SDPPACK
USER’S GUIDE

VERSION 0.8 BETA

F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

ABSTRACT. This report describes SDPpack, a package of Matlab files designed
to solve semidefinite programs (SDP). SDP is a generalization of linear pro-
gramming to the space of block diagonal, symmetric, positive semidefinite
matrices. The main routine implements a primal-dual Mehrotra predictor—
corrector scheme based on the XZ+ZX search direction. We also provide cer-
tain specialized routines, one to solve SDP’s with only diagonal constraints,
and one to compute the Lovasz 6 function of a graph, using the XZ search
direction. Routines are also provided to determine whether an SDP is primal
or dual degenerate, and to compute the condition number of an SDP. The code
optionally uses MEX files for improved performance; binaries are available for
several platforms. Benchmarks show that the codes provide highly accurate
solutions to a wide variety of problems.

Copyright © 1997. All rights are reserved by the authors; restrictions in the copyright
notice in each release also apply. SDPpack is software provided on an “as is” basis — no
warranties, express or implied. In particular, the authors make no representation about
the merchantability of this software or its fitness for any specific purpose. For research and
noncommercial use: (i) this software is available free of charge, (ii) permission is granted
to use, copy or distribute this software free of charge provided the copyright message in
each release is preserved in each copy or distribution, (iii) permission is granted to modify
this software provided every distribution or copy of the modified software contains a clear
record of the modifications, and (iv) any publication resulting from research that made
use of this software should cite this document.

This work was supported in part by the National Science Foundation.

Web: http://www.cs.nyu.edu/phd_students/madhu/sdppack/sdppack.html
NYU Computer Science Dept Technical Report 734, March 1997.

1

2 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

CONTENTS

1. Introduction 2
2. Obtaining and Installing SDPpack 3
3. The script sdp.m and the function fsdp.m 5
3.1. Preparing the data 5
3.2. Setting the parameters 6
3.3. Initializing the variables 8
3.4. Invoking sdp.mor fsdp.m 8

3.5. Interpreting the output 8
4. Specialized Routines 10
4.1. Diagonally constrained problems 10
4.2. Lovész 6 function 11
5. Support Routines 12
6. Software Support and Future Work 14
References 15
Appendix A. An efficient storage scheme for SDP 15
Appendix B. Examples 16
B.1. A randomly generated problem 16
B.2. Artificially generated problems 17
B.3. A problem with no strictly complementary solution 19
B.4. A diagonally constrained problem 20
B.5. A Lovész 8 function problem 22
B.6. A sample truss problem 26
B.7. A sample LMI problem 27
Appendix C. Benchmarks 28

1. INTRODUCTION

Given a positive integer vector [ni,... ,np], with n =Y | n;, let B denote the

space of all real, symmetric, n x n block diagonal matrices whose ith diagonal block
is of size n;. The inner product on this space is

AeB =tr AB = ZA,'J'BZ']'.
1,3
By X > 0, where X € B, we mean that X is positive semidefinite, i.e. all its diagonal

blocks are positive semidefinite. Consider the semidefinite program (SDP)

P: min CeX
st. ApeX =bg, k=1,...,m; X>0

where C' and Ag, k = 1,... ,m are all fixed matrices in B, and the unknown variable
X also lies in B. The dual program is

D: max bly

m
k=1

SDPPACK USER’S GUIDE VERSION 0.8 BETA 3

where the dual slack matrix Z also lies in B. In the special case n; = 1, i =
1,...,p, the SDP reduces to a linear program. It is assumed that the matrices Ay,
k=1,...,m, are linearly independent.

We shall use the notation

m 1/2
pinfeas = (Z(Ak X — bk)2>

dinfeas = HC Z — ZykAk
F
dgap =
where || - || denotes the Frobenius matrix norm. Assuming a Slater condition, i.e.

the existence of a strictly feasible primal or dual point of SDP, it is well known that
the optimality conditions of SDP may be expressed by the equations pinfeas = 0,
dinfeas = 0, and dgap = 0 (together with the semidefinite conditions X > 0 and
Z = 0).

2. OBTAINING AND INSTALLING SDPPACK

The current release of SDPpack is Version 0.8 beta, and is designed to work
with Matlab® Version 4.2c.1. Users who have already upgraded to Matlab 5.0 can
also use the current release of SDPpack. However, several optimizations specific to
Matlab 5.0’s new features are not available in the current release of SDPpack; these
will appear in the next release. The current release of the package can be obtained
from the SDPpack home page on the World-Wide Web:

http://www.cs.nyu.edu/phd students/madhu/sdppack/sdppack.html

This URL contains the complete distribution of the source code, compiled binaries
(MEX files) for several platforms, online documentation, and information regarding
forthcoming releases, submission of bug reports, several test problems, etc.

Once you have obtained SDPpack, use the following instructions to install the
package. In what follows, % denotes the shell prompt.

UNIX Platforms:

% gunzip sdppack—v0.8.tar.gz
% tar —xovf sdppack—v0.8.tar

Windows NT/95:

Move the ZIP file to the directory in which you want to install SDPpack (typ-
ically Matlab\toolbox). Unzip the file, making sure the directory structure is
preserved (for example, if you use WinZip, make sure that the “Use Folder
Names” checkbox is checked).

This will produce a directory called sdppack, which will contain the main rou-
tines of SDPpack, and the subdirectories testing (containing testing routines that
create random SDP’s), mex4 (containing C sources to generate MEX files for Mat-
lab 4), mex5 (containing C sources to generate MEX files for Matlab 5), convert

1Matlab is a registered trademark of The MathWorks Inc.

4 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

(containing routines which can convert data from the format used by SDPpack to
those of some other popular codes available now) and doc (containing this doc-
ument). Although this itself is a working installation of the software, the pack-
age works much faster with compiled MEX files (binaries). There are three MEX
files: svec.mex***, smat.mex*** and evsumdiv.mex*** where *** is a string that
depends on your architecture. Compiled MEX files are already available for sev-
eral platforms (SunOS—4/Sparc, SunOS-5/Sparc, AIX/RS6000, IRIX-5.3/R4000,
IRIX-6.2/R8000, Windows N'T/95) from the SDPpack home page (see this page on
the web for an up to date list of available binaries). The table below summarizes the
status of available binaries. Download these files in the sdppack directory, so that

TABLE 1. MEX files available for SDPpack Version 0.8

| Operating System | Architecture | Matlab 4.2c.1 | Matlab 5.0 |

IRIX-6.2 R8000/R 10000 Yes Yes

TIRIX-5.3 R3000/R4000 Yes Yes
Sun0S—+4.4.1 Sparc Yes Available soon
Sun0S-5.5.1 Sparc Yes Available soon
ATX RS6000 Yes Available soon

Windows NT/95 PC x86 No Yes
MacOS (System 7) Macintosh No Available soon

they reside along with the corresponding m—files: svec.m, smat.m and evsumdiv.m.
If you cannot find compiled MEX files for your platform and for the Matlab version
you use, then you will need to compile them yourself. Matlab 4.0 users must use
the C sources in mex4, while Matlab 5.0 users must use the C sources in mex5. To
compile the MEX files, do the following:

% cmex -02 svec.c (Matlab 5.0 users should replace cmex by mex)
% cmex -02 smat.c
% cmex -02 evsumdiv.c

The MEX files thus created must be moved to the sdppack directory, so they
reside with the corresponding m files. Depending on the C compiler you use, the
switches in the command line for cmex could vary; consult the manual for your
C compiler. The following sections describe how to use the package, giving an
overview of the main routines in the package. You may wish to add the testing
subdirectory to the Matlab search path, if you plan on using those routines (see
Section 5). More information about any specific routine can be obtained by typing
help routine name from within Matlab. Appendix A describes an ASCII storage
format for SDP’s supported by SDPpack. Appendix B has several Matlab sessions
illustrating how to use the main routines in the package. Appendix C benchmarks
this release of SDPpack on a set of test problems.

SDPPACK USER’S GUIDE VERSION 0.8 BETA 5

3. THE SCRIPT SDP.M AND THE FUNCTION FSDP.M

The Matlab routines sdp.m and fsdp.m solve block diagonal SDP’s using a
primal-dual Mehrotra predictor—corrector scheme based on the XZ+ZX search di-
rection [1], or AHO direction as it has been referenced in the literature®. The
simplest option for the user is to call the script sdp.m, which automatically calls
the Matlab function fsdp.m. Additional scripts are provided to help the user set
up the data, define necessary parameters, and initialize the variables (as described
shortly). The user who requires a function interface should bypass sdp.m and call
fsdp.m directly. In either case there are five steps to be followed:

e set up the data defining the SDP (the use of makeA.m or import.m simplifies
this process)

e initialize the required parameters (the routine setpars.m sets all parameters
to their default values)

e provide initial values for the variables X, y, and Z (the routine initvars.m
provides default settings)

e call either the script sdp.m or the function fsdp.m to solve the SDP

e interpret the output

We now describe each of these steps in detail.

3.1. Preparing the data. The SDP is defined by the following data:

A: a matrix with m rows and ¢ columns, where
P

ni(n; + 1)
q ; 5
The kth row of A holds the symmetric block diagonal matrix A stored as a
vector of length ¢
b: the vector b defining the dual objective function. Its length m is equal to the
number of primal constraints
C: the block diagonal matrix C' defining the primal objective function
blk: a vector whose length is the number p of blocks and whose entries are the
block sizes n;, 1 <i <p
The user has a choice of four ways to set up the data. In all cases, if a matrix
has more than one block, it must be stored in sparse format.? If it has only a
single block, then it can be stored either in sparse or in full format, at the user’s
discretion. However, in the case of a single block, it is recommended that the initial
X and Z be provided as full matrices, as the solutions will most likely be full, even
if the data itself is sparse.

1. Constructing A directly using the function svec.m, which converts block di-
agonal matrices in B to column vectors of length g. The function smat.m
restores the symmetric matrix from such a vector. These routines are invoked
by

v = svec(M,blk) and M = smat(v,blk).

By default, the matrix passed to svec.m is assumed to have dense blocks. If
the user wishes to take advantage of the sparsity in the blocks of this matrix,

2Preliminary versions of this software have been distributed privately for some time. The
current version offers improved efficiency and stability and supersedes any prior release.
3type help sparse in Matlab for more information.

6

F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

then a third, optional parameter sparseblks can be passed to svec.m. When
sparseblks = 1, svec.m treats the blocks as sparse, and returns a sparse
vector. These routines preserve the inner product, i.e. if v = svec(M, blk)
and w = svec(N, blk) for matrices M, N € B, then

vIw= MeN.

The user must also construct b, C and blk.

. Using the routine makeA.m, which calls svec.m, to construct A from given

predefined matrices. This is invoked by
A = makeA(blk,m).

It requires that the block diagonal matrices A4, ... , Ay, be stored in variables
named A1,A2 A3,.... Thus if m = 100, the matrix A9 must be stored in a
variable A100.* The user must also construct b, C and blk.

When makeA.m is called by the user, the blocks of the block diagonal data
matrices are treated by default as being dense. If they are sparse, and the
user wishes to take advantage of this sparsity, a third parameter sparseblks
may be passed to the routine makeA.m, and this parameter should be set to
the value 1. In this case the matrix A will be stored using the sparse matrix
storage option.

. Using the routine import.mto load all the data (4, b, C and blk) from a plain

ASCII file. This is invoked by
[A,b,C,blk] = import(filename).

The data must be stored in a special compact format® that is described in
Appendix A. The routine export.mimplements the reverse operation, saving
a problem’s data in an ASCII file, in a format recognized by import.m.

. Loading a mat file defining the data A, b, C, b1k, saved previously by Matlab’s

save command, using Matlab’s 1oad command. This option may be used to
load all the examples (LMI problems from control theory and problems from
truss topology design) used in Appendix C, for which mat files are available
from the SDPpack home page.

3.2. Setting the parameters. It is important to set the parameters correctly
in order to take full advantage of the codes. Particular attention should be paid
to the termination parameters abstol, reltol and bndtol, for which appropriate
values are quite problem dependent. All the parameters are set to their default
values by calling the routine setpars.m. The default values demand high accuracy;
the number of iterations required to meet the termination criteria is reduced by
requesting less accurate solutions.

maxit: (Default value = 100)

The maximum number of iterations which may be taken by the algorithm. If
validate = 1 (see below), then explicitly setting maxit = 0 before calling
the solver results in just data validation alone.

tau: (Default value = 0.999)

The fraction of the step to the boundary (of the positive semidefinite cone)
taken by the algorithm. This choice leads to fast convergence and is generally

4 Arrays of matrices are not permitted in Matlab 4. They will be utilized in a Matlab 5 version.
5This format is based on one provided to us by A. Nemirovskii.

SDPPACK USER’S GUIDE VERSION 0.8 BETA 7

reliable, but may occasionally lead to failures due to short steps (see below).
In many cases, the quantity dgap = X e Z is reduced by approximately a factor
of 1/(1 — tau) per iteration in the last few iterations.

steptol: (Default value = 10~%)
Tolerance on the primal and the dual steplengths. If either one of these drops
below steptol, the algorithm terminates. If the infeasibility or dgap is large,
it is recommended to try restarting with either a reduced value of tau or with
X and Z set to larger multiples of the identity. This is done automatically
when the driver script sdp.m is used, but is not done if the the driver script
is bypassed with a direct call to the function fsdp.m.

abstol: (Default value = 10~%)
Absolute tolerance on the total error, imposing the condition

pinfeas + dinfeas + dgap < abstol.

reltol: (Default value = 10~11)
Relative tolerance on the total error, imposing the condition

pinfeas + dinfeas + dgap < reltol x (|| X||r + || Z]|F) -

reltol is usually set to a value smaller than that of abstol. Successful
termination takes place when both the absolute and relative conditions are
satisfied. Either one can be relaxed by making the corresponding tolerance
large.

gapprogtol: (Default value = 100)
Tolerance on progress; this parameter, in conjunction with feasprogtol (see
below), determines when the algorithm should terminate if significant progress
is not taking place. If dgap is less than the previous value of dgap divided
by gapprogtol, then the progress is considered “sufficient”. This check is
performed only when dgap has been reduced below abstol.

feasprogtol: (Default value = 5)
Tolerance on progress; this parameter, in conjunction with gapprogtol (see
above), determines when the algorithm should terminate if significant progress
is not taking place. If the new pinfeas is less than feasprogtol times the
previous pinfeas, or the new dinfeas is less than feasprogtol times the
previous dinfeas, then the loss of feasibility, if any, is considered “tolerable”.
Termination occurs if the loss of feasibility was not “tolerable” and the re-
duction in dgap was not “sufficient” to justify this loss of feasibility. In short,
for the default values, these conditions mean that we are not willing to let
the algorithm continue if the primal or dual infeasibility worsened by a factor
of 5 or more, unless the gap improved by a factor of at least 100. These
parameters attempt to achieve a judicious balance between feasibility and
complementarity by trading the former in return for the latter.

bndtol: (Default value = 108)
Tolerance on the norm of the solution; if || X || or || Z||r becomes greater than
bndtol, the algorithm terminates. Unbounded primal (dual) feasible iterates
suggest that the dual (primal) program may be infeasible.

prtlevel: (Default value = 1)
Determines print level; setting this to 0 produces no output from fsdp.m, ex-
cept warnings that Matlab 4 insists on displaying that ill-conditioned systems

8 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

are being solved.® This is normal near the solution. Setting prtlevel to 1
produces one line of output per iteration (iteration number, primal and dual
step lengths, primal and dual infeasibilities, X e Z, primal and dual objective
values). Upon termination, summary information is provided by the script
sdp .m regardless of the value of prtlevel.

validate: (Default value = 0) By default, several minor consistency checks on
the dimension of the data are performed. Additionally, if validate = 1,
fsdp.m makes a check to ensure the initial X and Z conform to the block
diagonal structure specified.

3.3. Imitializing the variables. X, y and Z store the variables X, y and Z. They
must be initialized with suitable starting values. Both X and Z must be strictly
positive definite. Typically y is set to zero and X and Z to multiples of the identity
matrix. If the block diagonal matrices X and Z have more than one block, they
must necessarily be stored as sparse matrices. If they contain a single block, it
is recommended that they be provided in full format, as the solutions will most
likely be full. The script initvars.m may be used to initialize y to zero and X, Z
to scalefac times the identity matrix, where scalefac is a scalar set by the user.
The proper choice of scalefac is highly problem dependent. The default value is
100, but it may be necessary to set scalefac to a larger value. On the other hand,
scalefac = 1 is often satisfactory, and results in a smaller number of iterations.

3.4. Invoking sdp.m or fsdp.m. After preparing the data, initializing the vari-
ables and setting the parameters, the user may simply type

sdp

to solve the SDP. Alternatively, the user who requires a function interface should
type
[X,y,Z,iter,gapval, feasval,objval, iter, termflag] = ...
fsdp(4,b,C,blk,X,y,Z, maxit, tau, steptol, abstol,reltol,...
gapprogtol, feasprogtol,bndtol,prtlevel, validate);

3.5. Interpreting the output. The following output parameters are provided by
both sdp.m (as variables in the Matlab workspace) and fsdp.m (as return values):

X, y, Z: The final values of the variables X, y and Z. If X and Z have multiple
blocks, they are stored using Matlab’s sparse format. If they have only one
block, then they are always full. X and Z are numerically positive semidefinite
in the sense that Matlab’s chol function does not encounter negative pivots
when applied to them.

iter: The number of iterations taken by the algorithm.

gapval: A vector of length iter + 1, with entries equal to the value of dgap
(X & Z) as a function of the iteration count. The first entry in the gapval
array is the value of dgap corresponding to the initial point provided.

objval: A matrix with two columns and iter + 1 rows, whose entries are the
values of the primal and the dual objectives in the first and the second columns
respectively, as a function of the iteration count.

6These messages can be suppressed in Matlab 5.0 by typing warning off.

SDPPACK USER’S GUIDE VERSION 0.8 BETA 9

feasval: A matrix with two columns and iter + 1 rows, whose entries are the
values of pinfeas and dinfeas in the first and the second columns respec-
tively, as a function of the iteration count.
termflag: This is the termination flag returned by fsdp.m, with the following
meaning;:
termflag = 0: Successful termination: both the absolute and relative tol-
erances were satisfied.
termflag = 1: The new primal iterate X is numerically indefinite, i.e. chol(X)
encountered a negative pivot. This would not occur in exact arithmetic.
The algorithm terminates, returning the current iterate X (which is pos-
itive semidefinite). This is normal, and usually means the problem is
essentially solved but the termination criteria were too stringent. (If
iter = 0, this means that the initial X provided was not positive semi-
definite. This is easily remedied by adding a positive multiple of the
identity to X.)
termflag = 2: The new dual iterate Z is numerically indefinite, i.e. chol(Z)
encountered a negative pivot. This would not occur in exact arithmetic.
The algorithm terminates, returning the current iterate Z (which is pos-
itive semidefinite). This termination flag is also used if chol finds that
the new iterate Z is numerically positive semidefinite, but the routine
blkeig finds that it has a zero (or negative) eigenvalue, in which case
the algorithm returns the new iterate, and then terminates.” Both cases
are normal, and they usually mean that the problem is essentially solved
but that the termination criteria were too stringent. (If iter = 0, this
means that the initial Z provided was not positive semidefinite. This is
easily remedied by adding a positive multiple of the identity to Z.)
termflag = 3: Termination occurred because the Schur complement was
numerically singular, i.e. the Matlab routine 1u generates a zero pivot,
making the XZ+ZX direction undefined. The most likely explanation is
that the matrix A was rank deficient. The routine preproc.m can help
in detecting inconsistent constraints and in the elimination of redundant
constraints (see Section 5). Otherwise, this is a rare situation which might
occur close to the solution, if the termination criteria are too stringent.
termflag = 4: Termination occurred because the progress made by the al-
gorithm was no longer significant. See the description of the input param-
eters gapprogtol and feasprogtol. This indicates that the termination
criteria may be too stringent. (If iter = 0, then the initial point was
probably already too close to the boundary.)
termflag = 5: Termination occurred because either the primal or the dual
steplength became too small. If the infeasibility or dgap is large, it is
recommended to try restarting with either a reduced value of tau or
with X and Z set to larger multiples of the identity, or both. This is
done automatically when the driver script sdp.m is used, but is the user’s
responsibility when the driver script is bypassed by a direct call to the
function fsdp.m. (If iter = 0, then the initial guesses X and Z were most

Tt is possible that blkeig returns nonnegative eigenvalues, while the Matlab built-in function
eig itself does not, or vice—versa. This has to do with the fact that blkeig computes eigenvalues
one block at a time, and hence is usually slightly more accurate.

10 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

likely too close to the boundary of the positive semidefinite cone. Adding
a positive multiple of the identity to X and/or Z will rectify this.)

termflag = 6: Termination occurred because the maximum number of it-
erations was reached. (If maxit = 0, then the data passed the validation
test.)

termflag = 7: Termination occurred because data failed validation checks.
This means that some input argument was not of the correct dimension or
fsdp.m was called with an incorrect number of arguments. If validate =
1, this could additionally mean that the initial X or Z did not conform to
the specified block structure.

termflag = —2: Termination occurred because ||X||r exceeded bndtol, in-
dicating possible dual infeasibility.
termflag = —1: Termination because ||Z||r exceeds bndtol, indicating pos-

sible primal infeasibility.

We encourage the reader to consult Appendix B which contains a sample Matlab
session illustrating the use of the sdp script.

4. SPECIALIZED ROUTINES

Specialized routines are available for two problem classes: (i) problems with
diagonally constrained variables, and (ii) the Lovész 6 function of a graph.

4.1. Diagonally constrained problems. For the case of diagonally constrained
problems (for example, MAX—CUT relaxations), the Schur complement equations
can be formed and solved very efficiently using the XZ search direction [2, 3] (some-
times called the KSH/HRVW /M direction in the literature.) The specialized rou-
tines dsdp.m and fdsdp.m take advantage of this. As before, the five steps involved
in setting up and solving a problem are: preparing the data, setting the param-
eters, initializing the variables, invoking the solver, and interpreting the output.
These are almost identical to the description in Section 3, except for the following
important differences:

e The k—th constraint matrix A, is assumed to be ekekT, where e, is the k—th
unit vector (a vector of all zeros, except a 1 at the k—th position), so the
matrix A does not have to be stored explicitly. The user must provide the
cost matrix C and the primal constraint right-hand side b.

e There is a special initialization routine called dsetpars.m which sets the
parameters to default values. The default value for reltol is larger than that
used by setpars.m, since the XZ method generally cannot achieve the same
high accuracy as the XZ+ZX method. Also the default value for tau is 0.99
(instead of 0.999) since the XZ method performs poorly with values of tau
close to one.

e There is a special initialization routine called dinitvars.m which initializes
the variables. It expects that the variables C and b are available in the Matlab
workspace.

e The script dsdp.m uses an additional parameter called useXZ, which when
set to 1 (this is the default set by dsetpars.m) solves the problem by the
specialized code fdsdp.m using the XZ method. When useXZ is set to 0, the
specialized code is not used, but instead dsdp.m calls fsdp.m to solve the

SDPPACK USER’S GUIDE VERSION 0.8 BETA 11

problem using the XZ+ZX method, after constructing the matrix A explic-
itly. The latter usually provides more accurate solutions, but at substantially
increased computation time.

e The problems that fall into this class are graph problems that usually re-
quire the graph to be connected. Hence, these specialized solvers have been
purposefully designed to work with a single block only. Consequently, they
do not use the validate parameter, but automatically make a few simple
consistency checks on the data.

e The user who wants a function interface can bypass the script dsdp.m by

typing;:

X,y,Z,iter,gapval, feasval,objval, iter, termflag| =...
» Yo &y gap J g
fdsdp(C,b,X,y, Z, maxit, tau, steptol, abstol, reltol,...
gapprogtol, feasprogtol,bndtol, prtlevel);

e When the output parameter termflag has the value 3, the meaning is slightly
different from the XZ+ZX case. Here, termflag = 3 means that the Schur
complement matrix, which is symmetric for the XZ method, was numerically
indefinite or singular, i.e. Matlab’s chol routine failed or generated a zero
diagonal element.

4.2. Lovasz 6 function. A specialized solver to compute the Lovédsz 6 function
of a graph is also available. As in the diagonally constrained case, such an SDP
is solved much more efficiently by the XZ method than the XZ+ZX method. The
driver script is 1sdp.m and the specialized function is flsdp.m. The five steps
involved in setting up and solving a problem are again similar to Section 3, except
for the following important differences:

e The k-th constraint matrix Ag, k =1,... ,m —1, is e;e] + e;je] , where (i,)
is the kth edge in the graph, and A,, = I, with b = e,,. The user must
provide a matrix G (an adjacency list with as many rows as there are edges
and 2 columns, each row of this matrix defining an edge) and a weight vector
w, with one component for each vertex of the graph. The cost matrix C is
defined by Cj; = —,/w;w;. (The optimal value of this SDP is actually minus
the value of the 6 function of the graph.)

e The routine 1setpars.m sets parameters just as dsetpars.m does.

e The initialization routine for the variables is called linitvars.m, which ex-
pects the variables G and w to be available in the Matlab workspace.

e Like dsdp.m, the script 1sdp.m requires the parameter useXZ to be available,
and calls the specialized solver £f1sdp.m only if useXZ equals 1 (the default
value set by 1setpars.m). Otherwise, it calls fsdp.m to solve the problem by
the XZ+ZX method, after constructing the matrices A, b and C.

e The problems that fall into this class are graph problems that usually require
the graph to be connected. Hence, these specialized solvers have been pur-
posefully designed to work with a single block only. If validate is set to 1,
flsdp.m checks to see if the graph is connected and prints a warning if it is
not.

12 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

e The user who wants a function interface can bypass the script by typing:

[X,y,Z,iter,gapval, feasval,objval, iter, termflag] = ...
£1sdp(G,w, X, y, Z, maxit, tau, steptol, abstol,reltol,...
gapprogtol, feasprogtol,bndtol, prtlevel, validate);

e When the output parameter termflag has the value 3, the meaning is slightly
different from the XZ+ZX case. Here, termflag = 3 means that the Schur
complement matrix, which is symmetric for the XZ method, was numerically
indefinite or singular, i.e. Matlab’s chol routine failed or generated a zero
diagonal element.

Appendix B contains sample Matlab sessions that illustrate the use of dsdp.m
and 1sdp.m on these special types of problems.

5. SUPPORT ROUTINES

SDPpack’s interface to ASCII data is provided via the two routines export.m
and import.m. The calling sequence for export.m is

failed = export(fname, A, b, C,blk)

where fname is the name of the file (string) to which the data must be exported.
The data will be stored in one of the formats described in Appendix A. If A is
sparse, then the format in Table 3 is used, otherwise that in Table 2 is used. If
the data was successfully exported, export.m returns 0, otherwise 1. The calling
sequence for import.m is

[A,b,C,blk] = import(fname)

where fname is the name of a file (string) containing an SDP in one of the two
formats described in Appendix A.

The three routines plotgap.m, plotfeas.m and plotobj.m plot the gap, the
primal and dual infeasibilities, and the primal and dual objectives respectively, as
a function of the iteration count. Several other miscellaneous features are available
via the auxiliary routines described below. More information is available by typing
help routine name from within Matlab.

blkeig.m: This routine computes the eigenvalues of a symmetric block diagonal
matrix, by computing the eigenvalues blockwise. The calling sequence is
lam = blkeig(X,blk)
For example, (strict) complementarity is easily checked by typing

[sort(blkeig(X,blk)) — sort(blkeig(—Z,blk))]

where X and Z are the computed solutions of an SDP. (The sorting operation
does not preserve the block structure.)

primalcond.m: Given the constraint matrix of an SDP (&), the block structure
(blk) and a primal feasible point X, this routine can be used to test for primal
degeneracy. The calling sequence is:

[cndprimal,D] = primalcond(A,blk,X,eigtol)

where eigtol is a tolerance used in computing the rank of X. A large value
of cndprimal is a strong indication that the problem is primal degenerate [4]
(type help primalcond for the definition).

SDPPACK USER’S GUIDE VERSION 0.8 BETA 13

dualcond.m: Given the constraint matrix of an SDP (4), the block structure
(blk) and a dual feasible Z, this routine tests for dual degeneracy. The calling
sequence is:

[cnddual, B] = dualcond(A,blk,Z,eigtol)
where eigtol is a tolerance used in computing the rank of Z. A large value of
cnddual is a strong indication that the problem is dual degenerate [4] (type
help dualcond for the definition).

If X (Z) passed to primalcond.m (dualcond.m) is the solution of an SDP
solved with the default parameter values in setpars.m, and if eigtol =
1079, then a value exceeding, say 100, for cndprimal (cnddual) is indicative
of primal (dual) degeneracy. Primal (dual) degeneracy implies the nonunique-
ness of dual (primal) solutions. The converse is true if strict complementarity
holds [4].

sdpcond.m: Given the data of an SDP and the solutions X and Z, this routine
verifies the optimality conditions and computes a lower bound (in the 1-norm)
of the condition number of an SDP [5]. The calling sequence is:

[cndjac,dgap,pinfeas,dinfeas,blockmat] = sdpcond(A,b,C,blk,X,y,Z)
A large value of cndjac is a strong indication of degeneracy (primal, dual
or both), or that the solution violates strict complementarity. This routine
takes a long time to execute compared to primalcond.m and dualcond.m,
but the advantage over primalcond.m and dualcond.m is that no tolerance
is required.

To use these routines to examine the degeneracy or conditioning properties
of a Lovész 6 function problem or of a diagonally constrainted SDP, the user
must ensure that the data A, b and C have been constructed. This can easily
be done by calling the appropriate script (1sdp.m or dsdp.m) with useXZ =0
and maxit = 0. Upon termination of the script, these variables will be defined
in the Matlab workspace.

svec.m, smat.m: These routines convert a symmetric block diagonal matrix
into its vector representation and vice versa. See Section 3.1.

skron.m: This routine computes the symmetric Kronecker product [1] of two
block diagonal matrices. The calling sequence is

[K = skron(M,N,blk)

This routine is called only by sdpcond.m.
preproc.m: This routine can be used to detect inconsistency of the constraints,
or to identify and eliminate redundant constraints. The calling sequence is:

[Anew,bnew,flag] = preproc(A,b,rkthresh)
where rkthresh is a small threshold (e.g. 107%) used to determine the rank
of A.

makeA.m: This script assumes that there are variables m, b1k and A1 through
Am available in the Matlab workspace, and creates the constraint matrix A
(see Section 3.1).

The package also provides routines to create random test problems, i.e. block
diagonal SDP’s, diagonally constrained problems, Lovéisz 6 problems. There is also
a routine to create SDP’s with solutions of prescribed rank. These routines are
discussed below.

14 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

rndinf.m: This script assumes that blk and m are available in the Matlab en-
vironment, and generates a random, block diagonal primal and dual fea-
sible SDP with block structure blk and m primal constraints. The script
initvars.m must be called to initialize the variables, which are generally not
feasible.

diagcstr.m: This script assumes that n is available in the the Matlab workspace,
and generates a random diagonally constrained problem. The k-th constraint
matrix Ay is assumed to be ekekT, where e, is the k—th unit vector (a vector
with all zeros, except a 1 in the k—th position). The routine generates b and
C randomly. This problem can be solved with the specialized routines dsdp.m
and fdsdp.m (see Section 4), which do not require A to be explicitly stored.

thetarnd.m: This script assumes that n and dsty are available in the Matlab
workspace, and sets up an SDP to compute the Lovész 6 function of a ran-
dom graph with n vertices and expected edge density approximately dsty.
The vertices are given random weights. A warning is printed if the graph is
disconnected. The specialized routine 1sdp can be used to solve this problem
(see Section 4).

makesdp.m: This script assumes that m, b1k, r and s are available in the Mat-
lab workspace, and creates an SDP with a primal solution X having rank r,
and a dual solution Z having rank s. This routine does not have the provi-
sion to handle multiple blocks, so here, blk is just a single number. This is
particularly useful for creating degenerate test problems, or problems with a
non—strictly complementary solution.

nosfeas.m: This script assumes that the block structure vector (blk) and the
number of constraints (m) are available in the Matlab workspace, and creates
an SDP which has no strictly feasible primal solution.

In addition to these routines, the convert subdirectory contains scripts
that will convert SDP data to a format recognized by some other popu-
lar codes. In particular, there are scripts to_sp, to_lmitlbx and to_sdpa
which convert SDP data in the Matlab workspace to formats recognized by
SP [6], Matlab’s LMI Toolbox, and SDPA [7] respectively. Typing help
routine name within Matlab provides some more information on the cor-
respondence between SDPpack variables and those used by the other codes.
This is merely to encourage users to try other codes on the benchmark prob-
lems in Appendix C (available from the SDPpack web page). These routines
may not be supported in future releases.

6. SOFTWARE SUPPORT AND FUTURE WORK

Although SDPpack is provided “as is” without any warranty of software support,
the authors welcome your feedback and suggestions about the package via email.
Bug reports are especially valuable to the authors. While sending a bug report by
email, please be sure to include the version of the code, your Matlab version, the
details of your platform and a small example that causes the bug to appear. To
facilitate this, a “Bug Report Submission Form” is available from the SDPpack web
page.

The next release of SDPpack, which will take advantage of several special features
of Matlab 5.0, is due for release soon. A fast C version based on LAPACK has
already been written, and will be available soon. News and information about

SDPPACK USER’S GUIDE VERSION 0.8 BETA 15

SDPpack (including new releases) will be communicated via the Interior-Point
Mailing List (see http://www.mcs.anl.gov/home/otc/InteriorPoint/).

REFERENCES

[1] F. Alizadeh, J.-P. Haeberly, and M. L. Overton. Primal-dual interior-point methods for semi-
definite programming: convergence rates, stability, and numerical methods. In revision for
SIAM Journal on Optimization, 1997.

[2] M. Kojima, M. Shida, and S. Hara. Interior-point methods for the monotone linear comple-
mentarity problem in symmetric matrices. SIAM Journal on Optimization, 6:86-125, 1997.

[3] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior-point method for
semidefinite programming. SIAM Journal on Optimization, 6:342-361, 1996.

[4] F. Alizadeh, J.-P. Haeberly, and M. L. Overton. Complementarity and nondegeneracy in semi-
definite programming. Mathematical Programming, 1997. To appear.

[5] M. V. Nayakkankuppam and M. L. Overton. Conditioning of semidefinite programs. Technical
report, Courant Institute of Mathematical Sciences, New York University, March 1997. URL:
http://www.cs.nyu.edu/phd_students/madhu/sdp/papers.html.

[6] S. Boyd and L. Vandenberghe. SP: Software for semidefinite programming (User’s Guide),
beta version edition, November 1994. URL: http://www-isl.stanford.edu/ boyd/SP.html.

[7] K. Fujisawa, M. Kojima, and K. Nakata. SDPA: Semidefinite programming algorithm. De-
partment of Mathematical and Computing Sciences, Tokyo Institute of Technology, revised
edition edition, August 1996.

APPENDIX A. AN EFFICIENT STORAGE SCHEME FOR SDP

The following scheme for storing block diagonal SDP’s in ASCII format is based
one communicated to us by A. Nemirovskii. We essentially have two cases: (i) the
blocks are dense, and (ii) the blocks are sparse. The main difference between these
two cases is the way in which block diagonal matrices are represented. For (i), the
entries in the upper triangular part of the matrix are provided row—wise, whereas
for (ii), we record the the number of nonzero entries for each block, and the row and
column numbers of each entry in this block. In either case, we store one number
per line.

TABLE 2. ASCII format for SDP’s with dense blocks

Line # Description
1 m — the number of constraints
2 [— the number of blocks
3 1 — denotes dense blocks
4top+3 blk(i),1 < i < p — the sizes of the blocks
p+4top+3+m b — one entry per line
p+4+mto upper triangle of block 1 of C' row—wise

p+3+m+ blk(1) * (blk(1) +1)/2

upper triangle of block p of C row—wise

similar section for 4;

similar section for A4,,

16 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

TABLE 3. ASCII format for SDP’s with sparse blocks

Line # Description

1 m — the number of constraints
2 [— the number of blocks
3 0 — denotes sparse blocks

4top+3 blk(i),1 < i < p — the sizes of the blocks

p+4top+3+m b — one entry per line
p+d+m N. — the number of nonzero entries in the upper of
triangle C

the nonzero entries of C, each entry in the follow-
ing format:

p+o+mtop+4+m+4xN | < row #>

< column #>

< entry>

similar section with data for A;

similar section with data for A,,

APPENDIX B. EXAMPLES

This appendix illustrates the use of the main routines in SDPpack by sample
Matlab sessions. In the examples below, >> denotes the Matlab prompt. In all
cases, Matlab was invoked from the sdppack/ directory. Several annoying warning
messages from Matlab 4 about solving ill-conditioned systems have been edited
out. This sample session does not make use of the MEX files; Appendix C shows
benchmarks using the MEX files.

B.1. A randomly generated problem.

>>

>> Whtotololololololololololololslootetetstotetototototoloso o oeeie oo toolotolo e
>> 7, Example of a randomly generated problem

>> Whtototololololololololololooototetetetotetotalololo oo teete toteotolotolooto
>>

>> path(path, ’testing’);

>> format short e

\2

>>

>> blk = [60 56 5 5 5 20];

>>m = 75;

>> rndinf % generate random feasible problem with INFEASIBLE
>> % initial points

>> setpars

>> scalefac = 1; % X0 = Z0 = I fine for random problems
>> initvars
>> sdp

% note the successive reductions of X.Z by factors
% of 1000 in final iterations (this is because tau

USER’S GUIDE

infeas

.405e+02
.989e+00
.049e-01
.316e-01
.737e-02
.072e-11
.080e-12
.659e-11
.248e-12
.049e-12
stop since error reduced to desired value

infeas

d_
1.894e+03
1.438e+01
4.116e+00
5.381e-01
4.
6
6
6
6

675e-02

.634e-13
.331e-13
.265e-13
.509e-13
6.

560e-13

206.51526 seconds
161.41000 seconds

1.06780e+09

9

4.714e-11

1.049e-12
6.560e-13

[N N R N S e B e

VERSION 0.8 BETA

X.Z

.000e+01
.926e+00
. 745e+00
.395e+00
.850e-01
.603e-02
.790e-04
.710e-05
.713e-08
.714e-11

= 5.4965327462494383e+02
= 5.4965327462489518e+02

0.999)

oo o1 oo o1 o1 OO =

17

pobj

.691e+01
.454e+02
.499e+02
.504e+02
.498e+02
.497e+02
.497e+02
.497e+02
.497e+02
.497e+02

>> primalcond(A,blk,X,1.0e-06); % confirms that primal nondegenerate

SDPPACK

tau = 0.9990, scalefac

iter p_step d_step
0 0.000e+00 0.000e+00
1 9.787e-01 9.924e-01
2 8.311e-01 7.137e-01
3 7.393e-01 8.693e-01
4 8.680e-01 9.131e-01
5 1.000e+00 1.000e+00
6 9.702e-01 9.750e-01
7 1.000e+00 1.000e+00
8 9.990e-01 9.990e-01
9 9.990e-01 9.990e-01

fsdp:

sdp: elapsed time

sdp: elapsed cpu time

sdp: flops

sdp: Number of iteratiomns

sdp: final value of X.Z

sdp: final primal infeasibility

sdp: final dual infeasibility

sdp: primal objective value

sdp: dual objective value

>>

>>

>>

>>

primalcond = 5.965e+00

>>

>>

>> dualcond(A,blk,Z,1.0e-06);

dualcond = 6.398e+00

>>

% (as expected since randomly generated)

% confirms that dual nondegenerate

% (as expected since randomly generated)

B.2. Artificially generated problems.

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

Tl b b o o o o o 1676761 T To T T T o oo oo o o T T o o T oo o
% Examples of artificially generated problems

Tl el e o o o o 1o 1676761 1o ToTo T T o o o oo 1o o T T T o o To o oo o

blk = [20 10 5];

m = 20;
nosfeas
setpars

scalefac = 1;

% generate problem with no strictly feasible primal point

% X0 = Z0

I fine for random problems

g oo on oo oo

dobj

.000e+00
.447e+02
.481e+02
.494e+02
.496e+02
.497e+02
.497e+02
.497e+02
.497e+02
.497e+02

18 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

>> initvars
>> prtlevel = 0; 7% disable printing of iterates

>> sdp

tau = 0.9990, scalefac = 1

sdp: elapsed time = 13.92766 seconds

sdp: elapsed cpu time = 13.54000 seconds

sdp: flops = 5.47805e+07

sdp: Number of iterations = 20

sdp: final value of X.Z = 3.829e-08

sdp: final primal infeasibility = 1.300e-12

sdp: final dual infeasibility = 7.451e-09

sdp: primal objective value = -5.9560845828366151e+00
sdp: dual objective value = -5.9560846207436846e+00
>> blk = 10;

>>m = 50;

>>r = 2; % choose primal solution rank and

>> s =T7; % dual solution rank in advance

>> makesdp % generated so solution is primal degenerate

makesdp: strict complementarity violated

makesdp: primal nondegeneracy violated
>>

>> initvars

>> prtlevel = 0;

>> sdp

tau = 0.9990, scalefac = 1

sdp: elapsed time = 1.30246 seconds
sdp: elapsed cpu time = 1.26000 seconds
sdp: flops = 6.23466e+06
sdp: Number of iterations = 6

sdp: final value of X.Z = 1.129e-11

sdp: final primal infeasibility = 2.350e-11

sdp: final dual infeasibility = 6.537e-14

sdp: primal objective value 1.2626520565210694e+01

sdp: dual objective value = 1.2626520565144881e+01

>>

>> [sort(blkeig(X,blk)) -sort(blkeig(-Z,blk))] % sorted eigenvalues

ans =

2.0190e-14 3.0311e+00

SDPPACK USER’S GUIDE VERSION 0.8 BETA 19

4.2094e-13 1.7728e+00
8.8589e-13 1.2308e+00
1.0784e-12 1.0751e+00
1.1413e-12 9.7008e-01
1.4416e-12 7.9179e-01
1.5300e-12 7.6035e-01
2.2363e-12 6.2020e-01
5.1329e-02 3.1152e-11
6.7871e-01 1.883be-12

>>

>> 7, note that convergence took place to a strictly complementary solution

>>

>> primalcond(A,blk,X,1.0e-06); % confirms that solution is primal degenerate

primalcond = Inf

>>

>> dualcond(A,blk,Z,1.0e-06); % check if dual degenerate
dualcond = 2.931e+00

>>

>> sdpcond(A,b,C,blk,X,y,Z); % confirms that SDP condition number is infinite,
sdpcond: gap = 1.129e-11

sdpcond: primal infeasibility = 2.350e-11

sdpcond: dual infeasibility = 6.537e-14

sdpcond: cond estimate of 3x3 block matrix = 2.220e+15
>> % since SDP is degenerate

B.3. A problem with no strictly complementary solution.
>> Dhtotetohtohatotetohtotets o folototstots fotofotototots ot Totodoteto oo fofoote

>> Y, Example from AHO1 where no strictly

>> % complementary solution exists

>> Yot hlololototetotsteto ot oot loloaTolololololololotelatotatotate tototo o ol

> C=[000; 000; 00 1];

>> Al = [1 ; 000; 00 0];
>> A2 = [0 ;010; 10 0];
>> A3 = [0 100; 00 1];
>> b [1

>> blk =
>>m = 3;
>> makeA

>>

>> initvars
>> sdp

0
0
1 .

I

_o = O

0 0]’
3;

I

=

tau = 0.9990, scalefac = 1

sdp: elapsed time = 0.39385 seconds

20 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON
sdp: elapsed cpu time = 0.40000 seconds
sdp: flops = 5.72750e+04
sdp: Number of iteratioms = 12
sdp: final value of X.Z = 2.312e-09
sdp: final primal infeasibility = 2.220e-16
sdp: final dual infeasibility = 5.752e-17
sdp: primal objective value = 1.1559195968314993e-09
sdp: dual objective value = -1.1559195968284586e-09
>>
>> [sort(blkeig(X,blk)) -sort(blkeig(-Z,blk))]
ans =
1.2096e-11 1.0000e+00
6.7641e-05 3.3820e-05
1.0000e+00 1.2096e-11
>>
>> % the true solutions X and Z each have rank 1,
>> 7, but observe how the eigenvalues of the computed
>> % solution are much less accurate than for problems with
>> % strictly complementary solutions, and are not indicative
>> % of the true ranks.
>>
>> primalcond(A,blk,X,1.0e-06); % confirms that solution is primal NONdegenerate
primalcond = 1.414e+00
>> dualcond(A,blk,Z,1.0e-06); % confirms that solution is dual NONdegenerate
dualcond = 1.000e+00
>> sdpcond(A,b,C,blk,X,y,Z); % condition number is infinite, since SC failed
sdpcond: gap = 2.312e-09
sdpcond: primal infeasibility = 2.220e-16
sdpcond: dual infeasibility = 5.752e-17
sdpcond: cond estimate of 3x3 block matrix = 1.219e+05
>> % cond estimate is not large because eigenvalues which should
>> % be zero are not very small
B.4. A diagonally constrained problem. This section illustrates the use of

diagcstr.m and dsdp.m to generate and solve diagonally constrained problems.

>
>>
>
>>
>>
>>
>>
>>

\4

A\

Tl lolototetotots oot folololololo o ToloToTototolotetotateto ot to ot to o ol
% A diagonally constrained problem

Tl b b b o o o o o 1676161 T ToTo T T o o o oo 1o o T T T o o T oo o

n = 50; %n=m=50
diagcstr % random C and b, but A_k = e_k e_k"T
dsetpars % set useXZ = 1, tau = .99

scalefac = 1; % X0 = Z0 = I fine for random problems

SDPPACK

>> dinitvars

>> dsdp

% since useXZ = 1, special-purpose XZ

USER’S GUIDE

dsdp: using XZ method...

tau =

iter

O 000 ~NO U b WNH~O

e e el
OO WN - O

fdsdp:

dsdp:
dsdp:
dsdp:
dsdp:
dsdp:
dsdp:
dsdp:
dsdp:
dsdp:

R UOIR©©O©OORNRNR~N~NN RO

0.9900,

p_step

.000e+00
.337e-02
.917e-01
.632e-01
.614e-01
-000e+00
.997e-01
.000e+00
.319e-01
-000e+00
.643e-01
.812e-01
.440e-01
.164e-01
-000e+00
.189e-01
.554e-07
stop since steps are too

elapsed time

W R PR RPOOOR R NR R O©RO

1

scalefac

d_step

.000e+00
.000e+00
.188e-01
.000e+00
.000e+00
.896e-01
.000e+00
.721e-01
.000e+00
.730e-01
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.699e-01
.434e-05

elapsed cpu time
flops
Number of iterations
final value of X.Z

final primal infeasibility =
final dual infeasibility
primal objective value

dual objective value

infeas

.135e+00
.080e+00
.497e-01
.012e-01
.801e-02
.464e-14
.042e-14
.092e-13
.45be-14
.643e-13
.827e-12
.197e-13
.579e-13
.404e-12
.344e-11
.046e-10
.039e-10

short

= 3.32932 seconds
= 3.19000 seconds

infeas

.768e+01
.000e+00
.158e-14
.408e-14
.010e-14
.2b6e-14
.000e+00
.010e-14
.421e-14
.000e+00
.421e-14
.5563e-15
.465e-14
.421e-14
.5563e-15
.000e+00
.465e-14

= 7.31872e+07

= 16

= 1.202e-07

1.039e-10
1.465e-14
-1.0559774619074481e+03
-1.0559774620433770e+03

H P, N0 OF, WFE WEFL,WREOFE, WeEO

VERSION 0.8 BETA

code used

X.Z

.000e+01
.686e+03
.500e+02
.894e+02
.199e+01
.472e+01
.150e+00
.213e+00
.547e-01
.381e-01
.300e-02
.627e-03
.273e-05
.667e-06
.334e-07
.206e-07
.202e-07

21

pobj

.281e+00
.597e+03
.077e+03
.608e+02
.028e+03
.041e+03
.053e+03
.055e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03

>> setpars

>> scalefac = 1;

>> dinitvars

>> dsdp

% sets useXZ = 0, tau

dsdp: using XZ+ZX method...

tau =

0.9990,

scalefac

.999
% X0 = Z0 = I fine for random problems

% since useXZ = 0, general-purpose XZ+ZX code used

dobj

.000e+00
.606e+03
.075e+03
.059e+03
.058e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03

22 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

iter p_step d_step p_infeas d_infeas X.Z pobj
0 0.000e+00 0.000e+00 4.135e+00 5.768e+01 5.000e+01 3.281e+00
1 1.349e-02 1.000e+00 4.079e+00 0.000e+00 1.671e+03 -1.611e+03
2 6.448e-01 1.000e+00 1.449e+00 3.843e-14 5.957e+02 -1.109e+03
3 8.000e-01 9.591e-01 2.898e-01 1.628e-14 1.410e+02 -1.040e+03
4 8.515e-01 8.056e-01 4.305e-02 2.010e-14 7.150e+01 -1.004e+03
5 1.000e+00 1.000e+00 1.696e-12 2.842e-14 2.556e+01 -1.031e+03
6 9.985e-01 1.000e+00 2.903e-15 1.421e-14 3.886e-02 -1.056e+03
7 9.990e-01 9.990e-01 3.981e-15 1.465e-14 3.886e-05 -1.056e+03
8 9.990e-01 9.990e-01 7.74be-16 3.5b53e-15 3.886e-08 -1.056e+03
9 9.989%e-01 9.990e-01 7.946e-16 3.553e-15 4.200e-11 -1.056e+03

fsdp: stop since limiting accuracy reached (smallest eigenvalue of Z =

dsdp: elapsed time = 22.59205 seconds

dsdp: elapsed cpu time = 13.13000 seconds

dsdp: flops = 5.35133e+08

dsdp: Number of iteratioms = 9

dsdp: final value of X.Z = 4.200e-11

dsdp: final primal infeasibility = 7.946e-16

dsdp: final dual infeasibility = 3.553e-15

dsdp: primal objective value = -1.0559774620403921e+03
dsdp: dual objective value = -1.0559774620404330e+03

>>
>> % notice that specialized XZ method is faster but less
>> % accurate than XZ+ZX method

B.5. A Lovész 6 function problem.
>> Dhtotethhtohatotetohtotots o folototstots oo fototototo oot Totodoteto oo fofo ot
>> % A Lovasz theta function problem

>> Whtotololololololololololaloolololetstototetolatoloto oo o atoete tototooloto o oto

>>

>> n = 30; % number of vertices

>> dsty = 0.2; % edge density is 20%

>> thetarnd % random graph with random weights
>>

>> lsetpars % set useXZ = 1, tau = .99

>> scalefac = 1; % X0 = Z0 = I fine for random problems
>> validate = 1; Y% check connectivity

>> linitvars

>> 1sdp % since useXZ = 1, special-purpose XZ code used

1sdp: using XZ method...

tau = 0.9900, scalefac = 1

iter p_step d_step p_infeas d_infeas X.Z pobj

dobj

.000e+00
.606e+03
.122e+03
.059e+03
.056e+03
.056e+03
.056e+03
.056e+03
.056e+03
-1.
-5.453e-14)

056e+03

dobj

O ~NO ULd WN - O

1sdp:
1sdp:
1sdp:
1sdp:
1sdp:
1sdp:
1sdp:
1sdp:
1sdp:
1sdp:

© O O O O NN, PP, P~ PdMO

[ury

SDPPACK

.000e+00
.392e-02
.491e-02
.000e+00
.000e+00
.299e-01
.758e-01
.659e-01
.001e-01
.767e-01
.880e-01
.5568e-01
.368e-01
.000e+00

e e = e B S Vo B S ¢ B SN S ¢) B o)

USER’S GUIDE

.000e+00
.159e-02
.000e+00
.000e+00
.510e-01
.000e+00
.734e-01
.000e+00
.000e+00
.953e-01
.000e+00
.000e+00
.000e+00
1.

000e+00

BN WO WERE WWNdNNDN

4.

VERSION 0.8 BETA

.900e+01 1.821e+01 3.000e+01
.773e+01 1.727e+01 3.436e+01
.731e+01 1.159e-14 3.992e+02
.775e-15 5.700e-15 1.240e+01
.260e-16 6.862e-15 1.719e+00
.197e-16 2.152e-15 6.784e-01
.486e-16 2.583e-15 1.905e-01
.108e-15 3.490e-15 8.253e-02
.232e-15 1.899e-15 1.723e-02
.683e-16 1.890e-15 5.154e-04
.142e-14 2.346e-15 1.962e-05
.754e-14 2.140e-15 1.776e-06
.841e-13 2.329e-15 1.117e-07
403e-13 2.901le-15 1.215e-08

since new point is substantially worse than current iterate
Z = 3.672e-10
4.895e-12

2.557e-15

X.
pri_infeas
dual_infeas

elapsed time

elapsed cpu time
flops
Number of iterations

final value of X.Z

final primal infeasibility

final dual infeasibility

primal objective value

dual objective value

Lovasz theta function value

= T7.77212 seconds

= 7.58000 seconds

= 1.96740e+07

= 13

= 1.215e-08

.403e-13

= 2.901le-15

= =7.3004453174538488e+00
= =7.3004453295989862e+00
.3004453235264180e+00

1}
KN

1]
~

23

.640e+01
.150e+02
.076e+02
.591e+00
.909e+00
.752e+00
.115e+00
.221e+00
.284e+00
.300e+00
.300e+00
.300e+00
.300e+00
.300e+00

>> setpars

>> scalefac =
>> validate =

1
1

>> linitvars
>> 1lsdp

’

’

% sets useXZ = 0, tau = .999
% X0 = Z0 = I fine for random problems
% check connectivity

% since useXZ = 0, general-purpose code XZ+ZX used

1sdp: using XZ+ZX method...

tau =

iter
0

ad W N -

0~ = O DO

0.9990,

p_step

.000e+00
.432e-02
.103e-02
.000e+00
.000e+00
.498e-01

~N o = = 01O

scalefac

d_step

.000e+00
.205e-02
.000e+00
.000e+00
.729e-01
.268e-01

P-
2
2
2.
1
3
2

1

infeas d_infeas X.Z

.900e+01 1.821e+01 3.000e+01
.771e+01 1.726e+01 3.434e+01
602e+01 8.154e-15 3.015e+02
.059e-14 5.238e-15 9.234e+00
.455e-15 5.401e-15 1.129e+00
.676e-15 4.130e-15 2.300e-01

pobj
.640e+01
.159e+02
.796e+01
.455e+00
.274e+00
.079e+00

.000e+00
.542e-01
.790e+01
.699e+01
.627e+00
.431e+00
.305e+00
.304e+00
.302e+00
.300e+00
.300e+00
.300e+00
.300e+00
.300e+00

dobj

.000e+00
.580e-01
.441e+01
.369e+01
.403e+00
.309e+00

24 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

6 1.000e+00 1.000e+00 9.434e-14 4.110e-15 1.352e-01 -7.180e+00
7 9.833e-01 9.939e-01 1.582e-15 5.173e-15 2.124e-03 -7.298e+00
8 9.990e-01 9.990e-01 6.664e-16 4.506e-15 2.142e-06 -7.300e+00
9 9.990e-01 9.990e-01 5.556e-16 3.820e-15 2.142e-09 -7.300e+00
10 9.990e-01 9.990e-01 2.234e-16 3.210e-15 2.169e-12 -7.300e+00

fsdp: stop since error reduced to desired value

lsdp: elapsed time = 9.36495 seconds

1lsdp: elapsed cpu time = 9.14000 seconds

1sdp: flops = 2.09046e+08

lsdp: Number of iterations = 10

lsdp: final value of X.Z = 2.169e-12

lsdp: final primal infeasibility = 2.234e-16

1sdp: final dual infeasibility = 3.210e-15

1sdp: primal objective value = -7.3004453290700102e+00

1sdp: dual objective value = -7.3004453290721765e+00

1sdp: Lovasz theta function value = 7.3004453290710938e+00

>>

>> % notice that specialized XZ method is faster

>> % but less accurate than XZ+ZX method

>>

>> % since useXZ = 0, A was formed; so we can now call primalcond
>> % and dualcond

>>

>> Y, for random weights, usually Lovasz SDP is primal degenerate
>> %

>> rank(X,1.0e-06) % for random weights, usually rank(X) is 1
ans =
1
>> rank(Z,1.0e-06) % for random weights, usually rank(Z) is n-1
ans =
29

>> primalcond(A,blk,X,1.0e-06); 7 usually primal degenerate

primalcond = Inf
>> dualcond(A,blk,Z,1.0e-06); % usually dual nondegenerate
dualcond = 1.000e+00

>> w = ones(size(w)); 7% change weights to all one

>> lsetpars % set useXZ = 1, tau = .99

>> scalefac = 1; % X0 = Z0 = I fine for random problems
>> prtlevel = 0; % turn off detailed output

>> validate = 1;

-7.315e+00
-7.300e+00
-7.300e+00
-7.300e+00
-7.300e+00

SDPPACK USER’S GUIDE VERSION 0.8 BETA 25

>> linitvars
>> 1lsdp % since useXZ = 1, special-purpose XZ code used

1sdp: using XZ method...

tau = 0.9900, scalefac = 1

lsdp: elapsed time = 8.22000 seconds

lsdp: elapsed cpu time = 8.08000 seconds

1sdp: flops = 2.10767e+07

lsdp: Number of iterations = 15

1sdp: final value of X.Z = 3.563e-09

1sdp: final primal infeasibility = 3.244e-10

1sdp: final dual infeasibility = 4.295e-15

1sdp: primal objective value = -1.1999999995647892e+01
1sdp: dual objective value = -1.2000000000398519e+01
1sdp: Lovasz theta function value = 1.1999999998023206e+01
>> setpars % sets useXZ = 0, tau = .999

>> prtlevel = 0;

>> scalefac = 1; % X0 = Z0 = I fine for random problems
>> validate = 1; % check connectivity

>> linitvars

>> 1sdp % since useXZ = 0, general-purpose XZ+ZX code used

1sdp: using XZ+ZX method...

tau = 0.9990, scalefac = 1

lsdp: elapsed time = 9.36421 seconds

lsdp: elapsed cpu time = 9.10000 seconds

1sdp: flops = 2.08908e+08

1sdp: Number of iteratioms = 10

1sdp: final value of X.Z = 7.5b2e-12

1sdp: final primal infeasibility = 2.508e-16

1sdp: final dual infeasibility = 6.900e-15

1sdp: primal objective value = -1.1999999999993703e+01
1sdp: dual objective value = -1.2000000000001263e+01
1sdp: Lovasz theta function value = 1.1999999999997483e+01
>>

>> % notice that specialized XZ method is faster but less

>> % accurate than XZ+ZX method

>>

>> % since useXZ = 0, the matrix A was formed, so we can now call
>> % primalcond and dualcond

26 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

>>
>> rank(X,1.0e-08) Y% for weights all one, usually rank(X) > 1

3

>> rank(Z,1.0e-08) ¥ for weights all one, usually rank(Z) < n-1

:

27

>> primalcond(A,blk,X,1.0e-06); % sometimes primal nondegenerate
primalcond = 4.249e+17

>> dualcond(A,blk,Z,1.0e-06); % sometimes dual degenerate
dualcond = 5.881e+10

B.6. A sample truss problem.
>> Dhtotetohtotatototolototots ot lolototstots ot fotodotots oot ToTodoteto oo o To ot
>> % Sample truss problem

>> Whtatotololololololololololosotoetststotetototototo oo oeiete oo o olototo oo

\4

>>

>> load testing/truss/trussl % from Nemirovskii

>> setpars % sets scalefac = 100

>> initvars

>> sdp

tau = 0.9990, scalefac = 100

iter p_step d_step p_infeas d_infeas X.Z
0 0.000e+t00 0.000e+00 7.803e+02 3.603e+02 1.300e+05
1 1.000e+00 7.344e-01 6.356e-14 9.570e+01 1.391e+04
2 1.000e+00 1.000e+00 2.359e-12 8.789e-15 2.470e+02
3 6.313e-01 1.000e+00 8.669e-13 1.194e-16 9.229e+01
4 8.211e-01 1.000e+00 1.635e-13 1.688e-16 1.668e+01
5 5.064e-03 4.190e-01 1.635e-13 2.267e-15 1.004e+01
6 1.000e+00 9.086e-01 2.853e-13 1.088e-15 1.254e+00
7 9.886e-01 9.977e-01 2.754e-13 2.432e-15 1.919e-02
8 9.990e-01 9.990e-01 1.535e-13 2.035e-15 1.948e-05
9 9.990e-01 9.990e-01 9.392e-14 1.936e-15 1.948e-08
10 9.990e-01 9.990e-01 3.879e-14 2.220e-15 1.971e-11

fsdp: stop since error reduced to desired value

sdp: elapsed time = 1.30909 seconds
sdp: elapsed cpu time = 1.26000 seconds
sdp: flops = 8.99130e+04

sdp: Number of iterations = 10

O O O O = = ONNE

pobj

.000e+02
.565e+02
.471e+02
.189e+01
.745e+01
.746e+01
.006e+01
.018e+00
.000e+00
.000e+00
.000e+00

© O O 0 00 N N

dobj

.000e+00
.643e+01
.014e-01
.013e-01
.700e-01
.424e+00
.809e+00
.999e+00
.000e+00
.000e+00
.000e+00

SDPPACK USER’S GUIDE VERSION 0.8 BETA 27

sdp: final value of X.Z = 1.971e-11

sdp: final primal infeasibility = 3.879e-14

sdp: final dual infeasibility = 2.220e-15

sdp: primal objective value = 8.9999963153051237e+00

sdp: dual objective value = 8.9999963152853795e+00

>> primalcond(A,blk,X,1.0e-06); I check if primal degenerate

primalcond = Inf

>> dualcond(A,blk,Z,1.0e-06); % check if dual degenerate

dualcond = 8.920e+00

B.7. A sample LMI problem.

>> Whtotololololololololololoosooetststotetotototot oo oeiete oo o tolotootote

>> % Sample LMI problem

>> Whtotololololololololololooolototetetstotetotatolotoloso o oteetetotetoolotolotote

>>

>> load testing/lmi/hinf1l % from Gahinet

>> setpars % sets scalefac =

>> initvars

>> sdp

tau = 0.9990, scalefac 100

iter p_step d_step p-infeas d_infeas X.Z pobj
0 0.000e+00 0.000e+00 4.536e+02 3.742e+02 1.400e+05 0.000e+00
1 8.702e-01 1.000e+00 5.887e+01 3.553e-15 1.462e+04 -2.311e+00
2 9.964e-01 1.000e+00 2.138e-01 5.040e-14 1.881e+02 -8.974e-02
3 6.524e-01 9.997e-01 7.431e-02 2.807e-14 1.424e+01 -1.268e-01
4 9.296e-01 8.036e-01 5.232e-03 1.974e-14 1.969e+00 -9.935e-01
5 6.838¢e-01 1.000e+00 1.654e-03 2.169e-14 1.164e+00 -1.614e+00
6 9.780e-01 9.855e-01 3.633e-05 3.224e-14 2.058e-02 -2.029e+00
7 8.210e-01 1.000e+00 6.502e-06 4.463e-14 4.563e-03 -2.032e+00
8 7.948e-01 1.000e+00 1.334e-06 8.362e-14 1.583e-03 -2.033e+00
9 7.530e-01 1.000e+00 3.291e-07 1.996e-13 9.761e-04 -2.032e+00
10 1.465e-02 7.657e-01 3.243e-07 3.405e-13 9.435e-04 -2.032e+00
11 1.473e-01 1.567e-01 8.776e-07 3.623e-13 8.924e-04 -2.032e+00
12 8.588e-01 8.53b5e-01 2.237e-07 3.358e-13 1.017e-04 -2.033e+00
13 8.159e-01 1.000e+00 2.989e-06 4.530e-13 2.650e-05 -2.033e+00
14 5.789e-01 3.171e-01 1.110e-06 5.029e-13 2.717e-05 -2.033e+00
15 5.643e-03 5.534e-02 1.107e-06 6.097e-13 3.097e-05 -2.033e+00
16 3.933e-01 5.692e-01 7.331e-07 1.436e-12 1.992e-05 -2.033e+00
17 4.891e-01 7.193e-01 3.623e-07 8.719e-13 1.067e-05 -2.033e+00
18 1.000e+00 1.000e+00 2.734e-07 1.033e-12 8.867e-06 -2.033e+00
19 7.159e-01 1.000e+00 1.412e-07 1.974e-12 2.106e-06 -2.033e+00
20 1.000e+00 1.000e+00 6.915e-08 2.002e-12 2.749e-08 -2.033e+00
21 9.990e-01 9.990e-01 2.089e-07 1.097e-12 3.033e-11 -2.033e+00
22 1.000e+00 1.000e+00 2.279e-07 1.079e-12 4.434e-12 -2.033e+00

fsdp: stop since limiting accuracy reached.

(new X is indefinite, hence rejected)

dobj

.000e+00
.423e+02
.366e+02
.962e+00
.389e+00
.462e+00
.043e+00
.035e+00
.033e+00
.033e+00
.033e+00
.033e+00
.033e+00
.033e+00
.033e+00
.033e+00
.033e+00
.033e+00
.033e+00
.033e+00
.033e+00
.033e+00
.033e+00

28 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

sdp: elapsed time = 3.43612 seconds
sdp: elapsed cpu time = 3.36000 seconds
sdp: flops = 1.84914e+06
sdp: Number of iteratioms = 22

sdp: final value of X.Z = 4.434e-12

sdp: final primal infeasibility = 2.279e-07

sdp: final dual infeasibility = 1.079e-12

sdp: primal objective value -2.0326830740965565e+00

sdp: dual objective value = -2.0326415068447088e+00

>> primalcond(A,blk,X,1.0e-06); % check if primal degenerate
primalcond = 1.699e+15

>> dualcond(A,blk,Z,1.0e-06); % check if dual degenerate
dualcond = 9.738e+00

APPENDIX C. BENCHMARKS

This appendix provides benchmarks of SDPpack Version 0.8 BETA on some
randomly generated test problems, a set of 16 LMI problems® from control appli-
cations, and a set of 8 problems? from truss topology design. The LMI and the
truss design problems are available as mat files from the SDPpack home page. The
problems were solved with sdp.m with the default values of parameters set using
setpars.m:

prtlevel =1
validate =0
maxit = 100

tau = 0.999
scalefac = 100.0
autorestart =1
reltol = 10~!!
abstol = 1078
steptol = 1078
gapprogtol = 100.0
feasprogtol = 5.0
bndtol = 108

The benchmarks were conducted on an SGI workstation with a MIPS R10000 pro-
cessor, a MIPS R10010 floating point unit and 192 MB of main memory. In the
tables, pinfeas, dinfeas and dgap are shown on a log scale (log;y). Each * next
to termflag indicates a restart.

8These were provided to us by P. Gahinet.
9These were provided to us by A. Nemirovskii.

SDPPACK USER’S GUIDE VERSION 0.8 BETA

TABLE 4. Randomly generated problems: (1) SDP with blk =
[20 20] and m = 40 solved with XZ+ZX, (2) diagonally con-
strained SDP with n = 20 solved with XZ, (3) same problem as
in (2) solved with XZ+ZX, (4) Lovész 6 function with n = 10 and
dsty = 0.2 solved with XZ, and (5) same problem as in (4) solved
with XZ+ZX.

| Problem | iter | pinfeas | dinfeas | dgap | CPU secs | termflag |

1 10 -11 -13 -12 | 6.6e+00 0
2 20 -09 -14 -06 | 2.3e+00)
3 8 -16 -15 -11 | 3.3e+00 0
4 12 -14 -15 -07 | 1.7e4+00 4
) 9 -14 -15 -10 8.9e-01 0

TABLE 5. Randomly generated problems: (1) SDP with blk =
[40 40] and m = 80 solved with XZ+ZX, (2) diagonally con-
strained SDP with n = 40 solved with XZ, (3) same problem as
in (2) solved with XZ+ZX, (4) Lovész 6 function with n = 20 and
dsty = 0.2 solved with XZ, and (5) same problem as in (4) solved

with XZ+ZX.
| Problem | iter | pinfeas | dinfeas | dgap | CPU secs | termflag |
1 10 -11 -13 -11 7.4e+01 0
2 20 -10 -14 -07 1.2e+01 5
3 10 -15 -15 -09 | 4.4e+01 0
4 16 -07 -15 -08 2.5e+01 3
5 17 -13 -15 -12 2.0e+01 0

TABLE 6. Randomly generated problems: (1) SDP with blk =
[60 60] and m = 120 solved with XZ+ZX, (2) diagonally con-
strained SDP with n = 60 solved with XZ, (3) same problem as
in (2) solved with XZ+ZX, (4) Lovasz 6 function with n = 30 and
dsty = 0.2 solved with XZ, and (5) same problem as in (4) solved
with XZ+7ZX.

| Problem | iter | pinfeas | dinfeas | dgap | CPU secs | termflag |

1 9 -11 -12 -12 | 2.9e+02 0
2 24 -10 -Inf -06 | 4.2e+01)
3 12 -15 -14 -08 | 2.6e+02 1
4 20 -12 -15 -07 | 1.6e+02 4
) 13 -16 -15 -10 | 1.0e+4-02 0

RUTCOR, RUTGERS UNIVERSITY, NEW BRUNSWICK, NJ.
E-mail address: alizadeh@rutcor.rutgers.edu

DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, BRONX, NY.
E-mail address: haeberly@murray.fordham.edu

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NY.
E-mail address: madhu@cs.nyu.edu

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NY.
E-mail address: overton@cs.nyu.edu

29

30 F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM, AND M. L. OVERTON

TABLE 7. Benchmarks on problems from truss topology design

| P || n | m | Fit | pinfeas | dinfeas | dgap | CeX | by | CPU secs | termflag |
1 13| 6 10 -14 -15 —11 | 9.00e+00 | 9.00e+00 | 3.1e-01 0
2 (133 58 | 12 -12 -14 -11 | 1.23e+02 | 1.23e+02 | 3.8e+00 2
3 31| 27| 15 -13 -15 —08 | 9.11e+00 | 9.11e+00 | 1.4e+00 4
4119 | 12 | 11 -13 -15 —11 | 9.01e+00 | 9.01e4+00 | 4.7e-01 0
51331208 | 15 -10 -14 -09 | 1.32e+02 | 1.32e+02 | 7.2e+01 0
6| 451|172 | 39 —06 -13 —08 | 9.01e+02 | 9.01e+02 | 6.4e+01 5
71301 | 8 | 45 —06 -13 —10 | 9.00e+02 | 9.00e+02 | 3.0e+01 2
8 || 628 | 496 | 18 -10 -14 -11 | 1.33e+02 | 1.33e+02 | 1.1e+03 2
TABLE 8. Benchmarks on LMI problems from control applications
| P || n | m | Fit | pinfeas | dinfeas | dgap | CeX bTy | CPU secs | termflag
1] 14]13| 13 —08 -12 —08 | —2.03e+00 | —2.03e+00 | 6.9e-01 4
2 |16 13| 14 -11 -11 —08 | -1.09e+01 | -1.09e+01 | 7.6e-01 1*
3 (16|13 15 07 -11 —08 | -5.69e+01 | —5.69e+01 | 8.9e-01 2
4 (|16 |13 15 07 -10 -10 | —2.74e+02 | —2.74e+02 | 8.4e-01 1
5 |16 |13 | 16 04 -11 —08 | -3.62e+02 | -3.62e+02 | 8.9¢e-01 2
6 (|16 | 13| 35 —03 -11 —05 | -4.48¢+02 | —4.48¢+02 | 1.8e+00 2% *
711613 11 -04 -11 —08 | —-3.90e+02 | —3.90e+02 | 6.3e—01 4
8 |16 |13 | 14 —05 -12 —07 | -1.16e+02 | —1.16e+02 | 7.3e—01 1
9 (16|13 | 17 —06 -13 -10 | -2.36e+02 | —2.36e+02 | 9.8¢-01 1
10|18 | 21| 26 07 07 —05 | -1.08e+02 | —1.08e+02 | 2.0e+00 -1
112231 26 —06 07 —06 | —6.59e+01 | 6.59e+01 | 3.3e+00 2
1224 | 43| 25 —08 —08 —01 | -1.99e-01 | -1.77e-01 | 4.4e+00 -1
131 30| 57| 19 —05 -09 —02 | —4.43e+01 | —4.43e+01 | 5.9¢+00 2
14 | 34 | 73| 28 —08 -09 —-04 | -1.29e+01 | -1.29e+01 | 1.5e+01 5%
1537191 19 —06 —08 —02 | 2.39e+01 | —2.39e+01 | 2.1e+01 2
37116 |13 | 17 —06 -13 —10 | —2.36e+02 | —2.36e+02 | 9.9¢-01 1

