Thus we may solve for the 6 unknowns by Cramer’s rule (see p.89 of [8]) as follows:
ay] = det(Ml)/ det(M), a9 = det(lwz)/det(M),
)

as = det(Mg)/ det(M , a9y = det(JW4)/det(M),
by det(M5)/ det(M), by = det(JWG)/det(M),

where M = [my;]; j=1,.6 and My = M with k-th column substituted by [ni]§:1,...,6) fork=1,...,6.

Discussion

We

might wish to do a wetghted sum of the squared distances. More specifically, the 2 squared

distances provided by the endpoints of a long line segments will get more weight than those of short
line segments.

6
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and

E = minp Z((cos 0;,sin0;)T(w;1) — r;)? + ((cos 0;,sin 0; )T (w;2) — r;)?
ji=1
To minimize F, we have to solve the following system of equations:

OF oF OF OF OF OF
=0 =0 =0 =0, —/—=0 d —=0.
’ 6&21 ’ (‘3a22 ’ 8()1 an 8[)2
Since £ is a quadratic function in each of its unknowns, the above is a system of linear equations with
six unknowns as follows in matrix form:

6&11 - (‘3a12

mi1r My2 Mz M4 Mis M a1 n
Ma21 M2z M23 Ma4 M5 Mg a12 na
m31 M3z M33 M34 M35 M36 a21 _ ns
Ma1 Myg2 T4z M44  M4a5 Mye a22 - Ny
ms1 Ms2 Ms3 M54 M5 Mie by ns
meg1 Mg2 Mgz Me4a Mes  Mae by ne

where

my; =2 Z?:l cos® B (¢3, + 23,),

miz = 2) 0, cos® 05 (zj1y;1 + Tjay;2),

miz = 2 Z?Il cos §; sin 6; (ac?1 + xj22),

miqg = 2 27}21 cos 9]' sin Qj (l'jlyjl + l‘jgng),
mys = 2 E]’:l cos?0; (zj1 + zj2),

mig = 2 2?21 cos 0 sinb; (zj1 + zj2),

may =237, cos? 0 (251951 + Tjayj2),

Moy = 2 E]’:l cos” (%21 + y]2'2)’

Moz = 2 2?21 cos 0 sinb; (z1y51 + zj2Y;2),
Moy = 2 2?21 cos §; sin 6; (y]2»1 + y]?Q),

mas =23/, cos® 0 (yj1 + yj2),

Mog = 2 Z?:l cos 0; sinb; (yj1 + yj2),

ms; = 2 EZIl cos?0; (zj1 + zj2),

msy =23/, cos® 0 (yj1 + yj2),

msz = 2 Z?:l cos 0 sinb; (zj1 + zj2),
Mg = 2 27}:1 cos 0; sinb; (yj1 + yj2),
mss =430, cos?6;,

myg = 4 Z?Il cos §; sin f;,

n1 =237 cos0; 7 (21 + %j2),
ny =23, cos 0 i (yj1 + yj2),
ng = 42]:1 cos b; r;,

mg; = 2 Z?:l cos f; sin b (23, + 23,),

may = 2 2?21 cos 0 sinf; (zj1y51 + Tj2y;2),
maz = 2 Z?Il sin? 6; (1']2»1 + xj22),

mas =23 5_,sin0; (zj1yj1 + Tj2yj2),

mas = 2 E]’:l cos §; sinb; (zj1 + zj2),

mag = 2 2?21 sin? 6; (zj1+ zj2),

my; = 2 27}21 cos 9]' sin 0]' (l'jlyjl + l‘jgng),
Mgy = 2 E]’:l cos §; sinf; (yjz1 + yJ?Q),

maz =21y sin® 0 (z51951 + zj29;2),

mag =230 sin® 0 (y7) + yly),

mys = 2 E?:l cos 9]' sin 0]' (yjl + ng),

mas =237y sin® 6 (yj1 + yj2),

me, = 2 2?21 cos 0 sinb; (zj1 + zj2),
mea = 2 E?:l cos 9]' sin 0]' (yjl + ng),
megz = 2 Z?:l sin? 6; (zj1+ zj2),

mea =2y _y sin’ 0 (yj1 + yj2),

Mgy = 4Zj:1 cos §; sinb;,

mes = 4 Z?Il sin? 6;

ng = 227}:1 sin; r;(zj1 + zj2),

ng =23 iy sind;ri(yi1 + yj2),
ng = 42]:1 sind; r;.
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In this section, we discuss several heuristics to minimize the errors.

Heuristic 1
Treat each line as a point with coordinate (,r) in (6, r)-space and minimize the squared distance
between (8, r) and its correspondence (8', 7).

Discussion

The problem of this heuristic is that # and r are of different metrics. To minimize the squared distance
between a point (#,7) and its correspondence (¢',r'), we implicitly assume equal weight on both ¢
and r.

Heuristic 2

To circumvent the problem caused by Heuristic 1, we note that a line (6, r) can be uniquely repre-
sented by the point (r cos #, rsin @), which is the projection of the origin onto the line. To match line
(0,7) to its correspondence (6',7'), we try to minimize the squared distance between (rcos@,rsin#)
and (r' cos@',r'sin@’).

Discussion
The drawback of this heuristic is its dependency on the origin. The nearer the line is to the origin, the
more weight is on 7 (think of the special case when both lines pass through the origin in the image).

Heuristic 32
The models in the model base are usually finite in the sense that though they are modeled by lines,
they in fact consist of line segments. We may work in the image space by minimizing the squared
distance of the endpoints of the transformed model line segments to their corresponding scene lines.
We derived in the following the closed-form formula for the case of affine transformations, which in-
clude rigid and similarity transformations. That for projective transformations is yet to be attempted.
Specifically, assuming that we are looking for an affine match between n scene lines /; and endpoints
of n segments, u;; and ujq, j = 1,...,n, we would like to find the affine transformation T = (A, b),
such that the summations of the squared distances between the sequence T(u;1) to {; and T(u;2) to
l;,7=1,...,n, is minimized:

E = minp Z(distance of T(u;1) and lj)2 + (distance of T(u;2) and lj)z.
j=1

Let line [; be with parameter (6;,7;) and endpoints u;; be (2j5,y;5),j=1,...,nandi=1,2. Also
let T = (A, b) such that
A:(a11 a12) and b:(bl).
az1  a22 bs

T(uj;) = (a112j; + a12y;; + b1, az12j; + a22y;i + ba)’

Then

2This is suggested by Professor Jiawei Hong, affiliated with CIMS, NYU, New York.
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paa = —C1C35(rycos bl — rzcos ),

pas = —C1C3sin(0; — 03),

ps1 = C1C5(r1sinfy — rysinéy),
psa = —C1C5(ry cos by — rycos ),
pss = —C1Cysin(f; — 6).

From section 3.3, the invariant (6’,7')" of a line (6,r)" with respect to the basis lines can be
obtained as follows:

(', 7")' = H((6,7)") = G(P(cos §,sinb, —r)") = G(a’)

where
ABC
a' = —1/6‘16‘2 73)\4 DEF
GCOF 3x1
where
A = 1 SiH(QQ — 93) + 9 sin(93 — 91) + T3 sin(91 — 92),
B = r4sin(f — 03) — rasin(f — 04) + rsin(f2 — 64),
C’ = T3 sin(91 - 93) — T3 sin(91 - 94) + 1 sin(93 — 94),
D = —rgsin(d —6,) + r1sin(f — 3) — rsin(fy — 63),
E = ry sin(91 — 92) — 7y sin(91 — 94) + 71 sin(92 — 94),
F = T4 sin(Qz — 03) — T3 sin(Qz — 04) + 79 sin(93 — 04),
G = rosin(f —01) —rysin(f — 02) + rsin(d; — 0s),
and hence
0 = tan~"'(DEF/ABC),
. —GCF

V(ABC)? 4+ (DEF)?

5 Best Least-Squares Match

The transformation between a model and its scene instance can be recovered by the correspondence
of the model basis and the scene basis alone. However, scene lines detected by the Hough transform
may be somewhat distorted due to noise, which results in distortion of the computation of the trans-
formation. Usually this distorted transformation transforms a model to match its scene instance with
basis lines matching each other perfectly while the other lines deviating from their correspondences
more or less. Knowledge of additional line correspondences between a model and its scene instance
can be used to improve the accuracy of the computed transformation.
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Since az + by + ¢ = 0 and Aaz + Aby + Ac = 0, A # 0, represent the same line, we have

)\1Pa1 = ey,
AQPaQ = ey,
)\3P&3 = es3,
APas = ey,

where A1, Ag, Az and A4 are non-zero constants. Equivalently,

P(Alaly A2a2) A3a3) A4&4) = (el , €2, €3, e4)-

Then
_ -1
(A1a1, Adzas, Azag, Asas) = P77 (eq,e9,e3€4)
@11 @21 411 — 4Gz d21 — 431
= @12 Q22 G12 — 432 dA22 — 432
@13 @23 @13 — G33 adA23 — 433
We have
a1 a2 ai3
A = == (16)
cos 6 sin 64 —r;
a21 a22 @23
cos sin 64 —7y
@11 — @31 a12 — @32 @13 — @33
Az = = — = (18)
cos 3 sin 03 —7r3
a1 — @31 a2z — @32 @23 — @33
Ay = === = (19)
cos By sin G4 —7y

From (16), (17), (18) and (19), we may solve a;j, ¢,j = 1,2, 3, in terms of As. Substituting them in
(15), we obtain

P11 P12 N3
P=—-1/CiCyC3A4 | p21 P2z P23
P31 P32 P33
where
C1 = —rgsin(fy — 03) + rasin(fy — 04) — rasin(fs — 04),
Cy = —rysin(fy — 03) + rasin(f; — 04) — rysin(fs — 04),
Cs = rysin(fy — 62) — rasin(fy — 04) + r1sin(fz — 04),
P11 = C‘Q(C‘l 9 SiIl 91 — C‘ﬂ“l sin 62 + 6'37’3 sin 62 — 6'37’2 SiIl 93),
pra = —Co(Cyracosty — Cirycos by + Csrzcos Bz — Carg cos b3),
P13 = 6'2(6'1 sin(01 — 92) + 6'3 sin(Qg — 93)),
pa1 = C1C5(rysinfsz — rgsinfy),
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To determine a projective transformation uniquely, we need a correspondence of two ordered
quadruplets of lines and for each quadruplet, no three lines are parallel to one another or intersect at
a common point (thus no three points are collinear in parameter space).

One way to encode the fifth line in a projective-invariant way is to find a transformation P, which
maps the four basis lines to a canonical basis, say x = 0, y = 0, x = 1 and y = 1, then apply P to the
fifth line.

A projective transformation T in image space is of the form

This corresponds to the parameter-space transformation P defined by,

@22033 — (23032 (230331 — 210333 (21032 — A22031

1
— 1\t
P=(T) = D | 13932 — 12033 A11033 — 13031 12031 — Andsy |, (15)
@12023 — 13022 A13G21 — A11G23 aA11022 — A12021
where
D = aj1a22a33 + a12a23a31 + a13021032 — @110A23032 — Q12021033 — A1302203]
so that

—1 ¢
P =T"'=| a2 az a3z

Let a 2-D line be parameterized as cosf x +sinfy — r = 0 and let four additional basis lines be
represented by their parameters a;, as, ag and a4, s.t.

t

a; = (cosfy,sinfy,—r1)",
a; = (cosfq,sinfy, —rs),
a3 = (cosfs,sinfsz, —r3),
as = (cosfy,sinfy,—r4),
which are to be mapped by P to
e = (cosO sin 0 0) (1,0, O)t;
e, = (COS g 0) = (O,I,O)t,
es = (cosO sin 0, —1) (1,0,-1)",
es (COS 5 —1)t (0,1,-1)"

Our intention is to map the first basis line to y-axis; the second basis line to z-axis; the third basis
line to # = 1; the fourth basis line to y = 1.

13



Thus

ail aia bl
A = = = !
! cosfy sinf; —ry’ 1o
asy azs by
W _ _ by 11
2 cosfl;  sinfs —ry’ .
1 1 L
\ o Zmtan)  Gilentan) G5 +b-1) (12)
cos 03 sin 03 -3

From (10), (11) and (12), we may solve aj, as, as, as, by and by. Substituting them in (9), we obtain

csc(fy — 02) csc(fy — O3)sinfa A —csc(fy — 02) csc(f2 — 63) cos 024 0
P= csc(fy — 02) csc(f; — O3)sinf1 A —csc(fy — 02) cse(f; — b3) cos 1A 0
csc(fy — 2)(rasinf; —rysinfly)  —csc(fy — 03)(racosfy —rycosfz) 1

where

A= 1 sin(62 — 63) + r9 sin(63 — 61) + r3 sin(61 — 62)

From section 3.3, the invariant (6’,7')" of a line (6,r)" with respect to the basis lines can be

obtained as follows:

(0',7")" = H((0,7)") = G(P(cos,sind, —r)") = G(a')

where
—csc(fy — 62) csc(fa2 — 03)sin(f — 02) A
a' = —csc(fy — 62) csc(f; — 03)sin(f — 01)A
r1 csc(f; — 02)sin(6 — 0) — rocsc(y — O2)sin(6 — 6;) — r ax1
and hence
_ 6, — 03)sin(6, — 0)
0o ¢ 1, ¢esc(by 3 ]
a (csc(92 — 03)sin(fy — 9))’ (13)
o= l(7“1 csc(fy — 02) sin(fy — ) — racsc(6y; — 02)sin(f; — ) + ) (14)
T
where

T =1/ csc2(6, — 03) sin2(91 —0) + csc2(fy — 03) sin2(92 —0) | csc(6; — 02)A|.

4.5 Line Invariants under Projective Transformations

Although a projective transformation is fractional linear, one can well treat it as a linear transformation
by using homogeneous coordinates.

12



An affine transformation T in image space is of the form

A b a1 aiz by
T = 0 1 )= | e ax by
0 0 1

where A is the skewing matrix; b, the translation vector. This corresponds to the parameter-space
transformation P defined by,

p=ay=( 00 ©)

A 0
-1 _ t
P _T_(bt 1).

Let a 2-D line be parameterized as cosf z + sinfy — r = 0 and let three additional basis lines be
represented by their parameters a;, as and ag, s.t.

so that

a; = (cosfy,sinfy,—r),
a; = (cosfq,sinfy, —rs),
a3 = (cosfs,sinfz, —r3),
which are to be mapped by P to
e; = (cos0,sin0,0)" = (1,0,0),
ey = (cos g, sin g, 0)" =(0,1,0)",

€3 =

( T .7 —1)t ( 1 —1)t
cos —,sin—, —)' = (—, —,—=)".
47472 V2' V22
Our intention is to map the first basis line to y-axis; the second basis line to z-axis; the third basis
linetoxz +y=1.
Since az + by + ¢ = 0 and Aaz + Aby + Ac = 0, A # 0, represent the same line, we have

)\1Pa1 = ey,
AQPaQ = e3,
)\3Pa3 = es,

where A1, Ay and A3z are non-zero constants. Equivalently,
P(Aai, Azas, Azaz) = (e, e, e3).
Then

(A1ar, Asaz, Aza3) = P7l(eq, es,e;3)

11



Thus

—ssing s cos¢ b
M= cos ~ Tsin 61 - )’ (6)
N = s(cos ¢C — sin ¢Sy) _ s(sin ¢C + cos ¢S7) _ b1Cy 4+ 025 (M)
cos 04 sin 64 —7y '
N = s(cos pCy —sin ¢Sa)  s(sin ¢Cy + cos ¢Sa)  b1Ca + b3S3 —sin |0; — 03] (8)
3= cos O3 - sin 03 - —r3 '

From (6), (7) and (8), we may solve ¢, by, ba and s. Substituting them in (5), we obtain

1 sin 01 A —cosbf1 A 0
P= D cost A sin 01 A 0
(rosinfy — rysinfy)sin(f; — 03) —(racosfy —rycosfy)sin(fy —f3) D

where

D= sin(01 — 92) sin(91 — 03),
A= 1 sin(02 — 93) + 7o sin(6'3 — 91) + r3 sin(6’1 — 92)

From section 3.3, the invariant (6’,r')" of a line (8,7)" with respect to the basis lines can be
obtained as follows:

(6, 7')" = H((6,r)") = G(P(cos §,sin 6, —r)") = G(a')
where
= (= sin(0 — 01)4,cos(0 — 1) 4, (~rysin(6 — 1)+ vy sin(0 — ) — rsin(6y — 02)) sin(0) — b))
and hence
0 = -0+

2
" = (rgsin(f —601) — rysin(f — 63) + rsin(6; — 62))sin(f; — 63)/]Al.

4.4 Line Invariants under Affine Transformations

Affine transformations are often appropriate approximations to perspective transformations (see p.
79 of [4]) and thus can be used in recognition algorithms as a substitute for more general perspective
transformations.

Given AABC and ADEF, there is a unique affine transformation T, such that T(A) = D,
T(B) = E and T(C) = F. To determine an affine transformation uniquely, we need a correspondence
of two ordered triplets of lines, which are not parallel to one another and do not intersect at a common
point.

One way to encode the fourth line in an affine-invariant way is to find a transformation P, which
maps the three basis lines to a canonical basis, say # =0, y = 0 and 4+ y = 1, then apply P to the
fourth line.

10



where s is the scaling factor; R, the rotation matrix; b, the translation vector. This corresponds to
the parameter-space transformation P defined by

1p-1yt 1
1Nt S(R™H) 0\ _ =R 0
p=y = (il V)= (o 1) ®
so that .
-1 _ t SR 0
P 0)

Let a 2-D line be parameterized as cosfz + sinfy — r = 0 and let three additional basis lines,
assuming the first line is not parallel to the others, be represented by their parameters a;, a; and ag,
s.t.

a; = (cosfy,sinfy,—r),
a; = (cosfy,sinfy, —rs),
a3 = (cosfs,sinfz, —r3),
which are to be mapped by P to
e = (cos g,sin g, 0)* =(0,1,0),
es = (cospy,sinep,0)" = (Cy,51,0),
es = (cospa,sinpy, —sin|f; — 5))" = (Ca, S2, —sin |6, — 03])".

Note that 1 and ¢y are fixed, though unknown. Also note that since we fixed the third component
of e3 to be —sin |f; — 03] < 0, @2 ranges within (=%, %) (or, Co > 0). Our intention is to map the
first basis line to z-axis; the intersection of the first basis line and the second basis line to the origin;
the intersection of the first basis line and the third basis line to (1,0)".

Since az + by + ¢ = 0 and Aaz + Aby + Ac = 0, A # 0, represent the same line, we have

)\1 Pa1 = eq,
)\2 Pag = e,
)\3Pa3 = es,

where A1, Ay and A3z are non-zero constants. Equivalently,
P(Aai, Azas, Azaz) = (e, e, e3).
Then

(Alal,)\gag,)\g,ag) = P_l(el,eg,eg)
—ssing s cos¢pC — s sin ¢Sy s cos pCy — s sin ¢Sy
= scos¢ ssingCh + s cos oSy s sin ¢C'y + s cos ¢Sy
b2 blCl + b251 blcb + b252 — sin |01 - 63|



or
—sin 6, cos ¢ 0

P= —cos —sin 6, 0
csc(fy — 03)(rasinfy — rysinfy)  csc(fy — 63)(—racos By + 71 cosflz) 1

Note that we have two solutions for P owing to the 180°-rotation ambiguity.
From section 3.3, the invariant (6’,7')" of a line (6,r)" with respect to the basis lines can be
obtained as follows:

(@,r") = H((0,7)") = G(P(cosf,sinb, —r)") = G(a’)
where
a’ = (—sin(f — 61),cos(0 — 61), —r — rocsc(fy — 02)sin(f — 01) + 1 csc(f; — 02)sin(d — ,))°
or
a’ = (sin(f — 6,), — cos(d — 61), —r — rocsc(fy — 02)sin(f — 61) + r1 csc(f; — 02)sin(0 — 62))",

depending upon which P is used, and hence

T
0 = 6-6,+ 5
= r+4csc(fy — 02)(rasin(d — 61) — rysin(f — 63)),
or
iy
0 = 6-—60,+ 5
' = —r—csc(f —02)(rasin(d — 61) — rysin(6 — 65)).

We may store each encoded invariant (¢, r') redundantly in two entries of the hash table, (8, ")
and (0', —r'), during preprocessing. Then we may hit a match with either (¢',+') or (§', —r') as the
computed scene invaraint during recognition.

4.3 Line Invariants under Similarity Transformations

To determine a similarity transformation uniquely, we need a correspondence of a pair of triplets of
lines, not all of which are parallel to each other or intersect at a common point.

Without loss of generality, we may assume that the first basis line intersects with the other two
basis lines. One way to encode the fourth line in a similarity-invariant way is to find a transformation
P, which maps the first basis line to the z-axis, maps the second basis line to such that its intersection
with the first basis line is the origin and maps the third basis line to such that its intersection with
the first basis line is (1, 0)*, then apply P to the fourth line.

A similarity transformation T in image space is of the form

scos¢ ssing by

T:(SR b): —ssing scos¢ by
0 0 1



transformation P defined by

perr= (L 0)= (L ). »

R' 0
-1 _ mt _
P (B0,

Let a 2-D line be parameterized as cosf z +sinfy — r = 0 and let two additional basis lines be
represented by their parameters a; and as, s.t.

so that

a; = (cosfy,sinfy,—r),
a; = (cosfq,sinfy, —rs),
which are to be mapped by P to
e = (cosg,sing,O)t:(O,l,O)t,
es = (cosp,sing,0) =(C,S,0)".

Note that ¢ is fixed, though unknown. Our intention is to map the first basis line to z-axis (or, y = 0)
and the intersection of the two basis lines to the origin.
Since az + by + ¢ = 0 and Aaz + Aby + Ac = 0, A # 0, represent the same line, we have

)\1Pa1 = ey,

AQPaQ = e3,
where A; and A5 are non-zero constants. Equivalently,

P(Xiag, das) = (e, es).

Then
(Ma1,Az2as) = P7l(er,es)
—sing cos¢pC —sing S
= cos¢ singC +cos¢gS
bs biC+byS
Thus

—sing  cos¢g b_z

A = = = 3
! cos 61 sin, —r’ (3)

V- cosp(C —singS  singC+cosgpS b0+ b5 (4)
T cos 0 B sin 0 T g

From (3) and (4), we may solve ¢, by and b2. Substituting them in (2), we obtain

sin 6, —cos 0
P= cos 0 sin 64 0
csc(f; — 03)(rasinf; — rysinfla)  csc(fy — O2)(—racosfy + rycosfy) 1



4 Line Invariants under Various Transformation Groups

Relevant transformations include rigid transformations, similarity transformations, affine transforma-
tions and projective transformations, depending on the manner in which an image is formed. Each
of these classes of transformations forms a group and is a subgroup of the full group of projective
transformations.

4.1 Encoding Lines by a Combination of Lines

To adapt the point geometric hashing technique to line features, we need to encode line features in
terms of a combination of lines (as a basis) in a way invariant under transformations considered.

One way of encoding is to find a canonical basis and a unique transformation (in the transformation
group under consideration) that maps a combination of lines (as a basis) to the canonical basis, then
apply that transformation to the line to be encoded. For example, let T be a projective transformation
that maps a basis b to T(b). If P is the unique transformation such that P(b) = b, and P’ is the
unique transformation such that P/(T(b)) = b., where b, is the chosen canonical basis, then we have
P = P’ o T and any other line / and its correspondence I’ = T(l) will be mapped to P(I) by P and
P/(I') by P’ respectively. Note that P'(I') = P/(T(l)) = P’ o T(I) = P(l) and conclude that this is an
invariant encoding[3].

Various subgroups of the projective transformation group require different bases. We will discuss
them in the following sections.

Note that throughout the following discussion, when a line is represented by its normal parame-
terization (0, r), we restrict 6 to be in [0,7) and r to be in R and if the computed invariant (¢, ")
has €' not in [0..7), we adjust it by adding = or —m and adjust the value of ' by flipping its sign
accordingly.

4.2 Line Invariants under Rigid Transformations

To determine a rigid transformation uniquely, we need a correspondence of two ordered triplets of
lines, not all of which are parallel to each other and intersect at a common point. A correspondence
of two ordered pairs of non-parallel lines is not sufficient to determine a rigid transformation uniquely.
However, it determines a rigid transformation up to a 180°-rotation ambiguity and this ambiguity can
be broken if we know the position of a third line.

One way to encode the third line in terms of a pair of non-parallel lines in a rigid-invariant way
(up to a 180°-rotation ambiguity) is to find a transformation P, which maps the first basis line to the
z-axis and maps the second basis line to such that its intersection with the first basis line is the origin,
then apply P to the third line.

A rigid transformation T in image space is of the form

cos¢ sing b
T:(f){ lf): —sing cos¢ bs |,
0 0 1

where R is the rotation matrix and b, the translation vector. This corresponds to the parameter-space



where 7 is the perpendicular distance of the line to the origin and € is the angle between a normal to
the line and the positive z-axis.

This unique parameterization of lines relates to the preceding parameterization of lines. Let
F : R? — R3 be a mapping such that

F((0,7)") = (cosf,sin 8, —r)*

If we restrict the domain of  to be in [0, 7), then F~! exists. Define another mapping G : R — R?
by F~! as

F-! AT >
G o ((\/a2+a2’\/a2+a2’\/a2+d ) ) 1fa2_0
((a1,az2,a3)") = F- (( —a;5 )t) otherwise
\/a2+a2 ) \/a2+a2 ) \/a2+a2

where a; and as are not both equal to 0. Then

(tan_l(% ;f_i—Q)t ifas >0
G((al, as, ag)t) = (0, _T(ii)t if as = 0
(tan™!(=22), —iaﬁ)f ifa; <0

where the range of tan™! is in [0..7) and tan~!(c0) = Z.

Then G maps a point a = (a1, as, ag)’ in parameter space, where a; and a, are not both equal to
0, to (6,7)" = G(a) in (6, r)-space such that

a w1 + agws + azwz =0

and
cosBwy +sinfwy —rwz =0

define the same line.

Let (6,7)" be the (6, r)-parameter defining a line (in fact, the line cos@z + sinfy = r). Then
F((6,r)") = a, where a = (cosf,sinf,—r)", is a point in parameter space. A transformation P
changes the coordinate of a to a’ = Pa in parameter space. Substituting F((6,7)*) for a in a’ = Pa,
we get

a’' = PF((0,r)")
and hence (¢',7') = G(a’) = G(PF((6,r)")) defines the same line as a’ (or Aa’, A # 0).

Thus a transformation of a point in parameter space results in the transformation of (6,7)" in
(6, r)-space. The change of coordinate of (6, r)" in (6, 7)-space is given by

(@, )" =H((0,r)) (1)
where H= GoPoF.!

1We abused the notation by using P (V) to denote Pv (matrix P multiplies vector V). We will continue to use
P(v) or PV interchangeably when no ambiguity occurs.



A point (z,y)" in image space is represented by a non-zero 3-D point w = (w1, w2, w3)" in homo-

geneous coordinate systems, such that
wy w2

where wz # 0. This representation is not unique, since Aw, for any A # 0 is also a homogeneous
representation of (z, y)’.

Every non-singular 3 x 3 matrix defines a 2-D projective transformation of homogeneous coordi-
nates. Various subgroups of the projective transformation group are defined by different restrictions
on the form of the matrix T.

3.2 Change of Coordinates in Parameter Space

A line in a 2-D plane can be represented by its parameter vector and is usually parameterized as
aywy + agws + agwz = 0

or

a'w =0,

where a = (a1, az, ag)t is the parameter vector of the line (note that a; and as are not both equal to
0) and w = (w1, ws, w3)" is a homogeneous coordinate of any point on the line. This representation
is not unique, since Aa, for any A # 0, is also a representation of the same line. Herein, parameter
vector a defines a point in 3-D parameter space.

A transformation T in image space changes the coordinate of every point w on a line to w’ by
w’ = Tw. Substituting w = T~ !w’ in alw = 0, we get

a'T 'w' =0

and hence

or

‘'w' = 0, where a’ = (T™')‘a.

a/
This shows that the change of the coordinate of the point in 3-D parameter space is given by
a’ = Pa.

where P = (T~ 1)".

3.3 Change of Coordinates in (6,r) Space

Line features of an image are usually extracted by the Hough transform. A common implementation
of the Hough transform applies a normal parameterization suggested by Duda and Hart[1], in the form

cosfx+sinfy=r,



(i) compute the invariants of all the remaining points in terms of the basis b;

(i1) use the computed invariants to index the 2-D hash table entries, in each of which we
record a node (M, b).

Note that all feasible bases have to be used in forming the set of invariants to be stored. In particular,
all the permutations (up to k!) of the k points needed to calculate the invariants have to be considered.

The recognition stage
Given a scene containing n feature points,

(i) choose a feasible set b of k points;
(ii) compute the invariants of all the remaining points in terms of this basis b;

(iii) use each computed invariant to index the 2-D hash table and kit all (M;,b;)’s that
are stored in the entries retrieved;

(iv) histogram all (M;,b;)’s with the number of hits received;

(v) assume the existence of an instance of model M; in the scene, if (M, b;), for some j,
peaks in the histogram with sufficiently many hits;

(vi) repeat from step (i), if all hypotheses established in step (v) fail verification.

3 Change of Coordinates in Various Spaces

The idea behind the geometric hashing method is to encode local geometric features in a manner
which is invariant under the geometric transformation that model objects undergo during formation
of the class of images being analyzed. This encoding can then be used as a hash function that makes
possible fast retrieval of model features from the hash table, which can be viewed as an encoded model
base. The same technique can be applied directly to line features, without resorting to point features
indirectly derived from lines, if we use any method of encoding line features in a way invariant under
transformations considered.

3.1 Change of Coordinates in Image Space

It is often easiest to deal with homogeneous coordinates, since this makes projective transformations
linear and easily subject to matrix operations.
A change of coordinates in homogeneous coordinates is given by

/
w = Tw,

where w = (w1, w2, w3)" is the homogeneous coordinate before transformation, w’ = (wll, w;, w;)t is
the homogeneous coordinate after transformation and T is a non-singular 3 x 3 matrix. Note that
T and AT, for any A # 0, define the same transformation, since we are dealing with homogeneous
coordinates.



1 Introduction

Geometric Hashing[5][6] is a model-based object recognition approach based on precompiling redun-
dant transformation-invariant information derived for object models into a hash table, and using the
invariants computed from a scene for fast indexing into the hash table to hypothesize possible matches
between object instances and object models during recognition. Since only local geometric features
are used to compute the invariants, it can cope well with the problems caused by partial overlapping
and occlusion.

In a noisy image, point feature locations are inherently error-prone and the analysis of geometric
hashing on point sets [2] shows considerable sensitivity to noise. In contrast, line features are more
robust and can be extracted by the Hough transform method with greater accuracy, since more image
points are involved. Although point features can be obtained by intersection of lines, if this is done, the
uncertainty (noise) of lines accumulates and contributes to the uncertainty of the point positions thus
derived. Hence it can be more advantageous to work directly with lines by computing the geometric
invariants of lines directly from a combination of lines.

We examine line invariants under various transformations for the recognition of 2-D (or, flat 3-D)
objects which are modeled by lines.

We organize this paper as follows. In section 2, we give a brief review of the original description
of the geometric hashing method to make the paper self-contained. Section 3 examines the way in
which coordinate changes act on various geometric spaces of potential interest for recognition. This
section is preliminary to its following section. Section 4 describes a method to encode line features in a
transformation invariant way and gives the derivation of that encoding. Section 5 discusses best least-
squares match procedures for transformed models and their instances in a scene. Section 6 outlines
some future directions.

2 Review of the Geometric Hashing Method

This section reviews the geometric hashing method. For more detail, refer to [7].

Geometric hashing involves two stages: a preprocessing stage and a recognition stage. In the pre-
processing stage, we construct a model representation by computing and storing redundant, transformation-
invariant model information in a hash table. Then, during the recognition stage, the same invariants
are computed from features in a scene and used as indexing keys to retrieve from the hash table the
possible matches with the model features. If a model’s features scores enough hits, we hypothesize
the existence of an instance of that model in the scene.

The pre-processing stage

Models are processed one by one. New models added to the model base can be processed and encoded
into the hash table independently.

We proceed as follows: For each model M and for every feasible basis b, consisting of k£ points (k will
depend on the transformations the model objects undergo during formation of the class of images to
be analyzed),
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Abstract

Geometric Hashing is a model-based object recognition technique for detecting objects which can
be partially overlapping or partly occluded. It precompiles, from local geometric features, redundant
transformation-invariant information of the models in a hash table and uses the invariants computed
from a scene for fast indexing into the hash table to hypothesize possible matches between object
instances and object models during recognition.

In its simplest form, the geometric hashing method assumes relatively noise-free data and is applied
to objects with points as local features. However, extracting of the locations of point features is
inherently error-prone and the analysis of geometric hashing on point sets shows considerable noise
sensitivity. Line features can generally be extracted with greater accuracy.

We investigate the use of line features for geometric hashing applied to 2-D (or flat 3-D) object
recognition and derive, from a combination of line features, invariants for lines under various geometric
transformations.



