100

0
20

40
60

0

50
−2

0

2

4

x 10
−4

 residual  α~ = 100

Figure 7.6: A comparison between residual and error vector of Algorithm 3 (OSM-
D) of 4-th iteration (on four coloring) in 11-th step with n=43, ovlp=2, ~� = 100
and ~� = 0:01 for � = 0:01.

7.3 Numerical results for Algorithm 3 (OSM-D)

7.3.1 Numerical examples

In this subsection, we will illustrate the behavior of the fractional error vectors on

two, four, nine and a general number of subdomains.

Two overlapping subdomains

In a unit rectangular domain, we compare each error vector on the arti�cial in-
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terfaces. There are two arti�cial interfaces in this case. On each interface, we

need both old and new values. Figure 7.2 shows that the numerical error on each

arti�cial boundary decreases to zero. Another illustration, in Figure 7.3, shows

the behavior of the l2 norm for four parts of two arti�cial interfaces, g1 and g2 for

�2 and g3 and g4 for �1.

Four and Nine overlapping subdomains

We have a similar behavior of the error vector for four and nine overlapping sub-

domains. Figure 7.4 is for four overlapping subdomains and Figure 7.5 for nine

overlapping subdomains.

7.3.2 Discontinuity and ~�

From the numerical results, we see that the error and residual vectors depend on

the values of ~�. As we can see in Figure 7.6, a larger ~� makes the jumps of the

error vectors larger across the arti�cial interfaces.

7.3.3 Numerical results of one-level Algorithm 3 (OSM-D)

Table 7.1 is a table of the number of iterations for a residual reduction of 10�6.

We used the 501 as a maximum number of iterations. The value (��) means that
the residuals are still decreasing but has not reached a reduction of 10�6. For a

�xed �, the numerical results deteriorate with signi�cantly smaller ~�. We note

that a given �, the condition in (6.26) in the two overlapping case might not hold

for signi�cantly smaller ~�. It seems that we have a similar condition for the more

general case. We have tested with overlap ovlp = 1 and ovlp = 2 and the cases of

overlap ovlp = 2 gives better results than with overlap ovlp = 1 in most cases.
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7.4 Numerical results for Two-level Algorithm 3

(OSM-D)

Figure 7.7 and 7.8 are results for two di�erent sizes of the coarse grid correction.

To check the e�ect of the coarse grid correction, we vary �, the relaxation factor,

from 0 to 1. We have used � = 0; 0:25; 0:5; 0:75; 1. The results change continuously

with the value of �. The case of small ~� improve much with even the smallest re-

laxation factor � = 0:25. This means that if we use the Robin boundary condition

which is close to the Dirichlet condition (~�! 0), then the results with the coarse

grid corrections behave as in the classical theory of overlapping Schwarz methods.

However, with a larger value of ~�, the numerical results are di�erent. It seems

that a coarse grid correction does not improve the convergence in such cases.

We also have numerical results with Nc = 0; 4; 6; 11; 16, di�erent sizes of the

coarse grid correction. Table 7.2 shows some of them. The results show that with

small ~�, the best results appear with Nc = 16 but with larger ~�, the results can

be di�erent. From our experiments, we �nd that two-level Algorithm 3 (OSM-D)

does not always converge with a large ~�.

7.5 Numerical results for One-level Algorithm 3

(OSM-D) with GMRES

Table 7.3 is a table of the number of iterations with GMRES with restart after every

30 iterations for a residual reduction of 10�6. We used the 150 as the maximum

number of iterations. The value (��) means that the residual is still decreasing but
has not reached a reduction of 10�6.
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Table 7.1: Number of iterations of Algorithm 3 (OSM-D) for a residual reduc-
tion of 10�6 versus �, ~�, number of grid points (N), number of subdomains, and
overlapping size(ovlp).

N (51)2 (101)2 (101)2 (201)2

] of subdomains 100 100 400 100
�, ~� n ovlp 1 2 1 2 1 2 1 2

�=0.01, ~�=100 65 48 104 61 166 135 215 111
�=0.01, ~�=10 53 41 84 51 152 113 143 87
�=0.01, ~�=1 28 23 40 28 72 52 53 40
�=0.01, ~�=0.1 14 12 18 15 24 20 20 18
�=0.01, ~�=0.01 58 31 91 57 150 90 126 91
�=0.1, ~�=100 86 62 148 85 237 174 295 156
�=0.1, ~�=10 67 53 109 66 204 147 174 113
�=0.1, ~�=1 29 25 40 30 73 60 53 41
�=0.1, ~�=0.1 33 24 41 34 66 52 46 41
�=0.1, ~�=0.01 141 75 229 143 399 234 321 232
�=1, ~�=100 116 74 238 139 462 290 363 253
�=1, ~�=10 59 60 87 67 169 145 106 90
�=1, ~�=1 22 17 28 22 52 39 34 29
�=1, ~�=0.1 126 91 157 130 273 215 179 161
�=1, ~�=0.01 (**) 293 (**) (**) (**) (**) (**) (**)
�=10, ~�=100 80 81 125 95 244 206 150 131
�=10, ~�=10 35 20 61 37 114 75 95 63
�=10, ~�=1 91 97 85 88 174 185 116 97
�=10, ~�=0.1 (**) (**) (**) (**) (**) (**) (**) (**)
�=10, ~�=0.01 (**) (**) (**) (**) (**) (**) (**) (**)
�=100, ~�=100 25 20 47 27 89 45 82 50
�=100, ~�=10 106 106 113 106 229 220 144 116
�=100, ~�=1 464 (**) 405 446 (**) (**) (**) (**)
�=100, ~�=0.1 (**) (**) (**) (**) (**) (**) (**) (**)
�=100, ~�=0.01 (**) (**) (**) (**) (**) (**) (**) (**)
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Figure 7.7: Number of iterations of two-level Algorithm 3 with N = (101)2, Nc = 4
and 100 subdomains with relaxation factor �=0, 0.25, 0.5, 0.75, 1; solid line :
~� = 0:01, dotted line : ~� = 0:1, dash-dot line : ~� = 1, dashed line : ~� = 10, plus :
~� = 100.
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Figure 7.8: Number of iterations of two-level Algorithm 3 with N = (101)2, Nc =
16 and 100 subdomains with relaxation factor �=0, 0.25, 0.5, 0.75, 1; solid line :
~� = 0:01, dotted line : ~� = 0:1, dash-dot line : ~� = 1, dashed line : ~� = 10, plus :
~� = 100.
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Table 7.2: Number of iterations of Two-level Algorithm 3 (OSM-D) for a residual
reduction of 10�6 with N = (101)2 and 100 overlapping subdomains versus �, ~�,
the size of coarse grid correction Nc, and overlapping size(ovlp).

Nc 0 4 6 11 16
�, ~� n ovlp 1 2 1 2 1 2 1 2 1 2

�=0.01, ~�=100 104 61 69 36 68 34 69 34 69 34
�=0.01, ~�=10 84 51 79 46 78 46 78 45 80 46
�=0.01, ~�=1 40 28 34 25 28 24 30 23 32 24
�=0.01, ~�=0.1 18 15 10 9 10 9 16 10 17 11
�=0.01, ~�=0.01 91 57 39 24 23 15 7 7 7 6
�=0.1, ~�=100 148 85 122 60 141 93 143 92 140 89
�=0.1, ~�=10 109 66 106 64 108 82 107 74 110 79
�=0.1, ~�=1 40 30 37 28 30 27 35 26 36 28
�=0.1, ~�=0.1 41 34 12 10 11 10 18 11 19 12
�=0.1, ~�=0.01 229 143 43 27 26 17 8 8 8 7
�=1, ~�=100 238 139 280 174 285 193 300 201 301 197
�=1, ~�=10 87 67 99 74 90 74 95 78 99 76
�=1, ~�=1 28 22 29 24 29 23 36 23 35 24
�=1, ~�=0.1 157 130 14 11 13 11 19 12 20 13
�=1, ~�=0.01 (**) (**) 42 27 26 17 8 8 8 7
�=10, ~�=100 125 95 149 114 140 120 154 129 154 124
�=10, ~�=10 61 37 87 64 75 53 80 38 91 60
�=10, ~�=1 85 88 33 24 30 24 39 24 40 25
�=10, ~�=0.1 (**) (**) 15 12 13 11 20 14 22 14
�=10, ~�=0.01 (**) (**) 42 27 26 17 8 8 8 7
�=100, ~�=100 47 27 70 58 56 51 60 41 72 54
�=100, ~�=10 113 106 89 67 78 61 86 54 94 67
�=100, ~�=1 405 446 36 25 31 24 44 24 51 26
�=100, ~�=0.1 (**) (**) 15 12 13 11 21 14 22 14
�=100, ~�=0.01 (**) (**) 42 27 26 17 8 8 8 7
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Table 7.3: Number of iterations of Algorithm 3 (OSM-D) with GMRES (30) for
a residual reduction of 10�6 versus �, ~�, number of grid points (N), number of
subdomains, and overlapping size(ovlp).

N (51)2 (101)2 (101)2 (201)2 (201)2

] of subdomains 100 100 400 100 400
�, ~� n ovlp 1 2 1 2 1 2 1 2 1 2

�=0.01, ~�=100 24 19 30 24 50 38 46 30 58 49
�=0.01, ~�=10 26 22 36 26 55 43 47 36 80 55
�=0.01, ~�=1 22 19 26 22 43 36 29 26 49 43
�=0.01, ~�=0.1 11 9 12 11 20 19 13 12 23 20
�=0.01, ~�=0.01 17 12 21 17 29 22 25 21 49 29
�=0.1, ~�=100 25 20 40 25 56 42 51 40 60 54
�=0.1, ~�=10 27 24 40 27 59 47 51 40 88 60
�=0.1, ~�=1 21 19 25 21 43 38 27 25 50 43
�=0.1, ~�=0.1 12 11 14 12 21 19 15 14 24 21
�=0.1, ~�=0.01 19 14 23 19 35 25 28 23 47 34
�=1, ~�=100 29 26 52 28 89 60 81 53 139 90
�=1, ~�=10 27 27 40 29 77 55 49 40 108 78
�=1, ~�=1 18 16 21 18 36 27 24 21 43 36
�=1, ~�=0.1 17 17 19 17 32 30 20 19 40 32
�=1, ~�=0.01 23 17 28 23 47 32 39 28 58 46
�=10, ~�=100 36 29 53 39 140 85 77 53 (**) 141
�=10, ~�=10 21 18 26 21 43 36 28 25 56 43
�=10, ~�=1 35 28 42 35 71 71 52 41 56 71
�=10, ~�=0.1 22 20 24 22 54 52 23 24 55 54
�=10, ~�=0.01 27 21 32 26 59 54 55 32 81 60
�=100, ~�=100 18 17 21 18 52 30 23 21 59 53
�=100, ~�=10 42 30 55 42 107 113 51 55 128 108
�=100, ~�=1 54 34 50 53 141 129 53 51 101 98
�=100, ~�=0.1 25 22 27 25 50 50 28 27 55 50
�=100, ~�=0.01 29 23 51 29 62 49 50 51 150 63
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