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THREE-LEVEL BDDC IN THREE DIMENSIONS

XUEMIN TU∗

Abstract. BDDC methods are nonoverlapping iterative substructuring domain decomposition
methods for the solution of large sparse linear algebraic systems arising from discretization of elliptic
boundary value problems. Its coarse problem is given by a small number of continuity constraints
which are enforced across the interface. The coarse problem matrix is generated and factored by direct
solvers at the beginning of the computation and it can ultimately become a bottleneck, if the number
of subdomains is very large. In this paper, two three-level BDDC methods are introduced for solving
the coarse problem approximately in three dimensions. This is an extension of previous work for
the two dimensional case and since vertex constraints alone do not suffice to obtain polylogarithmic
condition number bound, edge constraints are considered in this paper. Some new technical tools are
then needed in the analysis and this makes the three dimensional case more complicated than the
two dimensional case. Estimates of the condition numbers are provided for two three-level BDDC
methods and numerical experiments are also discussed.
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1. Introduction. BDDC (Balancing Domain Decomposition by Constraints)
methods, which were introduced and analyzed in [3, 7, 8], are similar to the balancing
Neumann-Neumann algorithms. However, the coarse problem, in a BDDC algorithm,
is given in terms of a set of primal constraints and the matrix of the coarse problem
is generated and factored by using direct solvers at the beginning of the computation.
We note that there are now computer systems with more than 100,000 powerful pro-
cessors, which allow very large and detailed simulations. The coarse component of a
two-level preconditioner can therefore be a bottleneck if the number of subdomains is
very large. One way to remove this difficulty is to introduce one or more additional
levels. In our recent paper [11], two three-level BDDC methods were introduced for
two dimensional problems with vertex constraints. We solve the coarse problem ap-
proximately, by using the BDDC idea recursively, while a good rate of convergence
still can be maintained. However, in three dimensional space, vertex constraints alone
are not enough to obtain good polylogarithmic condition number bound due to much
weaker interpolation estimate and constraints on the averages over edges or faces are
needed. The new constraints lead to a considerably more complicated coarse problem
and the need for new technical tools in the analysis. In this paper, we extend the two
three-level BDDC methods in [11] to the three dimensional case using primal edge
average constraints. With the help of the new technical tools, we provide estimates
of the condition number bounds of the system with these two new preconditioners.

The rest of the paper is organized as follows. We first review the two-level BDDC
methods briefly in Section 2. We introduce our first three-level BDDC method and the
corresponding preconditioner M̃−1 in Section 3. We give some auxiliary results in Sec-
tion 4. In Section 5, we provide an estimate of the condition number bound for the sys-

tem with the preconditioner M̃−1 which is of the form C
(
1 + log Ĥ

H

)2 (
1 + log H

h

)2
,

where Ĥ , H , and h are typical diameters of the subregions, subdomains, and elements,
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respectively. In Section 6, we introduce a second three-level BDDC method which uses
Chebyshev iterations. We denote the corresponding preconditioner by M̂−1. We show
that the condition number bound of the system with the preconditioner M̂−1 is of the

form CC(k)
(
1 + log H

h

)2
, where C(k) is a function of k, the number of Chebyshev

iterations, and also depends on the eigenvalues of the preconditioned coarse problem,
and the two parameters chosen for the Chebyshev iteration. C(k) goes to 1 as k goes
to ∞, i.e., the condition number approaches that of the two-level case. Finally, some
computational results are presented in Section 7.

2. The two-level BDDC method. We will consider a second order scalar
elliptic problem in a three dimensional region Ω: find u ∈ H1

0 (Ω), such that

(2.1)

∫

Ω

ρ∇u · ∇v =

∫

Ω

fv ∀v ∈ H1
0 (Ω),

where ρ(x) > 0 for all x ∈ Ω. We decompose Ω into N nonoverlapping subdomains
Ωi with diameters Hi, i = 1, · · · , N , and set H = maxiHi. We then introduce a
triangulation for all the subdomains. Let Γ be the interface between the subdomains
and the set of interface nodes Γh is defined by Γh = (∪i6=j∂Ωi,h ∩ ∂Ωj,h) \∂Ωh, where
∂Ωi,h is the set of nodes on ∂Ωi and ∂Ωh is the set of nodes on ∂Ω. The nodes of the
different triangulations match across Γ.

Let W(i) be the standard finite element space of continuous, piecewise trilinear
functions on Ωi; the algorithms and theories developed in this paper work for other
lower order finite elements as well. We assume that these functions vanish on ∂Ω.
Each W(i) can be decomposed into a subdomain interior part W

(i)
I and a subdomain

interface part W
(i)
Γ , i.e., W(i) = W

(i)
I

⊕
W

(i)
Γ , where the subdomain interface part

W
(i)
Γ will be further decomposed into a primal subspace W

(i)
Π and a dual subspace

W
(i)
∆ , i.e., W

(i)
Γ = W

(i)
Π

⊕
W

(i)
∆ .

We denote the associated product spaces by W :=
∏N

i=1 W(i), WΓ :=
∏N

i=1 W
(i)
Γ ,

W∆ :=
∏N

i=1 W
(i)
∆ , WΠ :=

∏N
i=1 W

(i)
Π , and WI :=

∏N
i=1 W

(i)
I . Correspondingly, we

have W = WI

⊕
WΓ, and WΓ = WΠ

⊕
W∆.

We will consider elements of W which are discontinuous across the interface.
However, the finite element approximation of the elliptic problem is continuous across

Γ. We denote the corresponding subspace of W by Ŵ.

We further introduce an interface subspace W̃Γ ⊂ WΓ, for which certain primal
constraints are enforced. Here, we only consider the case of edge average constraints
over all the edges of all subdomains. We change the variables to make the edge average
degrees of freedom explicit, see [4, Sec 6.2] and [5, Sec 2.3]. From now on, we assume
all the matrices are written in terms of the new variables. The continuous primal

subspace denoted by ŴΠ is spanned by the continuous edge average variables of each

edge of the interface. The space W̃Γ can be decomposed into W̃Γ = ŴΠ

⊕
W∆.

The global problem has the form: find (uI ,u∆,uΠ) ∈ (WI ,Ŵ∆,ŴΠ), such that




AII AT
∆I AT

ΠI

A∆I A∆∆ AT
Π∆

AΠI AΠ∆ AΠΠ






uI

u∆

uΠ


 =




fI
f∆
fΠ


 .
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This problem is assembled from the subdomain problems




A
(i)
II A

(i)T

∆I A
(i)T

ΠI

A
(i)
∆I A

(i)
∆∆ A

(i)T

Π∆

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ







u
(i)
I

u
(i)
∆

u
(i)
Π


 =




f
(i)
I

f
(i)
∆

f
(i)
Π


 .

We also denote by FΓ, F̂Γ, and F̃Γ, the right hand side spaces corresponding to WΓ,

ŴΓ, and W̃Γ, respectively.
In order to describe BDDC algorithm, we need to introduce several restriction,

extension, and scaling operators between different spaces. The restriction operator

R
(i)
Γ maps a vector of the space ŴΓ to a vector of the subdomain subspace W

(i)
Γ . Each

column of R
(i)
Γ with a nonzero entry corresponds to an interface node, x ∈ ∂Ωi,h ∩Γh,

shared by the subdomain Ωi and its next neighbor subdomains. R
(i)

Γ is similar to R
(i)
Γ ,

and represents the restriction from W̃Γ to W
(i)
Γ . R

(i)
∆ : W∆ → W

(i)
∆ , is the restriction

matrix which extracts the subdomain part, in the space W
(i)
∆ , of the functions in the

space W∆. R
(i)
Π is the restriction operator from the space ŴΠ to W

(i)
Π . Multiplying

each such element of R
(i)
Γ , R

(i)

Γ , and R
(i)
∆ with δ†i (x) gives us R

(i)
D,Γ, R

(i)

D,Γ, and R
(i)
D,∆,

respectively. Here, we define δ†i (x) as follows: for γ ∈ [1/2,∞), δ†i (x) =
ργ

i (x)P
j∈Nx

ργ
j (x)

,

x ∈ ∂Ωi,h ∩ Γh, where Nx is the set of indices j of the subdomains such that x ∈ ∂Ωj

and ρj(x) is the coefficient of (2.1) at x in the subdomain Ωj . Furthermore, RΓ∆ and

RΓΠ are the restriction operators from the space W̃Γ onto its subspace W∆ and WΠ

respectively. RΓ : ŴΓ → WΓ and RΓ : W̃Γ → WΓ are the direct sums of R
(i)
Γ and

R
(i)

Γ , respectively. R̃Γ : ŴΓ → W̃Γ is the direct sum of RΓΠ and the R
(i)
∆ RΓ∆. The

scaled operators RD,Γ and RD,∆ are the direct sums of R
(i)
D,Γ and R

(i)
D,∆, respectively.

R̃D,Γ is the direct sum of RΓΠ and RD,∆RΓ∆.
We also use the same restriction, extension, and scaled restriction operators for

the right hand side spaces FΓ, F̂Γ, and F̃Γ.

We define an operator S̃Γ : W̃Γ → F̃Γ, which is of the form: given uΓ = uΠ⊕u∆ ∈

ŴΠ

⊕
W∆ = W̃Γ, find S̃ΓuΓ ∈ F̃Γ by eliminating the interior variables of the

system:

A
(
u

(1)
I ,u

(1)
∆ , · · · ,u

(N)
I ,u

(N)
∆ ,uΠ

)T

=
(
0, R

(1)
∆ RΓ∆S̃ΓuΓ, · · · ,0, R

(N)
∆ RΓ∆S̃ΓuΓ, RΓΠS̃ΓuΓ

)T

,(2.2)

where A is of the form




A
(1)
II A

(1)T

∆I · · · · · · · · · A
(1)T

ΠI R
(1)
Π

A
(1)
∆I A

(1)
∆∆ · · · · · · · · · A

(1)T

Π∆ R
(1)
Π

...
...

. . .
...

...
...

· · · · · · · · · A
(N)
II A

(N)T

∆I A
(N)T

ΠI R
(N)
Π

· · · · · · · · · A
(N)
∆I A

(N)
∆∆ A

(i)T

Π∆ R
(i)
Π

R
(1)T

Π A
(1)
ΠI R

(1)T

Π A
(1)
Π∆ · · · R

(N)T

Π A
(N)
ΠI R

(N)T

Π A
(N)
Π∆

∑N
i=1 R

(i)T

Π A
(i)
ΠΠR

(i)
Π




.
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The reduced interface problem can be written as: find uΓ ∈ ŴΓ such that

R̃T
Γ S̃ΓR̃ΓuΓ = gΓ,

where the operator S̃Γ is defined in Equations (2.2), and

gΓ =

N∑

i=1

R
(i)T

Γ

{(
f
(i)
∆

f
(i)
Π

)
−

(
A

(i)
∆I

A
(i)
ΠI

)
A

(i)
II

−1
f
(i)
I

}
.

The two-level BDDC method is of the form

M−1R̃T
Γ S̃ΓR̃ΓuΓ = M−1gΓ,

where the preconditioner M−1 = R̃T
D,ΓS̃

−1
Γ R̃D,Γ has the following form:

(2.3)

R̃T
D,Γ



R

T
Γ∆




N∑

i=1

(
0 R

(i)T

∆

)(
A

(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

)−1(
0

R
(i)
∆

)
RΓ∆ + ΦS−1

Π ΦT



 R̃D,Γ.

Here Φ is the matrix given by the coarse level basis functions with minimal energy,
and it is defined by

Φ = RT
ΓΠ −RT

Γ∆

N∑

i=1

(
0 R

(i)T

∆

)( A
(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

)−1(
A

(i)T

ΠI

A
(i)T

Π∆

)
R

(i)
Π .

The coarse level problem matrix SΠ is determined by
(2.4)

SΠ =
∑N

i=1 R
(i)T

Π



A

(i)
ΠΠ −

(
A

(i)
ΠI A

(i)
Π∆

)( A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

)−1(
A

(i)T

ΠI

A
(i)T

Π∆

)
R

(i)
Π ,

which is obtained by assembling subdomain matrices; for additional details, cf. [3, 7,
5].

We know that, under certain assumptions, for any uΓ ∈ ŴΓ,

(2.5) uT
ΓMuΓ ≤ uT

Γ R̃
T
Γ S̃ΓR̃ΓuΓ ≤ C (1 + log(H/h))2 uT

ΓMuΓ.

This can be established directly by using methods very similar to those of certain
studies of the FETI-DP algorithms. Denote by ED and PD, the average and jump

operators (see [10, Formula (6.4) and (6.38)]), on the space W̃Γ, respectively. Central
to obtaining the condition number estimate for the preconditioned two-level BDDC
operator is a bound for the ED operators (see [8, Theorem 25]). Since ED + PD = I
(see [10, Lemma 6.10]), we only need to find a bound for the PD operator. [10, Lemma
6.36] gives a bound for the PD operator under the assumptions [10, Assumption 4.3.1]
for the triangulation and [10, Assumption 6.27.2] for the coefficient ρ(x) of (2.1).

3. A three-level BDDC method. For the three-level cases, as in [11], we will
not factor the coarse problem matrix SΠ defined in (2.4) by a direct solver. Instead,
we will solve the coarse problem approximately by using ideas similar to those for the
two-level preconditioners.

We decompose Ω into N subregions Ωj with diameters Ĥj, j = 1, · · · , N . Each
subregion Ωj is the union of Nj subdomains Ωj

i with diameters Hj
i . Let Ĥ = maxj Ĥ

j

4



and H = maxi,j H
j
i , for j = 1, · · · , N , and i = 1, · · · , Nj . We introduce the

subregional Schur complement

S
(j)
Π =

Nj∑

i=1

R
(i)T

Π



A

(i)
ΠΠ −

(
A

(i)
ΠI A

(i)
Π∆

)( A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

)−1(
A

(i)T

ΠI

A
(i)T

Π∆

)
R

(i)
Π ,

and note that the coarse problem matrix SΠ can be assembled from the S
(j)
Π .

Let Γ̂ be the interface between the subregions; Γ̂ ⊂ Γ. We denote the vector space

corresponding to the subdomain edge average variables in Ωi, by W
(i)
c . Each W

(i)
c

can be decomposed into a subregion interior part W
(i)

c,bI and a subregion interface

part W
(i)

c,bΓ, i.e., W
(i)
c = W

(i)

c,bI
⊕

W
(i)

c,bΓ , where the subregion interface part W
(i)

c,bΓ
can be further decomposed into a primal subspace W

(i)

c,bΠ and a dual subspace W
(i)

c,b∆,

i.e., W
(i)

c,bΓ = W
(i)

c,bΠ
⊕

W
(i)

c,b∆ . We denote the associated product spaces by Wc :=
∏N

i=1 W
(i)
c , Wc,bΓ :=

∏N
i=1 W

(i)

c,bΓ, Wc,b∆ :=
∏N

i=1 W
(i)

c,b∆, Wc,bΠ :=
∏N

i=1 W
(i)

c,bΠ, and

Wc,bI :=
∏N

i=1 W
(i)

c,bI . Correspondingly, we have Wc = Wc,bI
⊕

Wc,bΓ , and Wc,bΓ =

Wc,bΠ
⊕

Wc,b∆ .We denote by Ŵc the subspace of Wc of functions that are continuous

across Γ̂.
We next introduce an interface subspace W̃c,bΓ ⊂ Wc,bΓ, for which primal con-

straints are enforced. Here, we only consider edge average constraints. We need to
change the variables again for all the local coarse matrices corresponding to the edge

average constraints. The continuous primal subspace is denoted by Ŵc,bΠ. The space

W̃c,bΓ can be decomposed into W̃c,bΓ = Ŵc,bΠ
⊕

Wc,b∆ .

We also denote by Fc,bΓ, F̂c,bΓ, and F̃c,bΓ, the right hand side spaces corresponding

to Wc,Γ, Ŵc,Γ, and W̃c,Γ, respectively, and will use the same restriction, extension,

and scaled restriction operators for Fc,bΓ, F̂Γ, and F̃c,bΓ.

We define our three-level preconditioner M̃−1 by
(3.1)

R̃T
D,Γ



R

T
Γ∆




N∑

i=1

(
0 R

(i)T

∆

)(
A

(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

)−1(
0

R
(i)
∆

)
RΓ∆ + ΦS̃−1

Π ΦT



 R̃D,Γ,

cf. (2.3), where S̃−1
Π is an approximation of S−1

Π and is defined as follows: given

Ψ ∈ F̂c,bΓ, let y = S−1
Π Ψ and ỹ = S̃−1

Π Ψ. Here Ψ =
(
Ψ

(1)
bI , · · · ,Ψ

(N)
bI ,ΨbΓ

)T

,

y =
(
y

(1)
bI , · · · ,y

(N)
bI ,ybΓ

)T

, and ỹ =
(
ỹ

(1)
bI , · · · , ỹ

(N)
bI , ỹbΓ

)T

.

To solve SΠy = Ψ by block factorization in the two-level case, we can write

(3.2)


S
(1)
ΠbI bI

· · · · · · S
(1)T

ΠbΓbI
R̂

(1)
bΓ

...
. . .

...
...

· · · · · · S
(N)
ΠbI bI

S
(N)T

ΠbΓ bI
R̂

(N)
bΓ

R̂
(1)T

bΓ S
(1)
ΠbΓbI

· · · R̂
(N)T

bΓ S
(N)
ΠbΓbI

∑N
i=1 R̂

(i)T

Γ S
(i)
ΠbΓbΓ

R̂
(i)
bΓ







y
(1)
bI
...

y
(N)
bI
ybΓ




=




Ψ
(1)
bI
...

Ψ
(N)
bI

ΨbΓ



.
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We have

(3.3) y
(i)
bI = S

(i)−1

ΠbI bI

(
Ψ

(i)
bI − S

(i)
ΠbIbΓ

R̂
(i)
bΓ ybΓ

)
,

and
(

N∑

i=1

R̂
(i)T

bΓ (S
(i)
ΠbΓbΓ

− S
(i)
ΠbΓ bI

S
(i)−1

ΠbI bI
S

(i)T

ΠbΓbI
)R̂

(i)
bΓ

)
ybΓ = ΨbΓ −

N∑

i=1

R̂
(i)T

bΓ S
(i)
ΠbΓbI

S
(i)−1

ΠbI bI
Ψ(i).

In the three-level BDDC algorithm, we need to introduce several restriction, ex-
tension, and scaling operators between different subregion spaces. The restriction

operator R̂
(i)
bΓ maps a vector of the space Ŵc,bΓ to a vector of the subdomain subspace

W
(i)
c,Γ. Each column of R̂

(i)
bΓ with a nonzero entry corresponds to an interface node,

x ∈ ∂Ωi ∩ Ωj , shared by the subregion Ωi and certain neighboring subregions. R̂
(i)

bΓ
is similar to R̂

(i)
bΓ which represents the restriction from W̃c,bΓ to W

(i)

c,bΓ. R̂
(i)
b∆ is the

restriction matrix which extracts the subregion part, in the space W
(i)

c,b∆, of the func-

tions in the space Wc,b∆. Multiplying each such element of R̂
(i)
bΓ , R̂

(i)

bΓ , and R̂
(i)
b∆ with

δ̂†i (x) gives us R̂
(i)
bD,bΓ, R̂

(i)

bD,bΓ, and R̂
(i)
bD,b∆, respectively. Here, we define δ̂†i (x) as follows:

for γ ∈ [1/2,∞), δ̂†i (x) =
ργ

i (x)P
j∈Nx

ργ
j (x)

, x ∈ ∂Ωi
H ∩ Γ̂H , where Nx is the set of indices

j of the subdomains such that x ∈ ∂Ωj
H and ρj(x) is the coefficient of (2.1) at x in

the subregion Ωj . (In our theory, we assume the ρi are constant in the subregions.)

Furthermore, R̂bΓb∆ and R̂bΓbΠ are the restriction operators from the space W̃c,bΓ onto its

subspace Wc,b∆ and Wc,bΠ respectively. R̂bΓ : Ŵc,bΓ → Wc,bΓ and R̂bΓ : W̃c,bΓ → Wc,bΓ

are the direct sum of R̂
(i)
bΓ and R̂

(i)

bΓ , respectively.
̂̃
RbΓ : Ŵc,Γ → W̃c,bΓ is the direct sum

of R̂bΓbΠ and the R̂
(i)
b∆ R̂bΓb∆. The scaled operators R̂ bD,bΓ and R̂ bD,b∆ are the direct sums

of R̂
(i)
bD,bΓ and R̂

(i)
bD,b∆.

̂̃
R bD,bΓ is the direct sum of R̂bΓbΠ and R̂ bD,b∆R̂bΓb∆.

Let T (i) = S
(i)
ΠbΓbΓ

− S
(i)
ΠbΓbI

S
(i)−1

ΠbI bI
S

(i)T

ΠbΓ bI
and T = diag(T (1), · · · , T (N)). We then intro-

duce a partial assembled Schur complement of SΠ, T̃ : W̃c,bΓ → F̃c,bΓ by

(3.4) T̃ = R̂
T

bΓT R̂bΓ,

and define hbΓ ∈ F̂c,bΓ, by

(3.5) hbΓ = ΨbΓ −
N∑

i=1

R̂
(i)T

bΓ S
(i)
ΠbΓ bI

S
(i)−1

ΠbI bI
Ψ(i).

The reduced subregion interface problem can be written as: find ybΓ ∈ Ŵc,bΓ, such that

(3.6)
̂̃
R

T

bΓ T̃
̂̃
RbΓybΓ = hbΓ.

When using the three-level preconditioner M̃−1, we do not solve (3.6) exactly.
Instead, we replace ybΓ by

(3.7) ỹbΓ =
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓhbΓ.
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We will maintain the same relation between ỹ
(i)
bI and ỹ

(i)
bΓ , i.e.,

(3.8) ỹ
(i)
bI = S

(i)−1

ΠbI bI

(
Ψ

(i)
bI − S

(i)
ΠbI bΓ

R̂
(i)
bΓ ỹbΓ

)
.

4. Some auxiliary results. In this section, we will collect a number of results
which are needed in our theory. In order to avoid a proliferation of constants, we
will use the notation A ≈ B. This means that there are two constants c and C,
independent of any parameters, such that cA ≤ B ≤ CA, where C < ∞ and c > 0.
For the definition of discrete harmonic functions, see [10, Section 4.4].

Lemma 4.1. Let D be a cube with vertices A1 = (0, 0, 0), B1 = (H, 0, 0), C1 =
(H,H, 0), D1 = (0, H, 0), A2 = (0, 0, H), B2 = (H, 0, H), C2 = (H,H,H) and
D2 = (0, H,H) with a quasi-uniform triangulation of mesh size h. Then, there exists
a discrete harmonic function v defined in D such that v̄A1B1 ≈ 1+log H

h , where v̄A1B1

is the average of v over the edge A1B1, |v|2H1(D) ≈ H
(
1 + log H

h

)
, and v has a zero

average over the other edges.
Proof: This lemma follows from a result by Brenner and He [1, Lemma 4.2]: let

N be an integer and GN the function defined on (0, 1) by

GN (x) =

N∑

n=1

(
1

4n− 3
sin ((4n− 3)πx)

)
.

GN (x) is even with respect to the midpoint of (0, 1), where it attains its maximum
in absolute value. Moreover, we have:

|GN |2
H

1/2
00 (0,1)

≈ 1 + logN and ‖GN‖L2(0,1) ≈ 1;

see [1, Lemma 3.7].
Let [−H, 0] and [0, H ] have a mesh inherited from the quasi-uniform meshes on

D1A1 and A1B1, respectively, and let gh(x) be the nodal interpolation of GN (x+H
2H ).

Then, we have ‖gh‖L∞(−H,H) ≈ 1 + log H
h ,

(4.1) |gh|
2

H
1/2
00 (−H,H)

≈ 1 + log
H

h
and ‖gh‖L2(−H,H) ≈ H ;

see [1, Lemma 3.7] or [11, Lemma 1].
Let τh(x) be a function on [0, H ] defined as follows:

τh(x) =





x
h1

0 ≤ x ≤ h1,

1 h1 ≤ x ≤ H − h2,
H−x

h2
H − h2 ≤ x ≤ H,

where h1 and h2 are the lengths of the two end intervals.
Then the following estimates hold:

(4.2) ‖τh‖
2
L2(0,H) ≈ H and |τh|

2

H
1/2
00 (0,H)

≈ 1 + log
H

h
;

see [1, Lemma 3.6].
Define the discrete harmonic function v as 0 on the boundary of D except two

open faces A1B1C1D1 and A1B1B2A2. It is defined on these two faces by

v(x1, x2, 0) = gh(x2)τh(x1), for (x1, x2) ∈ A1B1C1D1,
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v(x1, 0, x3) = gh(−x3)τh(x1), for (x1, x3) ∈ A1B1B2A2.

It is clear that v̄A1B1 ≈ 1 + log H
h and that v has a zero average over the other edges.

Since v is discrete harmonic in D, we have,

|v|2H1(D) = |v|2H1/2(∂D)

≈ |gh|
2

H
1/2
00 (−H,H)

‖τh‖
2
L2(0,H) + |τh|

2

H
1/2
00 (0,H)

‖gh‖
2
L2(−H,H)

≈ H

(
1 + log

H

h

)
,

where we have used (4.1), (4.2), and [1, Corollary 3.5].

2

Remark: In Lemma 4.1, we have constructed the function v for a cube D. By
using similar ideas, we can construct functions v for other shape-regular polyhedra
which will satisfy the same properties and bounds.

Lemma 4.2. Let Ωi
j be the subdomains in a subregion Ωi, j = 1, · · · , Ni, and

V h
i,j be the standard continuous piecewise trilinear finite element function space in

the subdomain Ωi
j with a quasi-uniform fine mesh with mesh size h. Denote by Ek,

k = 1 · · ·Kj, the edges of the subdomain Ωi
j. Given the average values of u, ūEk

, over

each edge, let u ∈ V h
i,j be the discrete V h

i,j-harmonic extension in each subdomain Ωi
j

with the average values given on the edges of Ωi
j, j = 1, · · · , Ni. Then, there exist two

positive constants C1 and C2, which are independent of Ĥ, H, and h, such that

C1

(
1 + log

H

h

)


Ni∑

j=1

|u|2H1(Ωi
j)


 ≤

Ni∑

j=1

Kj∑

k1,k2=1

H |ūEk1
− ūEk2

|2

≤ C2

(
1 + log

H

h

)


Ni∑

j=1

|u|2H1(Ωi
j)


 .

Proof: Without loss of generality, we assume that the subdomains are hexahedral.
Denote the edges of the subdomain Ωi

j by Ek, k = 1, · · · , 12, and denote the average
values of u over these twelve edges by ūEk

, k = 1, · · · , 12, respectively.

According to Lemma 4.1, we can construct eleven discrete harmonic functions
φm, m = 2, · · · , 12, on Ωi

j such that

(φm)Ek
=

{
(ūEm − ūE1) (1 + log H

h ) m = k,
0 m 6= k,

and with

(4.3) |φm|2H1(Ωi
j) ≈ (ūEm − ūE1)

2
H(1 + log

H

h
), m = 2, · · · , 12.

Let vj = 1
1+log H

h

(∑12
m=2 φm

)
+ ūE1 ; we then have (v̄j)Ek

= ūEk
, for k = 1, · · · , 12,
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and

|vj |
2
H1(Ωi

j) = |
1

1 + log H
h

(
12∑

m=2

φm

)
+ ūE1 |

2
H1(Ωi

j)

=

(
1

1 + log H
h

)2

|
12∑

m=2

φm|2H1(Ωi
j) ≤ 11

(
1

1 + log H
h

)2 12∑

m=2

|φm|2H1(Ωi
j)

≤

(
1

C
1/2
1 (1 + log H

h )

)2

H

(
1 + log

H

h

) 12∑

m=2

(ūEm − ūE1)
2

≤
1

C1(1 + log H
h )

12∑

k=1

H(ūEk
− ūE1)

2.

Here, we have used (4.3) for the penultimate inequality.
By the definition of u, we have,

|u|2H1(Ωi
j) ≤ |vj |

2
H1(Ωi

j)
≤

1

C1(1 + log H
h )

12∑

k=1

H(ūEk
− ūE1)

2.

Summing over all the subdomains in the subregion Ωi, we have,

C1

(
1 + log

H

h

)


Ni∑

j=1

|u|2H1(Ωi
j)


 ≤

Ni∑

j=1

12∑

k=1

H(ūEk
− ūE1)

2.

This proves the first inequality.
We prove the second inequality as follows:

Ni∑

j=1

12∑

k=1

H(ūEk
− ūE1)

2 =

Ni∑

j=1

12∑

k=1

H |(u− ūE1)Ek
|2

≤ C2




Ni∑

j=1

H
1

H
‖u− ūE1‖

2
L2(Ek)


 ≤ C2




Ni∑

j=1

(1 + log
H

h
)|u|2H1(Ωi

j)




≤ C2

(
1 + log

H

h

)


Ni∑

j=1

|u|2H1(Ωi
j)


 .

Here, we have used a standard finite element Sobolev inequality, see [10, Lemma
4.30] for the second inequality and [10, Lemma 4.16] for the penultimate inequality.

We complete the proof of the second inequality by using the triangle inequality.
2

We now introduce a new mesh on each subregion; we follow [2, 9]. The purpose
for introducing this new mesh is to relate the quadratic form of Lemma 4.2 to one for
a more conventional finite element space.

Given a subregion Ωi and subdomains Ωi
j , j = 1, · · · , Ni, let T be a quasi-uniform

sub-triangulation of Ωi such that its set of the vertices include the vertices and the
midpoints of edges of Ωi

j . For the hexahedral case, we decomposed each hexahedron
into 8 hexahedra by connecting the midpoints of edges. We then partition the vertices
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in the new mesh T into two sets. The midpoints of edges are called primal and the
others are called secondary. We call two vertices in the triangulation T adjacent if
there is an edge of T between them, as in the standard finite element context.

Let UH(Ω) be the continuous piecewise trilinear finite element function space with
respect to the new triangulation T . For a subregion Ωi, UH(Ωi) and UH(∂Ωi) are
defined as restrictions:

UH(Ωi) = {u|Ωi : u ∈ UH(Ω)}, UH(∂Ωi) = {u|∂Ωi : u ∈ UH(Ω)}.

We define a mapping IΩi

H of any function φ, defined at the primal vertices in Ωi,
to UH(Ωi) by
(4.4)

IΩi

H φ(x) =





φ(x), if x is a primal node;

the average of the values at all adjacent primal nodes
on the edges of Ωi, if x is a vertex of Ωi;

the average of the values at two adjacent primal nodes
on the same edge of Ωi, if x is an edge secondary node of Ωi;

the average of the values at all adjacent primal nodes on the
boundary of Ωi, if x is a face secondary boundary node of Ωi;

the average of the values at all adjacent primal nodes
if x is a interior secondary node of Ωi;

the result of trilinear interpolation using the vertex values,
if x is not a vertex of T .

We recall that W
(i)
c is the discrete space of the values at the primal nodes given

by the subdomain edge average values. IΩi

H can be considered as a map from W
(i)
c to

UH(Ωi) or as a map from UH(Ωi) to UH(Ωi).

Let I∂Ωi

H be the mapping of a function φ defined at the primal vertices on the

boundary of Ωi to UH(∂Ωi) and defined by I∂Ωi

H φ = (IΩi

H φe)|∂Ωi , where φe is any

function in W
(i)
c such that φe|∂Ωi = φ. The map is well defined since the boundary

values of IΩi

H φe only depend on the boundary values of φe.
Finally, let

ŨH(Ωi) = {ψ = IΩi

H φ, φ ∈ UH(Ωi)}, ŨH(∂Ωi) = {ψ|∂Ωi , ψ ∈ ŨH(Ωi)}.

I∂Ωi

H also can be considered as a map from W
(i)

c,bΓ to ŨH(∂Ωi).

Remark: We carefully define the IΩi

H and I∂Ωi

H so that, if the edge averages of wi ∈

W
(i)

c,bΓ and wj ∈ W
(j)

c,bΓ over an edge E are the same, we have (I∂Ωi

H wi)E = (I∂Ωj

H wj)E .

Here we need to use a weighted average which has a smaller weight at the two end
points. But this will not effect our analysis. We could also define a weighted edge

average of wi and wj and obtain (I∂Ωi

H wi)E = (I∂Ωj

H wj)E for the usual average.
We list some useful lemmas from [2]. For the proofs of Lemma 4.3 and Lemma

4.4, see [2, Lemma 6.1 and Lemma 6.2], respectively.
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Lemma 4.3. There exists a constant C > 0, independent of H and |Ωi|, the
volume of Ωi, such that

|IΩi

H φ|H1(Ωi) ≤ C|φ|H1(Ωi) and ‖IΩi

H φ‖L2(Ωi) ≤ C‖φ‖L2(Ωi), ∀φ ∈ UH(Ωi).

Lemma 4.4. For φ̂ ∈ ŨH(∂Ωi),

inf
φ∈eUH(Ωi),φ|∂Ωi=φ̂

‖φ‖H1(Ωi) ≈ ‖φ̂‖H1/2(∂Ωi),

inf
φ∈eUH (Ωi),φ|∂Ωi=φ̂

|φ|H1(Ωi) ≈ |φ̂|H1/2(∂Ωi).

Lemma 4.5. There exist constants C1 and C2 > 0, independent of Ĥ, H, h, and

the coefficient of (2.1) such that for all wi ∈W
(i)

c,bΓ,

ρiC1|I
∂Ωi

H wi|
2
H1/2(∂Ωi) ≤

(
1 + log

H

h

)
(T (i)wi, wi) ≤ ρiC2|I

∂Ωi

H wi|
2
H1/2(∂Ωi),

where (T (i)wi, wi) = wT
i T

(i)wi = |wi|2T (i) and T (i) = S
(i)
ΠbΓbΓ

− S
(i)
ΠbΓ bI

S
(i)−1

ΠbI bI
S

(i)T

ΠbΓbI
.

Proof: By the definition of T (i), we have
(

1 + log
H

h

)
(T (i)wi, wi) =

(
1 + log

H

h

)
inf

v∈W
(i)
c ,v|∂Ωi=wi

|v|2
S

(i)
Π

= inf
v∈W

(i)
c ,v|∂Ωi=wi

ρi

(
1 + log

H

h

)


Ni∑

j=1

inf
u∈V h

i,j ,ūE=v,E⊂∂Ωi
j

|u|2H1(Ωi
j)




≈ inf
v∈W

(i)
c ,v|∂Ωi=wi

ρi

Ni∑

j=1

Kj∑

k1,k2=1

H |v̄Ek1
− v̄Ek2

|2

≈ inf
v∈W

(i)
c ,v|∂Ωi=wi

ρi|I
Ωi

H v|2H1(Ωi) ≈ inf
φ∈eUH(Ωi),φ|∂Ωi=I∂Ωi

H wi

ρi|φ|
2
H1(Ωi)

≈ ρi|I
∂Ωi

H wi|H1/2(∂Ωi).

We use Lemma 4.2 for the third bound, the definitions of IΩi

H and I∂Ωi

H for the fourth
and fifth bounds, and Lemma 4.4 for the final one.

2

To be fully rigorous, we assume that there is a quasi-uniform coarse triangulation
of each subregion. We can then obtain uniform constants C1 and C2 in Lemma 4.5,
which work for all the subregions.

We define the interface averages operator Ê bD on W̃c,bΓ as Ê bD =
̂̃
RbΓ
̂̃
R

T

bD,bΓ,which

computes the averages across the subregion interface Γ̂ and then distributes the av-
erages to the boundary points of the subregions.

The interface average operator Ê bD has the following property:
Lemma 4.6.

|Ê bDwbΓ|
2
eT ≤ C

(
1 + log

Ĥ

H

)2

|wbΓ|
2
eT ,
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for any wbΓ ∈ W̃c,bΓ, where C is a positive constant independent of Ĥ, H, h, and the

coefficients of (2.1). Here T̃ is define in (3.4).

Proof: Let wi = R̂
(i)

bΓ wbΓ ∈ W
(i)

c,bΓ. We rewrite the formula for v := wbΓ − ÊbΓwbΓ for

an arbitrary element wbΓ ∈ W̃c,bΓ, and find that for i = 1, · · · , N ,

(4.5) vi(x) := (wbΓ(x) − ÊbΓwbΓ(x))i =
∑

j∈Nx

δ†j (wi(x) − wj(x)), x ∈ ∂Ωi ∩ Γ̂.

Here Nx is the set of indices of the subregions that have x on their boundaries.
We have

|Ê bDwbΓ|
2
eT =

N∑

i=1

|wi − vi|
2
T (i) ≤ 2

N∑

i=1

|wi|
2
T (i) + 2

N∑

i=1

|vi|
2
T (i) and |wbΓ|

2
eT =

N∑

i=1

|wi|
2
T (i) .

We can therefore focus on the estimate of the contribution from a single subregion Ωi

and proceed as in the proof of [10, Lemma 6.36].
We will also use the simple inequality

(4.6) ρiδ
†2

j ≤ min(ρi, ρj), for γ ∈ [1/2,∞).

By Lemma 4.5,

(4.7) (T (i)vi, vi) ≤ C2
1

(1 + log H
h )
ρi|I

∂Ωi

H (vi)|
2
H1/2(∂Ωi).

Let Li = I∂Ωi

H (vi). We have, by using a partition of unity as in [10, Lemma 6.36],

Li =
∑

F⊂∂Ωi

IH(θFLi) +
∑

E⊂∂Ωi

IH(θELi) +
∑

V∈∂Ωi

θVLi(V),

where IH is the nodal piecewise linear interpolant on the coarse mesh T . We note
that the analysis for face and edge terms is almost identical to that in [10, Lemma

6.36]. But the vertex terms are different because of I∂Ωi

H . We only need to consider
the vertex term when two subregion share at least an edge. This make the analysis
simpler than in the proof of [10, Lemma 6.36].

Face Terms. First consider,

IH(θFLi) = IH(θFI
∂Ωi

H (δ†j (wi − wj))).

Similar to [10, Lemma 6.36], we obtain, by using (4.6),

(4.8)

ρi|I
H(θFI

∂Ωi

H (δ†j (wi − wj)))|
2
H1/2(∂Ωi)

= ρiδ
†2

j |IH(θFI
∂Ωi

H (wi − wj))|
2
H1/2(∂Ωi)

≤ min(ρi, ρj)|I
H(θF ((I∂Ωi

H wi − (I∂Ωi

H wi)F ) − (I∂Ωi

H wj − (I∂Ωi

H wj)F ) +

((I∂Ωi

H wi)F − (I∂Ωi

H wj)F )))|2H1/2(∂Ωi)

≤ 3 min(ρi, ρj)
(
|IH(θF (I∂Ωi

H wi − (I∂Ωi

H wi)F))|2H1/2(∂Ωi)+

|IH(θF (I∂Ωi

H wj − (I∂Ωi

H wj)F ))|2H1/2(∂Ωi)+

|θF((I∂Ωi

H wi)F − (I∂Ωi

H wj)F )|2H1/2(∂Ωi)

)
.
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By the definition of I∂Ωi

H ,

IH(θF (I∂Ωi

H wj)) = IH(θF (I∂Ωj

H wj)) and (I∂Ωi

H wj)F = (I∂Ωj

H wj)F .

By [10, Lemma 4.26], the first and second terms in (4.8) can be estimated as
follows:

min(ρi, ρj)(|I
H(θF (I∂Ωi

H wi − (I∂Ωi

H wi)F ))|2H1/2(∂Ωi) +

|IH(θF (I∂Ωi

H wj − (I∂Ωi

H wj)F ))|2H1/2(∂Ωi))

= min(ρi, ρj)(|I
H(θF (I∂Ωi

H wi − (I∂Ωi

H wi)F ))|2H1/2(∂Ωi) +

|IH(θF (I∂Ωj

H wj − (I∂Ωj

H wj)F ))|2H1/2(∂Ωi))

≤ C

(
1 + log

Ĥ

H

)2 (
ρi|I

∂Ωi

H wi|
2
H1/2(∂Ωi) + ρj |I

∂Ωj

H wj |
2
H1/2(∂Ωj)

)
.

Let E ⊂ ∂F . Since the edge averages of wi and wj are the same, by the definition

of I∂Ωi

H and I∂Ωj

H , we have (I∂Ωi

H wi)E = (I∂Ωj

H wj)E . As we have pointed out before,
we use the weighted average which has a smaller weight at the two end points.

We then have

|(I∂Ωi

H wi)F − (I∂Ωj

H wj)F )|2

≤ 2
(
|(I∂Ωi

H wi)E − (I∂Ωi

H wi)F |
2 + |(I∂Ωj

H wj)E − (I∂Ωj

H wj)F |
2
)
.

(4.9)

It is sufficient to consider the first term on the right hand side. Using [10, Lemma
4.30], we find

|(I∂Ωi

H wi)E − (I∂Ωi

H wi)F |
2

= |(I∂Ωi

H wi − (I∂Ωi

H wi)F)E |
2 ≤ C/Ĥi‖I

∂Ωi

H wi − (I∂Ωi

H wi)F‖
2
L2(E),

and, by using [10, Lemma 4.17] and the Poincaré inequality given as [10, Lemma
A.17],

|(I∂Ωi

H wi)E − (I∂Ωi

H wi)F |
2 ≤ C/Ĥi

(
1 + log

Ĥ

H

)
|I∂Ωi

H wi − (I∂Ωi

H wi)F |
2
H1/2(F).

Combining this with the bound for θF in [10, Lemma 4.26], we have:

min(ρi, ρj)|θF ((I∂Ωi

H wi)F − (I∂Ωi

H wj)F )|2H1/2(∂Ωi)

≤ C

(
1 + log

Ĥ

H

)2 (
ρi|I

∂Ωi

H wi|
2
H1/2(∂Ωi) + ρj |I

∂Ωj

H wj |
2
H1/2(∂Ωj)

)
.

Edge Terms. We can develop the same estimate as in [10, Lemma 6.34]. For
simplicity, we only consider an edge E common to four subregions Ωi, Ωj , Ωk, and Ωl.

ρi|I
H(θELi)|

2
H1/2(∂Ωi)

≤ ρi

(
|IH(θEI

∂Ωi

H (δ†j (wi − wj)))|
2
H1/2(∂Ωi)+

|IH(θEI
∂Ωi

H (δ†k(wi − wk)))|2H1/2(∂Ωi) + |IH(θEI
∂Ωi

H (δ†l (wi − wl)))|
2
H1/2(∂Ωi)

)
.(4.10)
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We recall that δ†j , δ
†
k, and δ†l are constants.

By the definition of I∂Ωi

H , I∂Ωj

H , I∂Ωk

H , and I∂Ωl

H , we have

θE(I∂Ωi

H wj) = θE(I∂Ωj

H wj), θE(I∂Ωi

H wk) = θE(I∂Ωk

H wk), θE(I∂Ωi

H wl) = θE(I∂Ωl

H wl),

and,

(I∂Ωi

H wi)E = (I∂Ωj

H wj)E = (I∂Ωk

H wk)E = (I∂Ωl

H wl)E .

We assume that Ωi shares a face with Ωj as well as Ωl, and shares an edge only
with Ωk.

We consider the second term in (4.10) first. By [10, Lemmas 4.19 and 4.17], and
(4.6), we have

ρi|I
H(θEI

∂Ωi

H (δ†k(wi − wk)))|2H1/2(∂Ωi)

≤ Cρiδ
†2

k ‖IH(θE (I∂Ωi

H wi − (I∂Ωi

H wi)E) − θE(I∂Ωk

H wk − (I∂Ωk

H wk)E))‖2
L2(E)

≤ 2C
(
ρi‖I

H(θE(I∂Ωi

H wi − (I∂Ωi

H wi)E ))‖2
L2(E)+

ρk‖I
H(θE(I∂Ωk

H wk − (I∂Ωk

H wk)E))‖2
L2(E)

)

≤ 2C
(
ρi‖I

∂Ωi

H wi − (I∂Ωi

H wi)E‖
2
L2(E) + ρk‖I

∂Ωk

H wk − (I∂Ωk

H wk)E‖
2
L2(E)

)

≤ 2C

(
1 + log

Ĥ

H

)(
ρi|I

∂Ωi

H wi|
2
H1/2(Fi) + ρk|I

∂Ωk

H wk|
2
H1/2(Fk)

)

≤ 2C

(
1 + log

Ĥ

H

)(
ρi|I

∂Ωi

H wi|
2
H1/2(∂Ωi) + ρk|I

∂Ωk

H wk|
2
H1/2(∂Ωk)

)
,

where F i is a face of Ωi and Fk is a face of Ωk, and F i and Fk share the edge E .
The first term and the third term can be estimated similarly.
Vertex Terms. We can do the estimate similarly to that of the proof in [10,

Lemma 6.36]. We have

(4.11) ρi|θVLi(V)|2H1/2(∂Ωi)
= ρi|θV(I∂Ωi

H vi)(V)|2H1/2(∂Ωi)
.

By (4.5) and the definition of I∂Ωi

H , we see that (I∂Ωi

H vi)(V) is nonzero only when
two subregions share one or several edges with a common vertex V .

In the definition of IΩi

H , we denote by Ei,m, m = 1, 2, 3 · · · , the edges in Ωi which
share V . Denote by vi,m the primal nodes on the edges Ei,m which are adjacent to V .

By the definition of IΩi

H , (4.11), and |θV |2H1/2(∂Ωi)
≤ CHi, we have,

ρi|θV(I∂Ωi

H vi)(V)|2H1/2(∂Ωi) ≤ Cρi|
∑

m

vi(vi,m)|2|θV |
2
H1/2(∂Ωi)

≤ CρiHi

∑

m

|vi(vi,m)|2.(4.12)

Let us look at the first term in (4.12), the other terms can be estimated in the
same way.
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ρiHi|vi(vi,1)|
2

= ρiHi|
∑

j,Ei,1⊂Ωj

δ†j (wi(vi,1) − wj(vi,1))|
2

≤ C
∑

j,Ei,1⊂Ωj

min(ρi, ρj)Hi|wi(vi,1) − wj(vi,1))|
2

= C
∑

j,Ei,1⊂Ωj

min(ρi, ρj)Hi|I
∂Ωi

H wi(vi,1) − I∂Ωj

H wj(vi,1)|
2

≤ C
∑

j,Ei,1⊂Ωj

min(ρi, ρj)Hi

(
|I∂Ωi

H wi(vi,1) − (I∂Ωi

H wi)Ei,1 |
2+

|I∂Ωj

H wj(vi,1) − (I∂Ωj

H wj)Ei,1 |
2
)

≤ C
∑

j,Ei,1⊂Ωj

min(ρi, ρj)
(
Hi|

(
I∂Ωi

H wi − (I∂Ωi

H wi)Ei,1

)
(vi,1)|

2+

Hi|
(
I∂Ωj

H wj − (I∂Ωj

H wj)Ei,1

)
(vi,1)|

2
)

≤ C
∑

j,Ei,1⊂Ωj

min(ρi, ρj)
(
‖I∂Ωi

H wi − (I∂Ωi

H wi)Ei,1‖
2
L2(Ei,1)

+

‖I∂Ωj

H wj − (I∂Ωj

H wj)Ei,1‖
2
L2(Ei,1)

)

≤ C
∑

j,Ei,1⊂Ωj

(
1 + log

Ĥ

H

)(
ρi|I

∂Ωi

H wi|
2
H1/2(∂Ωi) + ρj |I

∂Ωj

H wj |
2
H1/2(∂Ωi)

)
.

For the third equality, we use here that vi,1 is a primary node. For the fourth inequal-

ity, we use that (I∂Ωi

H wi)Ei,1 = (I∂Ωj

H wj)Ei,1 . We use [10, Lemmas B.5] for the sixth
inequality and [10, Lemma 4.17] for the last inequality.

Combining all face, edge, and vertex terms, we obtain

(4.13) ρi|I
∂Ωi

H (vi)|
2
H1/2(∂Ωi) ≤ C

(
1 + log

Ĥ

H

)2 ∑

j:∂Ωj∩∂Ωi 6=∅

ρj |I
∂Ωi

H (wj)|
2
H1/2(∂Ωj).

Using (4.13), Lemma 4.5 and (4.7), we obtain

(T (i)vi, vi) = |vi|
2
T (i) ≤ C2

1

(1 + log H
h )
ρi|I

∂Ωi

H (vi)|
2
H1/2(∂Ωi)

≤ CC2

(
1 + log Ĥ

H

)2

(1 + log H
h )

∑

j:∂Ωj∩∂Ωi 6=∅

ρj |I
∂Ωi

H (wj)|
2
H1/2(∂Ωj)

≤ C
C2

C1

(
1 + log

Ĥ

H

)2 ∑

j:∂Ωj∩∂Ωi 6=∅

(T (j)wj , wj)

= C
C2

C1

(
1 + log

Ĥ

H

)2 ∑

j:∂Ωj∩∂Ωi 6=∅

|wj |
2
T (j) .
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2

Lemma 4.7. Given any uΓ ∈ ŴΓ, let Ψ = ΦT R̃D,ΓuΓ. We have,

ΨTS−1
Π Ψ ≤ ΨT S̃−1

Π ΨT ≤ C

(
1 + log

Ĥ

H

)2

ΨTS−1
Π Ψ.

Proof: Using (3.3), (3.5), and (3.6), we have

(4.14)

ΨTS−1
Π Ψ =

N∑

i=1

Ψ
(i)T

bI y
(i)
bI + ΨT

bΓybΓ

=

N∑

i=1

Ψ
(i)T

bI

(
S

(i)−1

ΠbI bI
(Ψ

(i)
bI − S

(i)
ΠbI bΓ

R̂
(i)
bΓ ybΓ)

)
+

(
hbΓ +

N∑

i=1

R̂
(i)T

bΓ S
(i)
ΠbΓI

S
(i)−1

ΠbI bI
Ψ(i)

)T

ybΓ

=
N∑

i=1

Ψ
(i)T

bI S
(i)−1

ΠbI bI
Ψ

(i)
bI + hT

bΓybΓ =
N∑

i=1

Ψ
(i)T

bI S
(i)−1

ΠbI bI
Ψ

(i)
bI + hT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ.

Using (3.8), (3.5), and (3.7), we also have

ΨT S̃−1
Π Ψ =

N∑

i=1

Ψ
(i)T

bI ỹbI(i) + ΨT
bΓ ỹbΓ

=

N∑

i=1

Ψ
(i)T

bI

(
S

(i)−1

ΠbI bI
(Ψ

(i)
bI − S

(i)
ΠbI bΓ

R̂
(i)
bΓ ỹbΓ)

)
+

(
hbΓ +

N∑

i=1

R̂
(i)T

bΓ S
(i)
ΠbΓbI

S
(i)−1

ΠbI bI
Ψ(i)

)T

ỹbΓ

=

N∑

i=1

Ψ
(i)T

bI S
(i)−1

ΠbI bI
Ψ

(i)
bI + hT

bΓ ỹbΓ =

N∑

i=1

Ψ
(i)T

bI S
(i)−1

ΠbI bI
Ψ

(i)
bI + hT

bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ.

We only need to compare hT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ and hT
bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ for any

hbΓ ∈ F̂c,bΓ. The following estimate is established as [6, Theorem 1]. Let

(4.15) wbΓ =

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ ∈ Ŵc,bΓ and vbΓ = T̃−1 ̂̃R bD,bΓhbΓ ∈ W̃c,bΓ.

Noting the fact that
̂̃
R

T

bΓ
̂̃
R bD,bΓ =

̂̃
R

T

bD,bΓ
̂̃
RbΓ = I and using (4.15), we have,

hT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ = hT
bΓwbΓ = hT

bΓ
̂̃
R

T

bD,bΓ
̂̃
RbΓwbΓ

= hT
bΓ
̂̃
R

T

bD,bΓT̃
−1T̃

̂̃
RbΓwbΓ =

(
T̃−1 ̂̃R bD,bΓhbΓ

)T

T̃
̂̃
RbΓwbΓ

= vT
bΓ T̃
̂̃
RbΓwbΓ =< vbΓ,

̂̃
RbΓwbΓ > eT≤< vbΓ,vbΓ >

1/2
eT <

̂̃
RbΓwbΓ,

̂̃
RbΓwbΓ >

1/2
eT

=

(
hT

bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ

)1/2
(

hT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ

)1/2

.

16



We obtain that

hT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ ≤ hT
bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ.

On the other hand,

hT
bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ = wT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ

= < wbΓ,
̂̃
R

T

bD,bΓ

(
T̃−1 ̂̃R bD,bΓhbΓ

)
>„

beR
T

bΓ
eT beRbΓ

«=< wbΓ,
̂̃
R

T

bD,bΓvbΓ >
„

beR
T

bΓ
eT beRbΓ

«

≤ < wbΓ,wbΓ >
1/2„

beR
T

bΓ
eT beRbΓ

«<
̂̃
R

T

bD,bΓvbΓ,
̂̃
R

T

bD,bΓvbΓ >
1/2„

beR
T

bΓ
eT beRbΓ

«

=

(
hT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ

)1/2

<
̂̃
RbΓ
̂̃
R

T

bD,bΓvbΓ,
̂̃
RbΓ
̂̃
R

T

bD,bΓvbΓ >
1/2
eT

=

(
hT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ

)1/2

|Ê bDvbΓ|eT

≤ C

(
1 + log

Ĥ

H

)(
hT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ

)1/2

|vbΓ|eT

= C

(
1 + log

Ĥ

H

)(
hT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ

)1/2 (
hT

bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ

)1/2

,

where we use Lemma 4.6 for the penultimate inequality.
Finally we obtain that

hT
bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ ≤ C

(
1 + log

Ĥ

H

)2(
hT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ

)
.

2

5. Condition number estimate for the new preconditioner. In order to
estimate the condition number for the system with the new preconditioner M̃−1, we
compare it to the system with the preconditioner M−1.

Lemma 5.1. Given any uΓ ∈ ŴΓ,

(5.1) uT
ΓM

−1uΓ ≤ uT
ΓM̃

−1uΓ ≤ C

(
1 + log

Ĥ

H

)2

uT
ΓM

−1uΓ.

Proof: We have, for any uΓ ∈ ŴΓ,

uT
ΓM

−1uΓ

= uT
Γ R̃

T
D,Γ



R

T
Γ∆

N∑

i=1

(
0 R

(i)T

∆

)(
A

(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

)−1(
0

R
(i)
∆

)
RΓ∆



 R̃D,ΓuΓ

+ uT
Γ R̃

T
D,ΓΦS−1

Π ΦT R̃D,ΓuΓ.
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and

uT
ΓM̃

−1uΓ

= uT
Γ R̃

T
D,Γ



R

T
Γ∆

N∑

i=1

(
0 R

(i)T

∆

)(
A

(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

)−1(
0

R
(i)
∆

)
RΓ∆



 R̃D,ΓuΓ

+ uT
Γ R̃

T
D,ΓΦS̃−1

Π ΦT R̃D,ΓuΓ.

We obtain our result by using Lemma 4.7.

2

Theorem 5.2. The condition number for the system with the three-level precon-

ditioner M̃−1is bounded by C(1 + log Ĥ
H )2(1 + log H

h )2.

Proof: Combining the condition number bound, given in (2.5), for the two-level
BDDC method, and Lemma 5.1, we find that the condition number for the three-level

method is bounded by C(1 + log Ĥ
H )2(1 + log H

h )2.
2

6. Using Chebyshev iterations. Another approach to the three-level BDDC
methods is to use an iterative method with a preconditioner to solve (3.6). Here, we

consider a Chebyshev method with a fixed number of iterations and use
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

as a preconditioner. Denoting the eigenvalues of

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
by λj ,

we need two input parameters l and u, estimates for the minimum and maximum
values of λj , for the Chebyshev iterations. From our analysis above, we know that l =

1 and maxj λj ≤ C(1+log Ĥ
H )2(1+log H

h )2. We can use the conjugate gradient method
to obtain an estimate for the largest eigenvalue at the beginning of the computation
to choose a proper u. Let α = 2

l+u , µ = u+l
u−l , and σj = 1 − αλj . As for the two

dimensional case in [11, Section 6], we have the following theorem. No new ideas are
required.

Theorem 6.1. The condition number using the three-level preconditioner M̂−1

with k Chebyshev iterations is bounded by C C2(k)
C1(k) (1 + log H

h )2, where

C1(k) = min
j

(
1 −

cosh(k cosh−1(µσj))

cosh(k cosh−1(µ))

)

C2(k) = max
j

(
1 −

cosh(k cosh−1(µσj))

cosh(k cosh−1(µ))

)
,

and C2(k)
C1(k) → 1 as k → ∞.

7. Numerical experiments. We have applied our two three-level BDDC algo-
rithms to the model problem (2.1), where Ω = [0, 1]3. We decompose the unit cube

into N̂ × N̂ × N̂ subregions with the side-length Ĥ = 1/N̂ and each subregion into
N×N×N subdomains with the side-length H = Ĥ/N . Equation (2.1) is discretized,
in each subdomain, by conforming piecewise trilinear elements with an element diam-
eter h. The preconditioned conjugate gradient iteration is stopped when the norm of
the residual has been reduced by a factor of 10−6.
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Table 1

Eigenvalue bounds and iteration counts with the preconditioner fM−1 with a change of the

number of subregions, Ĥ

H
= 3 and H

h
= 3

Case 1 Case 2
Num. of Subregions Iter. Cond. # Iter. Cond. #

3 × 3 × 3 9 2.6603 9 2.2559
4 × 4 × 4 10 2.8701 10 2.5245
5 × 5 × 5 11 2.9668 11 2.8074
6 × 6 × 6 11 3.0190 11 2.8477

Table 2

Eigenvalue bounds and iteration counts with the preconditioner fM−1 with a change of the

number of subdomains and the size of subdomain problems with 3× 3× 3 subregions

Case 1 Case 2 Case 1 Case 2
Ĥ
H Iter. Cond. # Iter. Cond. # H

h Iter. Cond. # Iter. Cond. #
3 9 2.6603 9 2.2559 3 9 2.6603 9 2.2559
4 9 3.0446 10 2.5183 4 9 2.7261 10 2.3299
5 10 3.3570 11 2.7782 5 10 2.8381 10 2.4353
6 10 3.6402 11 3.0078 6 10 2.9601 11 2.5488

We have carried out two different sets of experiments to obtain iteration counts
and condition number estimates. All the experimental results are fully consistent with
our theory.

In the first set of experiments, we use the first preconditioner M̃−1. We take
the coefficient ρ ≡ 1 in Case 1. In Case 2, ρ is constant in one direction with a
checkerboard pattern in the cross sections, where we take ρ = 1 or ρ = 100. The coef-
ficients in both cases satisfy [10, Assumption 6.27.2], i.e., for all pairs of subdomains
which have a vertex but not an edge in common, there exists an acceptable edge path
(see [10, Definition 6.26]) between these two subdomains. Table 1 gives the iteration
counts and condition number estimates with a change of the number of subregions.
We find that the condition numbers are independent of the number of subregions.
Table 2 gives results with a change of the number of subdomains and the size of the
subdomain problems.

In the second set of experiments, we use the second preconditioner M̂−1 and take
the coefficient ρ ≡ 1. We use the Preconditioned Conjugate Gradient (PCG) to esti-

mate the largest eigenvalue of

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
, which is approximately

2.3249. For 18 × 18 × 18 subdomains and H
h = 3, we have a condition number esti-

mate of 1.8767 for the two-level preconditioned BDDC operator. We select different
values of u, the upper bound eigenvalue estimate of the preconditioned system, and
k to see how the condition number changes. We take u = 2.3 and u = 3 in Table
3 and 4, respectively. We also evaluate C1(k) for k = 1, 2, 3, 4, 5. From these two
tables, we find that the smallest eigenvalue is bounded from below by C1(k) and the
condition number estimate becomes closer to 1.8767, the value for the two-level case,
as k increases. We also see that if we can get more precise estimate for the largest

eigenvalue of

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
, we need fewer Chebyshev iterations to
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Table 3

Eigenvalue bounds and iteration counts with the preconditioner cM−1, u = 2.3, 3 × 3 × 3

subregions, Ĥ

H
= 6 and H

h
= 3

k Iter. C1(k) λmin λmax Cond. #
1 13 0.6061 0.6167 2.3309 3.7797
2 9 0.9159 0.9255 1.8968 2.0496
3 8 0.9827 1.0000 1.8835 1.8836
4 8 0.9964 1.0016 1.8854 1.8825
5 8 0.9993 1.0009 1.8797 1.8780

Table 4

Eigenvalue bounds and iteration counts with the preconditioner cM−1, u = 3, 3×3×3 subregions,
Ĥ

H
= 6 and H

h
= 3

k Iter. C1(k) λmin λmax Cond. #
1 15 0.5000 0.5093 2.0150 3.9562
2 10 0.8571 0.8678 1.9744 2.2753
3 8 0.9615 0.9900 1.8821 1.9012
4 8 0.9897 1.0015 1.8955 1.8927
5 8 0.9972 1.0020 1.8903 1.8866

get a condition number, close to that of the two-level case. However, the iteration
count is not very sensitive to the choice of u.
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