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Abstract. Iterative substructuring methods form an important family of domain decomposition
algorithms for elliptic finite element problems. T'wo preconditioners for p-version finite element meth-
ods based on continuous, piecewise @, functions are considered for second order elliptic problems
in three dimensions; these special methods can also be viewed as spectral element methods. The
first iterative method is designed for the Galerkin formulation of the problem. The second applies to
linear systems for a discrete model derived by using Gauss-Lobatto-Legendre quadrature. For both
methods, it is established that the condition number of the relevant operator grows only in proportion
to (1 +1log p)?. These bounds are independent of the number of elements, into which the given region
has been divided, their diameters, as well as the jumps in the coefficients of the elliptic equation
between elements. Results of numerical computations are also given, which provide upper bounds on
the condition numbers as functions of p and which confirms the correctness of our theory.
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1. Introduction. It seems most fitting that a paper, in this special issue ded-
icated to Cornelius Lanczos, should address recent developments of preconditioned
conjugate gradient methods for spectral elements for elliptic partial differential equa-
tions. The close connection between conjugate gradient and Lanczos’ algorithm, see
Lanczos [25], is of course well known, and in their well-known book [6], Canuto, Hus-
saini, Quarteroni, and Zang credit Lanczos with fundamental discoveries that have
provided a point of departure for the development of the very active field of spectral
methods for differential equations; cf. Lanczos [24].

Over the last decade, preconditioners, in particular those based on domain decom-
position, have attracted increasing interest among numerical analysts; seven annual,
international symposia have been held on domain decomposition methods for partial
differential equations since 1987; cf. [17, 7, 8, 18, 9, 23, 22].

The iterative substructuring methods form one of two main families of domain
decomposition methods for elliptic problems. They are based on a decomposition of
the given region into nonoverlapping subregions. Data are only exchanged between
neighboring local problems through their boundary values. The preconditioners are
constructed from solvers for local problems and, in addition, a solver of a coarse
problem similar to that used in a multi-grid algorithm. However, the global, coarse
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problem can be quite exotic, cf. Dryja, Smith, and Widlund [12] and Widlund [36]. See
also Dryja, Sarkis, and Widlund [11] for a discussion of the use of such coarse problems
in the multigrid context. The other major family of domain decomposition methods
uses overlapping subregions; see Dryja and Widlund [14, 15] for a discussion of recent
work. For further comments and an overview of the literature, we refer to our recent
papers [12, 13, 30]. We note that the principal goal of domain decomposition theory
is to provide a good upper bound on the condition number s of the preconditioned
operator. It is well known that the number of conjugate gradient iterations grows in
proportion to \/k; see, e.g., Golub and Van Loan [19].

All the powerful domain decomposition methods are thus two-level methods. The
second level certainly complicates the design and implementation of the algorithms,
but it is by now well established that these methods are quite well suited for the large,
relatively loosely coupled computing systems that are becoming increasingly common;
cf. Gropp [20]. For experimental evidence that the best of these algorithms work well
for large and very ill-conditioned problems; see, e.g., Cai, Gropp, and Keyes [3, 4],
Cowsar, Mandel, and Wheeler [10], Gropp and Smith [21], and Smith [35].

The best of the results on iterative substructuring methods show that the condition
number of the relevant preconditioned operator grows only polylogarithmically in the
number of degrees of freedom of an individual subregion. It is important to note
that these bounds are independent of the number of subproblems and that they are
independent of jumps in the coeflicients across subregion boundaries. Since the number
of degrees of freedom per element increases rapidly with p, it is natural to use individual
elements as subregions to be assigned to individual processors of a parallel computing
system.

The development of iterative methods for higher order and spectral methods poses
a special challenge since the stiffness matrices can be much more ill conditioned than
for lower order methods. In this paper, we continue our recent work on spectral
elements, described in detail in Pavarino and Widlund [30] and also announced in
[29],[28]. Just as our previous algorithm, the new methods are close relatives of a
method developed by Smith [33],[34] for h—version finite elements. In this paper, we
use tools and algorithmic ideas developed in our earlier paper to derive and analyze
two new, closely related methods.

The first provides a solver for the same Galerkin approximation considered in
our previous work. Our second preconditioner is specially designed for the numerical
quadrature based, collocation-type finite element methods that have been studied
by Bernardi and Maday [2], Fischer and Rgnquist [16], Maday, Meiron, Patera, and
Ronquist [26], and Rgnquist [31, 32]. We also note that a recent master’s thesis, Pahl
[27], contains a detailed description and discussion of several domain decomposition
algorithms for two dimensional spectral problems as well as results of a number of
interesting and systematic numerical experiments. As in our previous work, we obtain
bounds on the condition numbers of our new methods that are quadratic in log p,
where p is the degree of the polynomial space, and independent of the number of
elements, their diameters, and jumps in the coefficients across element interfaces.

In this paper, we also report on numerical experiments, which provide strict (and
often quite tight) upper bounds for the condition numbers of our methods for any
region formed as a union of cubic elements; see Dryja, Smith, and Widlund [12] for a
discussion of the underlying theory. These experiments confirm that our theoretical
bounds are correct and also show that the condition numbers of the Galerkin finite
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element method and the method based on numerical quadrature are quite close.

In the near future, we plan to study alternative methods among them algorithms
where the performance is enhanced by adding additional (or enlarging existing) sub-
spaces; so far we have only considered algorithms that are based on a direct sum
decomposition of the spectral finite element space.

2. The continuous and discrete elliptic problems. We consider a linear,
elliptic problem on a bounded domain Q C R3 formulated variationally as:
Find » € V, such that

a(u,v) :/Qk:(ac)Vu-Vvdx = f(v) Yve V.

Here V is an appropriate subspace of H!(£) chosen so as to accommodate the bound-
ary conditions of the elliptic problem. The coefficient k(z) > 0 can be discontinuous,
with very different values for different subregions, but we allow it to vary only mod-
erately within each subregion. We will in fact assume that the region is the union
of elements 2; that are cubes or images of a reference cube under reasonably smooth
mappings; no element can be “too distorted”. As in our previous work, almost all our
technical work can in fact be carried out on a single reference cube; cf. Dryja, Smith,
and Widlund [12] and Pavarino and Widlund [30]. Without decreasing the generality
of our results, we will only consider the piecewise constant case of k(z) = k; Vz € ;.

2.1. Galerkin approximation. The discrete space VP C V is the space of con-
tinuous, piecewise (), elements, constructed from a tensor product of degree p poly-
nomials of one variable:

VP = {v e CO%Q) vl € Qp(),i=1,2,---N}.

This gives rise to a conforming Galerkin method; the finite element problem is obtained
by restricting « and the test functions to the space V. The finite element solution is
the projection, orthogonal with respect to the bilinear form a(-, -), of the exact solution
onto the finite element space V.

There are a number of good choices of basis functions; cf. Babuska, Griebel, and
Pitkaranta [1]. In this paper, there is no strong reason to be very specific concerning
the choice of basis in discussing the Galerkin method.

The finite element variational problem is turned into a linear system of algebraic
equations, Kx = b, in the usual way. Here K is the stiffness matrix, and b the load
vector. KT = K > 0, a property inherited from the bilinear form af(-,-).

When we need to distinguish between this standard Galerkin method and the one
which is quadrature based, we will use the letters G and @, respectively.

2.2. Quadrature based approximation. When we now turn to the study of
our second variational problem, a choice of a specific, nodal basis in appropriate. A
variational problem is obtained by using Gauss-Lobatto-Legendre numerical quadra-
ture replacing the original bilinear form a(-,-), element by element. We obtain

ag(u,v) = (kVu,Vv)g = Eki(Vu,Vv)Q@i Vu,v € VP(Q).

Here the new inner product is defined as follows: Let = = {;,¢;, ‘Ek}i]’,kzo be the set of

Gauss-Lobatto-Legendre points on the reference cube ﬁref =[-1, 1]3 and let p; be the
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weight associated with ;; see Bernardi and Maday [2], pp. 31-34. The contribution
of an individual element to the inner product (u,v)q is given in terms of a numerical
quadrature formula defined on Q,.; by

Y4 P 14
(1) (w0, 0)Q0,, = > > ul&i &, Er)v(&is £, Ex)pipiph-

=0 j=0 k=0

This inner product is uniformly equivalent to the standard Lo—inner product on

Qp(ﬂ'ref); i'e'v
(2) lulli,q,.,) < (0o, < 27||ulli,q,.,) Vu € Qp(2res)-

The numerical quadrature rule is exact if wv is a polynomial in Qg2,—1(Q,cf), see
Bernardi and Maday [2], p. 75, and it can also be shown that

(3) a(u,u) < ag(u,u) < 9a(u, u) Yu € VP(Q);

see Bernardi and Maday [2], p. 85. The new bilinear form is therefore continuous
and coercive. A detailed analysis of this method, including a discussion of existence,
uniqueness, and error estimates for an individual element, is given in Bernardi and
Maday [2], pp. 85-95. They also establish that, in case of Dirichlet boundary condi-
tions, this numerical quadrature-based method is identical to a collocation method on
the grid =.

2.3. Further details on the quadrature based method. A basis for V?
is constructed, locally on the reference element, by introducing tensor products of
Lagrange interpolating polynomials [;(z) defined by [;(§;) = 6;;,0 < 4,5 < p. The
resulting set of basis functions

Li(z)li(y)lk(2), 0<i,j5,k<p,

can be divided into interior (all indices differ from 0 and p), face (one of the indices is 0
or p), edge (two of the indices are 0 and/or p) and vertex basis functions (all indices are
0 and/or p). This provides a nodal basis associated with the Gauss-Lobatto-Legendre
nodes = in the sense that, on the reference element,

u(z,y,z) =Y ulbs, &, E)li(2)(y)lk(2)-

The stiffness matrix K is less sparse than for a lower order finite elements, but
still quite well structured; see Figure 4 in Section 5. For the reference element, the
matrix element corresponding to the basis functions l;(z)l;(y)lx(2) and [ (z)l,(y)ls(2)
is of the form

g0 PiOkspr + jrbigPilkspr + Qrsliqpibirp;,

where for 1 < 5,7 < p — 1, the interior points,

4 . .
p(p-}-l)Lp(Ej)Lp(&r)(Er—.{j)2 1f ] # r
a]',,, = ,

4

if j=mr,



while

4(—-1)° .
ajo = ag; = (1) (= ap_jp), for 7> 0,

p(p+ D) Ly(&) (1 +&5)?

4
O S T DL G )

for j < p,

_ o _ppt1)-1
Qoo = Qpp = Ta

see Lemma 5.3, Chapter 3, of Bernardi and Maday [2].

3. Iterative Substructuring Methods. The possibly easiest way of describing
an iterative substructuring method is in terms of a block-Jacobi/conjugate gradient
method; cf. Dryja and Widlund [14],[15]. The stiffness matrix K is preconditioned
by a matrix K that is the direct sum of diagonal blocks of K. Some or all of these
blocks can be replaced by spectrally equivalent, or almost spectrally equivalent, block
matrices in an attempt to decrease the cost of the computation. The bilinear form
that corresponds to such a block matrix is denoted by @;(u, v), and it can be viewed as
representing an approximate energy functional for a subspace. A local subspace, V;,
often corresponds to a set of adjacent degrees of freedom of a finite element method.
However, for a successful method, we must first carry out a suitable change of basis
and then select the blocks carefully. This change of basis is intimately connected to
the choice of a coarse, global space Vp; cf. Dryja, Smith, and Widlund [12].

The eigenvalues of K~1K; are given by the stationary values of the Rayleigh
quotient

N (o o N
(4) Lo WL ) S s e Vi
=0

a(u,u)

To understand this formula, we just have to realize that the quadratic form correspond-
ing to ¢'th diagonal block of K ; can be written as a;(u;, u;). The most challenging part
of our work is to provide an upper bound of this Rayleigh quotient. Success is tied to
estimating the approximate energies a;(u;, u;) uniformly, or almost uniformly, in terms
of the strain energy a(u, ). If inexact solvers are used for some or all of the subspaces,
upper bounds on a(u;, u;)/a;(u;, u;), u; € V;, also enters the bound on li(Kle).

In this study, we use the block-Jacobi framework but there is also a more general
theory; cf. Dryja and Widlund [13]. Any block-Jacobi method can be viewed as an
additive Schwarz method based on a direct sum of subspaces. There are also Gauss-
Seidel-like, multiplicative, as well as hybrid Schwarz algorithms; see Dryja, Smith, and
Widlund [12] for a general discussion. It follows from this general theory that bounds
on the convergence of the multiplicative, block-Gauss-Seidel version of our algorithms
can be obtained in a completely routine fashion, once bounds for the additive, block-
Jacobi case have been established.

A crucial observation is that, for problems in three dimensions, we cannot obtain
a good bound if Vy = @)1 and, at the same time, all the elements of the other subspaces
vanish at the vertices of the elements. For the higher order methods considered here,
several standard bases have that property; cf. Babuska, Griebel, and Pitkaranta [1].
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Then ug € Vg, in the decomposition u = ) u; associated with the Rayleigh quotient
(4), must be chosen as the interpolant onto V4. In three dimensions, the norm of this
interpolant can be much larger than the norm of w itself and any upper bound for the
Rayleigh quotient must, for this coarse space, grow in proportion to p*; cf. Pavarino
and Widlund [30]. This matter is also discussed in detail in Dryja, Smith, and Widlund
[12], in the h—method context. We note that the vertex basis functions of the nodal
basis have small energy. However, by themselves, they do not suffice for building a
global subspaces of an iterative method with a rate of convergence independent of the
number of elements; see further discussion below.

As in the case of h-finite elements, we consider several important geometric ob-
jects: interiors, faces, edges, and vertices. Our subspaces are directly related to them.
The edges and vertices of an element Q; are merged creating wire baskets W;, and
related wire basket based spaces Vg will be used as our global coarse spaces.

Our methods are based on the following subspaces; we note that the choice of
bases for these subspaces do not affect the spectrum of the preconditioner but can
make a significant difference as far as the implementation and costs are concerned.

e An interior space for each element: @, N H}(;). This is the same choice as in our
previous work.

e A space for each face. These functions vanish on and outside the boundary of
Q; = (QUl;UQ;). Here ©; and Q; are two elements that share a common face I';;;
thus T';; = Q, N Q;. Since it is crucial to have a good recipe for extending the values
on the designated face to the interior of the two relevant elements, we use the minimal
energy (discrete harmonic) extension making the face spaces orthogonal, in the energy
norm, to the interior spaces. These are the same face spaces as in our previous work.
If numerical quadrature is used, the functions are made discrete harmonic with respect
to the bilinear form ag(-, -) instead of a(-, ).

o A coarse, global space, Vg, of piecewise discrete harmonic functions, is associated
with the wire baskets of the elements. Its elements are defined solely by their values
on the wire baskets. A central issue is how to define the values on the faces. Here we
will provide two recipes, which are different from that of our previous paper.

We remark, that the use of interior spaces, such as these, complemented with
discrete harmonic subspaces, effectively decouples the problem into two. The ma-
trix representing the restriction of the stiffness matrix K to the subspace of discrete
harmonic functions is known as the Schur complement and will be denoted by 5.

3.1. Wire basket space for Method G. As we have noted, the design and
analysis of any iterative substructuring method involves the decomposition of an ar-
bitrary, given function into subspace components. Typically, we first determine the
component of the coarse, global space, then those of the face spaces, and we are finally
left with the components of the interior, completely local, spaces.

In our previous paper, [30], the face values of the wire basket component, corre-
sponding to a given function u, are obtained by first subtracting off components related
to the vertices, and then expanding the resulting values on each edge of the wire basket
in series of special polynomials which are approximate sine-functions. The extension
to the faces and interior is then carried out by using polynomials which resemble hy-
perbolic sine functions and which provide a harmonic extension of the boundary data.
This is a procedure based on separation of variables quite similar to the one used when
solving a continuous Poisson problem.
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In this paper, we use much simpler recipes. The given value on an edge is mul-
tiplied by a special polynomial g, which has been studied in detail in our previous
paper. g is the degree p polynomial which satisfies

m(pin H@HLQ(—l,l)? “P(l) = 17 99(_1) =0.

The wire basket space is given in terms of edge and vertex basis functions. As in [30],
the elements of the subspace, spanned by these functions, must later be “corrected”
so that they also contain certain components from the face spaces.
o The vertex part @y of a function u € Q,(Q,.s) is given, preliminarily, as the sum of
eight terms. The one associated with the vertex (1,1,1) is given by

(5) @\ (2,y,2) = (1,1, )po(2)po(y)po(2)-

o To construct the edge part ig, we first consider the restriction of « — @y to each of
the edges. These values are then extended to the two adjacent faces and then to the
interior by using the g function. One of the contributions is thus given, preliminary,

by

(6) il (2,,2) = po(2)po(y)(u(1,1,2) = av(1,1,2)).

The preliminary edge component @g is given by the sum of twelve such functions.

The proof of the following lemma follows from a direct computation and observing
that the Ly—inner product of ¢y and any polynomial, which vanishes at 1 and —1,
equals 0.

LemMA 3.1. The edge and vertex functions are discrele harmonic. As in our
previous paper, a preliminary interpolation operator INgJV : VP — Vy, is defined by
fcv;Vu = @y + ug, where the individual contributions to @y and @z have already been
described. This operator will not reproduce constants. We therefore construct a
function Fg =1 — fg/l, which vanishes on the wire basket, and which naturally can
be split into six discrete harmonic components, each of which vanishes on five of the
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six faces:

6
Fa=Y Faj.

i=1

See Figure 1 for a plot of F ; on a face of ,.¢. It is easy to show that on one of the
faces

Fea(z,y) = (1= @o(z) = go(=2))(1 = @o(y) = wo(=y))-

These special functions are extended to the interior of the reference element as discrete
harmonic functions. We define the wire basket component as the image of v under a
new interpolation operator

6
w W _
uw = I u=15u+ E wor, Fa.js
i=1

where sy, = %faF]‘ uw. With this definition, the wire basket space
Voo = Range(fg/),

will contain the constants, since uy = 1 on 9,5 if w =1 on W. This interpolation
operator also defines a basis of the subspace and a change of basis in the entire space.
For the subspace Vj i, we use a simple bilinear form defined by,

(7) aoc(u,u) = C(1+1logp)d ki inf [|u — CiH%z(Wi)'

In the case when the basis elements are L;—orthogonal on each edge, we obtain a
a coarse problem with only one essentially global degree of freedom, ¢;, per element.
These values are found by solving a linear system of finite difference type. In addition,
a larger linear system with a convenient diagonal matrix is solved to find all the values
on the wire basket; see Dryja, Smith, and Widlund [12]. We note that it is easy to
modify the algorithm if we have a basis which does not satisfy the orthogonality
conditions.

Our main result for Method G is

THEOREM 1. For the iterative substructuring method, Method G, just introduced
by the subspaces and the bilinear form ag (-, -), we have

H(Kié[() < const.(1 + log p)?.

Here the constant is independent of the number of elements, their diameters, the degree
p, and the size of the jumps of the coefficient k(z) across element boundaries.

3.2. Wire basket space for Method Q. In deriving our second method, we
first replace ¢ by lg, the degree p polynomial that vanishes at all the Gauss-Lobatto-
Legendre points & except at 1. See Figure 2 for a plot comparing /g and ¢,. We then
proceed very much as in the previous subsection.

It is easy to see that [y provides the minimum norm, defined by the one-dimensional
quadrature formula underlying formula (1), among all polynomials that satisfy the
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same boundary conditions as ¢g. We also work with harmonic extensions defined in
terms of the bilinear form ag(-,-) rather than a(-,-).

A preliminary interpolation operator fg/ : VP — Vp, is defined by fgu =ay+ug,
where the different component are defined as in the previous subsection except that
lp has replaced .

The follwing result is as easy to prove as Lemma 3.1.

LEMMA 3.2. The edge and vertex functions are discrele harmonic.

The operator fg’ will not reproduce constants. We therefore construct a function
Fo=1- fgll, which vanishes on the wire basket, and which naturally can be split
into six discrete harmonic components, each of which vanishes on five of the six faces:

6
Fo=Y Fo;

i=1
See Figure 3 for a plot of F( ; on a face of ,.¢. It is easy to show that on one of the
faces

Fou(z,y) = (1= lo(z) = p(2))(1 = lo(y) = Lp(y))-

This function can be expanded into the nodal basis restricted to the face and we find
that

Fouley) = 3 L)),

1,5=1
This means that Fg ; is represented in the basis of one of the face spaces by the vector
[1,1,---,1], just as the corresponding function in the h-version case; cf. Dryja, Smith,
and Widlund [12]. These special functions are extended to the interior of the reference

element as discrete harmonic functions.
We define the wire basket component in terms of a new interpolation operator

6
uw,Q = Ig/u = Ig/u + ZﬂaijQ,ja
Jj=1
9
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where ugp, = %(u, 1)q,aF,- With this definition, the wire basket space
Voo = Range(fg/),

will contain the constants, since if ¥ = 1 on W, then uwg = 1 on 9€Q,.¢. This
interpolation operator also defines a basis in the wire basket space and a change of
basis in the entire space. In our Algorithm @, the face and interior spaces are defined
as before and the bilinear form for Vg ¢ is given by

(8) doq(u,u) = C(1+1logp) Y kiinf [lu— el w,-

We note that the restriction of any two different basis functions to an edge are orthog-
onal in sense of the quadrature-based innner product.

Our main result for Method Q is

THEOREM 2. For the iterative substructuring method, Method @, just introduced,
by the subspaces and the bilinear form ag (-, -), we have

H(Aiéﬁ) < const.(1 + log p)?.

Here the constant is independent of the number of elements, their diameters, the degree
p, and the size of the jumps of the coefficient k(z) across element boundaries.

4. Proofs of the Theorems. We can use the proofs of the corresponding results
in Pavarino and Widlund [30] as models. We confine ourselves to pointing out those
details for which changes are necessary.

We first need analogs of Lemma 4.4 in [30]:

LemMA 4.1. Forallp>land1 <i<p-—1,
(9) |‘PO|H1 —11) T ’\ H@O”Lg 1) S Cp?.

Here /\gp) are eigenvalues defined in Definition 2 of [30].
10



Proof. The Ly—part of the inequality follows immediately from Lemma 4.1 of [30]
and the bound on the eigenvalues AP < Cp*. The H'—bound then follows from a

7
polynomial inverse inequality, Lemma 4.3 of [30].
O

The proof of the following lemma is very similar once we note that HZOH%Q(_I 1) <

C/p*. This result follows directly by computing the Gauss-Lobatto-Legendre quadra-
ture approximation of the polynomial, noting that the quadrature weight at the end
point is sufliciently small, and using the equivalence of the Ly — and quadrature-norms;
see Canuto and Funaro [5] for a similar argument.

LemMMA 4.2, Forallp>1land1 <i:<p-—1,

(10) |10|12111(—1,1) + ’\EP)WOH%Q(—LU < Cp2 .

Here /\gp) are eigenvalues defined in Definition 2 of [30].
As in the previous work, we can then obtain estimates of the interpolation oper-
ators [ and ICSV. The proofs are very similar to that of Lemma 5.6 of [30].

LeMMA 4.3. The energy of the fg/ interpolant of u is bounded by

W W
e U|12111(me) < (g UH%Q(W) = C”“H%Q(W)-

LeMMA 4.4. The energy of the fg/ interpolant of u is bounded by

% W
11§ ulfpq,.,) < ClHG wll,my = Cllullz,w)-

We next turn our attention to two results that are direct counterparts of Lemma
5.7 of [30]. Their proofs require no new ideas.
LEMMA 4.5. For each face Fy, of Q,cp,k=1,---,6,

W
i = 8 Wy, < COL+ 0Bl

LEMMA 4.6. For each face Fy, of Q,cp,k=1,---,6,

W2 21| ull?
lu—1g UHHSO/Q(Fk) < C(1+logp) HUHHl(QTef)‘

We also need to obtain bounds for the norms of the new special face functions Fg ;
and Fq ;; cf. Lemma 5.8 of [30]. No new ideas are required.

LeMMA 4.7. Let Fg,; be the special face function for the face F};, defined before.
Then,

12
HfG’]HHéO/z(F]) S C(l + logp)
LEMMA 4.8. Let Fq ; be the special face function for the face F};, defined before.
Then,
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With these new tools, we can repeat the proof of Theorem 3.1 in [30], almost line
by line, and prove Theorem 1. In the proof of Theorem 2, we proceed in the same
way, using integrals rather than the quadrature rule, in effect, establishing a result for
an additional Galerkin method. Then, we use the equivalence given by formula (3) to
complete the proof.

5. Numerical results. As we already have pointed out, it follows from standard
theory for iterative substructuring methods that an upper bound for the condition
number for the whole problem can be obtained by considering a preconditioner for
the Neumann problem on the reference element. We can therefore compute such a
bound from the eigenvalues of a matrix pencil defined by the contributions from an
individual element to the stiffness matrix and the preconditioner, respectively. Both
these matrices are singular and have the same null space; only the space orthogonal
to this one dimensional space is relevant in our analysis.

We have carried out a series of MATLAB 4.1 experiments, which closely parallel
similar studies in our own work [30], and in Smith [35] for the case of piecewise linear
elements. In our tables, S() denotes the local Schur complement, obtained from the
local stiffness matrix K by eliminating the interior variables. We recall that this
is the restriction of the stiffness matrix to the discrete harmonic part of the space
VP. The two local preconditioners SS% and 53{22 are given by Methods G and Q. The
condition number & is the ratio of the largest eigenvalue A4, and the smallest positive
eigenvalue A,,;,. They are computed using Lanczos’ algorithm. Figures 4 and 5 show
the sparsity structure of the local stiffness matrix K the local Schur complement
50U) and its preconditioner 53]22 with Method Q. See our previous paper [30] for the
sparsity structure of matrices obtained by a variant of Method G.

Method G. In Table 1, we report on the condition numbers 5(53{2;_15(1)), the
extreme nonzero eigenvalues, and the optimal choice of the scaling constant C' of the
bilinear form (7), for p = 2,---,15. Since the values of 5(53{2;_150)) produce a zigzag
graph, we have analyzed the even and odd values of p separately. The coefficients a;
of the linear (n = 1), quadratic (n = 2) or cubic (n = 3) least squares approximation
fn(p) = 3 a;(log p)?, are given in Table 2. They clearly indicate a log?p growth of
k: the coeflicient a3 of the cubic term is negative for the even case and negligible for
the odd case. A log?p growth of k as a function of p is also clear from log-log and
semi-log plots.

Method ). In Table 3, we report on the condition numbers ﬁ(sg)_ls(i)), the
extreme nonzero eigenvalues and the optimal choice of the scaling constant C' of the
bilinear form (8), for p = 2,---,15. The results of a polylogarithmic least squares
approximation are reported in Table 4. As before, they clearly indicate a log?p growth
of k, because the coefficient as of the cubic term is negative.

A graphic comparison of the condition numbers of the two methods is given by
the log-log plot in Figure 6. It is interesting to note that the condition numbers of
Methods G and Q are quite close. This is in spite of the relatively large constants in
the formulas (2) and (3). We have also run experiments in which the vertex block of
the preconditioner is weighted by the factor % This seems reasonable since a vertex
belongs to twice as many subdomains as an edge. The resulting condition numbers
are only slightly better than those obtained without a weight. Thus for p = 15, kg
drops to 69.2543.
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FiG. 4. Sparsity pattern of K(J), for p =5, Method Q.
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— 0

nz = 10496 nz = 8512

13



TABLE 1

Local condition numbers for Method G

p | KSEL S Npee Awin €

2 7.9396 1.5838 0.1995 0.5419
3 14.4306 2.5801 0.1788 0.3626
4 18.6801 2.6576 0.1423 0.3267
5 26.6551 2.8598 0.1073 0.3839
6 30.4150 2.8686 0.0943 0.3636
7 37.8139 2.9944 0.0792 0.4068
8 41.3753 2.9934 0.0723 0.3953
9 47.7892 3.0716 0.0643 0.4255
10 51.0944 3.0797 0.0603 0.4144
11 56.7553 3.1116 0.0548 0.4437
12 59.8160 3.1291 0.0523 0.4314
13 64.8876 3.1639 0.0488 0.4512
14 67.6676 3.1458 0.0465 0.4505
15 72.3285 3.1898 0.0441 0.4619

TABLE 2

Least squares approximation of R(S(Jfé_ls(j)) for Method G

p even ap aq as as lerror||je | ||error|;
linear -19.8334 31.0844 6.2269 11.7167
quadratic | 8.5671 -9.3232  12.0423 0.1651 0.3046
cubic 10.5607 -13.9235 15.0669 -0.6007 0.1135 0.1509
p odd ap aq as as lerror||je | ||error|;
linear -29.3205  36.2140 3.9655 7.3055
quadratic | 7.5792  -5.8270 10.9816 0.0092 0.0165
cubic 7.5487  -5.7732 10.9520 0.0052 0.0093 0.0164
TABLE 3
Local condition numbers for Method @

p [ RS SD) Muwe Amin C

2 5.1548 1.4778 0.2867 0.4625

3 10.2272 2.3078 0.2257 0.2976

4 16.3348 2.5979 0.1590 0.3120

5 22.6897 2.7686 0.1220 0.3386

6 28.6569 2.8773 0.1004 0.3580

7 34.3494 2.9498 0.0859 0.3757

8 39.6878 2.9934 0.0754 0.3926

9 44.7432 3.0395 0.0679 0.4034

10 49.5128 3.0704 0.0620 0.4149

11 54.0420 3.0986 0.0573 0.4238

12 58.3412 3.1196 0.0535 0.4324

13 62.4449 3.1137 0.0499 0.4472

14 66.3533 3.1510 0.0475 0.4475

15 70.0997 3.1664 0.0452 0.4532
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TABLE 4 |
Least squares approximation of A(SS{%? S(])) for Method @

ap a as as lerror||ie | ||error|

linear -27.7334  34.0835 9.2633 15.2392
quadratic | 4.7275  -7.8590 11.8393 0.2509 0.4666
cubic 7.2757  -13.3428 15.3021 -0.6684 0.0709 0.0902

FiGg. 6. Log-log plot of k for p=2,---,15: 0 = Method G, x = Method @
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