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Abstract

Compared to other games, particularly chess, the research in computer bridge
is immature, and the best bridge-playing programs are mediocre. In this paper
we address the problem of designing a fast double-dummy bridge game (i.e., a
simplified bridge game with perfect information) solver. Although th size of the
game tree we generated for searching the best line of play is huge (about on the
order of 13!-23° &~ 10%!, even if we assume the average branching factor for players
to follow suit is just 2), we show that , through varieties of searching techniques
and some efficient moves ordering and pruning heuristics, most double-dummy
bridge hands can be solved within a reasonable amount of time. In this paper
we first give a brief introduction to computer bridge and previous work on the
card-playing phase of bridge. Next, we describe the top-level architecture of our
double-dummy solver (dds), followed by a number of implementation techniques
we employed in our dds. Finally we present experimental results, draw our
conclusion and describe some future work toward automating card-playing in

real bridge.

*This research is supported in part by NSF grant #IRI-9300446



1 Introduction

Computer bridge is an interesting and challenging topic for Al researchers. From
the perspective of Al bridge is a game of playing with imperfect information in both
bidding and card-playing stages. During the course of bidding, with only 13 out of 52
cards known and previous bidding history, a decent program might need the abilities
to represent the knowledge of bidding methods and conventions, gather the clues
from both his partner and opponents, encode and decode the information he or his
partner needs in current bid, disguise his hand from his opponents whenever possible,
evaluate all possible final contracts and plan to reach a contract to his team’s most
advantage. When it comes to the course of card-playing, with half of the cards still
unseen initially, the program should evaluate and select the best plan out of a set
of possible lines of play, extract useful information from the cards just been played,
and possess the ability of revising its plan in the light of new information. Unfortu-
nately, all these tasks are difficult even for average human players and seem hard for

computers to model and handle well.

In our research to date, we have skipped the bidding phase of computer bridge
and have assumed perfect information in the card-playing phase. Thus, in this paper
we address the problem of solving double-dummy bridge; Under the assumption of
perfect information (or double-dummy) and optimal play (all players play in a mini-
max way ), our double-dummy solver should be able to suggest a card for the current
player to make the maximal number of tricks for his team. Note that double-dummy
bridge can be considered as a two-person (the declarer and the defender) adversary
game of perfect information — a category of games where the alpha-beta search tech-

niques have been successfully applied to.

Before we go into the details of our dds implementation, let us give a brief review

of previous suggested approaches to the card-playing phase of computer bridge.

¢ By adapting the techniques of automated mathematical theorem proving to
declarative card-playing in bridge, Frank developed a system call FINESSE.
In his system, the basic elements that make up plans are methods instead

of cards. Each method corresponds to a common human player’s tactic (e.g.



finesse, cash, duck) and is expressed as a structure with slots specifying the
preconditions and postconditions of its associated tactic. To construct a plan,
FINESSE tries to combine methods by reasoning about their specification. In
the domain of declarative planning for a single suit, they claim that FINESSE
can suggest the proper lines of play for many example hands bridge texts and

support its decisions with probabilistic and qualitative information [1, 2].

e Gamback proposed the idea of using Al planning methods to construct a global
plan through merging sub-plans that are obtained for each individual suit by
brute-force [3].

e Ginsberg [4] and Levy [5] make similar proposals for card-playing. Suppose we
have a fast double-dummy bridge games solver. Then, in real life bridge (with
only one dummy — NORTH), a reasonable line of play may be constructed by
selecting the plan that works best on average over a number of hands that we

generate according to the bidding history and the opening lead.

Although double-dummy bridge is not real bridge, and the approach to producing
a competent plan by “averaging over” the plans for a number of double-dummy hands
is ambiguous and questionable, we consider the task of designing a fast double-dummy

solver as important to the research of computer bridge for the following reasons:

o A fast dds might not only help us in the phase of card-playing but also in the
phase of bidding — when evaluating different contracts we might reach, a fast

dds tells us the reachability of a contract for any guess of real cards distribution.

e Due to its huge search space, it is challenging and worth our effort to try

reducing the search space to a reasonable level for today’s computing power.

o A fast dds can itself be a valuable tool to justify some common sense among

bridge players through statistical simulation.

e Double-dummy bridge is itself a simplified version of real bridge. If we couldn’t
solve it within reasonable amount of time, then how could we expect an expert-

level card-playing program?

e The best way to justify Levy’s or Ginsberg’s proposed mechanism of card-

playing in computer bridge is to implement and test it.



2 Top-level architecture

Before we present the techniques employed in our dds, let us take a look at a primi-
tive implementation of its top-level structure, which is basically Scout [7] search. Our

algorithm is described using C++.

ddsearch(struct state *sp, int goal){
if (goal<= 0) return 1;
if (goal>tricks_left) return O;
if (tricks_left==1) return LastTrick(sp);
GenerateMoves(sp);
while ((card=NextMove(sp)) != EMPTY) {
PlayCard(sp, card);
result = sp->switch_team? !ddsearch(sp+1,...):
ddsearch(sp+1,...);
UnPlayCard () ;
if (result) return 1;
}

return O;

Figure 1: A primitive implementation of double-dummy search

Given parameter sp which points to a structure maintaining current state infor-
mation and parameter goal which is a number of tricks, function ddsearch returns
1 if the team of current player could make at least goal tricks, otherwise, it re-
turns 0. Basically, it works as follows: When goal is some trivial value like 0 or a
number greater than total tricks left, it returns 1 or 0. When only 4 cards are left
(tricks_left == 1), function LastTrick returns 1 if the team of current player could
win the last trick, else it returns 0. If none of the above condition holds, we call
Generate M oves to generate a list of legal moves M for current game state. Fach
time NextMove is invoked, it retrieves the next available move from M. We call

PlayCard to make the selected move and update current game state. After a card is



played, field switch_team in current state will be set to 1 if the team of next player
is different from the team of current player, it’s set to 0 otherwise. We then call
ddsearch recursively with the next game state and the updated goal as parameters.
Variable result indicates whether playing the selected card can make at least goal
tricks or not. If result is 1, then we skip all the remaining moves and return 1,

otherwise, we unplay the selected card and try the next move.

The code in figure 2, basically Scout search, computes the maximal trick for the

team of current player.

for(low=0,high=total_tricks+1;low+1<high;){
goal=(low+high)/2;
if (ddsearch(sp,goal)) low=goal; else high=goal;
}

MaximalTricks=1low;

Figure 2: A primitive top-level architecture of dds

In the code of figure 2, the condition low < MazimalTricks < high always holds
and the interval between low and high decreases in half after each iteration. Thus,
MazimalTricks is equal to low when the loop is finished. In 13-trick bridge game,
solving games with M axzimalTricks equal to 0 or 7 requires calling function ddsearch

3 times. Otherwise, it will be necessary to execute ddsearch four times.

We will present a number of further improvements to this primitive algorithm in
subsequent sections. But before we end this section, let us look at a simple but effec-
tive improvement — checking the existence of quick trick in function ddsearch. The
main idea is: we could skip any further search and return 1 if goal equals 1 and the
side to play would win at least one trick; Or similarly, we could return 0 if goal equals
tricks_le ft and the side of opponent could win at least one trick. In our experiment
conducted on 10-trick bridge games, the use of quick trick checking reduces over 50
percent of expanded nodes (or the number of times function ddsearch is called) on

average.



3 Implementation of hash table

In computer chess, the hash table has been widely used and has proved helpful in
pruning expanded nodes [6]. From the codes in previous section, we see that re-visits
of some nodes that have been searched before (in current or previous call of ddsearch)
are common. Thus, using a hash table to store the lower and higher bounds of the
maximal trick for nodes frequently visited or nodes with larger depth (or tricks_le ft)

in the search tree may be promising in reducing the size of search tree.!

Let us describe some relevant issues before we go into details of implementation.
For any two nodes (or game states) with the same current player in a search tree,
what are the conditions that these two nodes would have the same value of maximal

trick? It is easily seen that the following conditions suffice:
e the same cards have been played in the two nodes, and

e the trick in progress has the same leading suit and the same current winning

card.

We have two methods of performing hash table checking to satisfy the above

conditions:
1. The hash table checking is only performed at the beginning of a new trick.

2. The hash table checking is performed at each time ddsearch is called, but some
extra information about the current trick (say, leading suit and current winning
card) should also be stored and checked.

We adopt the first approach in our experiments since it is slightly better in terms
of the number of expanded nodes and total spent cpu time. In the second method,
the extra hash table entries we store for checking lower and higher bounds usually
provide us with information similar to their parent nodes, which are already stored
when the current trick is started. But these extra information are hardly used (if
they could potentially cause some cut-offs, their corresponding parent nodes may

already be stored and serve us the same purpose) and might take up the space for

!Special thanks to Thomas Anantharaman for his valuable suggestions on using hash table



more useful nodes.

We implement the hash table as follows. Qur hash table contains 22°

entries;
each entry has 8 bytes. For each bridge game, we split all 52 cards into two disjoint
sets: set A contains the top 5 cards in each suit; set B contains the bottom 8. We
also distinguish a third set ', which has the top 5 cards still remaining in each suit
in B. Let Bits be a function that map a set of cards into a sequence of bits, with
each bit corresponds to each individual card, to show which cards in this set have
already been played in current state. For each bit, value 1 means ’card is played’
and 0 means the opposite. Thus, Bits(A) = Bits(B) = Bits(C') = 0 holds initially.
We compute the value of Bits(A)XorBits(C') as our hashkey, which is the index to
hash table. Here, we borrow the idea of using zor operation from computer chess to
make the hashkey more evenly distributed over the hash table. For the purpose of
identifying game states, we store Bits(B) and the current player in each entry of the
hash table. Note that the combination of our hashkey and Bits(B) uniquely identify

all cards that have been played so far.

We rotate Bits(C') 5 bits to the left before performing zor operation to obtain the
hashkey. This bits rotation has the effect of making hashkey more evenly distributed

over the hash table on our experiments.

After entering function ddsearch, there are 3 possible results of hash table check-

ing:

e The corresponding hash table entry is empty. The only action to take for hash

table is to store the new lower and higher bound at the end of the search.

e The current game state was visited before (hash hit). We check if the stored
lower bound is not less than goal or the stored higher bound is less than goal.
If it is true, then we can return 1 or 0 without further search, otherwise, we

continue the search and update the stored lower or higher bounds.

o The stored game state is different from the current one (hash collision). After

finishing the search, we replace the stored state with current state only if the



field tricks_le ft of the stored state is not greater than that of the current state

or a certain of number of hash collisions has occurred in this hash entry.

To further improve hits/collisions rate, we also try 2,4,8 and 16 way rehashing.
For illustration, we take 4 way rehashing as an example. In our 229 hash table entries,
every 4 consecutive entries is grouped together. To check hash table, we select the
18 most significant bits out of the 20 bit hashkey to access the corresponding 4-entry
group and check the 4 entries in succession. Similarly, when inserting the search re-
sult of current state, we look for the entry with the lowest depth (and highest number
of hash collisions to solve tie) in the corresponding group if all 4 entries are occupied.
In our experiment, 8 way rehashing outperforms others with its smallest spent cpu
time. Though 16 way rehashing has slightly better hits/collisions ratio and smaller
number of expanded nodes than those of 8 way rehashing, its associated overhead in

hash table checking and inserting wore them away.

4 Lower bound estimation and Single suit analysis

When human bridge players plan their best line of play for the whole hand, they often
first consider play and the number of winners and losers in each individual suit, and
then proceed to form a global plan for the whole hand. Although there have been two
research groups [3, 2] claiming to start writing a bridge card-playing program using
this idea, up to now, no results are published yet. Moreover, the idea of using the
results of single suit analysis in double-dummy search seems not yet been proposed
before. In this section we first present an example hand, and then describe how we

apply the analysis results to our dds and implement the single-suit analyzer.



An Example Hand[8]

3NT AT West leads #Q

Q 864

o KQJT3

& 732
& QJT53 A 964
0QT2 |y g ©IT
o 92 S O A8T
& JT & KQ64

A K82

O AK3

O 654

& A985

We assume no trump contract for simplicity and compute the following for each

individual suit and possible leading player.

sure tricks the maximal tricks that the side of leading player can win in a row

without discards or losing control to the opponent.

long-suit tricks after cashing sure tricks, long-suit trick is the number of tricks that
the side of leading player might win while the partner of the winning player

discards.

controls information about who gains control after cashing sure tricks or long-suit

tricks if any.

In the example hand above, North/South have 2, 2 and 1 sure tricks for suits
spade, heart, and club, respectively. Suppose cards 4,2, T, and A were played be-
fore and it is now South’s turn, then N/S would have 2 sure tricks and 2 long-suit
tricks in diamond suit, and the control shifts to the hand of North after cashing sure

tricks or long-suit tricks.



With the information above from single-suit analysis, we can estimate a lower
bound of maximal tricks for the team of current player in current game state. This

helps us in two places of our previous code:

¢ Instead of using 0 as the initial lower bound value in figure 2, we may use a
larger value of lower bound to reduce the times of executing function ddsearch

from four (for most 13-trick bridge games) to a smaller number.

¢ Before searching further in function ddsearch, we can perform lower bound
estimation to see if our estimate is already not less than goal when starting
a trick or playing right after the leading card in current trick. Because the
strength of cards normally fall on certain side, the time we choose to perform
lower bound estimation makes the stronger side can have a large lower bound
estimation earlier (which might result in earlier cut-offs) in case they don’t start

the current trick.

Since a sharp lower bound estimation is time-consuming even if we are given de-
tailed results of single-suit analysis, our estimator is pretty simple: the sum of sure
tricks in each individual suit plus the maximal long-suit tricks. For example, after
the opening lead of West in our example hand, our estimator shows that S/N can win

at least 5 tricks (5 sure tricks from suits spade, heart, and club plus 0 long-suit trick).

It is now time to state how we implement our single-suit analyzer. In terms of
structure, it is similar to function ddsearch, with only slight differences in the way
we identify and evaluate the leaf nodes. To save the time needed for executing single-
suit analysis, we precompute and save onto a table the analysis results of all possible
relative ranks distributions and leading players for all lengths of suit not greater than
9. For suit of length 9, we need 2'® different values to index all possible relative ranks
distributions, where each relative rank is represented by 2 bits denoting the player
who owns it. If we use 2 bytes to store the analysis result, then the memory space
needed in suit of length 9 for storing all possible ranks distributions(2'® cases) and
leading players(4 cases) is 22! or 2 Mega bytes. The total memory space for suits of

length not greater than 9 is less than 3 Mega bytes.
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5 Moves generation: ordering and pruning

Moves generation heuristic plays a central role in game tree searching. In this sec-
tion we assume no trump contract for simplicity and describe how we perform moves

ordering and pruning on our dds.

Here is a list of moves pruning heuristics we may apply to generate moves in a

certain suit X for current player P:

1. For a set of legal cards in suit X with consecutive relative ranks among all cards
not yet been played, only one of them should be considered since they all have

the same effect.

2. All spot cards (i.e., cards with low relative ranks) can be approximately con-
sidered as the same move and only one of them is selected since small cards

seldom make a trick during the play.

3. If even the highest rank of legal cards of player P is still lower than the lowest

rank of another player, then we try only the smallest card for player P.

4. Among all cards that are impossible to win the current winning card, only the

one with smallest rank is selected.

All these heuristics except the first one are approximate and we adopt some of
them on our dds. Since any double-dummy bridge hand is only a guess of the real

cards distribution, it makes sense to pursue only near-optimal solution.

After applying some moves pruning heuristics to generate a list of cards L in

certain suit, we divide L into three categories:
winner These are cards that can win the current trick.
loser These are cards that cannot win the current trick.

unknown These are cards that may win or lose, depending on how later players in

the current trick respond.

The task of ordering these 3 categories is complicated and dynamic by nature.

Some information of current state required for efficient ordering are:

11



o the relative playing order of current player in current trick
e player who drew the current winning card (potential winner)
e entries information of all suits (provided by single-suit analysis)

Here are two examples. Let South be the last player of current trick, then he
may prefer trying loser earlier than winner if North is the potential winner, or in
the opposite order if his opponent is the potential winner. Another example comes
from our previous example hand. After West played #Q, North have two moves:
M A(winner) and &7(loser). Since most of the sure tricks of S/N are in South’s hand,
North might prefer playing loser first to reserve his only entry. Note that it happens
to be the correct play for this hand. Our current implementation of these orderings is
still primitive, and works toward building a table summarizing these highly domain-

dependent ordering heuristics are just begun.

There are situations the current player P can select his move from a set of suits.

We present our suits ordering heuristics on two different cases.
1. When player P starts a trick, our criteria for ordering suits are

e the more sure tricks and long-suit tricks the side of player P has in a suit,

the higher its priority

e the more sure tricks and long-suit tricks the side of opponent has in a suit,

the lower its priority
2. When player P discards, our criteria for ordering suits are
e the more sure tricks and long-suit tricks the side of player P has in a suit,

the lower its priority

e the more sure tricks and long-suit tricks the side of opponent has in a suit,

the higher its priority

o the longer of the combined length the side of player P has in a suit, the
higher its priority

After sorting all suits, we need to decide the total ordering of cards selected from

each suit. Instead of trying cards suit by suit, we try only the best card from each

12



suit in the first few moves and sort them by the ordering of suits, then we try all
the rest cards, with the ordering of suit dominates the ordering of ranks. This can

prevent us from selecting the right suit as the last move in case the ordering of suits

is bad.

6 Table lookup techniques

Information that is often used in search and does not take too much space to store
should be stored in a table. These information may be static (i.e., independent of the
bridge hands we are solving) or dynamic. If static, information can be precomputed
and kept in a file. Dynamic information can be stored when first computed, then re-
trieved when needed again. Although table lookup techniques don’t help in reducing
the expanded nodes, they do give the program a constant speedup. Here are some

information suitable for table lookup. The last two are dynamic, others are static.

absolute and relative ranks conversion table Given 13 bits representing the cur-
rent state of a certain suit and 4 bits representing an absolute (or relative) rank,

it returns the corresponding relative (or absolute) rank.

single-suit analysis results The results of single-suit analysis are helpful in esti-
mating lower bounds and generating moves. As already mentioned, we precom-
pute and store the analysis results of all possible relative ranks combinations

for those with length of suit not greater than 9.

bits mask for generating hash keys Once we have decided which cards are used
for setting the hashkey and their corresponding bit positions in hashkey, we can
calculate a bits mask for updating the hashkey once the suit and absolute rank

of the card to be played are known.

moves table Given the current state of a suit X (a 13-bit representation), we can
store the available moves in suit X for current player after applying the moves
pruning heuristics onto a table for future lookup. Our experiment conducted
on 10 randomly generated 13-trick bridge games shows that over 98 percent of

these moves information are obtained through table lookup.
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7 Experiments

To see how much the ideas we presented in previous sections can help in our dds, we
test them using 10 randomly generated no trump 12-trick bridge games on Sparc-10

workstation and measure the following:
o average of expanded nodes (both internal and leaf nodes) — N.
o average of leaf nodes (or times function LastTrick is called) — L.
e average spent cpu time in sec — C.
The codes we tested are based on combinations of the following methods:
Q quick trick checking
H hash table with 8 way rehashing
H1 hash table without using rehashing techniques
L lower bound estimation
M codes with suits ordering
M1 codes with arbitrary suits ordering
T table lookup technique

Here is a table summarizing some of our experimental results.

Methods N L C

M1 2.51E7 | 1.39E6 | 400
Q+H1+M1 2.8E6 1.2E5 | 216
Q+H1+M1+4+T 2.8E6 1.2E5 | 54.7
Q+H14+M+T 3.91E5 | 1.02E4 | 9.57
Q+HI1+L+M+T | 2.32E5 | 3.18E3 | 7.17
Q+H+L+M+T | 1.54E5 | 1.21E3 | 5.15

To sum up, for the randomly generated 10 no-trump contract hands, our current
version of dds can averagely solve 12-trick games in 5 sec and 13-trick games in 15

sec on Sparc-10.
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8 Conclusion

Although th size of the search tree is potentially huge, in this paper we show that the
task of solving 13-trick double-dummy bridge games can be done within reasonable
time using accessible computing power ( on Sparc-10). Except the idea of using
single-suit analysis results, techniques we employed in our implementation are all
currently available. Below we summarize some future directions toward automating

card-playing in real bridge.
e implement a lower bound estimator for suit contracts

e implement a better dynamic orderings of cards in the classes winner, loser, and

unknown as we mentioned in the section about moves generation
e incorporate to our system the ability of dealing with uncertainty in real bridge

o test Levy’s [5] or Ginsberg’s [4] proposed card-playing mechanism in real bridge
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