TR2005-862

THREE-LEVEL BDDC IN THREE DIMENSIONS

XUEMIN TU*

Abstract. BDDC methods are nonoverlapping iterative substructuring domain decomposition
methods for the solution of large sparse linear algebraic systems arising from discretization of elliptic
boundary value problems. Its coarse problem is given by a small number of continuity constraints
which are enforced across the interface. The coarse problem matrix is generated and factored by direct
solvers at the beginning of the computation and it can ultimately become a bottleneck, if the number
of subdomains is very large. In this paper, two three-level BDDC methods are introduced for solving
the coarse problem approximately in three dimensions. This is an extension of previous work for
the two dimensional case and since vertex constraints alone do not suffice to obtain polylogarithmic
condition number bound, edge constraints are considered in this paper. Some new technical tools are
then needed in the analysis and this makes the three dimensional case more complicated than the
two dimensional case. Estimates of the condition numbers are provided for two three-level BDDC
methods and numerical experiments are also discussed.
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1. Introduction. BDDC (Balancing Domain Decomposition by Constraints)
methods, which were introduced and analyzed in [3, 7, 8], are similar to the balancing
Neumann-Neumann algorithms. However, the coarse problem, in a BDDC algorithm,
is given in terms of a set of primal constraints and the matrix of the coarse problem
is generated and factored by using direct solvers at the beginning of the computation.
We note that there are now computer systems with more than 100,000 powerful pro-
cessors, which allow very large and detailed simulations. The coarse component of a
two-level preconditioner can therefore be a bottleneck if the number of subdomains is
very large. One way to remove this difficulty is to introduce one or more additional
levels. In our recent paper [11], two three-level BDDC methods were introduced for
two dimensional problems with vertex constraints. We solve the coarse problem ap-
proximately, by using the BDDC idea recursively, while a good rate of convergence
still can be maintained. However, in three dimensional space, vertex constraints alone
are not enough to obtain good polylogarithmic condition number bound due to much
weaker interpolation estimate and constraints on the averages over edges or faces are
needed. The new constraints lead to a considerably more complicated coarse problem
and the need for new technical tools in the analysis. In this paper, we extend the two
three-level BDDC methods in [11] to the three dimensional case using primal edge
average constraints. With the help of the new technical tools, we provide estimates
of the condition number bounds of the system with these two new preconditioners.

The rest of the paper is organized as follows. We first review the two-level BDDC
methods briefly in Section 2. We introduce our first three-level BDDC method and the
corresponding preconditioner M ~! in Section 3. We give some auxiliary results in Sec-
tion 4. In Section 5, we provide an estimate of the condition number bound for the sys-

— N 2
tem with the preconditioner M ~! which is of the form C (1 + log %) (1 + log %)2,

where H , H, and h are typical diameters of the subregions, subdomains, and elements,
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respectively. In Section 6, we introduce a second three-level BDDC method which uses
Chebyshev iterations. We denote the corresponding preconditioner by M . We show
that the condition number bound of the system with the preconditioner M~ is of the
form CC(k) (1 + log 7) , where C'(k) is a function of k, the number of Chebyshev
iterations, and also depends on the eigenvalues of the preconditioned coarse problem,
and the two parameters chosen for the Chebyshev iteration. C'(k) goes to 1 as k goes
to 0o, i.e., the condition number approaches that of the two-level case. Finally, some
computational results are presented in Section 7.

2. The two-level BDDC method. We will consider a second order scalar
elliptic problem in a three dimensional region Q: find u € H}(£2), such that

(2.1) /Qqu-Vv:/va Yo € HY(Q),

where p(x) > 0 for all x € Q. We decompose 2 into N nonoverlapping subdomains
Q; with diameters H;, ¢ = 1,--- , N, and set H = max; H;. We then introduce a
triangulation for all the subdomains. Let I' be the interface between the subdomains
and the set of interface nodes I'y, is defined by I'y, = (U;2;0Q; 5, N OQ; 1) \ 0, where
09; 1, is the set of nodes on 0€2; and 9%y, is the set of nodes on 9. The nodes of the
different triangulations match across I'.

Let W be the standard finite element space of continuous, piecewise trilinear
functions on §2;; the algorithms and theories developed in this paper work for other
lower order finite elements as well. We assume that these functions vanish on 9f).
Each W® can be decomposed into a subdomain interior part ng) and a subdomain
interface part Wl(f), ie., WO = Wy) @Wl(f), where the subdomain interface part
Wl(f ) will be further decomposed into a primal subspace W(Hi) and a dual subspace
WO e, WO =Wl w®,

We denote the associated product spaces by W := Hfil WO Wrp = Hfil ng),
Wh = Hfil WX), Wi = H VV(Z ,and Wy := Hfil ng). Correspondingly, we
have W = W] @Wp, and WF = WH @WA

We will consider elements of W which are discontinuous across the interface.
However, the finite element approximation of the elliptic problem is continuous across
I". We denote the corresponding subspace of W by W.

We further introduce an interface subspace Wr C Wr, for which certain primal
constraints are enforced. Here, we only consider the case of edge average constraints
over all the edges of all subdomains. We change the variables to make the edge average
degrees of freedom explicit, see [4, Sec 6.2] and [5, Sec 2.3]. From now on, we assume
all the matrices are Written in terms of the new variables. The continuous primal
subspace denoted by WH is spanned by the continuous edge average Varlables of each
edge of the interface. The space Wr can be decomposed into Wr = WH PWa.

The global problem has the form: find (u;,ua,un) € (W, WA, WH), such that

A[] Azl Aﬁ] ur f]
Aar Aan AL, ua | =| fa
Anr  Ana  Amm ur i



This problem is assembled from the subdomain problems

i T 0T i) i)
AR AD A%}T u%) f%)
i IR IR
Ay Ana Amn / O\ un £

We also denote by Fr, Fp, and Fp, the right hand side spaces corresponding to Wr,
Wp, and Wp, respectively.

In order to describe BDDC algorithm, we need to introduce several restriction,
extension, and scaling operators between different spaces. The restriction operator
R(Z) maps a Vector of the space Wr to a vector of the subdomain subspace W( 9. Each
column of RF with a nonzero entry corresponds to an interface node, z € 9; , N Ty,
shared by the subdomain €2; and its next neighbor subdomains. }_# ) is similar to ng ),
and represents the restriction from Wr to W(Z) RX) :Wp — WX), is the restriction
matrix which extracts the subdomain part, in the space WX), of the functions in the
space Wa. Rg) is the restriction operator from the space \/7\\711 to W(i) Multiplying
each such element of Rl(f , R(Fl ), and RX) with 53 (x) gives us R},)F, R%)F, and Rg) A

respectively. Here, we define 5:(:1:) as follows: for v € [1/2,00), 53( ) = %,
JENz Py

x € 0, NIy, where N, is the set of indices j of the subdomains such that = € 99;
and p;(z) is the coeflicient of (2.1) at x in the subdomain ;. Furthermore, Rra and
Rrm are the restrlctlon operators from the e space Wp onto its subspace Wa and W
respectively. Rrp : Wp — Wr and Rr : Wr — Wr are the direct sums of RF) and

Rij), respectively. RF : Wp — Wp is the direct sum of Rryp and the R(A) Rra. The

scaled operators Rp r and Rp a are the direct sums of Rg),r and R%? A respectively.

}NED r is the direct sum of Rri; and Rp A Rra.

We also use the same restriction, extension, and scaled restriction operators for
the right hand side spaces Fp, Fp, and Fr

We define an 1 operator Sp Wp — Fp, which is of the form: given ur = ugdua €
WH PWa = Wp, find SFUF S Fp by eliminating the interior variables of the
system:

T
AL )
~ ~ ~ T
(22) = (0, R(Al)RFASFU.F, T ,O, R(AN)RFASFU.F, RFHSFUF) s

where A is of the form
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The reduced interface problem can be written as: find ur € {7\Vr such that
Rggrérur = 8r,

where the operator Sp is defined in Equations (2.2), and

N (%) (1) _
T f A D 1aG
gr=> RY {( Ko >_ ( ol )Agg f,<>}.
i=1 i 7

The two-level BDDC method is of the form
M_lﬁggpﬁqu = M_lgr,

where the preconditioner M ~! = E%Fgf IINEDI has the following form:
(2.3)

BT T - O A?} Ag)l o 0 s
Rprq Bra Z (0 R) ) 0 6) ( () ) Rra + @S @ » Rpr.
i=1 AAI AAA RA

Here ® is the matrix given by the coarse level basis functions with minimal energy,
and it is defined by

N

@ 40 \ ! 07

_ pT T @7 A Aag Any (4)

(I) - RPH — RFA (0 RA ) < AX)I AX)A -)T RH .
i=1

The coarse level problem matrix Sy is determined by
(2.4)

@ 46 TN/ 40T
N )T i i i A A A i
Sn=3 i1 Rl('I) A(Hii - (A{T)I Al(‘I)A) (15 (Iz)A E)IT Rl('[)7
A A A
N AA 1A

which is obtained by assembling subdomain matrices; for additional details, cf. [3, 7,
5].
We know that, under certain assumptions, for any ur € Wr,

(2.5) ul Mur < ul RESrRrur < C (1 4 log(H/R))? ul Mur.

This can be established directly by using methods very similar to those of certain
studies of the FETI-DP algorithms. Denote by Ep and Pp, the average and jump
operators (see [10, Formula (6.4) and (6.38)]), on the space Wr, respectively. Central
to obtaining the condition number estimate for the preconditioned two-level BDDC
operator is a bound for the Ep operators (see [8, Theorem 25]). Since Ep + Pp =1
(see [10, Lemma 6.10]), we only need to find a bound for the Pp operator. [10, Lemma
6.36] gives a bound for the Pp operator under the assumptions [10, Assumption 4.3.1]
for the triangulation and [10, Assumption 6.27.2] for the coeflicient p(x) of (2.1).

3. A three-level BDDC method. For the three-level cases, as in [11], we will
not factor the coarse problem matrix Sp defined in (2.4) by a direct solver. Instead,
we will solve the coarse problem approximately by using ideas similar to those for the
two-level preconditioners.

We decompose ) into N subregions €/ with diameters flj, j=1,---,N. Each
subregion €/ is the union of N; subdomains Q/ with diameters H?. Let H = max; H7
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and H = max;; H/, for j =1, -, N, and ¢ = 1,---,N;. We introduce the
subregional Schur complement

. . -1 T

. . . A(Z) A(Z) A(l) .

= Soa - () (40 4R ) () e
2 G i) g ) L

and note that the coarse problem matrix St can be assembled from the SI(Ij )
Let T" be the interface between the subregions; I' C I'. We denote the vector space
corresponding to the subdomain edge average variables in ¢, by W”. Each W

can be decomposed into a subregion interior part Wt(:l)f and a subregion interface

part WS%, ie., ng) = WS)IA@ WS% , where the subregion interface part Wi%
can be further decomposed into a primal subspace W,(j)ﬁ and a dual subspace WS)&’
ie., W(l) W(i) EBW(i) We denote the associated product spaces by W, :=
Hllwc”, = HMW” W,z = IIL WL W = T, WL, and
W, 7= Hi:l W of Correspondingly, we have W, = W 7 @Wc f,and W g =
Wc,ﬁ &b WQ A - We denote by VVC the subspace of W, of functions that are continuous

across .

We next introduce an interface subspace W_ s C W_ g, for which primal con-
straints are enforced. Here, we only consider edge average constraints. We need to
change the variables again for all the local coarse matrices corresponding to the edge
average constraints. The continuous primal subspace is denoted by W _ 5. The space
WC 7 can be decomposed into ch = Wc,ﬁ DOW.x -

We also denote by FC 5
to Wer, Wc,p, and Wc,p, respectively, and will use the same restriction, extension,
T FF, and FcIA‘

We define our three-level preconditioner M1 by
(3.1)

BT T - 7T A(IZI) AX)I o 0 ~ .7l =
Rprq Bra Z (0 Rx ) OEENG) (i) Rra + ®S;°®" 3 Rpr,
i=1 Axr Aan Ry

F > and f‘c,fv the right hand side spaces corresponding

and scaled restriction operators for F

cf. (2.3), where §ﬁ ! is an approximation of So 1 and is defined as follows: given

~ _ ~ T
eFrlety=5;'0andy = S;'¥. Here ¥ = (\Ilgl) ,qlgN),\I:f) ,
T T

y = ( (1)7 7yE‘N)7yf) ’ and y = ( (1)7 7yE‘N)7§F)
To solve Sty = ¥ by block factorlzatlon in the two-level case, we can write
(3.2)
( M7 )
Sty SHff Ry yg) ‘I’%l)
N T 3(N) : - :
: sy sy | || e
1) S(lA)A R(N) SH]YZ Zz 1Rl) S(z (4) NS L
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We have
i i)t i i "z
3 W= (w0 s ROy

and
N

N
AOT o _ o @Ot e@OI\PO ) _ g _ @7 (Z ()7 gy (i)
(Z; s (Snff SHffSHﬁ SHf‘I )R ) ye = ¥r ZlRF St S zp .
In the three-level BDDC algorithm, we need to introduce several restriction, ex-
tension, and scaling operators between different subregion spaces. The restriction
S0)

operator RG maps a vector of the space N4 ¢ to a vector of the subdomain subspace
Iy c,

WS% Each column of I/E(f ) with a nonzero entry corresponds to an interface node,

=(1)
x € 00 N Y, shared by the subregion ; and certain nelghbormg subregions. Rp

RY which represents the restriction from W ¢ to W(l). R(l) is the
(

is similar to R

restriction matrix which extracts the subregion part, in the space W , of the func-

~(7) Py
tions in the space WC A Multiplying each such element of Rl(; , Ry, and R(&l) with

=) ~(i ~
5T( ) gives us R(A)A Rp 7, and R%)g, respectively. Here, we define (53 (2) as follows:
for v € [1/2, 00), Sj(a:) = %, x € 00 N L'y, where NV, is the set of indices
JENz Ij .
j of the subdomains such that z € 9Q7; and p;(z) is the coefficient of (2.1) at = in
the subregion Q7. (In our theory, we assume the p; are constant in the subregions )

Furthermore, RF X and RFH are the restriction operators from the space VVC ¢ onto its
subspace Wc,ﬁ and Wc,ﬁ respectively. Rf : ch — ch and Rf : ch — ch
are the direct sum of ﬁl(; ) and ﬁg ), respectively. ;N%f : Wc,p — ch is the direct sum
of }A%Aﬁ and the }A%@}A%I:A The scaled operators 1§A 7 and }A%A A are the direct sums
of R and R(f)A RA Tis the direct sum of R pr and RD ARFA

Let T(l) = Sg;f — Snl;fsnl;f S(l;f and T = diag(T™,--- , TN)). We then intro-

duce a partial assembled Schur complement of Sy, T: Wc g — 1~7‘c ¢ by

(3.4) T — BT Te,
and define hz € F 7, by
N
(3.5) he = Tp - > RV SY s w0,

i=1
The reduced subregion interface problem can be written as: find yp € /Wc.f’ such that
2T o
(3.6) Rf TRfyI: = hf.
When using the three-level preconditioner M ~1 we do not solve (3.6) exactly.
Instead, we replace yp by

~T ~
~ NA R N_l =~
(3.7) yr = Rp T Rp shg.
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We will maintain the same relation between ?gf) and ?1(; ), ie.,

<) _ o (@) _ o) Bl)g.
(3.8) v = s (e - s ROYr).

4. Some auxiliary results. In this section, we will collect a number of results
which are needed in our theory. In order to avoid a proliferation of constants, we
will use the notation A ~ B. This means that there are two constants ¢ and C,
independent of any parameters, such that cA < B < CA, where C' < oo and ¢ > 0.
For the definition of discrete harmonic functions, see [10, Section 4.4].

LEMMA 4.1. Let D be a cube with vertices A1 = (0,0,0), By = (H,0,0), Cy =
(H,H,0), Dy = (0,H,0), A, = (0,0,H), B, = (H,0,H), Co = (H,H,H) and
Dy = (0, H, H) with a quasi-uniform triangulation of mesh size h. Then, there exists
a discrete harmonic function v defined in D such that U4, B, = 1+log %, where VA, B,
s the average of v over the edge A, B, |v|§11(D) ~ H (1 + log %), and v has a zero
average over the other edges.

Proof: This lemma follows from a result by Brenner and He [1, Lemma 4.2]: let
N be an integer and Gy the function defined on (0,1) by

Gy () = ZNj ( 4n1_ ~ sin (4 3)7rx)) .

n=1

Gy (x) is even with respect to the midpoint of (0, 1), where it attains its maximum
in absolute value. Moreover, we have:

|GN|§I[1)[<2(071) ~1 +10gN and HGNHL2(O,1) ~ 1;

see [1, Lemma 3.7].
Let [—H,0] and [0, H] have a mesh inherited from the quasi-uniform meshes on

D1 A; and A; By, respectively, and let gi(x) be the nodal interpolation of GN(””;HH).

Then, we have ||gn || ro(—#,m) = 1+ log %,

H
(4.1) ~ 1+ log 5 and lgullea- s ~ H:

2
|gh|H(1)({2(7H,H)
see [1, Lemma 3.7] or [11, Lemma 1].

Let 7,(x) be a function on [0, H| defined as follows:

0<z<hy,
hlSISH_h’Q;

1
B=t H—hy<az<H,

2

where hy and hg are the lengths of the two end intervals.
Then the following estimates hold:

H
(4.2) HTh”%?(O,H) ~ H and |Th|§{é(<2 ~ 1+ log 7

(0,H)

see [1, Lemma 3.6].
Define the discrete harmonic function v as 0 on the boundary of D except two
open faces A1 B1C1 Dy and A1 B1B3As. 1t is defined on these two faces by

v(z1,22,0) = gn(x2)mh(2z1),  for (z1,22) € A1B1C1Dy,



U(.Il, O, Ig) = gh(—.Ig)Th({El), for (Il, Ig) S AlBlBQAQ.

It is clear that v4, B, = 1+ log % and that v has a zero average over the other edges.
Since v is discrete harmonic in D, we have,

|U|§11(D) = |”|§11/2(ap)

|2 2 2 2
|9h|Hé[§2(_H)H) HThl|L2(O,H) + |Th|H3(§2(0,H) ||9h||L2(—H,H)

H
mH(l—i—logE),

where we have used (4.1), (4.2), and [1, Corollary 3.5].

O
Remark: In Lemma 4.1, we have constructed the function v for a cube D. By

using similar ideas, we can construct functions v for other shape-reqular polyhedra
which will satisfy the same properties and bounds.

LEMMA 4.2. Let Q; be the subdomains in a subregion ', j = 1,---,N;, and
Vlhj be the standard continuous piecewise trilinear finite element function space in
the subdomain Y; with a quasi-uniform fine mesh with mesh size h. Denote by &y,
k=1---Kj, the edges of the subdomain €Y:. Given the average values of u, ug,, over
each edge, let u € Vlhj be the discrete Vlhj -harmonic extension in each subdomain Q;
with the average values given on the edges of S¥s, j = 1,---, N;. Then, there exist two
positive constants C1 and Ca, which are independent of ﬁ, H, and h, such that

Ch (1 + log — > Z |U|H1 Q) < 2 Z H|u5k 1_1‘51@2 |2

7=1kq,ko=1

< Cy <1 + log —> Z |u|H1(QZ

Proof: Without loss of generality, we assume that the subdomains are hexahedral.
Denote the edges of the subdomain Q; by &, k=1,---,12, and denote the average
values of u over these twelve edges by g, , k =1, - ,12, respectively.

According to Lemma 4.1, we can construct eleven discrete harmonic functions
Gmy, m = 2,---,12, on Q) such that

Gole, = { (o e (A rlosm) o

and with

H
(43) |¢m|§{1((2;) ~ (ﬂgm _ﬂ51)2 H(1+10g E)? m:27 712

12 _ _ _
Let v; = ﬁ (Zng ¢m) + g, ; we then have (v;)¢, = ug,, for k=1,---
8



and

1
|Uj|§{1(9§) = |T (Z ¢m> +ugl|H1(Ql
2 12
(o) o st B

m=2

1 2 7\ &2
<|\—=m——| H (1 +10g—) (te,, — Ue,)?
<Cl/2(1+log h)) h Z

m=2
< —m————— E H u —Uu
O 1 + 10g h Ek gl

Here, we have used (4.3) for the penultimate inequality.
By the definition of u, we have,

2 2
|u|H1(Q§) < |Uj|H1(Qj.) > 1+10g h ZH ’U,‘g,c ’u,gl

Summing over all the subdomains in the subregion Q¢, we have,
N; 12
o) () S8
Jj=1 k=1

This proves the first inequality.
We prove the second inequality as follows:

N; 12 N; 12

Z ZH(ﬁgk - 17’51)2 = Z Z H|(u - ﬁ51)5k|2

j=1k=1 j=1k=1
N; 1 N; H
ZHEHU—ﬂgl”%z(gk) S C2 Z(l—l—logzﬂuﬁ{l(ﬂ;)
j=1 Jj=1

S C2 (1+10g_> Z'ulHl(Qz

Here, we have used a standard finite element Sobolev inequality, see [10, Lemma
4.30] for the second inequality and [10, Lemma 4.16] for the penultimate inequality.

We complete the proof of the second inequality by using the triangle inequality.

O

We now introduce a new mesh on each subregion; we follow [2, 9]. The purpose
for introducing this new mesh is to relate the quadratic form of Lemma 4.2 to one for
a more conventional finite element space.

Given a subregion Q* and subdomains €}, j = 1,--- , Ny, let 7 be a quasi-uniform
sub-triangulation of ¢ such that its set of the vertices include the vertices and the
midpoints of edges of Ql For the hexahedral case, we decomposed each hexahedron
into 8 hexahedra by Connectlng the midpoints of edges. We then partition the vertices
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in the new mesh 7 into two sets. The midpoints of edges are called primal and the
others are called secondary. We call two vertices in the triangulation 7" adjacent if
there is an edge of 7 between them, as in the standard finite element context.

Let Uy (€2) be the continuous piecewise trilinear finite element function space with
respect to the new triangulation 7. For a subregion Qf, Uy (2%) and Uy (09Q¢) are
defined as restrictions:

UH(Qi) = {u

Qi uUE UH(Q)}, UH((?QZ) = {’u,|agi LU e UH(Q)}

We define a mapping Igi of any function ¢, defined at the primal vertices in Q¢,
to UH (QZ) by

(4.4)
¢(x), if x is a primal node;
the average of the values at all adjacent primal nodes
on the edges of ¢, if x is a vertex of %
the average of the values at two adjacent primal nodes
on the same edge of Q, if z is an edge secondary node of Q;
I} ¢(x) =

the average of the values at all adjacent primal nodes on the
boundary of Q¢ if x is a face secondary boundary node of Q;

the average of the values at all adjacent primal nodes
if z is a interior secondary node of Q?;

the result of trilinear interpolation using the vertex values,
if « is not a vertex of 7.

We recall that Wc(i) is the discrete space of the values at the primal nodes given
by the subdomain edge average values. [ gl can be considered as a map from Wc(i) to
Ug (2") or as a map from Uy (Q") to Ug ().

Let Igszi be the mapping of a function ¢ defined at the primal vertices on the
boundary of Qi to Uy (89) and defined by 192 ¢ = (I ¢.)|oq:, where ¢, is any
function in Wci) such that ¢.|gni = ¢. The map is well defined since the boundary
values of Ig ¢ only depend on the boundary values of ¢..

Finally, let

Un()={Y =186, 6 € Un(Q)},  Un(09) = {$lagi, ¢ € Un()}.

IgQi also can be considered as a map from Wc(l% to Up (097).

Remark: We carefully define the Ig and Igﬂi so that, if the edge averages of w; €

Wc(l% and w; € Wc(Jf“) over an edge £ are the same, we have (IS w;)e = (I w))e.

Here we need to use a weighted average which has a smaller weight at the two end
points. But this will not effect our analysis. We could also define a weighted edge

average of w; and w; and obtain (Igini)g = (Igm wj)e for the usual average.
We list some useful lemmas from [2]. For the proofs of Lemma 4.3 and Lemma
4.4, see [2, Lemma 6.1 and Lemma 6.2], respectively.
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LEMMA 4.3. There exists a constant C > 0, independent of H and |QF|, the
volume of QF, such that

I3 6l i o) < Clolm iy and |IF @120y < Clldllr2@iy, Vo € Un (D).

LEMMA 4.4. For ¢ € Uy (09Y),

_inf Nl @iy = 1@ a200:),
¢€UH(29),9|5qi =0

- i_nf . |¢|H1(Qi) ~ |¢E|H1/2(8(li)'
PEUH(Q21),8|5qi=¢

LEMMA 4.5. There exist constants C7 and Cg > 0, independent of fl, H, h, and
the coefficient of (2.1) such that for all w; € Wc(%,

piC1|I?IQ wiﬁ{m(am) < <1 + log E) (T(l)wi,wi) < pi02|[gsz w’iﬁ'{l/?(aﬂi)’

where (TWw;, w;) = wiTT(i)wi = |wi|?ﬂi) and T = Sg;f — Sg;ng;:Sg;;

Proof: By the definition of 79, we have

H - H
1+1log — )| (TWw;, w;) = ( 1+ log — inf lv|?
h h ) wew® o, i=w, om0
c HUlgqi i
N.
H K
= inf i | 1+ log — inf % o
vewgw,v\am:wip ( & h) j;ue‘/ijﬂg:v,gcaﬂj | |H1(Qj)
N; K;
~ inf Di g Hlvg, — vg,, 2

veW wlggi=wi 571 k) Rt

~ . Q12 - . 2
~ (i)lnf pillg vy~ _ inof . Piloln i)
vEW:" 0] gqi=w; EUH(Q),0] 501 =17 w;

~ pil I wil g2 o0y

We use Lemma 4.2 for the third bound, the definitions of Iﬁi and IgQi for the fourth
and fifth bounds, and Lemma 4.4 for the final one.
a

To be fully rigorous, we assume that there is a quasi-uniform coarse triangulation
of each subregion. We can then obtain uniform constants C; and C5 in Lemma 4.5,
which work for all the subregions.

~ —~ ~ ~ aT

We define the interface averages operator Ez on W 5 as Fp = RpRp p,which
computes the averages across the subregion interface T and then distributes the av-
erages to the boundary points of the subregions.

The interface average operator E5 has the following property:

LEMMA 4.6.

~ 2
~ H
|Eﬁwf|2T <C (1 + log E) |Wf|2fu

11



for any wg € W where C' is a positive constant independent of H, H, h, and the

c, I

coefficients of (2.1). Here T is define in (8.4).

~(1 . ~
Proof: Let w; = Rp wp € Wc(l). We rewrite the formula for v := wp — Epwg for

T
an arbitrary element wg € Wc ¢t and find that fori=1,---, N,
(4.5) vi(x) := (wp(z) — Epws(z)); = Z 6;(101(,%) —wj(x)), € NT.
JENG

Here N, is the set of indices of the subregions that have x on their boundaries.
We have
N N N N

|E5Wf|2f = Z lwi — Ui|2:r<i> < 22 |wi|2:r<i> + 22 |Ui|?r<i) and |Wf|2f = Z |wi|?r<i)-
i=1 i=1 i=1 i=1

We can therefore focus on the estimate of the contribution from a single subregion )
and proceed as in the proof of [10, Lemma 6.36].
We will also use the simple inequality

(4.6) pid! < min(ps, p;), for v € [1/2,00).
By Lemma 4.5,
(4.7) (TW vy, v;) < Co pil 15 (i)l 7172 0021)-

T T (1+1logih
Let L; = Igﬂi (v;). We have, by using a partition of unity as in [10, Lemma 6.36],

Li= Y TI%0rL)+ > I"(0:Li)+ Y OvLi(V),

FCoQ; ECON; Veo;

where I is the nodal piecewise linear interpolant on the coarse mesh 7. We note
that the analysis for face and edge terms is almost identical to that in [10, Lemma

6.36]. But the vertex terms are different because of I?{QZ. We only need to consider
the vertex term when two subregion share at least an edge. This make the analysis
simpler than in the proof of [10, Lemma 6.36].

Face Terms. First consider,

I (07L) = I (015 (81 (wi — w;))).
Similar to [10, Lemma 6.36], we obtain, by using (4.6),
(4.8)

pill" (O I (8] (wi = wi) 2 oy

= pi6! [T O (w; — w12 a0

< min(pi, p) |17 (O (157 wi = (I wi)r) = (I wy — (I wy)r) +
(I wi) = (TF wi) #)Hs 00

< 3min(pi, p5) (117 (0 (15w = (I w)2) s oy +
17 (O (5 w5 — (I3 w;) £) 32 oy +

|07 (T3 wi) 7 — (Igmwj)f)lipﬂ(am)) '

12




By the definition of I?{Qi,

M OF (15 w)) = T (0 (I5 w)))  and (I3 w;)r = (157 w))r
By [10, Lemma 4.26], the first and second terms in (4.8) can be estimated as
follows:

(O (15 wi — 1691

mln(pz,pj)( i) F )|H1/2(BQ i) +
(

|IH9 (IH wa (I?I ij) )

— min(ps, p;) (117 (0 (15 w; — (57

|IH(9 (?IQJU)J (IOQJ ) )|H1/2 Q1)

( )
W2 001)
— (I w) #) 2 o0y +
) )

A\ 2
<C <1 + log ﬁ) (pilfffz” wi|12r{1/2(am) + Pj|IIa{Qij|§{1/2(am)) ‘

Let £ C OF. Since the edge averages of w; and w; are the same, by the definition

of IIa{Qi and IIa{Qj, we have (1% w;)e = (I5% w;)e. As we have pointed out before,
we use the weighted average which has a smaller weight at the two end points.
We then have

|5 wi) 7 — (I wy) 7))
<2 (|(1161rmwi)s — (g wi) F|? + [(IFY wy)e — (Igﬂjwj)f|2) '

(4.9)

It is sufficient to consider the first term on the right hand side. Using [10, Lemma
4.30], we find

|(Iamwi)g _ (Iaﬂiwi)]__|2

= (I3 wi = (I wi)2)e|* < O/H T wi = (I wi) £ 72(e),

and, by using [10, Lemma 4.17] and the Poincaré inequality given as [10, Lemma
A.17],

|(Igﬂiwi)g — (Igﬂiwi)]:P S C/ffl <1 + IOg ) |IaQ w; (Iaglwl)}‘hql/z F)

Combining this with the bound for 6 in [10, Lemma 4.26], we have:
min(p;, pj)|0F (15> wi) 7 — (IF0)) ) 502 00

2
<C <1 + log ﬁ) (mlfzﬂ wil3/2 p0sy + Pj|IIa{Qij|§{1/2(aQJ‘)) :

Edge Terms. We can develop the same estimate as in [10, Lemma 6.34]. For
simplicity, we only consider an edge £ common to four subregions Q%, Q7, Q% and Q'.
Pi |IH (GSL’L')|§{1/2(BQ1')
< i (117 O T (31 wi = w)) s ooy +

(4.10) |17 (02158 (8] (wi — W) T2 a0s) + 17 (0 I (8] (w; — wl)))ﬁ{l/z(am)) :
13



We recall that 5;, 5;2, and 5;‘ are constants.
By the definition of Igﬂi, Igﬂj, Igﬂk, and Igﬂl, we have
i Jj £ k K l
Oe (I wy) = O (15" w)), O (15" wp) = 0 (I wi), Oe (I wi) = 0 (I wi)

)

and,

(I wi)e = (5 wi)e = (IF w)e = (IF" wi)e.
We assume that ° shares a face with 7 as well as !, and shares an edge only
with QF.
We consider the second term in (4.10) first. By [10, Lemmas 4.19 and 4.17], and
(4.6), we have

pil T (O I3 (8] (wi — wi)) /2 oy
< Cpio], 117 (0 (15 wi — (I77 wi)e) — O (I wr, — (157 wi)e)) |3 e)
< 20 (pull 1™ O (15 wi — (T3 wi)e) 2oy +

prll T (0 (T wic = (T3 wi)e)) e )

7 a0 k Ak
<20 (Pz||189 wi = (IF¥ wi)el| 206y + pelIET wi — (Igﬂkwk)SH%%a)

<2C <1 + log E) (Pz‘UgQ wi@p/z(fi) + Pk|1?1mwk|§{1/2(f’c))

H ‘ "
<20 <1 + log E) (Pz‘UgQ Wil /2 oy + PrlE wk@zl/z(am)) ’

where F' is a face of QF and F* is a face of Q% and F* and F* share the edge &.
The first term and the third term can be estimated similarly.

Vertex Terms. We can do the estimate similarly to that of the proof in [10,
Lemma 6.36]. We have

(4.11) pilOv LiV) 511200, = pilOVIE 0) V)32 000,

By (4.5) and the definition of I?{Qi, we see that (IIa{ini)(V) is nonzero only when
two subregions share one or several edges with a common vertex V.

In the definition of Iﬁl, we denote by & ., m =1,2,3-- -, the edges in Q° which
share V. Denote by v; ,, the primal nodes on the edges &; ,, which are adjacent to V.

By the definition of I}, (4.11), and |9y|§11/2(8m) < CH;, we have,

POV I ) V)i a0y < Coil D 0ilwim)*10v 3200

(4.12) < Cp;H; Z |03 (vi,m) |2

Let us look at the first term in (4.12), the other terms can be estimated in the
same way.

14



piHilvi(vi1)[?
= pi| Y O (wivin) — w;(vi)

73,€i,1CQ
<C > min(ps, p5) Hilwi(vin) — wy(vi 1))
7,€i,1CQI
=C Y min(pr, o) Hi| I3 wivin) — I w; (vin) 2
7,Ei,1CQYI
<C > win(os o) Hi (1157 wivia) = (T5 w1+
7,Ei,1CQI

I8 wj(vin) — (I8 w))e, ,

')
<C ) min(pi,p)) (Hi|(Igwwi—(Igmwi)si,l)(vi,l)|2+
EiaC

H| (157 w; = (TP wj)ein) () 2)

S C Z Inln(pup]) (HIIa{QZ’wi - (I}?{ini)giJ ||%2(511)+
3,€1,1CQI

o0’ 1994y,
1157 0 = (T w)e s e, )

H i j
S C Z (1 + log ﬁ) (p”[gﬂ wi'%{l/?(am) + pﬂ]gﬂ wjﬁp/z(am)) .
7,€1,1CQI

For the third equality, we use here that v; ; is a primary node. For the fourth inequal-
ity, we use that (I5 w;)e,, = (I&¥ w;)e, ,. We use [10, Lemmas B.5] for the sixth

i,1
inequality and [10, Lemma 4.17] for the last inequality.
Combining all face, edge, and vertex terms, we obtain

A\ 2
i H i
(413) piugg (’Ui)|§_[1/2(aﬂi) <C (1 + log E) Z Pj|IgQ (wj)ﬁ{l/?(BQj)'
:09 NN £0

Using (4.13), Lemma 4.5 and (4.7), we obtain

(T(i)vi,vi) = |'U'L|§"(i) < szpﬂ ZW (vi)|§{1/2(89i)
h
L\ 2

(1 + log %)

<CCy~———-~——
- 2 (1+10g%)

%) (3
Z Pj|IHQ (wj)|§11/2(agj)
J:0QINONIAD

~ 2
Co H »
coZ(ivmd) 5
7:0QINONA£D

~ 2
Co H
Ch H| =
7:0QINONIA£D
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LEMMA 4.7. Given any ur € \/7\7}, let ¥ = (I)TRDJ‘UF. We have,

2
~ H
visptw <wls'et < (1 +log E) IS .

Proof: Using (3.3), (3.5), and (3.6), we have
(4.14)

R ZW’ @+ wlyr
=1

T
ol (sf;M (el — Sl(fffR(fZ)yf)) <hA+ZRZ) s sy \IN')) i
=1

|
.MZ

i=1

I
WE

) AT o\ 7!
50wl nlys = Z\Iﬂ’ CI JOS S (RFTRI:> hy.

1 =1

Using (3.8), (3.5), and (3.7), we also have

-
Il

N
~ DT~ _
OIS e =S W g, + e lyy
=1

T
DT (g (gl _ o) Blie _ s 0 w0 g
o (SHA (@ — s RS yp)) <h +ZR S5 sy w ) Ve

=1

M= 1=

o’ g0~ \I:“ §j\1ﬂ> SO \I:<”+hT (RT AT 1R )hA
7 Pl ryr M;p T
1

.
Il

2T =~ -1 ~T __ =~
We only need to compare hlz (Rf TRf) hy and hlz (Rf,fT_lRﬁf) hg for any

hs € f‘c 5. The following estimate is established as [6, Theorem 1]. Let

~

—1 . ~
(4.15) (fzrfﬁfz ) hy € W gz and vp =T 'Ry zhr € W5

AT~ AT ~
Noting the fact that Rp R ¢ = Rp p R = I and using (4.15), we have,

AT ~ \ ! ~T  ~
T p-TD _ T _wWI'p. D
hf (RF TRf) hf = hfo = hf RD,FRfo
~T ~ N T
Tp. .p—17p _(7-1p D
=hIRp T 'TRpwy = (T Rj fhf) TRywg

S1/2

1/2
= VATR pWp =< VF,R W >5<< Vi, Vi >5 < RAWF,RAWF 7

~T ~ 1/2 AT _~ \ !
T(p..7-1p T
= (hf (RDIT 1R,5f) hf> <hf (RFTR ) hf>
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‘We obtain that
T AT _~ \ 7! T 2T ~ 12
hf (RfTRl:) hf < hf (Rf)fT Rﬁf) hf.

On the other hand,

2T _~

T _ = T _ =
h% <RﬁfT1R5f> hy = w% (RFTRF> <Rf,leRﬁf) hs

T - = 2T
=<wp Rpo <T1RA AhA> >iar 2 \=<Wx, R Vs > /210 _=
r D,l’ D T BT D r D,Irvr B D
, 70 ) > (m) =< 0 FREYE > ()
1/2 =T =T 1/2
<< WE, Wi > ar o\ < Rf),fvfu Rf),fvf > iar
(Rf TRf) (RfTRf>

AT _~ \ ! 1/2 ~ 2T ~ 2T
= <h% (RfTRf) hf) < RpRp pvp, RRp pvp >1T/2

-1 1/2
—<h§ (RFTRF> hf) [EpVelz

H o (2T== -1 1z
<C 1+10gﬁ hf RpT Ry hg |Vf|f

H T (3 a3 2
=C(1+log 4 | | bf hi (Rp T Rpp | be |

where we use Lemma 4.6 for the penultimate inequality.
Finally we obtain that

2T _ = H ? AT _~ \ !
hl (RﬁleRﬁf) hs <C (1 + log E) (h% <RfTRI:) hf> .
O

5. Condition number estimate for the new preconditioner. In order to
estimate the condition number for the system with the new preconditioner M1, we
compare it to the system with the preconditioner M 1.

LEMMA 5.1. Given any ur € Wp,

2
~ H
(5.1) ulMtup <ufM tur <C <1 + log E) ul M~ tuar.

Proof: We have, for any ur € V/Vp,

ul M~ tur

N (@) 40 !
= T A A 0 ~
:‘I%Rg,r RfA (0 R(A) ) < Aé§ A(i‘-)l ) ( RX) )RFA Rp rur
A AA

=1

+ u%§£7F¢Sﬁl@T§D7pup.
17



and

11,11-:]/\\4/71111“
N (#) (@)
R Arp Axr 0 &
= uFRDF Ria (0 Ry ) ( b) ) (iy | Bra ¢ Rprur
i=1 A(AI A(AA Ry

+U.FRT F‘I)S 1(1) RDFuF

We obtain our result by using Lemma 4.7.
O
THEOREM 5.2. The condition number for the system with the three-level precon-
ditioner M~'is bounded by C(1 + log %)2(1 +log )2
Proof: Combining the condition number bound, given in (2.5), for the two-level
BDDC method, and Lemma 5.1, we find that the condition number for the three-level
method is bounded by C(1 + log 2£)?(1 + log )2
O

6. Using Chebyshev iterations. Another approach to the three-level BDDC
methods is to use an iterative method with a preconditioner to solve (3.6). Here, we

~

consider a Chebyshev method with a fixed number of iterations and use R ﬁffflR 5.0

=T 2T =
as a preconditioner. Denoting the eigenvalues of | Rp fT 1R 5 1‘) (Rf TRI:> by Aj,

we need two input parameters [ and u, estimates for the minimum and maximum
values of A;, for the Chebyshev iterations. From our analysis above, we know that [ =

1 and max; A; < C(1+log %)2(1—|—log %)2 We can use the conjugate gradient method
to obtain an estimate for the largest eigenvalue at the beginning of the computation
to choose a proper u. Let a = Hiu, = Z—f%, and 0; = 1 — a)j;. As for the two
dimensional case in [11, Section 6], we have the following theorem. No new ideas are
required. .
THEOREM 6.1. The condition number using the three-level preconditioner M !

with k Chebyshev iterations is bounded by nggg (1+log %)2, where

(1 cosh(k coshfl(uaj))
Ci(k) = ! <1 cosh(k cosh™* (1)) >

B B cosh(k cosh_l(lmj))
Ca(k) = mfx <1 cosh(k cosh_l(ﬂ)) > 7

andgf—gzgﬁlaskﬁoo.

7. Numerical experiments. We have applied our two three-level BDDC algo-
rithms to the model problem (2.1), where = [0,1]3. We decompose the unit cube
into N x N x N subregions with the side-length H=1 / N and each subregion into
N x N x N subdomains with the side-length H = H/N. Equation (2.1) is discretized,
in each subdomain, by conforming piecewise trilinear elements with an element diam-
eter h. The preconditioned conjugate gradient iteration is stopped when the norm of
the residual has been reduced by a factor of 1076,

18



TABLE 1
Figenvalue bounds and iteration counts with the preconditioner M~ with a change of the

number of subregions, % =3 and % =3

Case 1 Case 2
Num. of Subregions | Iter. Cond. # | Iter. Cond. #
3x3x3 9 2.6603 9 2.2559
4x4x4 10 2.8701 10 2.5245
5x5x5 11 2.9668 11 2.8074
6x6x6 11 3.0190 11 2.8477
TABLE 2

Eigenvalue bounds and iteration counts with the preconditioner M~ with a change of the
number of subdomains and the size of subdomain problems with 3 X 3 X 3 subregions

Case 1 Case 2 Case 1 Case 2
Iter. Cond. # | Iter. Cond. # Tter. Cond. # | Iter. Cond. #
9 2.6603 9 2.2559 9 2.6603 9 2.2559

9 3.0446 10 2.5183 9 2.7261 10 2.3299

10 3.3570 11 2.7782 10 2.8381 10 2.4353

10 3.6402 11 3.0078 10 2.9601 11 2.5488

o ot | ol

o oY | ol

We have carried out two different sets of experiments to obtain iteration counts
and condition number estimates. All the experimental results are fully consistent with
our theory. N

In the first set of experiments, we use the first preconditioner M ~!. We take
the coefficient p = 1 in Case 1. In Case 2, p is constant in one direction with a
checkerboard pattern in the cross sections, where we take p = 1 or p = 100. The coef-
ficients in both cases satisfy [10, Assumption 6.27.2], i.e., for all pairs of subdomains
which have a vertex but not an edge in common, there exists an acceptable edge path
(see [10, Definition 6.26]) between these two subdomains. Table 1 gives the iteration
counts and condition number estimates with a change of the number of subregions.
We find that the condition numbers are independent of the number of subregions.
Table 2 gives results with a change of the number of subdomains and the size of the
subdomain problems. -

In the second set of experiments, we use the second preconditioner M ~! and take
the coefficient p = 1. We use the Preconditioned Conjugate Gradient (PCG) to esti-

2T _ = 2T o
mate the largest eigenvalue of (RﬁleRﬁ_f> <Rf TRf), which is approximately

2.3249. For 18 x 18 x 18 subdomains and % = 3, we have a condition number esti-
mate of 1.8767 for the two-level preconditioned BDDC operator. We select different
values of u, the upper bound eigenvalue estimate of the preconditioned system, and
k to see how the condition number changes. We take v = 2.3 and v = 3 in Table
3 and 4, respectively. We also evaluate Cy(k) for k = 1,2,3,4,5. From these two
tables, we find that the smallest eigenvalue is bounded from below by C}(k) and the
condition number estimate becomes closer to 1.8767, the value for the two-level case,

as k increases. We also see that if we can get more precise estimate for the largest
~T  ~

2T . =2
eigenvalue of <R5fT1R5_I:> <RfTRf), we need fewer Chebyshev iterations to
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TABLE 3
Figenvalue bounds and iteration counts with the preconditioner M~1, u = 2.3, 3 x 3 x 3

subregions, % =6 and % =3

Iter. | Cy(k) Amin Amaz | Cond. #
13 | 0.6061 | 0.6167 | 2.3309 | 3.7797
0.9159 | 0.9255 | 1.8968 2.0496
0.9827 | 1.0000 | 1.8835 1.8836
0.9964 | 1.0016 | 1.8854 1.8825
0.9993 | 1.0009 | 1.8797 | 1.8780

O’Yﬂkww}—‘w

C0| 00| 00| ©

TABLE 4
Eigenvalue bounds and iteration counts with the preconditioner M—1, u = 3, 3x3x 3 subregions,

H _ H _

Iter. | Cy(k) Amin Amaz | Cond. #
15 | 0.5000 | 0.5093 | 2.0150 | 3.9562
10 0.8571 | 0.8678 | 1.9744 2.2753

8 0.9615 | 0.9900 | 1.8821 1.9012

8 0.9897 | 1.0015 | 1.8955 1.8927

8 0.9972 | 1.0020 | 1.8903 | 1.8866

O’Yﬂkww}—‘w

get a condition number, close to that of the two-level case. However, the iteration
count is not very sensitive to the choice of w.
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