
Better Burst Detection

(TR2005-876)

Xin Zhang Dennis Shasha

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

{xinzhang,shasha}@cs.nyu.edu

October 29, 2005

Abstract

A burst is a large number of events occurring within a certain time
window. As an unusual activity, it’s a noteworthy phenomenon in many
natural and social processes. Many data stream applications require the
detection of bursts across a variety of window sizes. For example, stock
traders may be interested in bursts having to do with institutional pur-
chases or sales that are spread out over minutes or hours. Detecting a
burst over any of k window sizes, a problem we call elastic burst detec-

tion, in a stream of length N naively requires O(kN) time. Previous
work [24] showed that a simple Shifted Binary Tree structure can reduce
this time substantially (in very favorable cases near to O(N)) by filtering
away obvious non-bursts. Unfortunately, for certain data distributions,
the filter marks many windows of events as possible bursts, even though
a detailed check shows them to be non-bursts.

In this paper, we present a new algorithmic framework for elastic burst
detection: a family of data structures that generalizes the Shifted Binary
Tree. We then present a heuristic search algorithm to find an efficient
structure among the many offered by the framework, given the input. We
study how different inputs affect the desired structures. Experiments on
both synthetic and real world data show a factor of up to 35 times im-
provement compared with the Shifted Binary Tree over a wide variety of
inputs, depending on the data distribution. We show an example appli-
cation that identifies interesting correlations between bursts of activity in
different stocks.

1 Introduction

A burst is an unexpectedly large number of events occurring within a certain
time window. As an unusual activity, it’s a noteworthy phenomenon in many
natural and social processes.

• In stock trading, trading volume is an important indicator of the price
trend. A burst of volume often indicates a strong buy/sell interest, thus
leads a price movement. [1]

1

• In astronomy, astrophysicists are interested in high-energy photons activi-
ties in the universe. When a burst of photon activity is observed, a gamma
ray burst occurs which may reflect the occurrence of a supernova.

• In telecommunication, a large number of access requests within a short
period of time might indicate a Distributed Denial of Service (DDoS)
attack, worth closely monitoring.

To efficiently detect bursts is of critical importance under some circum-
stances. For example, to detect unusually high tsunami activity as early as
possible could save thousands of lives.

If the length of the time period when a burst occurs is known a priori, the
detection can easily be done in linear time by keeping a running count of the
number of events. However, in many situations, the window size is unknown a
priori. For example, interesting gamma ray bursts could last several seconds,
several minutes or even several days. The size itself may be an interesting
subject to be discovered. Furthermore, many data applications require detection
of bursts across a variety of window sizes. For example, traders use multiple
Volume Moving Averages (VMA) at different time scales from minutes to years
to infer the market trend.

1.1 Elastic burst detection and the Shifted Binary Tree

The elastic burst detection problem [24] is to detect bursts across multiple win-
dow sizes. Formally:

Problem 1 Given a data source producing non-negative data elements x1, x2, ...,
a set of window sizes W = w1, w2, ..., wm, a monotonic, associative aggregation
function A (such as ”sum” or ”maximum”) that maps a consecutive sequence of
data elements to a number (it is monotonic in the sense that A[xt · · ·xt+w−1] ≤
A[xt · · ·xt+w], for all w), and thresholds associated with each window size,
f(wj), for j = 1, 2, ..., m, the elastic burst detection is the problem of find-
ing all pairs (t, w) such that t is a time point and w is a window size in W and
A[xt · · ·xt+w−1] ≥ f(w).

A naive algorithm is to check each window size of interest one at a time.
To detect bursts over k window sizes in a sequence of length N naively requires
O(kN) time. This is unacceptable in a high-speed data stream environment.

In [24], the authors show that a simple data structure called the Shifted
Binary Tree could be the basis of a filter that would detect all bursts, and
perform in time independent of the number of windows when the probability of
bursts is very low.

A Shifted Binary Tree is a hierarchical data structure inspired by the Haar
wavelet tree. The leaf nodes of this tree (denoted level 0) correspond to the
time points of the incoming data; a node at level 1 aggregates two adjacent
nodes at level 0. In general, a node at level i+1 aggregates two nodes at level i,
thus includes 2i+1 time points. There are only log2N + 1 levels where N is the
maximum window size. The Shifted Binary Tree includes a shifted sublevel to
each level above level 0. In the shifted sublevel i, the corresponding windows are
still of length 2i but those windows are shifted by 2i−1 from the base sublevel.
Figure 1 shows an example of a Shifted Binary Tree.

2

Level 0

Level 1

Level 2

Level 3

Level 4

base level

shifted level

Figure 1: An example of a Shifted Binary Tree. The two shaded sequences in
level 0 are included in the shaded nodes in level 4 and level 3 respectively.

The overlap between the base sublevels and the shifted sublevels guarantees
that all the windows of length w, w ≤ 1+2i, are included in one of the windows
at level i + 1. Because the aggregation function A is monotonically increasing,
i.e. A[xt · · ·xt+w−1] ≤ A[xt · · ·xt+w+c], for all w and c. So if A[xt · · ·xt+w+c] ≤
f(w), then surely A[xt · · ·xt+w−1] ≤ f(w). The Shifted Binary Tree takes
advantage of this monotonic property as follows: each node at level i + 1 is
associated with the threshold value f(2 + 2i−1). Whenever more than f(2 +
2i−1) events are found in a window of size 2i+1, then a detailed search must be
performed to check if some subwindow of size w, 2+2i−1 ≤ w ≤ 1+2i, has f(w)
events. All bursts are guaranteed to be reported and many non-burst windows
are filtered away without requiring a detailed check when the burst probability
is very low.

However, some detailed searches will turn out to be fruitless (i.e. there is no
burst at all). For example, assume the threshold for window size 4 is 100, for 5
is 120, and for 8 is 150. Because each node at level 8 covers window size 4 and
5, if there are 101 events within a level 8 window, a detailed search has to be
performed. But there may not be any window of size 4 exceeding the threshold
100. In this case, the detailed search turns out to be fruitless.

After applying the Shifted Binary Tree in several settings, we have observed
two difficulties:

1. When bursts are rare but not very rare, the number of fruitless detailed
searches grows, suggesting that we may want more levels than the Shifted
Binary Tree provides.

2. Conversely, when bursts are exceedingly rare we may need fewer levels
than the Shifted Binary Tree provides.

In other words we want a structure that adapts to the input.

1.2 Contributions

In this paper, we present a family of multiresolution overlapping data structures,
called Shifted Aggregation Trees, which generalizes the Shifted Binary Tree and
includes many other structures. We present a heuristic search algorithm to find
an efficient Shifted Aggregation Tree given the input time series and the window
thresholds. We theoretically analyze and empirically study how different data
distributions and different window thresholds affect the desired structures and
the probability to trigger a detailed search. Experiments on both synthetic data

3

and real world data show that the Shifted Aggregation Tree outperforms the
Shifted Binary Tree over a variety of inputs, yielding up to a factor of 35 times
speedup in some cases.

The paper is organized as follows. Section 2 introduces the concept of ag-
gregation pyramid, which acts as a host data structure in which all Shifted
Aggregation Trees are embedded. Section 3 introduces the Shifted Aggrega-
tion Tree and a generalized detection algorithm. Section 4 describes a heuristic
state-space search algorithm to find an efficient Shifted Aggregation Tree given
the inputs. Section 5 studies how different inputs affect the desired structures
and presents experiments and results tested on both synthetic and real world
data. Section 6 reviews related work. Section 7 concludes our work.

2 Aggregation Pyramid

2.1 Aggregation Pyramid as a Host Data Structure

Our generalized framework is based on a dense data structure called the ag-
gregation pyramid (AP). All data structures in our framework contain a small
subset of the cells of an aggregation pyramid.

An aggregation pyramid is an N -level isosceles triangular-shaped data struc-
ture built over a time window of size N .

• Level 0 has N cells and is in one-to-one correspondence with the original
time series.

• Level 1 has N − 1 cells, the first cell stores the aggregate of the first two
data items (say, data items 1 and 2) in the original time series, the second
cell stores the aggregate of the second two data items (data items 2 and
3), and so on.

• Level h has N − h cells, the ith cell stores the aggregate of the h + 1
consecutive data in the original time series starting at time i.

• The top level has 1 cell, storing the aggregate over the whole time window.

In all, an aggregation pyramid stores the original time series and all the
aggregates for every window size starting at every time point within this sliding
window. Each cell corresponds to one window, called the shadow of the cell.
The value (starting time, ending time, length/size) of a cell is the aggregate
(starting time, ending time, length/size) of its corresponding shadow window.
Figure 2 shows an aggregation pyramid built on a sliding window of size 8.

By construction, an aggregation pyramid has the following properties as
shown in Figure 3.

• All the cells along the 45o diagonal have the same starting time. All the
cells along the 135o diagonal have the same ending time.

• A cell ending at time t at level h, denoted by cell(h, t), stores the aggregate
for the length h + 1 window starting at time t − h and ending at time t.

4

1 4 0 3

5 4 3

5 7

8

t

w

Figure 2: An aggregation pyramid on a window of size 8

Figure 3: Shadow and Overlap in an Aggregation Pyramid. The red and yellow
subsequence between two red diagonals is the shadow of the red cell, the yellow
and green subsequence between two green diagonals is the shadow of the green
cell. The yellow subsequence is the overlap of the red cell and the green cell.

• The shadow window of any cell c in the subpyramid rooted at cell r is
covered by the shadow of cell r. We say c is shaded by r. By monotonicity,
the aggregate in cell c is guaranteed to be bounded by the aggregate in
cell r.

• The overlap of two cells is a cell c at the intersection of the 135o diagonal
touching the earlier cell c1 and the 45o diagonal touching the later cell c2.
The shadow window for cell c is the intersection of the shadows of cells c1

and c2.

When a new data item arrives at time t, the aggregation pyramid can easily
be updated by recursively applying the follow formula from h = 0 to the top
level.

cell(h, t) = cell(h− 1, t− 1) + cell(1, t)

If cell(h, t) exceeds the threshold for a window of size h+1, i.e., exceeds f(h+1),
a burst ending at time t has occurred.

5

Level 0

Level 1

Level 2

Level 3

Level 4

(a) Shifted Binary Tree

Level 0

Level 1

Level 2

Level 3

Level 4

(b) Embed Shifted Binary Tree in Aggregation Pyramid

Figure 4: Embed a Shifted Binary Tree (SBT) in an Aggregation Pyramid
(AP). Each grayed/colored cell in the AP corresponds to a node in the SBT.
The different colors in level 2 show the one-to-one correspondence.

2.2 Embedding the Shifted Binary Tree into the Aggre-

gation Pyramid

Recall that in a Shifted Binary Tree, level 0 stores the original time series,
and level i stores the aggregates of window size 2i. So, each node in a Shifted
Binary Tree has a corresponding cell in the aggregation pyramid. Thus the
Shifted Binary Tree can be embedded in the aggregation pyramid. Figure 4
shows how. The colored/grayed cells in the aggregation pyramid correspond to
the nodes in the Shifted Binary Tree. Notice that level i in a Shifted Binary
Tree corresponds to level 2i in the aggregation pyramid.

An important property of a Shifted Binary Tree is that a window of length
w, w ≤ 1+2i, is contained in one of the windows at level i+1. This is illustrated
intuitively in Figure 5.

By induction, a window of length w, w ≤ 1 + 2i−1 is contained in one of the
windows at level i. Thus, after a node at level i +1 is updated, if it exceeds the
threshold for size 2 + 2i−1, i.e. f(2 + 2i−1), then the detailed search has to be
performed for all the cells having sizes between 2+2i−1 and 1+2i. Also when a
node at level i + 1 is updated at time t, we need to search only the cells ending
after time t − 2i, because the cells ending at or before time t − 2i have been
covered by the preceding node at level i + 1. We call this quadrilateral-shaped

6

Figure 5: The shadow property and the detailed search region in a Shifted
Binary Tree. The quadrilateral-shaped region of a specific color is the detailed
search region for the corresponding node having the same color.

region — bounded by the window size range [2+2i−1, 1+2i] and the time range
[t − 2i + 1, t] — the detailed search region (DSR), please see Figure 5.

Obviously, there are many other possible embeddings into the aggregation
pyramid. As long as a subset includes the level 0 cells and the top-level cell,
it can be used together with this update-search framework to detect bursts,
because the shadow of the top-level cell includes everything. Clearly, it’s very
likely for the top-level cell to exceed the threshold of window size 1. In that
case, it will raise an alarm every time vastly increasing the need to search.

The Shifted Binary Tree structure reduces the alarm probability by half-
overlapping two consecutive nodes at the same level. So the trigger for a cell of
window size 2i+1 to do a detailed search is the threshold for more than a quarter
that size. Thus, the probability of raising an alarm is dramatically reduced and
more cells filtered out in the first stage.

Furthurmore, by using different embedding structures on different data in-
puts, we can adjust the probability of raising an alarm and the cost of main-
taining the structure. The optimal performance can be achieved by trading off
structure maintenance against filtering selectivity.

3 Shifted Aggregation Tree

3.1 Shifted Aggregation Tree Generalizes Shifted Binary

Tree

Like a Shifted Binary Tree, a Shifted Aggregation Tree (SAT) is a hierarchical
tree structure defined on a subset of the cells of an aggregation pyramid. It has
several levels, each of which contains several nodes. The nodes at level 0 are in
one-to-one correspondence with the original time series. Any node at level i is
computed by aggregating some nodes below level i. Two consecutive nodes at
the same level overlap in time.

A Shifted Aggregation Tree is different from a Shifted Binary Tree in two
ways:

• The parent-child structure

7

Table 1: Comparing the Shifted Aggregation Tree (SAT) with the Shifted Binary
Tree (SBT)

SBT SAT
Number of children 2 ≥ 2

Levels of children for level i + 1 i ≤ i
Shift at level i + 1: Si+1 2 ∗ Si k ∗ Si, k ≥ 1
Overlapping window size window size at level i: wi ≥ wi

at level i + 1: Oi+1

This defines the topological relationship between a node and its children,
i.e. how many children it has and their placements.

• The shifting pattern
This defines how many time points apart are two neighboring nodes at
the same level. We call this distance the shift.

In a Shifted Binary Tree (SBT), the parent-child structure for each node
is always the same: one node aggregates two nodes at one level lower. The
shifting pattern is also fixed: two neighboring nodes in the same level always
half-overlap. In a Shifted Aggregation Tree (SAT), a node could have 3 children
and be 2 time points away from its preceding neighbor, or could have 64 children
and be 128 time points away from its preceding one. Table 3.1 gives a side-by-
side comparison of the difference between a SAT and a SBT. Clearly, a SBT is
a special case of a SAT. Figure 6 shows some examples of Shifted Aggregation
Trees.

3.2 Shifted Aggregation Tree Shadows and Detection

A Shifted Aggregation Tree shares an important property with a Shifted Binary
Tree:

Any window of size w, w ≤ hi − si + 1, is shaded by a node at level i.

Where hi is the corresponding window size of level i, and si is the shift of
level i. Figure 7 illustrates this property in the aggregation pyramid. Because
hi − si is the length of the overlapping shadow between two neighboring nodes
at level i, the thresholds of all windows of lengths up to hi − si + 1 have to be
shaded by one of the nodes at level i. By induction, all levels up to hi−1−si−1+1
have to be shaded by one of the nodes at level i − 1.

The Shifted Aggregation Tree detection algorithm is similar to that of the
Shifted Binary Tree, as shown in Figure 8.

The detailed search region DSR(i, t) in a Shifted Aggregation Tree is bounded
by the window size range [hi−1−si−1+2, hi−si+1] and the time span [t−si+1, t].
This generalizes the detailed search region in a Shifted Binary Tree. Part of the
detailed search region can be further filtered away, by binarily checking the ag-
gregate in a node at level i against the thresholds for sizes between hi−1−si−1+2
and hi − si + 1. We can find an h, such that f(h) ≤ node(i, t) < f(h + 1), no
burst will present in any window of size greater than h.

8

(a) a Shifted Aggregation Tree of size 16

(b) a Shifted Aggregation Tree of size 18

Figure 6: Examples of Shifted Aggregation Trees

Figure 7: Illustration of the shadow property and the detailed search region in
a Shifted Aggregation Tree

9

for every time point t starting from 1
i = 1;
while (a window at level i ends at the current time t)

update node(i, t) by aggregating its children
if f(h) ≤ node(i, t) < f(h + 1),

where hi−1 − si−1 + 2 ≤ h ≤ hi − si + 1
then search the portion with sizes w, w ≤ h,

in the detailed search region DSR(i, t) for real bursts
endif
+ + i;

end
end

Figure 8: Shifted Aggregation Tree detection algorithm

The detailed search is performed by checking each cell one by one. Notice
two neighboring cells overlap, to avoid duplicate computation, we start from one
“seed” cell, then by adding/subtracting the difference between two neighboring
cells, we can get the aggregate for the neighboring cells. This process is repeated
until the whole DSR is populated.

Because of the properties of a SAT, it’s guaranteed to find such a “seed” in
or near each DSR without the need to aggregate a long sequence of the original
time series. Recall in a SAT, the shift at level i is a multiple of the shift at level
i − 1, i.e. si−1 ≤ si, and the time span for the DSR(i, t) is si, there has to be
a node at level i− 1 whose shadow window ends between the interval t− si + 1
and t, call it S. And in a SAT, the overlap of two neighboring nodes at level i
has to cover any node at level i − 1, i.e hi−1 ≤ hi − si + 1. If si−1 > 1, then
hi−1 − si−1 +2 ≤ hi−1, i.e. level i−1 is between hi−1 − si−1 +2 and hi − si +1,
thus S lies within the DSR(i, t). If si−1 = 1, then S lies one level lower than
the DSR(i, t).

Because the shift for each level is fixed, at every si time points, a node
at level i is updated and its detailed search region is checked if it exceeds its
minimum threshold. Once a node at the top level is updated, all possible bursts
will have been checked. Therefore, a burst is reported no later than stop time
points after it occurs, where stop is the shift for the top level.

The total running time of the detection algorithm is the sum of the update
time and the comparison/search time. Intuitively, if a Shifted Aggregation Tree
has more levels and smaller shifts, i.e. a denser structure, it will take a longer
time to maintain this structure, but the probability of a fruitless search and the
cost of searches will both be reduced. Adversely, a sparser structure costs less
time to update, but may take more time to do detailed searches. A good Shifted
Aggregation Tree should balance the update time against the comparison/search
time to obtain the optimal performance. In the next section, we present a
heuristic state-space algorithm to find an efficient Shifted Aggregation Tree
given a sample of the input.

10

4 Heuristic state-space algorithm to search an

efficient Shifted Aggregation Tree

Given the input series and the window thresholds, the optimization goal is
to minimize the time spent both updating the structure and checking for real
bursts.

4.1 State-space Algorithm

Finding an efficient Shifted Aggregation Tree (SAT) naturally fits into a state-
space algorithm framework if we see a Shifted Aggregation Tree as a state and
see the growth from one SAT to another as a transformation.

In a state-space algorithm, the problem to be solved is represented by a set of
states and a set of transformation rules mapping states to states. The solutions
to the problem are represented by final states which satisfy some conditions
and have no outgoing transformations. The search algorithm starts from one
initial state, then repeatedly applies the transformation rules to the set of states
currently being explored to generate new states. When at least one final state is
reached, the algorithm stops. There are different strategies to choose the order
to traverse the state space. Depth-first search, breadth-first search, best-first
search, and A∗ search are commonly used ones[16].

• Initial state
Since every Shifted Aggregation Tree has to include the original time se-
ries, the starting point is the SAT containing only level 0.

• Transformation rule
If by adding a level onto the top of SAT B, we can get another SAT A,
we say state B can be transformed to state A. Recall there are some
constraints the top level of SAT A has to satisfy. Each node at the top
level has to aggregate several children in the lower levels of SAT B. The
shadow of all the nodes of the top level has to cover the whole SAT B.
The shift for the new level has to be an integral multiple of the shift of
the level below in order to speed up detailed search.

The transformation rule defines how to grow a complicated SAT from the
first simple SAT.

• Final states
Final states are those Shifted Aggregation Trees which can detect bursts
in all windows of interest. Since a SAT having top window size h and shift
s can cover window sizes up to h− s+1, it’s a final state if h− s+1 ≥ N ,
where N is the maximum window size of interest.

• Traversing strategy
In order to find an efficient structure, we use the best-first strategy to
explore the state space. Each state is associated with a cost which will
be discussed in 4.2. Since different Shifted Aggregation Trees (SATs)
cover different maximum window sizes and have different top-level shifts,
the costs are normalized in order for these SATs to be comparable, i.e.
divided by the product of the maximum window size and the top-level

11

Figure 9: State space growth

shift. The state with the minimum cost is picked as the next state to be
explored.

• The final Shifted Aggregation Tree with the minimum cost is picked as
the desired structure.

In summary, the algorithm starts with a Shifted Aggregation Tree having
level 0 only, then keeps growing the candidate set of SATs, until a set of final
SATs are reached. Figure 9 illustrates how the state space grows.

Given a Shifted Aggregation Tree, there are many ways it can grow. The next
candidate level could aggregate multiple nodes from multiple different levels, and
have different shifts. For example, for a Shifted Aggregation Tree containing
only level 0, the next possible level could have size 2 and shift 1 or 2; alterna-
tively, it could have size 100 and shift 1, 2 ... 99, and so on. Such combinatorial
considerations show that there are an exponential number of ways to grow a
Shifted Aggregation Tree. Therefore, we introduce some complexity-reducing
constraints to avoid an exhaustive breadth first search strategy.

Let the maximum window size of all the explored states be L. Assume S is
the current state to be explored. Instead of generating all possible next states
for S at once, we generate only states whose maximum window sizes don’t
exceed 2L. Then we put S in a list which stores all the states not yet fully
explored. Whenever a new state with a larger window size W is generated, L
is updated with the new value W . Then we go through each state in the list
of partially-explored states and generate new states for them having maximum
window sizes up to the new 2L.

This avoids growing many highly unlikely Shifted Aggregation Trees at the
early stage (saying with a very large window size 10000 and shift 5000), but it
allows us to gradually grow the intermediate structures and explore the more

12

reasonable ones first. Note that this doesn’t prune the search space, but controls
the order of traversal of the search space. Our experiments show that the best-
first strategy works well. (Fig. 22).

We also restrict the number of states having the same shadow size and
the number of final states. For example, if we have visited 500 states whose
maximum shadow is of size 100, we don’t explore any new such states. And if
we have visited say 10000 final states, the algoritm stops.

4.2 Cost model

The cost associated with each state is used to indicate which structure to choose
in term of running time. One can measure this cost empirically by running this
Shifted Aggregatioon Tree on a small set of sample data. Another method is to
use the expected number of operations in a theoretical cost model to model the
CPU running time. Our model is a simple RAM model: all operations (updates
and comparisons) take constant time.

Let stop be the shift at the top level; recall that every stop time points, a
node at the top level is updated and bursts below are covered. Thus, we only
need to consider the number of operations every stop time points, namely in one
update-search cycle. The expected number of operations in one cycle is the sum
of the number of operations in the update phase, the filtering phase (to decide
if a detail search is needed) and the detailed search phase, respectively.

• Cost in the update phase
The number of updating operations is just the number of nodes that exist
every stop timepoints in the Shifted Aggregation Tree.

• Cost in the filtering phase
For a node at level i, we need to find out h, hi−1−si−1+2 ≤ h ≤ hi−si+1,
such that f(h) ≤ node(i, t) < f(h + 1). This can be done using binary
search. The number of comparison operations is

∑

i

(log2(hi − si − hi−1 + si−1 − 1) + 1)

• Cost in the detailed search phase
The number of operations is the expected number of cell accesses in the
detailed search region. Let P (w|hi) be the probability to check a cell of
size w given a node at level i with window size hi, si be the shift at level
i, the expected number of cell to be checked is

∑

i

∑

w

(P (w|hi) · si)

P (w|hi) can be estimated from the statistics in the sample data.

The advantage of the theoretical cost model is that it doesn’t subject to
the fluctuation of the CPU usage in the empirical model when testing on the
sample data. In the early stage of the state-space algorithm, the fluctuation of
the CPU usage could cause inaccurate cost of a state, so that some worse state
and its descendants get explored first due to the best-first strategy. As stated

13

CPU Time vs. Cost Model - Poisson

0

5000

10000

15000

20000

25000

2 3 4 5 6 7 8 9 10

Burst Probability p = 10-k

C
P

U
 T

im
e
 (
m

s
)

Theo_L1

Emp_L1

Theo_L10

Emp_L10

(a) Two Poisson distributions with λ = 1, 10 respec-
tively (L1:λ = 1,L10:λ = 10)

CPU Time vs. Cost Model - Exponential

0

5000

10000

15000

20000

2 3 4 5 6 7 8 9 10

Burst Probability p = 10-k

C
P

U
 T

im
e
 (
m

s
)

Theo_w250

Emp_w250

Theo_w500

Emp_w500

(b) Two exponential distributions with maximum
window sizes 250 (w250) and 500 (w500) respec-
tively

Figure 10: Comparison of the theoretical cost model and the empirical cost
model on Poisson data and exponential data

above, because we limit the number of states having the same window size and
the number of final states in order to prune the exponential state space, the
actual better state and its descendants may be pruned in the later stage, thus a
better solution is missed in this case. Another advantage is that the theoretical
model is much faster than the empirical model, usually thousands of times faster
depending on the amount of training data.

Our experiment (Fig. 10) shows for different settings, i.e. different burst
probabilities, different maximum window sizes of interest and different distri-
bution parameters, the theoretical model performs better than the empirical
model. The theoretical cost model models the actual CPU running time well
for Poisson and exponential distributions. The data setup is explained in the
next section.

14

5 Empirical Results

In this section, we study how Shifted Aggregation Trees perform under differ-
ent data distributions and different window thresholds. We first test on a set
of synthetic data drawn from two classes of distributions common in the real
world: the Poisson distribution and the exponential distribution. We analyze
the alarm probability, then demonstrate empirically how different distributions
and different window thresholds affect the desired Shifted Aggregation Trees,
which in turn affect the alarm probability. Later we test our algorithms on
two real world data sets: stock data and website traffic data. The experiments
show that the Shifted Aggregation Tree-based detection always outperforms the
Shifted Binary Tree-based detection, sometimes by a multiplicative factor of 35
(Fig. 15).

All the experiments were performed on a 2Ghz Pentium 4 PC having 512
megabytes of main memory. The operating system is Windows XP and the
program is implemented in C++. The theoretical cost model (i.e. the expected
number of operations) is used in the experiments. The CPU time in each test
is the wall clock time spent on each testing data set (5 million data points in
synthetic data, about 31 million points in the SDSS SkyServer traffic data and
about 23 million points in the IBM stock data).

5.1 Shifted Aggregation Tree Density and Alarm Proba-

bility

In order to see how the input affects the desired structure, we first define two
variables to describe the characteristics of a Shifted Aggregation Tree: density
and alarm probability.

Let stop be the shift at the top level. As noted above, every stop time points,
an update-search cycle is finished. The density D is defined as

D =
Number of nodes in the SAT in one cycle

Number of cells in the pyramid in one cycle

Intuitively, the density describes the ratio between the number of cells to be
updated in the updating phase and the number of cells to be filtered or searched
in the detailed search phase. As the name suggests, it describes how dense
a Shifted Aggregation Tree structure is when embedding in the aggregation
pyramid.

While the density characterizes a static structural property of a Shifted Ag-
gregation Tree, the alarm probability describes the dynamic statistical property
of a Shifted Aggregation Tree running on a data set. Recall that if a node ex-
ceeds the minimum threshold within its detailed search region, it will raise an
alarm and start a detailed search. The alarm probability P i

a at level i is defined
as

P i
a =

Number of nodes raising alarms at level i

Number of nodes updated at level i

Since the actual CPU cost is positively related both to alarm probability and to
the size of the detailed search region, we define the alarm probability of a Shifted
Aggregation Tree as the weighted sum of the alarm probability for each level
multiplied by the number of cells in their detailed search regions. Intuitively, the

15

larger the alarm probability, the more detailed searches are performed requiring
more CPU time. This gives a dynamic statistical description of how a Shifted
Aggregation Tree performs on a data set.

5.2 Synthetic Data

A set of synthetic data was generated using a random number generator. Two
classes of probabilistic distributions which have been widely used to model many
real world applications were chosen to generate the synthetic data: the Poisson
distribution and the exponential distribution.

• Poisson distribution
Many real world phenomena can be modeled as a Poisson process, such
as customers arriving at a service station, emissions from radioactive ma-
terial, etc. It’s well known in a Poisson process the number of events
happening within the time interval [0, t] follows the Poisson distribution.
Also the normal distribution is the limit distribution of the Poisson dis-
tribution.

• Exponential distribution
One class of data application that doesn’t follow the Poisson distribution
[26] [10] but is characterized by behaviors such as network traffic is self-
similar or fractal data. In a fractal process, following the ”80/20” law” for
example i.e, say 80% of the time there is no activity, 20% of the time there
is some activity; within the 20% of the time, 80% of that time has little
activity and 20% of that time there is high activity; and so on. In such a
case, the number of activities within one unit time follows the exponential
distribution.

For each distribution, we synthesized a set of data with different distribution
parameters in a broad range. Each testing data set includes 5 million data
points. The first 20,000 data points are used as the training data in the state-
space algorithm to find a desired structure. To make our task challenging, in
these tests, we want to find bursts for every window size between 1 and 250.

Because the Central Limit Theorem says that the sum of N independent
random variables with any i.i.d distributions follows the normal distribution
when N is large, we use the normal distribution in the following analysis of the
alarm probability.

Assume that each point in the input time series has a number of events
characterized by a mean µ and a standard deviation σ. Then a sliding window
of the time series of size w has mean wµ and standard deviation

√
wσ. Assume

that for each window size, the probability to exceed the threshold should be
some value p. We can characterize this by saying that Pr[So(w) ≥ f(w)] ≤ p,
where So(w) is the observed number of events for window size w and f(w) is
the threshold for window size w.

Let Φ(x) be the normal cumulative distribution function, for a normal ran-
dom variable X,

Pr[X ≥ −Φ−1(p)] ≤ p

We have

Pr[
So(w) − wµ√

wσ
≥ −Φ−1(p)] ≤ p

16

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

threshold

x

p(x)

pdf(W)

pdf(w)

Figure 11: Illustration of the alarm probability for a window of size W to exceed
the threshold for size w, i.e. the portion under the pdf of size W and to the
right of the threshold line for size w.

Therefore, f(w) should set to be wµ −√
wσΦ−1(p).

The alarm probability Pa for an aggregate of window size W to exceed the
threshold for size w, is Pr[So(W) ≥ f(w)]. Therefore,

Pa = Pr[So(W) ≥ f(w)]

= Pr[
So(W) − Wµ√

Wσ
≥ f(w) − Wµ√

Wσ
]

= Φ(−f(w) − Wµ√
Wσ

)

= Φ(
(W − w)µ√

Wσ
+

√
wσΦ−1(p)√

Wσ
)

= Φ((
√

T − 1√
T

)
√

w
µ

σ
+

Φ−1(p)√
T

)

where T = W/w, denotes the bounding ratio. The smaller T is, the tighter the
bounding, and vice versa.

So Pa is determined by the distribution parameters µ and σ, the threshold
parameter p, the bounding ratio T and the level w in the underlying aggregation
pyramid. We can draw the following conclusions from the formula above.

• The larger the ratio µ

σ
is, the larger the alarm probability Pa.

This is illustrated intuitively in Figure 11. Figure 11 shows the probabil-
ity density functions (pdf) for two normal random variables, one for the
number of events in a window of size w which has mean wµ and standard
deviation

√
wσ, another similar one for a window of size W . The thresh-

old line shows where f(w) lies. When a distribution realization for size
W appears to the right of the threshold line, the aggregate is greater than
the threshold for size w, an alarm is raised. So the value of Pa is the area
below the pdf of size W but to the right of the threshold line.

17

CPU Time vs. λ - Poisson

0

5000

10000

15000

20000

0.001 0.01 0.1 1 10 100 1000

λ

C
P

U
 T

im
e
 (
m

s
)

SAT

SBT

Naive

(a) CPU time

Alarm Probability vs. λ - Poisson

0

0.2

0.4

0.6

0.8

1

1.2

0.001 0.01 0.1 1 10 100 1000

λ

A
la

rm
 p

ro
b
a
b
ili

ty

SAT

SBT

(b) Alarm Probability

Density vs. λ - Poisson

0

0.01

0.02

0.03

0.04

0.001 0.01 0.1 1 10 100 1000

λ

D
e
n
s
ity

SAT

SBT

(c) Density (i.e. the ratio between the number of
cells to be updated and the number of cells to be
filtered or detailed searched)

Figure 12: The effect of λ in the Poisson distribution

18

CPU Time vs. β - Exponential

0

5000

10000

15000

20000

25000

1 10 50 100 500 1000

β

C
P

U
 T

im
e
 (
m

s
)

SAT

SBT

(a) CPU time

Alarm Probability vs. β - Exponential

0

0.2

0.4

0.6

0.8

1

1.2

1 10 50 100 500 1000

β

A
la

rm
 p

ro
b
a
b
ili

ty

SAT

SBT

(b) Alarm Probability

Density vs. β - Exponential

0

0.005

0.01

0.015

0.02

0.025

1 10 50 100 500 1000

β

D
e
n
s
ity

SAT

SBT

(c) Density

Figure 13: The effect of β in the exponential distribution

19

As µ increases, both curve peaks and the threshold line move to the right
along the x axis, but the gap between the two peaks increases. There are
more portions to the right of the threshold line under the pdf of size W .
There are more chances to raise an alarm. As σ increases, both curves
stretch along the x axis, the threshold line moves to the right. The portion
to the right of the threshold line under the pdf of size W decreases. There
are less chances to raise an alarm.

For a Poisson distribution with shape parameter λ, the mean µ is λ and
the standard deviation σ is

√
λ, so the ratio is

√
λ. Different λ ranging

from 10−3 to 103 were tested. In this test, the burst probability is set to
be 10−6. Figure 12 shows the CPU time, the alarm probabilities and the
densities for different λ.

As λ, i.e. (µ
σ
)2, increases, Pa increases. More detailed searches are per-

formed so the CPU time increases. To mitigate this, the Shifted Aggrega-
tion Tree must become denser in order to bring down the alarm probability.
When λ becomes very large, the alarm probability is close to 1 anyway. So
the Shifted Aggregation Tree becomes sparse again to reduce the updating
time, but is essentially useless.

For an exponential distribution with scale parameter β, both µ and λ are
β, so the ratio is the constant 1. This means that changing β should have
no effect on the alarm probability. Figure 13 shows the effect of different
β. The experiments show that there is no noticeable effect of β.

• The smaller the burst probability p, the larger the threshold, the smaller
Pa.
This essentially moves the threshold line of size w to the right in Figure
11. So Pa decreases.

Figure 14 and 15 show the effect of different thresholds for the Poisson
distribution and the exponential distribution respectively. The burst prob-
abilities range from 10−2 to 10−10. As the burst probabilities go down,
both the alarm probabilities and the densities decrease, because there are
fewer bursts to worry about, so speed depends on reducing the updating
time.

• As the bounding ratio T decreases, so does Pa.
In a Shifted Aggregation Tree, T could be very close to 1, e.g. W = w+1,
whereas T in a Shifted Binary Tree is designed to be about 4. Figure 16.a
shows the bounding ratios at different levels of a Shifted Aggregation Tree
and a Shifted Binary Tree under different burst probabilities. Notice how
the bounding ratio changes in a Shifted Aggregation Tree: it is high at
the lower levels where the window size w is small, while low at the higher
levels where the window size w is large, in order to bring down the alarm
probability. As the burst probability becomes smaller, there are fewer
bursts. Thus, the bounding ratio becomes a little larger, and the Shifted
Aggregation Tree becomes sparser.

• As the size w increases, so does Pa.
Figure 16.b shows the alarm probabilities at different levels in a Shifted
Binary Tree and a Shifted Aggregation Tree. The Shifted Binary Tree
always has a high alarm probability at the high levels, while in a Shifted

20

CPU Time vs. Threshold - Poisson

0

10000

20000

30000

40000

2 3 4 5 6 7 8 9 10

Burst Probability p=10-k

C
P

U
 T

im
e
 (
m

s
)

SAT

SBT

(a) CPU time

Alarm Probability vs. Threshold - Poisson

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8 9 10

Burst Probability p=10-k

A
la

rm
 p

ro
b
a
b
ili

ty

SAT

SBT

(b) Alarm Probability

Density vs. Threshold - Poisson

0

0.05

0.1

0.15

0.2

2 3 4 5 6 7 8 9 10

Burst Probability p=10-k

D
e
n
s
ity

SAT

SBT

(c) Density

Figure 14: The effect of burst probability in the Poisson distribution

21

CPU Time vs. Threshold - Exponential

0

5000

10000

15000

20000

2 3 4 5 6 7 8 9 10

Burst Probability p=10-k

C
P

U
 T

im
e
 (
m

s
)

SAT

SBT

(a) CPU time

Alarm Probability vs. Threshold - Exponential

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8 9 10

Burst Probability p=10-k

A
la

rm
 p

ro
b
a
b
ili

ty

SAT

SBT

(b) Alarm Probability

Density vs. Threshold - Exponential

0

0.01

0.02

0.03

0.04

0.05

2 3 4 5 6 7 8 9 10

Burst Probability p=10-k

D
e
n
s
ity

SAT

SBT

(c) Density

Figure 15: The effect of the burst probability in the exponential distribution

22

Bounding Ratio vs. Level in the SAT

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Level in SAT

B
o
u
n
d
in

g
 R

a
ti
o

SBT

10^-3

10^-5

10^-7

10^-9

(a) The bounding ratio for different levels in a
Shifted Binary Tree and Shifted Aggregation Trees
for different burst probabilities

Alarm Probability vs. Level

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21

Level in the SAT

A
la

rm
 p

ro
b
a
b
ili

ty

SAT

SBT

(b) Alarm probability as a function of window size in
the Shifted Binary Tree vs. the Shifted Aggregation
Tree

Figure 16: How the bounding ratio in a Shifted Aggregation Tree adjusts as a
function of window size and the burst probability in order to reduce the alarm
probability.

23

Table 2: Statistics for the SDSS SkyServer traffic data and the IBM stock data
SDSS IBM

Size 31,536,000 23,085,000
Mean 120.95 287.06

Standard deviation 64.87 2796.05
Min 0 0
Max 576 2806500

Aggregation Tree, by using a small bounding ratio T , the alarm probability
remains low. Thus the Shifted Aggregation Tree has more filtering power
than the Shifted Binary Tree.

In summary, because the Shifted Aggregation Tree can adjust its structure
to reduce the alarm probability, it achieves far better running time than the
Shifted Binary Tree (Fig. 15).

5.3 Real World Data

We have used two real world data sets to test the proposed framework.

• The Sloan Digital Sky Survey (SDSS) SkyServer traffic data
This data set records all the access traffic to the SDSS SkyServer from
Jan. 1st, 2003 to Dec. 31st, 2003. Each record includes the request time
precise to the second, the source IP address and the target URL. The data
set has 17,432,468 records. The preprocessing aggregates all the records
for each second and places a zero in the time point entry if there is no
activity within that second. The training data consists of seven days of
second-by-second data.

• The NYSE TAQ stock data
This data set includes tick-by-tick trading activities of the IBM stock
between Jan. 1st, 2001 to May 31st, 2004. There are a total of 6,134,362
ticks, and each record contains the time precise to the second, as well
as each trade’s price and volume. The preprocessing aggregates all the
trading volumes within the same second and pads the second with a 0 if
there is no activity within this second. A week’s (5 day) worth of data is
used as the training data.

Table 2 gives the basic statistics about these two data sets. Figure 17 shows
the histograms of these two data sets. The histograms show the SDSS SkyServer
traffic data follows the poisson distribution, while the IBM stock data is closer
to the exponential distribution.

5.3.1 Performance Tests

We are interested in comparing the Shifted Aggregation Tree with the Shifted
Binary Tree under different settings.

• Different thresholds
The thresholds are set to reflect a burst probability ranging from 10−2 to

24

SDSS SkyServer Traffic Distribution

0

200000

400000

600000

800000

1000000

Number of Requests Per Second

C
o
u
n
t

(a) SDSS

IBM Stock Data Distribution

0

5000000

10000000

15000000

20000000

25000000

Trading Volume per Second

C
o
u
n
t

IBM Stock Data Distribution

22874710

1418793405714647 7592 3547 1711 1277
0

5000000

10000000

15000000

20000000

25000000

1 2 3 4 5 6 7 8

Trading Volume per Second % 5000

C
o
u
n
t

(b) IBM

Figure 17: The histogram distributions of the Sloan Digital Sky Survey (SDSS)
SkyServer traffic data and the IBM stock data

25

CPU Time vs. Threshold - SDSS

0

20000

40000

60000

80000

100000

120000

2 3 4 5 6 7 8 9

Burst Probability p=10
-k

C
P

U
 T

im
e
 (
m

s
)

SAT

SBT

(a) SDSS

CPU Time vs. Threshold - IBM

0

20000

40000

60000

80000

2 3 4 5 6 7 8 9 10

Burst Probability p=10
-k

C
P

U
 T

im
e
 (
m

s
) SAT

SBT

(b) IBM

Figure 18: The effect of the thresholds in the Sloan Digital Sky Survey (SDSS)
data and the IBM data

26

CPU Time vs. Max Window Size of Interest -

SDSS

0

100000

200000

300000

400000

500000

10 30 60 120 300 600 1800

Max Window Size of Interest

C
P

U
 T

im
e
 (
m

s
)

SAT

SBT

(a) SDSS

CPU Time vs. Max Window Size of Interest - IBM

0

50000

100000

150000

200000

250000

300000

10 30 60 120 300 600 1800

Max Window Size of Interest

C
P

U
 T

im
e
 (
m

s
) SAT

SBT

(b) IBM

Figure 19: The effect of the maximum window size of interest in the Sloan
Digital Sky Survey (SDSS) data and the IBM data

10−9. The maximum window size is set to 300 for SDSS, 500 for IBM.
Bursts at every window size are detected.

Figure 18 shows the results for both data sets. As the burst probabil-
ity decreases, the CPU time for the Shifted Aggregation Tree decreases
quickly.

• Different maximum window sizes of interest
The maximum window sizes are set from 10 seconds up to 1800 seconds.
The burst probability is set to 10−6. Bursts at every window size are
detected.

Figure 19.b shows the results. As the maximum window size increases,
there are more possible levels to adjust the bounding ratio, thus the
speedup for the Shifted Aggregation Tree over the Shifted Binary Tree
increases.

• Different sets of window sizes of interest
Instead of detecting bursts at every window size, we want to see how the

27

CPU Time vs. Set of Window Sizes - SDSS

0

50000

100000

150000

200000

1 5 10 30 60 120

Window Size Step

C
P

U
 T

im
e
 (
m

s
)

SAT

SBT

(a) SDSS

CPU Time vs. Set of Window Sizes - IBM

0

200000

400000

600000

800000

1000000

1 5 10 30 60 120

Window Size Step

C
P

U
 T

im
e
 (
m

s
)

SAT

SBT

(b) IBM

Figure 20: The effect of different sets of window sizes of interest in the Sloan
Digital Sky Survey (SDSS) data and the IBM data

28

Table 3: Statistics for testing data sets for robust test
Mean StdDev Mean StdDev

IBM w12 376.21 2147.10 SDSS w10 73.92188 27.078788
IBM w20 279.20 5430.01 SDSS w18 98.841951 33.240921
IBM w29 401.35 2307.30 SDSS w25 121.711748 39.165514
IBM w70 250.81 1716.69 SDSS w40 168.854438 50.386027
IBM w100 306.83 1760.76 SDSS w45 183.680347 55.054213
IBM w150 163.15 1184.95 SDSS w50 197.57913 57.572911

Table 4: Testing parameters for robust test
Max Window Size Burst Probability Window Size Step

IBM setting1 250 10−3 1
IBM setting2 500 10−6 5
IBM setting3 750 10−7 10
IBM setting4 1000 10−8 20
SDSS setting1 200 10−4 1
SDSS setting2 400 10−5 5
SDSS setting3 600 10−6 10
SDSS setting4 800 10−8 20

Shifted Aggregation Tree performs with different sets of window sizes. The
test is performed to detect bursts for a set of window sizes n, 2∗n, 3∗n,,
where n is set to be 1, 5, 10, 30, 60, 120 respectively. The burst probability
is set to be 10−6 and the maximum window size is set to be 600 for SDSS,
3600 for IBM.

Figure 20 shows that as the set of window sizes becomes sparser, there are
fewer bursts to worry about, thus both the Shifted Binary Tree and the
Shifted Aggregation Tree take less time.

In summary, the Shifted Aggregation Tree yields about 2 to 5 times speedup
over the Shifted Binary Tree on these two data sets. Also it shows even the data
points come every millisecond, it takes far less than one millisecond on average
to process a new datum under these settings. Thus the Shifted Aggregation
Tree is suitable for the real data stream environment.

5.3.2 Robustness test

Since the structure of a Shifted Aggregation Tree depends on the input used to
train it, we are interested in how sensitive the structure is to whether training
on one portion of the data gives good results when tested on another portion.

We constructed three training sets for the SDSS data and the IBM data.
One set is taken from the testing data to be detected. The second is taken from
the same type of data, but outside the testing data. For IBM, it’s taken from
the trading activities in 2000; for SDSS, it’s taken from the SkyServer traffic of
2004. The third set is taken from the other type of data, i.e, we use the IBM
data to train a Shifted Aggregation Tree, then use it to detect the SDSS data,
and vice versa. Each training set contains 3 pieces of training data, each piece

29

Table 5: Statistics for testing data sets for search parameters
Mean StdDev Max Size Size Step Burst Probability

IBM w20 242.94 2183.56 250 10 10−3

IBM w49 192.90 5599.56 100 5 10−5

IBM w54 385.55 4041.39 500 1 10−6

IBM w87 418.73 2485.27 750 15 10−7

IBM w138 228.03 1102.72 1000 25 10−4

SDSS w10 70.16 26.36 100 5 10−4

SDSS w25 117.02 37.73 250 1 10−6

SDSS w30 135.41 42.87 500 10 10−5

SDSS w40 166.19 49.97 750 15 10−7

SDSS w50 195.27 57.05 1000 25 10−8

contains one week’s record (7 days for SDSS and 5 days for IBM). Figure 21
shows the CPU times for four different testing scenarios on each training set.

Table 3 shows the statistics for the training data. In the table, the first
three sets are taken from the data to be detected, the second three sets are
taken outside the data to be detected. Table 4 shows other parameters in these
tests.

When testing the structure created based on data from the same data type
but distinct from the test data, the performance on the IBM data is about the
same as using a structure based on the testing data itself. The reason is that
the out-of-sample training set has similar statistics to the in-sample training
set. By contrast in the SDSS data, the statistics in the out-of-sample training
set are different from those in the in-sample training set. Thus the structure
based on out-of-sample data costs about 20 percent more time than one based
on in-sample data.

A structure based on a different data type can perform quite poorly. For
example, a structure based on SDSS data performs by a factor of 2 to 3 times
slower for IBM data than a structure based on out-of-sample IBM data.

5.3.3 Search parameter in the state-space algorithm

We want to study how different search parameters affect the desired Shifted
Aggregation Tree structures in the state-space algorithm. We tested on different
data settings with different numbers of final states and different number of states
with the same maximum window size, to see when there are diminishing returns
to broaden the search.

The number of states with the same maximum window size, and the number
of final states are set to be 10, 25, 50, 100, 250, 500, 750, 1000 respectively.
Other parameters are chosen randomly to cover a broad parameter range. Table
5 summarizes the parameter settings. 5 pieces of training data are picked for the
SDSS data and the IBM data respectively. Figure 22 shows the CPU running
times for the Shifted Aggregation Trees found using these parameters. It also
shows the CPU running time for the Shifted Binary Tree as a reference.

Both experiments show that even with small values of these parameters, the
Shifted Aggregation Trees discovered are close to those discovered with much
larger values of the parameters. The best-first search strategy works well in this

30

IS

O
S

O
T

Setting1

Setting40

20000

40000

60000

80000

100000

120000

CPU

Time

(ms)

Training Set

CPU Time vs. Training Set - SDSS Setting1

Setting2

Setting3

Setting4

(a) SDSS

IS
OS

OT
Setting1

Setting40

5000

10000

15000

20000

25000

30000

35000

CPU

Time

(ms)

Training Set

CPU Time vs. Training Set -IBM Setting1

Setting2

Setting3

Setting4

(b) IBM

Figure 21: Robustness Test on the Sloan Digital Survey (SDSS) traffic data and
the IBM stock data (IS: in-sample, OS: out-of-sample, OT: out-of-type)

31

1
0

5
0

2
5
0

7
5
0

S
B

T

w40

w300

20000

40000

60000

80000

CPU

Time

(ms)

Search Parameter

Dataset

CPU Time vs. Search Parameter - SDSS

w40

w50

w10

w30

w25

(a) SDSS

1
0

5
0

2
5
0

7
5
0

S
B

T

w54

w490

2000

4000

6000

8000

10000

CPU

Time

(ms)

Search Parameter

Data Set

CPU Time vs. Search Parameter - IBM
w54

w20

w138

w49

w87

(b) IBM

Figure 22: CPU time for Shifted Aggregation Trees found using different search
parameters

32

Table 6: Some highly-correlated stocks at different resolutions
Resolution Highly-correlated stocks

10s C/GE/XOM, CSCO/MSFT/ORCL
30s C/GE/XOM, CSCO/MSFT/ORCL,

PEP/PFE/PG
60s C/GE/XOM/PEP/PFE/PG/GE,

CSCO/MSFT/ORCL
300s C/GE/XOM/PEP/PFE/PG/GE,

CSCO/MSFT/ORCL, WFC/XOM/WMT,
KO/USB/VZ

situation. In practice, we believe that setting both parameters to be 500, works
well.

5.4 Sample Data Mining Application

We believe that high-performance burst detection could be a preliminary prim-
itive for further knowledge discovery and data mining process. As an example,
we look at the correlation of bursts in stock data.

We collected the tick-by-tick TAQ stock data in 2003 for the Standard &
Poor’s 100 stocks. We want to discover which stocks share similar volume
characteristics, i.e. when there is a burst of trading in one stock, which other
stocks also exhibit a burst? Because trading bursts can happen across different
time resolutions, we monitor the correlation at multiple time scales and set the
window sizes of interest to be 10, 30, 60, and 300 seconds. The burst probability
is set to 10−9.

Bursts are detected using a Shifted Aggregation Tree, tuned as described
above. The bursts detected are converted to a 0-1 string where 0 means no
burst and 1 means a burst. The correlation is computed over these 0-1 strings.

These bursts tell an interesting story. First, stocks within the same sector are
correlated strongly e.g. Microsoft (MSFT), Oracle(ORCL) and Cisco(CSCO).
Surprisingly strong correlations of bursty behaviors can be found across different
industries also however. For example, Pfizer Inc. (PFE, health care, Drugs,
major Pharmaceuticals), Pepsico Inc. (PEP, Beverage), Procter & Gamble
Co. (PG, Non-Durables Household Products) are highly correlated. Table 6
shows some highly correlated stocks at different window sizes. We are not
claiming these still anecdotal observations as a major result of our paper, but
just as a suggestive example of how burst detection can feed into data mining
applications.

6 Related Work

6.1 Novelty, Anomaly, Surprise and Outlier Detection

As a task to detect unusual high numbers of events, burst detection belongs to
a broader category of detection tasks: novelty/anomaly/outlier/surprise detec-
tion. The novelty/anomaly/outlier/surprise detection has been widely used in

33

fraud detection, network intrusion detection, financial analysis, health monitor-
ing, etc.

Although intuitively novelty/anomaly/outlier/surprise/burst are straight-
forward concepts, attempted formal definitions are often vague and domain
dependent. Following the classification for the outlier detection methods, the lit-
erature broadly falls into the following categories: depth-based [8], distribution-
based [3, 9], distance-based [12, 11, 4, 2, 13], density-based [5, 21], and example-
based [27, 20].

The depth-based method is based on computational geometry and comput-
ing layers of the k-d convex hull. Objects in the outer layer are identified as
outliers.

In the distribution-based method, the data set is fit with a standard dis-
tribution, or a model/data structure associated with probabilities [9]. Out-
liers/surprises [9] are those points with small probability under this distribution
model. In [10], a burst of high frequency word is defined as the frequency
of the word usage is substantially higher than others, thus can be seen as a
distribution-based method.

The distance-based method treats outliers [11, 13, 2, 4] as those points whose
distances to their neighbors exceed some threshold. In [23], the surprise is
defined as a large difference between two consecutive averages, which can be
seen as a distance-based method. Spatial indexing techniques are usually used
to speed up the distance computation.

The distance-based method can capture only the ”global” outliers, since the
threshold is usually determined globally. There is another type of outlier which
is relative to its neighbors. The density-based method was proposed to overcome
this shortcoming by defining the outliers as those points whose local densities
are significantly different from their neighbors.

If we see the detection of outlier/novelty/anomaly as a classification prob-
lem, the classification technique in machine learning can be used to identify
outliers/novelty. The Support Vector Machine (SVM) classifier has attracted
more and more interest [15, 14, 22, 27]. In [27], Zhu et al. approach the outlier
detection problem by learning how a user defines an outlier. The user manu-
ally identifies a small set of outliers based on their subjective criteria. A SVM
classifier is learnt from the small amount of user feedback.

It has been recognized that instead of classifying a point/pattern as either an
outlier/surprise or a normal point, it is better to associate some fuzzy degree to
the outlier/surprise. This fuzzy degree describes how confident the classification
is and how likely it’s an outlier/surprise [5, 21, 14].

Our definition of burst is simply a large number of events exceeding some
certain threshold, which is widely used in many real world applications.

6.2 Burst Modeling and Detection

Among the many topics in time series and data streams, burst modeling and
detection is attracting increasing interest. There are several papers to study
bursts under different settings.

Wang et al. [26] use a one-parameter model, b-model, to model the bursty
behaviors in self-similar time series and synthesize realistic trace data. This
type of time series includes a large number of real world data applications, such
as Ethernet, file system, web, video and disk traffic, etc. Different from those

34

which are usually modeled by a Poisson process, these series are self-similar
over different time scales and exhibit significant burstiness. They follow the
”80/20 law” in databases: 80% of the queries access 20% of the data. The bias
parameter b is used to model the bias percentage of the activities, i.e. 80% or
60%. The bias is applied recursively to a segment of series, (starting from a
uniformed distribution) to synthesize a trace, i.e. b% of the segment has more
activities than the rest of the segment. The entropy is used to describe the
burstiness and to fit the model into the training data. The synthetic traces
generated from this model are very realistic compared to real data.

Kleinberg [10] studies the bursty and hierarchical structure in temporal text
streams. The interest is to find how high frequency words change over time.
The word usage in many text streams, such as email, news articles and research
publications, usually exhibits some bursty and hierarchical behaviors. During
a certain duration, some words appear more frequently than others and the
frequencies change over time. He assumed the gaps between two consecutive
messages follow an exponential distribution, and used infinite-state automaton
to model the different levels of burstiness in different time scales. The bursti-
ness of words is defined as those words with significantly higher frequency than
others.

While Wang et al. [26] and Kleinberg [10] focus the bursty behaviors and
modeling, our focus is a high-performance algorithm to detect bursts thus com-
plementing their work. Once the bursty structure is modeled and the criteria to
identify a burst is determined, our framework can adapt to the input to achieve
high-performance detection.

Neill et al. [18, 19, 17] study the problem of detecting significant spatial
clusters in multidimensional space. The significant spatial clusters are defined
as a square region (extended to a rectangular region in the later papers) with
the highest density. They consider a general density function which is a function
of the count and the underlying population. The density function could be non-
monotonic. They are only interested in the region with the highest density, while
our work detects all regions exceeding some threshold. A top-down, branch-
and-bound method is used together with the so-called overlap-kd tree, to prune
impossible regions. An overlap-kd tree is a hierarchical space-partition data
structure where adjacent regions partially overlap. It’s similar to the Shifted
Binary Tree in that both data structures have adjacent windows/regions over-
lapping and the overlapping patterns are fixed and independent of the input
data. Our technique could be applied to their data structure, an area meriting
further investigation.

Vlachos et al. [25] mine the bursty behavior in the query logs of the MSN
search engine. They use moving averages to detect time regions having high
numbers of queries. Only two window sizes are considered, short term and long
term. The detected bursts are further compacted and stored in a database to
support burst-based queries. We share the view that burst detection should be
a preliminary primitive for further knowledge mining process, but we deal with
many more window sizes.

Datar et al. and Gibbons et al. [6, 7] study a related problem: estimating
the number of 1’s in a 0-1 stream and the sum of bounded integers in an integer
stream in the last N elements. They use synopsis structures called Exponential
Histograms and Waves respectively. Like our Shifted Aggregation Tree, these are
multiresolution aggregation structures, though with coarser aggregation levels

35

for the past and finer aggregation levels for recent data.

7 Conclusion

In this paper, we propose a framework for adaptive and therefore better elastic
burst detection. We present a family of data structures that generalizes the
Shifted Binary Tree and many others. We present a heuristic search algorithm to
find an efficient structure given the input time series and the window thresholds.
Experiments on both synthetic and real world data show an improvement factor
of up to 35 times depending on the input.

Besides its immediate practical benefits, this framework – aggregation pyra-
mid along with a simple adaptive search methodology – can be extended to
spatial burst detection and other applications. Applying this framework to
time-evolving time series is also the topic of future work. Further, given rapid
burst detection, new real-time data mining applications may become possible.

References

[1] Market volume analysis. http://marketvolume.com/.

[2] Charu C. Aggarwal and Philip S. Yu. Outlier detection for high-dimensional
data. Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data, 2001.

[3] V. Barnett and T. Lewis. Outliers in statistical data. 1994.

[4] Stephen D. Bay and Mark Schwabacher. Mining distance-based outliers
in near linear time with randomization and a simple pruning rule. Pro-
ceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2003.

[5] Markus M. Breunig, Hans-Peter Krigel, Raymond T. Ng, and Jorg Sander.
Lof: Identifying density-based local outliers. Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, 2000.

[6] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Main-
taining stream statistics over sliding windows. SIAM, 31(6), September
2002.

[7] Phillip B. Gibbons and Srikanta Tirthapura. Distributed stream algorithms
for sliding windows. In Proceedings of the fourteenth annual ACM sympo-
sium on Parallel algorithms and architectures, pages 63–72, 2002.

[8] T. Johnson, I. Kwok, and R. Ng. Fast computation of 2-dimensional depth
contour. Proceedings of the 4th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 1998.

[9] Eamonn Keogh, Stefano Lonardi, and William Chiu. Finding surprising
patterns in a time series database in linear time and space. Proceedings of
the 8th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2002.

36

[10] Jon Kleinberg. Bursty and hierarchical structure in streams. In KDD
’02: Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 91–101, New York, NY,
USA, 2002. ACM Press.

[11] Edwin M. Knorr, Raymond T. Ng, , and Vladimir Tucakov. Distance-based
outliers: Algorithms and applications. Proceedings of 26th International
Conference on Very Large Data Bases, 2000.

[12] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-
based outliers in large datasets. Proceedings of 24th International Confer-
ence on Very Large Data Bases, 1998.

[13] Edwin M. Knorr and Raymond T. Ng. Finding intensional knowledge of
distance-based outliers. Proceedings of 25th International Conference on
Very Large Data Bases, 1999.

[14] Junshui Ma and Simon Perkins. Online novelty detection on temporal
sequences. KDD, 2003.

[15] Junshui Ma and Simon Perkins. Time series novelty detection using one-
class support vector machines. IJCNN, 2003.

[16] Zbigniew Michalewicz and David B. Fogel. How To Solve It: Modern
Heuristics. Springer, 2002.

[17] Daniel Neill and Andrew Moore. Rapid detection of significant spatial
clusters. Proceedings of the 10th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2004.

[18] Daniel B. Neill and Andrew W. Moore. A fast multi-resolution method
for detection of significant spatial disease clusters. In Sebastian Thrun,
Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural In-
formation Processing Systems 16, Cambridge, MA, 2004. MIT Press.

[19] Daniel B. Neill, Andrew W. Moore, Francisco Pereira, and Tom Mitchell.
Detecting significant multidimensional spatial clusters. In Lawrence K.
Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information
Processing Systems 17, pages 969–976, Cambridge, MA, 2005. MIT Press.

[20] Spiros Papadimitriou and Christos Faloutsos. Cross-outlier detection. 8th
International Symposium on Spatial and Temporal Databases, 2003.

[21] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B. Gibbons, and Christos
Faloutsos. Loci: Fast outlier detection using the local correlation integral.
Proceedings of the 19th International Conference on Data Engineering,
2003.

[22] Bernhard Scholkopf, Robert Williamson, Alex smola, John Shawe-Tayleor,
and John Platt. Support vector method for novelty detection. Advances in
Neural Information processing Systems 12, 1999.

37

[23] Cyrus Shahabi, Xiaoming Tian, and Wugang Zhao. Tsa-tree: A wavelet-
based approach to improve the efficiency of multi-level surprise and trend
queries on time-series data. 12th International Conference on Scientific and
Statistical Database Management(SSDBM), 2000.

[24] Dennis Shasha and Yunyue Zhu. High Performance Discovery in Time
Series: Techniques and Case Studies. Springer, 2003.

[25] Michail Vlachos, Christopher Meek, Zografoula Vagena, and Dimitrios
Gunopulos. Identifying similarities, periodicities and bursts for online
search queries. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 131–142, New York,
NY, USA, 2004. ACM Press.

[26] Mengzhi Wang, Tara Madhyastha, Ngai Hang Chan, Spiros Papadimitriou,
and Christos Faloutos. Data mining meets performance evaluation: Fast
algorithms for modeling bursty traffic. In ICDE ’02: Proceedings of the 18th
International Conference on Data Engineering (ICDE’02), pages 507–516,
Washington, DC, USA, 2002. IEEE Computer Society.

[27] Cui Zhu, Hiroyuki Kitagawa, Spiros Papadimitri, and Christos Faloutsos.
Obe: Outlier by example. PAKDD, 2004.

38

