
Typical: Taking the Tedium Out of Typing

Robert Grimm Laune Harris Anh Le
Technical Report TR2007-904

New York University
{rgrimm,lharris,anhlevn}@cs.nyu.edu

Abstract
The implementation of real-world type checkers requires a non-
trivial engineering effort. The resulting code easily comprises thou-
sands of lines, which increases the probability of software defects
in a component critical to compiler correctness. To make type
checkers easier to implement and extend, this paper presents Typi-
cal, a domain-specific language and compiler that directly and con-
cisely captures the structure of type systems. Our language builds
on the functional core for ML to represent syntax trees and types
as variants and to traverse them with pattern matches. It then adds
declarative constructs for common type checker concerns, such as
scoping rules, namespaces, and constraints on types. It also inte-
grates error checking and reporting with other constructs to pro-
mote comprehensive error management. We have validated our sys-
tem with two real-world type checkers written in Typical, one for
Typical itself and the other for C.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Translator writing systems and compiler
generators; D.3.3 [Programming Languages]: Language Con-
structs and Features—Constraints; Modules, packages

General Terms design, languages

Keywords type checker generator, compiler-compiler, extensible
type systems, extensible compiler, Typical

1. Introduction
The implementation of type checkers for real-world languages re-
quires a non-trivial engineering effort. For example, gcc 4.1’s type
checker for C alone comprises 8,400 lines of rather dense C code.
O’Caml 3.10’s type checker and supporting code comprise 18,600
lines of O’Caml code. And OpenJDK b23’s semantic analysis,
which includes data-flow analysis, constant folding, and type era-
sure for generic types, comprises 15,100 lines of Java code and
depends on another 8,200 lines for its types and symbol table.
Clearly, the sheer size of these components increases the proba-
bility of bugs. At the same time, type checker correctness is critical
for program safety. After all, if a type checker bug causes the com-
piler to accept malformed code, the resulting program may unex-
pectedly misbehave or crash—which is exactly what a language’s
static typing discipline seeks to prevent.

Attribute grammar systems such as Eli [17], the synthesizer gen-
erator [35], and more recently JastAdd [13], Ruler [10], Silver [37],
and xoc [9], can help reduce the complexity of semantic analyz-
ers. Their primary benefit is that attribute values are declaratively
specified through equations, which eliminates the need for manu-
ally scheduling syntax tree traversals. At the same time, attribute
grammars complicate the implementation of components familiar
to compiler writers. In particular, the symbol table needs to be
implemented through several interdependent attributes per name-
space, and even auxiliary data structures need to be implemented

through productions [12]. This paper explores a different trade-off:
We observe that type systems are highly structured—whether they
are specified in prose as in the C standard [23] or formally as in
the ML standard [29]—and we present a language that directly and
concisely captures this structure, even though it does require ex-
plicit syntax tree traversals.

Our language is called Typical and is designed to provide four
main properties. First, it is expressive, building on the functional
core of ML to represent syntax trees and types as variants, i.e.,
type-safe unions, and traversing them with pattern matches. Sec-
ond, constructs new to Typical are declarative, capturing aspects of
type systems, such as their namespaces and scoping rules, instead
of describing how to implement them. Third, Typical is prescrip-
tive in that error checking and reporting are integrated with other
constructs to promote comprehensive error management. Fourth, it
encourages correct code by being strongly typed and by relying on
constructs that prevent mistakes in the first place. Beyond this core
language, Typical includes a module system, which treats Typi-
cal programs as collections of rules and facilitates the introduction
of new rules—as when extending a language—and supplemental
rules—as when implementing pluggable type systems [1, 4].

We have validated our design by implementing two real-world
type checkers in Typical. First, the type checker for the Typi-
cal compiler is itself written in Typical. In particular, it supports
higher-order functions, parametric polymorphism, parameterized
data types, and Hindley-Milner type inference. Furthermore, it
seamlessly integrates with the rest of the compiler, which is writ-
ten in Java and targets Java—though nothing in the design pre-
vents other target languages. Second, we have implemented a type
checker for C, which supports the C99 standard [23] with common
gcc extensions. C99, in turn, is a significant extension of Kernighan
and Ritchie C [24], resulting in a significant body of type rules cov-
ering the interaction of the two major versions. The C type checker
passes all regression tests for the gcc 4.1 front-end and also type
checks the entire Linux 2.6 kernel.

This paper’s contributions are threefold:
1. A domain-specific language for implementing type checkers,

which is largely functional yet seamlessly integrates with other,
imperative compiler code;

2. An extension language for type checkers, which enables the
introduction of new type rules as well as supplemental rules;

3. Experiences with two real-world type checkers written in Typ-
ical, one for Typical itself and the other for C.

Our evaluation compares the C type checker written in Typical with
one written in Java and another written in O’Caml; it demonstrates
that Typical enables the concise specification of type checkers,
while also resulting in reasonable performance.

2. Point of Departure: xtc
The design of Typical is informed by our analysis of the xtc
compiler toolkit [22], which is available as open source and written
in Java. As in other compilers, semantic analyzers for xtc traverse a
program’s abstract syntax tree (AST), populating the symbol table
and reporting any typing errors. They also annotate AST nodes with
their scopes, so that repeated traversals can easily synchronize with
the appropriate scopes, and annotate nodes with their types, so that
typing information is readily available for all constructs and not just
the identifiers contained in the symbol table.

In xtc, ASTs are implemented as dynamically typed trees, con-
sisting of instances of a single class GNode, which provides a name
and zero or more children. Tree traversals are implemented through
dynamically dispatched visitors, which use Java reflection to se-
lect the closest matching visit methods. Types are represented by
a class hierarchy, whose common interface is defined by the base
class Type. Leafs correspond to distinct kinds of types, such as
IntegerT and PointerT, and capture each kind’s inherent prop-
erties, such as the integral kind for IntegerT or the pointed-to type
for PointerT. Every type instance can also have annotations rep-
resenting, for example, the source location, memory shape, or C
qualifiers such as const. The hierarchy of types is supplemented
by language-specific classes, whose methods directly capture the
corresponding language standard’s instructions such as “If both the
operands have arithmetic type, the usual arithmetic conversions are
performed” [23, § 6.5.8].

Overall, this design facilitates a relatively clean and stylized
implementation of type checkers. In particular, it has enabled the
scalable composition of separate type checkers for Java and C into
the semantic analyzer for Jeannie, which combines both languages
to replace Java’s explicit foreign function interface [22]. At the
same time, xtc also suffers from the following short-comings:

1. Dynamic typing of AST nodes and visitors provides consider-
able flexibility but also forgoes static program safety, making it
hard to find bugs, especially when the AST changes.

2. Annotating nodes with their types and synchronizing tree
traversal with the symbol table requires snippets of boiler-plate
code throughout a type checker.

3. Many type operations require manual decomposition of type
instances and their properties, which is tedious at best and error-
prone at worst.

4. Type errors, which are represented as instances of class ErrorT,
need to be explicitly threaded through a type checker to avoid
cascading error conditions.

5. The type framework itself is rather large, comprising 2,600
non-commenting source statements, which makes it hard to
introduce new types.

Other compilers, which also rely on visitors and symbol tables,
have similar issues. The challenge addressed in this paper is how
to encode best practices from xtc, while also overcoming its short-
comings and seamlessly integrating with the rest of the compiler.

3. Overview of the Typical System
As illustrated in Figure 1, a compiler’s front-end consists of a
parser, which converts source code to an abstract syntax tree, and
a type checker, which ensures that the AST is well-formed. The
front-end’s output is either an AST annotated with its types or
an error notification. Neither parser nor type checker are written
by hand. Rather, the parser’s source code is generated from a
grammar by a parser generator. And the type checker’s source code
is generated from type rules by our type checker generator, i.e., the
Typical compiler. Both compiler-compilers share the description of

Type CheckerParser

Front End

Source AST Annotated
AST

Parser
Generator

Type Checker
Generator

AST
Specification

Type
RulesGrammar

Bootstrap Compiler

Figure 1. Conceptual overview of the Typical system.

expression ::= \ identifier : type-spec . expression . Abstraction
| expression expression . Application
| identifier
| integer-constant
| (expression)

type-spec ::= type-spec -> type-spec . Function type
| int
| (type-spec)

identifier ::= a..z {a..z}
integer-constant ::= 1..9 {0..9}

Figure 2. Syntax of the simply typed λ-calculus with integers.

the syntax tree, since the type checker consumes the AST produced
by the parser. Both compiler-compilers also rely on the bootstrap
compiler to convert source code into executable components. To
put it differently, the Typical system encompasses three different
programming languages and their compilers. The source language
is the language whose compiler front-end is being implemented.
Its type rules are written in the meta-language, i.e., Typical. The
Typical compiler, in turn, generates source code in the bootstrap
language, i.e., Java in our implementation, which is then compiled
into executable code by the bootstrap compiler.

4. Example: Simply Typed Lambda Calculus
As an introduction to the Typical language, we now present the
complete type checker for the simply typed lambda calculus with
integers [8]. For this example, we treat the λ-calculus not as a for-
mal system, but rather as a programming language whose front-end
we seek to implement. Figure 2 shows the λ-calculus’ syntax, with
expression and type-spec specifying the hierarchical syntax, and lit-
erals, identifier, and integer-constant representing tokens. The cor-
responding grammar is written for the Rats! parser generator [19]
and largely follows the syntactic specification shown in the figure.
It differs by encoding that applications are left-associative and that
function types are right-associative. Furthermore, it declares, in-
line, the λ-calculus’ AST, which has distinct nodes for abstractions,
applications, identifiers, integer constants, function types, and inte-
ger types.

Figure 3 shows the λ-calculus’ entire type checker written in
Typical. The specification first defines the AST representation
through the expression and type_spec variants (lines 1–9).
Next, it defines the type representation through the raw_type vari-
ant (11–12). It then defines the λ-calculus’ scoping rules and name-
spaces through the new scope and namespace constructs (14–18).
Finally, it defines the type rules and error checking through the

2

1 mltype expression =
2 | Abstraction of expression * type_spec * expression
3 | Application of expression * expression
4 | Identifier of string
5 | IntegerConstant of string ;
6

7 mltype type_spec =
8 | FunctionType of type_spec * type_spec
9 | IntegerType ;

10

11 mltype raw_type =
12 IntegerT | FunctionT of type * type ;
13

14 scope Abstraction _ as lambda ->
15 Scope(Anonymous("lambda"), [lambda]) ;
16

17 namespace default : type =
18 Identifier (id) -> SimpleName(id) ;
19

20 mlvalue analyze = function
21 | Abstraction (id, decl, body) ->
22 let param = analyze_type_spec decl in
23 let _ = define id param in
24 let res = analyze body in
25 { type = FunctionT (param, res) }
26 | Application (lambda, expr) ->
27 let tl = analyze lambda
28 and tr = analyze expr in
29 begin match tl.type, tr with
30 | FunctionT (param, res), param -> res
31 | _ -> error "mistyped application"
32 end
33 | Identifier _ as id ->
34 lookup id
35 | IntegerConstant _ ->
36 { type = IntegerT } ;
37

38 mlvalue analyze_type_spec = function
39 | FunctionType (param, res) ->
40 FunctionT (analyze_type_spec param,
41 analyze_type_spec res)
42 | IntegerType ->
43 IntegerT ;

Figure 3. Complete Typical type checker for the simply typed λ-
calculus with integers.

analyze and analyze_type_spec functions (20–43). As a mat-
ter of preference, Typical’s syntax is closer to Caml than Standard
ML, with Typical also supporting Caml’s declared record types,
“or” patterns, and pattern guards. Type and value declarations use
the “ml” prefix to distinguish these meta-language constructs from
the corresponding source language concepts.

In more detail, the declaration of AST nodes (1–9) need not be
written by hand. Rather, we have modified the Rats! parser genera-
tor to automatically generate this strongly typed view on the under-
lying dynamically typed AST to facilitate sharing between parser
and type checker [20]. The AST declaration organizes xtc’s generic
nodes into semantic categories, i.e., variants, while also abstracting
away auxiliary information such as a node’ source location, which
is not directly relevant for semantic analysis. That information is
still exposed to and used by Typical’s runtime, for example, to re-
port error locations.

The declaration of the λ-calculus’ types (11–12) is very sim-
ple, defining one constructor for integer types and one for function
types. The raw_type definition only captures each type’s inher-
ent properties, while separate attribute definitions declare types’
annotations. Typical automatically synthesizes a record type com-

IntegerConstant

Application

Abstraction

Identifier IntegerType Identifier
“5”

“x”“x”

Scope
“lambda-1”

IntegerT“x”

Figure 4. AST and symbol table for “(\x:int.x) 5”.

bining all these declarations. In the case of the λ-calculus, there
are no attributes and, as illustrated on lines 25 and 36, the type
record only has a type field for the raw type. Type comparisons
default to structural type equivalence, yielding the desired behavior
on line 30, which relies on the repeated param variable to compare
a function’s parameter type with the argument type. At the same
time, type checkers can override this default to express other forms
of type equivalence.

The scope declaration (14–15) relies on a pattern match to map
AST nodes to their scopes. For the λ-calculus, the declaration uses
the built-in Scope and Anonymous constructors to specify that each
abstraction node introduces an anonymous scope spanning the node
and its children. Typical uses this declaration to (1) automatically
create and enter the scope when first visiting an abstraction node,
e.g., when entering the expression on lines 22–25, (2) exit the scope
when returning from an abstraction node, e.g., when exiting the
expression on lines 22–25, and (3) restore that scope when visiting
the node again, which does not happen in the example.

The namespace declaration (17–18) also relies on a pattern
match, this time to map AST nodes to their namespaces and names
for symbol table operations. For the λ-calculus, the declaration uses
the built-in SimpleName constructor to specify that each identifier
node maps to the default namespace and the node’s string as the
name. Typical uses this declaration for the symbol table accesses
in lines 23 and 34; it also uses the type name type to strongly
type these operations. Figure 4 illustrates the effect of the scope
and namespace declarations by showing the AST and symbol table
after processing “(\x:int.x) 5”.

The analyze function (20–36) and analyze_type_spec
function (38–43) implement the λ-calculus’ type rules, with ana-
lyze processing expression variants and analyze_type_spec
processing type_spec variants. Taken together, the two functions
traverse the AST and map λ-calculus constructs to their types.
They also enforce two constraints, namely that the parameter type
of a function matches the argument type for an application (29–
32) and, implicitly, that the identifier is defined on a symbol table
lookup (34). The former specifies an explicit error message, while
the latter relies on the default message provided by Typical. In both
cases, the reported error location is the source location of the dy-
namically closest matching AST node, i.e., an application node in
the former case and an identifier node in the latter case. On an error,
both expressions evaluate to bottom. Comparable to Java’s null,
this value is automatically injected into every Typical type, but,
unlike null, automatically threaded through a Typical program to
avoid cascading error messages.

5. The Typical Language
The main goal for Typical is to make type checkers easier to
implement and extend. In the process of developing our system, we
have distilled the following design guidelines, which help Typical
meet its goal:

1. Be expressive. Typical should incorporate constructs that di-
rectly capture common type checker idioms. At the same time,

3

it should include sufficient general purpose constructs to facili-
tate the implementation of uncommon operations.

2. Be declarative. Typical constructs should be declarative. Where
possible, they should directly express an aspect of the source
language’s type system instead of providing a way to implement
that aspect in code.

3. Be prescriptive. In general, Typical constructs should cleanly
compose with each other. However, error detection and report-
ing should be integrated with other constructs and not require
dedicated constructs.

4. Be correct. Typical constructs should help ensure that the im-
plementation of a source language’s type system is correct. At
the least, Typical constructs must be statically typed. Prefer-
ably, they prevent incorrect implementation of (some) aspects
of a type system altogether.

The first guideline directly reflects Typical’s goal of simplify-
ing type checker implementation; though it also acknowledges that
Typical cannot possibly include constructs for all possible type sys-
tems. The second guideline is based on the observation that, when
compared to code implementing behaviors, declarative constructs
tend to be more concise, more flexible in their implementation, and
more easily implemented correctly. For example, Typical’s scope
declarations precisely specify all of a source language’s scoping
rules in one location, do not depend on a particular symbol table
implementation, and ensure that enter-scope and exit-scope opera-
tions are always well-matched.

The third guideline is based on the observation that real-world
type checkers are not just boolean oracles that determine whether
programs are well-typed. Rather, they need to provide developers
with meaningful feedback on program errors. As a result, the im-
plementation of type rules is often cluttered by the corresponding
error management. Seminal [26] addresses this challenge by decou-
pling type checking from error reporting for ML. In contrast, we be-
lieve that combining error checking with other Typical constructs
encourages a proper error discipline and thus provides a more gen-
eral solution.

Finally, the fourth guideline is based on the observation that
type checkers are critical for program safety. A type checker bug
can easily subvert a source language’s typing discipline and thus
result in misbehavior or crashes of compiled programs. Conse-
quently, program correctness is of particular importance for seman-
tic analyzers. For the purposes of this paper, we focus on Typical as
a strongly typed language for implementing real-world type check-
ers. In future work, we will formalize our language through a trans-
lation to ML and then leverage this foundation to automatically rea-
son about the correctness of type checker implementations.

5.1 Core Language
With the design guidelines in place, we now turn to the actual de-
sign of our language. We initially explored building on a Java-like
core, but settled on the functional core of ML for three reasons.
First, variants provide a concise representation for syntax trees and
types alike. Second, pattern matches enable a concise implementa-
tion of visitors, while also enabling the flexible decomposition of
data structures. Third, ML is strongly typed and has a well-defined
and well-understood semantics [29]. In other words, ML provides
us with an expressive, declarative, and correct foundation; it also
addresses concerns 1, 3, and 5 raised in Section 2.

Consistent with the organization of language specifications
around their constructs, Typical models type checkers as mappings
from AST nodes to their types. Since the AST is usually repre-
sented by more than one variant, this mapping is implemented by
several functions. The main entry point is the analyze function,

which takes the variant representing the AST’s root its argument
and returns the meta-language type type. The analyze function,
in turn, invokes other functions, such as analyze_type_spec for
the λ-calculus’ type checker, to visit all AST nodes while also
mapping each node to its type. To make typing information readily
available to later compiler phases, Typical automatically annotates
nodes with their types. It identifies relevant functions, i.e., those
mapping nodes to types, by determining the transitive closure of
variant types reachable from the AST’s root type. Borrowing from
Haskell’s notation for type classes [32], an arbitrary variant repre-
senting an AST node can be written as “Node ’a”.

5.2 Abstract Syntax Tree Nodes
A source language’s abstract syntax tree is shared between the
parser, type checker, and back-end. Consequently, the main chal-
lenge for representing ASTs in Typical is to reconcile two compet-
ing pressures: ASTs must be seamlessly shared with other compiler
phases, while also integrating with our language’s functional core.
Typical meets this challenge through two techniques. First, the in-
Typical representation of AST nodes abstracts away auxiliary in-
formation that is not directly relevant for semantic analysis. In par-
ticular, it hides a node’s source location, and all error reporting is
performed relative to AST nodes. Furthermore, it hides nodes’ type
annotations, which are automatically added during semantic anal-
ysis. Of course, that information is still accessible to and used by
Typical’s runtime. Second, while the AST declaration may be writ-
ten by hand, it is usually created by the parser or AST generator.
As already mentioned in Section 4, we have modified the Rats!
parser generator to interface with Typical. The corresponding code
analyzes a grammar’s inline AST declarations, sorts xtc’s generic
nodes into semantic categories, i.e., variants, and infers consistent
types for each node’s children [20]. A similar approach can be used
for other parser generators, such as ANTLR [33] or SDF2 [38], that
also rely on dynamically typed ASTs. At the same time, inferring a
statically typed view is unnecessary for parser generators, such as
Elkhound [28], that already model ASTs after ML’s variant types.

5.3 Source Language Types
The representation of a source language’s types is central to its se-
mantic analysis. It needs to capture (1) the types themselves, (2)
their attributes, and (3) their equivalence and subtyping relation-
ships. Furthermore, attributes may have fixed semantics, such as
qualifiers for C or visibility modifiers for Java. They may also be
user-defined, capturing a particular application domain’s restricted
semantics. Finally, not all languages require attributes; Typical, just
like ML, has none. Our language meets these needs by representing
a source language’s types through a variant—thus facilitating easy
case analysis through pattern matches—and by relying on separate
attribute declarations—thus allowing for easy extensibility. It also
supports overridable = and <: operators for expressing equivalence
and subtyping relationships.

A source language’s type representation is expressed through
the meta-language type raw_type. For example, the definition for
C’s types includes the following constructor definitions:

mltype raw_type =
VoidT | IntT | PointerT of type | . . . ;

C’s storage class and qualifiers are declared separately, using Typ-
ical’s attribute and eqattribute constructs. For example,
the following type and attribute represent C’s storage class; the
typedef specifier is treated as a storage class, since it introduces a
type alias and thus has no storage:

mltype storage_class =
Auto | Extern | Register | Static | Typedef ;

attribute storage : storage_class ;

4

Typical automatically collects the raw type and its attributes into
an ML record. In the case of C, it reads:

mltype type =
{ type: raw_type; storage: storage_class; . . . } ;

Typical uses a record to represent attributed types, because ML’s
record patterns and “{ . . .with . . .}” construct for creating a record
relative to another record need not specify all fields. As a re-
sult, Typical’s attribute declarations combine with ML’s support
for record types to allow for the seamless introduction of new at-
tributes. Of course, for language without attributes, the compiler
optimizes the type record away again.

To express type equality and subtyping relationships, Typical
relies on the polymorphic = and <: operators. By default, both op-
erators test for structural equality; though they do ignore attributes
introduced by attribute as opposed to eqattribute. Typical’s
new equality construct is used to override =’s behavior for variant
types; its (non-exhaustive) pattern specifies which constructor argu-
ments to compare through either a variable or wildcard pattern. For
example, consider the following definition of C’s structure type:

mltype raw_type = . . .
| StructT of int * string * type list ;

The integer argument is a nonce that distinguishes between struc-
tures with the same name and members but declared in different
scopes, which are distinct types in C. The corresponding equality
declaration reads:

equality raw_type = . . . | StructT (n, _, _) ;

Taking a cue from Haskell’s type classes [32], the = operator can
be further customized through a function definition that explicitly
specifies the non-polymorphic signature. The above declaration is
equivalent to the following function definition:

mlvalue (=) : raw_type -> raw_type -> bool =
fun t1 t2 -> match t1, t2 with . . .

| StructT (n1,_,_), StructT (n2,_,_) -> n1 = n2
| _ -> false ;

The <: operator can be similarly customized; though we have not
yet made use of this feature.

5.4 Name Management
Name management is another issue central to type checker imple-
mentation. It generally requires an environment or symbol table ab-
straction, which maps names to their types while also capturing a
source language’s scopes and namespaces. Furthermore, when us-
ing visitors, it requires that the current scope be coordinated with
the AST traversal. Of course, a source language’s scopes limit the
static visibility of identifiers. Furthermore, namespaces assign dif-
ferent meaning to the same name in the same scope, with the type
checker disambiguating names based on enclosing construct. For
example, C’s functions contain the visibility of locally declared
variables, while namespaces support the use of the same name as a
variable and a goto label.

Typical meets the requirements for name management by pro-
viding (1) a symbol table that is implicitly available to all programs,
(2) the scope construct to declare which AST nodes correspond to
which scopes, and (3) the namespace construct to declare individ-
ual namespaces, the types of their values, and which AST nodes
correspond to which names. Both the scope and namespace con-
structs concisely capture aspects of a type checker. Consequently,
they eliminate the need for boiler-plate code sprinkled through-
out the type checker, which addresses concern 2 raised in Sec-
tion 2. Both also are implemented by “weaving” the corresponding
code into the type checker, rewriting the right-hand sides of pattern

matches on nodes for the scope construct and rewriting symbol
table operations for the namespace construct.

Having said that, we first need to settle on an appropriate data
structure for the implicit symbol table. A persistent, i.e., functional,
data structure would fit well with Typical’s functional core and
could be supported by rewriting functions during translation to
pass an explicit symbol table argument. However, correctly man-
aging that extra argument is difficult for type checkers that make
several passes over the AST. For example, C’s goto statements
may forward reference labels. Correctly checking them requires
two passes: the first to collect all defined labels and the second to
verify that goto labels are, in fact, defined. To cleanly support mul-
tiple passes over a program’s AST, Typical relies on an imperative,
block-structured symbol table. In fact, the symbol table provides
the only mutable state available to Typical programs.

The scope construct illustrated on lines 14–15 in Figure 3 (non-
exhaustively) maps AST nodes to scopes; each right-hand side must
evaluate to a built-in Scope value:

mltype scope_kind =
| Named of name
| Anonymous of string
| Temporary of string ;

mltype scope =
| Scope of scope_kind * (Node ’?) list ;

The ’? serves as a wildcard, indicating that any variant represent-
ing a node may appear in the list. Each scope spans the specified list
of nodes, is automatically created when first visiting a node on the
list, and automatically restored when visiting any of the nodes. Fur-
thermore, a scope can be one of three kinds. First, a named scope
is introduced by a named function or class. Second, an anonymous
scope is introduced by a block or compound statement. Third, a
temporary scope, unlike the other two kinds, is deleted after the
visitor has left the scope’s AST nodes. It is useful for typing C or
C++ function prototypes, which may use parameter names differ-
ent from the corresponding definitions. Named scopes assume the
specified name, while anonymous and temporary scopes receive a
fresh name based on the specified string.

To automatically synchronize scopes and visitors, Typical
places one restriction on pattern matches on AST nodes in gen-
eral. For the current scope to be well-defined, each expression in
a Typical program must be dynamically “dominated” by a unique
node. To ensure this condition, pattern matches on nodes may be
arbitrarily complex, but may only use variable or alias patterns
for arguments of a single constructor. That node then dominates
the right-hand side and thus determines the current scope. With
this restriction in place, Typical’s runtime can trace the dynamic
traversal path from an AST’s root to the closest matching node as
a stack. When it first pushes a node onto the stack, it evaluates the
scope construct’s pattern match against the node, annotates the
node with the result, and, if necessary, updates the current scope. If
the node already has a scope annotation, it simply sets that scope,
thus always synchronizing scopes and visitors.

The namespace construct illustrated on lines 17–18 in Figure 3
introduces a new namespace while also specifying the type of its
values and the (non-exhaustive) pattern match mapping AST nodes
to names. Since the symbol table is mutable, all values stored in
a given namespace must observe ML’s value restriction [15, 39]
and cannot be polymorphic. Otherwise, the type is unrestricted,
e.g., need not be the meta-language type type. Using the following
built-in type, names can either be simple, omitting the scope, or
qualified, explicitly specifying a scope:

mltype name =
| SimpleName of string
| QualifiedName of string list ;

5

Typical provides the obvious symbol table operations, including
define, is_defined, and lookup. To denote the namespace and
name, these operations include a namespace tag and node; though,
as illustrated for define on line 23 and for lookup on line 34
in Figure 3, the tag may be omitted for the default namespace.
Typical relies on the namespace declaration’s type to statically
type symbol table operations. It relies on the declaration’s pattern
to dynamically map the node to a symbol table name and then
performs the actual operation.

5.5 Error Management
After discussing Typical’s facilities for expressing a source lan-
guage’s abstract syntax tree, types, and name management, we
now turn to error management. The main challenge is how to de-
tect and report failures, while also avoiding cascading error mes-
sages. Developers prefer to be notified of as many error conditions
as possible rather than receiving just one notification per compiler
invocation—as long as those error messages reflect actual program
errors. Consequently, a type checker needs to continue processing
the AST even after encountering an error, ignore error conditions
caused by other errors, and report error conditions unrelated to
other errors. Typical addresses this challenge through a so-called
“no-information” monad and through constructs that integrate er-
ror detection and reporting, notably require to express boolean
constraints and guard to express arbitrary constraints.

Many type checkers prevent cascading error messages by ex-
plicitly threading an error type, such as xtc’s ErrorT, through
their code. This is tedious to write and clutters the implementa-
tion. In contrast, Typical provides a system-wide no information
monad, which automatically threads a bottom value through the
type checker. In particular, all types are automatically injected into
the monad and include bottom as a value. Built-in constructs and
primitives generally return bottom if any of their arguments are
bottom. Furthermore, all pattern matches return bottom due to an
implicit clause mapping bottom to itself; though this default can
be overridden by explicitly matching bottom. At the same time,
type constructors, such as those for tuples, lists, and variants, treat
bottom just like any other value. It allows for marking, say, a
type attribute as having no information without forcing the entire
type record to bottom. Finally, the is_bottom primitive detects
bottom values, since the = and != operators yield bottom when
either operand is bottom.

By representing errors as bottom and injecting (almost) all op-
erations into the corresponding monad, Typical programs can avoid
cascading error messages without notational overhead. To actually
detect and report error conditions, they use require and guard.
The require construct enforces one or more boolean constraints
on an expression. For example, the λ-calculus’ type checker could
be improved by replacing the implicit type comparison on line 30
of Figure 3 with an explicit requirement:

require param = arg error "mistyped argument" in res

If the constraints, here “param = arg”, evaluate to true, require
evaluates the expression, here “res”, and returns the correspond-
ing value. If the constraints evaluate to false, require reports an
error, here “mistyped argument”, and returns bottom. Unless spec-
ified explicitly, the reported source location defaults to the location
of the closest matching AST node. Finally, if the constraints eval-
uate to bottom, require silently returns bottom—thus avoiding
cascading error messages.

The guard construct enforces arbitrary constraints by protect-
ing against bottom values. For example, consider this snippet from
Typical’s own type checker, which unifies the types of a cons ex-
pression:

guard unify th tt error "type mismatch for cons"

reduce lst to singleton "type" with
| { Long, Double, Complex } -> LongDoubleComplexT
| { Double, Complex } -> DoubleComplexT
| { Float, Complex } -> FloatComplexT
| { Long, Double } -> LongDoubleT
| { Double } -> DoubleT
| { Float } -> FloatT
| . . . (* Similarly for integer types. *)
| { Void } -> VoidT
| { TypedefName _ as node } ->

analyze_derived_type_spec node ref_is_decl
| . . . (* Similarly for enum, struct, and union specifiers. *)

Figure 5. C’s constraints on type specifiers in Typical. The
ref_is_decl flag indicates whether a reference to a structure or
union type also is a declaration.

If none of the expression’s free variables, here unify, th, and
tt, are bottom, guard evaluates the expression. If the result is
bottom, guard reports the specified error; otherwise, it just returns
the expression’s value. However, if either of the expression’s free
variables is bottom, guard silently returns bottom as well—again
to avoid cascading error messages. By delegating error checking
and reporting to guard, invocations of the unify function can
be chained to unify more than two types but without resulting in
duplicate error messages.

In addition to these primary error management constructs, Typ-
ical also integrates error checking and reporting with symbol table
operations. In particular, define verifies that a name has not been
defined, and lookup verifies that a name has indeed been defined.
(redefine avoids the former check.) Furthermore, as illustrated
on line 31 in Figure 3, Typical includes stand-alone error and
warning constructs.

Overall, Typical’s integration of the no-information monad with
its error management constructs removes most of the clutter of ex-
plicitly threading error values through a type checker. As a result,
the no-information monad cleanly addresses concern 4 raised in
Section 2. Compared to Ramsey’s extended error monad [34], it is
also simpler, since it does not require exceptions, and more flexible,
since it can also thread other conditions through a type checker. For
example, our C type checker relies on the no-information monad to
thread compile-time constant values through its code, without ex-
plicitly checking that an expression’s operands are indeed compile-
time constant.

5.6 List Reductions
C-like languages rely on lists of so-called specifiers or modifiers
to express the properties of declarations, including types and their
attributes. In fact, both C# and Java support the expression of
arbitrary, user-defined attributes. In processing such lists, a type
checker needs to (1) map AST nodes to the corresponding internal
representation, (2) enforce semantic constraints on the number and
combination of specifiers, and (3) provide comprehensive error re-
porting. Lists of specifiers are not only a common source language
idiom, the state machine implementation necessary to enforce their
semantic constraints can also be relatively complicated, easily lead-
ing to type checker bugs. Therefore, Typical directly addresses the
three needs through the reduce construct.

The reduce construct is illustrated in Figure 5 on the example
of C’s type specifiers. It specifies the list to be reduced, here “lst”,
the constraints on the result, here “singleton”, a string describing
the result, here “type”, and a (non-exhaustive) pattern match. Es-
sentially, reduce repeatedly applies the pattern match to the list’s
elements until no more clauses trigger. It uses an extension of ML’s

6

pattern syntax, the set pattern “{ . . .}”, to indicate that a pattern’s
elements may appear in any order. Alternatively, a list pattern indi-
cates that the elements must appear in the specified order. In either
case, list elements that do not match any pattern elements are ig-
nored, even if they appear between matching pattern elements. For
each triggered clause, reduce evaluates the right-hand side, col-
lecting the result.

While mapping the pattern match over the list, reduce also en-
forces the constraints. The singleton constraint in the example in-
dicates that the pattern match may be triggered at most once, while
set and list constraints allow for multiple triggers, with dupli-
cates being ignored for set constraints. A further optional con-
straint specifies that the pattern match need not match any elements.
Finally, like require and guard, reduce integrates error checking
and reporting, deriving any message from the string describing the
result. In the example, if the list is “[Double, Double]”, reduce
reports a “duplicate type” and returns bottom.

The design of the reduce construct reflects our analysis of how
to type check C specifiers or Java modifiers and supports a general-
ization of the corresponding requirements. In particular, a list of C
specifiers must include a single type specifier such as int, reduc-
ing the list to a “singleton”. It may optionally include one stor-
age class specifier such as register, reducing to an “optional
singleton”. It may also include one or more qualifiers such as
const, which may be duplicated and thus reduce to an “optional
set”. As demonstrated here, the reduce construct cleanly captures
C’s rather convoluted specifier semantics, while also hiding the cor-
responding state machine implementation. As an added benefit, the
pattern match in Figure 5 directly mirrors the listing in § 6.7.2 of
the C99 standard [23]. As a result, we believe that reduce repre-
sents an appropriate combination of expressivity, prescriptiveness,
and correctness.

5.7 Summary
Typical addresses the five concerns raised in Section 2 as follows.
(1) To statically type AST nodes and visitors, it implements nodes
as variant types and visitors as pattern matches. (2) To reduce the
need for boiler-plate code, it automatically annotates nodes with
their types and synchronizes the current symbol table scope with
the AST traversal. (3) To simplify the decomposition of types and
their properties, it also relies on pattern matches. (4) To avoid man-
ually threading error values through programs, it provides a no-
information monad that is also integrated with error detection and
reporting. (5) To reduce the complexity of the type representation,
it represents types through a variant and separately declared at-
tributes. Additionally, it relies on list reductions to simplify speci-
fier processing for C-like languages. The overall result is a language
designed to be expressive, declarative, prescriptive, and correct.

6. Module System and Extensibility
To enable the reuse of type checker specifications, Typical provides
a module system specifically tailored to the domain of semantic
analysis; though our compiler does not yet implement it. Similar to
other module systems, our module system relies on module decla-
rations to group related Typical definitions, on import declarations
to explicitly track dependencies, and on parameter declarations to
delay the specification of actual dependencies, thus facilitating flex-
ible composition. Parameters represent module names and, on in-
stantiation, are replaced throughout a module with the actual argu-
ments. Type, constructor, field, and value names are all relative to
the defining module and may be written in qualified form (i.e., by
using dots between name components). If a name is not qualified,
it must be defined in either the same module or a single imported
module.

1 mlvalue analyze_expression <<
2 MultiplicativeExpression (n1, "*", n2) ->
3 match t1, t2 with
4 | { nonzero = true }, { nonzero = true } ->
5 { result with nonzero = true }
6 | _ -> result ;
7 mlvalue analyze_expression <<
8 MultiplicativeExpression (n1, "/", n2) ->
9 match t1, t2 with

10 | { nonzero = true }, { nonzero = true } ->
11 { result with nonzero = true }
12 | _, { nonzero = true } ->
13 { result with nonzero = false }
14 | _ -> error "Potential division by zero" ;

Figure 6. Two example rules for adding a nonzero qualifier to C.

While helpful, this basic design is not sufficiently expressive
to facilitate the implementation of language extensions. For exam-
ple, consider adding structure inheritance to C to reduce the need
for unsafe casts. Implementing this new language feature requires
updating the grammar and AST. It also requires changing the type
checker by updating the AST node for structures, the representation
of structure types, and the analysis code for structure definitions
and type compatibility. In contrast, adding a nonzero qualifier to
C does not require modifying the representation of nodes or types,
but it does require adding a new type attribute and supplemental
analysis code.

To provide fine-grained extensibility for type checkers, we take
a cue from extensible syntax, which supports the rewriting of a
grammar’s productions by adding, overriding, and removing indi-
vidual alternatives [6, 19]. Analogously, Typical does not distin-
guish between a module’s external signature and its internal imple-
mentation and treats type, equality, scope, namespace, and function
definitions as collections of rules that can be directly modified. In
particular, Typical’s module modifications support four rewriting
operators:

• += to add new rules;
• << to add supplemental rules to functions;
• := to override existing rules;
• -= to remove existing rules.

The rule to be modified is either a constructor declaration for types
or a pattern matching clause for all other definitions. It is identified,
respectively, by either the constructor name or by the original
rule’s pattern; though any subpatterns not necessary for uniquely
identifying a clause may be omitted. Additionally, when modifying
functions, several patterns may be combined with the -> operator
to identify a clause in an arbitrarily nested match expression.

Figure 6 illustrates module modifications by showing two
rewrite rules for adding a nonzero qualifier to C; the qualifier
enables the static detection of division by zero errors [7]. The two
rules depend on the declaration of a new type attribute:

eqattribute nonzero : bool ;

The module implementing the nonzero qualifier simply includes
this declaration.

To combine a supplemental rule with an existing rule, Typical
hoists the existing rule’s outermost bindings while also creating a
new binding for that rule’s result. In particular, consider the right-
hand side of an existing rule:

let bindings in expr

Typical combines this expression with the supplemental rule’s
right-hand side exprsup as following:

7

let bindings in let result = expr in exprsup

Consequently, the code in Figure 6 can access the original rule’s
bindings for t1 and t2 on lines 3 and 9, while also accessing the
original rule’s result on lines 5, 6, 11, and 13 under the well-known
variable name result.

Adding new rules (instead of supplemental ones) to a pattern
match raises a different issue: the new clause must be added at an
appropriate position, since pattern matches are ordered. To auto-
matically determine that position, Typical leverages ML’s irredun-
dancy analysis. Conceptually, module resolution tries out every po-
sition in a pattern match until it finds a position that does not cause
an irredundancy conflict. This search starts from the top to give
priority to newly added clauses. In practice, we expect the Typical
compiler to try only few positions, since most pattern match clauses
match distinct variant constructors.

Comparable to C++ templates, the design of Typical’s module
system trades off flexibility and extensibility against modular type
checking. In particular, since module modifications specify how
to rewrite other modules, they are necessarily incomplete, and the
Typical compiler can fully type check a module only after all mod-
ifications have been applied. We believe this trade-off to be accept-
able for two reasons. First, Typical programs implement only type
checkers and are relatively small, covering a few thousand lines of
code at most and thus lessening the need for modular type check-
ing. Second, the Typical compiler can still perform consistency
checks before applying module modifications, ensuring, for exam-
ple, that all modifications apply to existing definitions. It can also
incrementally type check a program, as long as a module’s param-
eters have been resolved and all modifications have been applied.
As we gain more experience with Typical, we expect to revisit this
trade-off. Finally, note that Typical programs as a whole are always
strongly typed.

7. Implementation
Our Typical compiler is implemented as a source-to-source trans-
lator from Typical to Java. It is written in Java, with exception of
the type checker, which is written in Typical—thus demonstrating
our system’s seamless integration with other, imperative compiler
code. While the compiler supports the complete language, it does
not yet implement the module system.

The mapping from Typical to Java represents variant types as
collections of classes, with one superclass for each variant and one
subclass for each constructor. Each subclass provides fields and ac-
cessors for the constructor’s arguments. It also includes methods to
easily test for a particular constructor in translated pattern matches.
For example, the class implementing the PointerT constructor has
the following two methods:

public boolean isPointerT() { return true; }
public Tag tag() { return Tag.PointerT; }

Both methods are also declared by the superclass, with the imple-
mentation of isPointerT() returning false and tag() being ab-
stract. The tag is a type-safe Java enum over each variant’s construc-
tors. Where possible, it is used to optimize the implementation of
pattern matches through switch statements.

Next, the mapping represents record types as classes with the
corresponding fields and accessors. For type checkers without at-
tributes, the compiler optimizes the type record away again, re-
placing all uses with the raw type. Our mapping implements lists
through a utility class, Typical strings as Java strings, and boolean
and numerical types through the corresponding boxed Java classes.
Typical’s int maps to BigInteger to enable unlimited precision
arithmetic when tracking compile-time constant values. Finally, the
mapping represents bottom as null.

A Typical program’s top-level values are mapped to (im-
mutable) fields of the type checker’s main class. Closures, i.e.,
functions and let expressions, are translated to anonymous in-
ner classes that implement interfaces representing their “uncur-
ryed” signatures. As an optimization, the compiler folds directly
nested let expressions whose bindings do not overlap into a single
closure. The reduce construct is translated to the corresponding
state machine, which tracks matches on individual element pat-
terns. Finally, the implementation of the scope and namespace
constructs largely follows the description in Section 5.4, with the
compiler first creating ML functions based on the declarations’
pattern matches and then translating the resulting functions. It also
injects calls to these functions into pattern matches on AST nodes
and symbol table operations.

While largely straight-forward, our mapping has one shortcom-
ing: it preserves tail-recursive function invocations and relies on the
Java compiler or virtual machine to perform tail call elimination.
Since most Java implementations do not perform this optimization,
we (somewhat) mitigate this limitation by implementing Typical’s
list library in Java, using iterative algorithms where possible.

8. Evaluation
In evaluating Typical, we consider three criteria: its expressive-
ness, conciseness, and performance. To this end, we have imple-
mented the semantic analyzer for Typical in Typical itself. The
type checker supports higher-order functions, parametric polymor-
phism, parameterized data types, and Hindley-Milner type infer-
ence. It also verifies that pattern matches are exhaustive and ir-
redundant, i.e., cover all cases without duplicate clauses. Finally,
it automatically detects mutually recursive functions, thus elimi-
nating the need for explicit “let rec” declarations. We have also
implemented a semantic analyzer for C99 [23] with common gcc
extensions. C99, in turn, is a significant extension of Kernighan and
Ritchie C [24]. The C type checker passes all regression tests for
the gcc 4.1 front-end and also processes the entire Linux 2.6 kernel.

Taken together, the two type checkers demonstrate that our lan-
guage is sufficiently expressive to capture the static semantics of
substantially different programming languages, equally supporting
a conventional monomorphic type system and an inference-based
polymorphic type system. However, we are not quite satisfied with
Typical’s support for type unification. In particular, the current im-
plementation uses an explicit hashtable to map type variables to
types when performing unification. We believe that its performance
is close to optimal, since experiments with a fast union/find imple-
mentation have not resulted in performance improvements while
also increasing memory utilization. At the same time, we would
like to hide the hashtable behind a more declarative interface and
will explore better language support for unification as future work.

To evaluate conciseness and performance, we compare three
type checkers for C:

• Our own type checker, which is written in Typical;
• xtc’s type checker, which is written in Java;
• A third, derived, type checker, which is written in O’Caml.

The Typical and xtc versions use the same parser, AST representa-
tion, and symbol table implementation. Since the two versions pro-
cess the same inputs and use the same libraries, any difference in
performance reflects the difference between handwritten Java and
Typical code. We derived the O’Caml version from the Typical
version, using CIL’s parser and complete AST representation for
C [30]. Since Typical is based on ML, any difference in concise-
ness reflects Typical’s improvements over the base language.

Table 1 shows the code size breakdown for the C type checkers,
including the size of the Typical-generated Java code. It measures
code size in lines of code (LoC) for the Typical and O’Caml

8

Typical Compiled Java O’Caml
Functionality (LoC) (NCSS) (NCSS) (LoC)
AST declaration 250 [960] [960] 200
Type declaration 50 810 1,810 50
Type operations 350 1,660 920 400
Symbol table [0] [310] [310] [100]
Scopes, namespaces 70 310 0 0
Specifiers 170 400 670 210
Compound init. 140 430 320 170
Rest of AST analysis 1,300 4,900 2,660 1,970
Total size 2,330 8,510 6,380 3,000

Table 1. Code size breakdown for the C type checkers. Bracketed
numbers reflect library code not counting towards the totals; Typi-
cal’s runtime comprises another 1,680 NCSS.

Metric Typical Java O’Caml
Latency (s) 1275.8 1080.9 (0.85×) 169.6 (0.13×)
Mem. pressure (MB) 5512.7 2116.9 (0.38×) 6068.9 (1.10×)

Table 2. Performance of type checking the Linux kernel.

versions, while using non-commenting source statements (NCSS)
for Java. NCSS are roughly equivalent to counting semicolons
and open braces; they are a more conservative metric that avoids
skewing results in the presence of many small methods and their
documentation.

The results demonstrate that Typical enables the concise speci-
fication of real-world type checkers. Compared to the Java version,
the Typical version is 2.7 times shorter, with the variant for the
raw type, pattern matching in type operations, and list reductions
for specifier processing having the biggest impact. Compared to
the O’Caml version, the Typical version still is 1.3 times shorter,
or almost 700 lines of code. Compared to both, the Typical ver-
sion also is more robust. It is statically typed, unlike the Java ver-
sion, and avoids boiler-plate code for synchronizing the symbol ta-
ble and for threading error as well as compile-time constant values
through the type checker, unlike the Java and O’Caml versions. At
the same time, the results demonstrate the effectiveness of xtc’s
type representation. Even though the class hierarchy and type op-
erations themselves require significant code, they do facilitate a
relatively concise coding style, with the main analyzer being only
2 times larger than the Typical version and 1.4 times larger than the
O’Caml version.

Table 2 compares the performance of the C type checkers for
the entire Linux 2.6 kernel. Latency measures the time for type
checking each file, excluding parsing. Memory pressure measures
the difference in available memory before and after type check-
ing each file. We forced GC before type checking, and there was
no GC during type checking. Reported numbers are the sums of the
averages of the last three out of four runs for each file. All measure-
ments were performed with Sun’s 1.5.0 11 JVM and O’Caml 3.10
generated native code on an off-the-shelf PC running Linux.

The results show that the performance of the Typical-generated
version is competitive with that of the handwritten one. The latency
of the Typical version is only 1.18 times larger than that of the
Java version; though its memory pressure is 2.60 times larger.
Profiling of the Typical version shows that a significant fraction of
the execution time is spent in translated list reductions and pattern
matches on nodes. We will thus focus future tuning efforts on the
memory overhead of closures and the latency of list reductions
and pattern matches. By comparison, the O’Caml version runs
significantly faster, by a factor of 7.52 when compared to the
Typical version. It demonstrates the benefits of native code, as
opposed to a virtual machine, and of aggressive optimizations, as

opposed to a relatively straight-forward mapping of ML to Java.
Though just like the Typical version, it has higher memory pressure
than the Java version.

9. Related Work
Several efforts explore how to add user-defined type constraints to
C and Java. In particular, CQual [14] and JQual [18] extend the
type systems of C and Java respectively with support for user-
defined qualifiers based on subtyping relationships. Next, Clar-
ity [7] provides a more expressive language, whose rules can be
automatically validated with an automatic theorem prover. Finally,
JavaCOP [1] further increases expressivity, supporting a rich, rule-
based language for implementing user-defined type constraints.
CQual, JQual, Clarity, and JavaCOP focus on making a particu-
lar language’s type checker extensible, while our work focuses on
making type checkers in general easier to implement and extend.
As a result, the four systems feature a tighter integration with a
particular language’s compiler, while our system is more general.

Meta-programming systems take a different approach and lever-
age a single formalism for specifying all aspects of processing an-
other language, including parsing, type checking, interpretation,
or translation [21]. For instance, PSG [2] relies on denotational
semantics, while CENTAUR [3] relies on natural semantics. Both
ASF+SDF [36] and Stratego/XT [5] rely on the rewriting of al-
gebraic expressions. Finally, Eli [17], JastAdd [13], Ruler [10],
Silver [37], the synthesizer generator [35], and xoc [9] build on
attribute grammars, with Ruler focusing on type checkers and
xoc focusing on extensions to C. Compared to our work, meta-
programming systems are more ambitious but also suffer from a
lack of orthogonality: they work best when entire compilers are
implemented with them. Furthermore, they require that compiler
writers map familiar concepts, such as scopes and namespaces,
onto the underlying formalism, such as attributes or rewrite rules.
In contrast, Typical is designed to directly capture such concepts
and to seamlessly integrate with other compiler code.

Nominally, the TCG system [16] comes closest to our work by
exploring how to structure a type checker generator. To this end,
TCG introduces its own language and formalism, which has well-
defined operational semantics. Treating type derivation as a proof,
TCG then performs a symbolic, backward proof search to deter-
mine whether a program is well-typed. While formally rigorous
and expressive, TCG suffers from two limitations. First, to keep
the proof search tractable, TCG needs explicit annotations, thus re-
quiring that compiler writers understand not only the formalism but
also the proof search system. Second, TCG has limited support for
error management. While it does include support for visualizing
the proof search, it lacks facilities for reporting user-friendly type
errors and for recovering from cascading error conditions, both of
which are critical for real-world compilers.

To achieve fine-grained extensibility, Typical’s module sys-
tem supports the modification of variant declarations and pattern
matches through rule rewriting. The idea of treating declarations,
i.e., productions, in a compiler-compiler’s specification as modifi-
able clauses, i.e., alternatives, was first introduced by Cardelli et
al. [6] and then made practical in Rats! [19]. In contrast, attribute
grammars provide a simpler extension model: just add a new at-
tribute. This works exceedingly well when extending a language
with new constructs and the corresponding attribute grammar pro-
ductions. But it requires additional machinery when modifying ex-
isting attribute definitions [11]. Aspect-oriented programming [25]
and J&’s nested inheritance [31] are viable alternatives, with J&
also providing static type safety. At the same time, they are more
general and more complex.

Unlike the previous systems, which are largely targeted at real-
world languages and tools, the TinkerType system [27] is explic-

9

itly designed for exploring (versions of) the typed lambda calcu-
lus. Its goal is to facilitate the compact and modular description of
formal systems, including type systems. To meet this goal, Tinker-
Type models formal systems as collections of clauses, such as a
type system’s inference rules, and features, such as a type system’s
types. It then lets developers combine different clauses with differ-
ent features and automatically ensures that a given combination is
consistent. TinkerType’s distinction between clauses and features
is reminiscent of Typical’s distinction between case analysis, i.e.,
pattern matching, and case definitions, i.e., variant type definitions,
but, overall, the two systems have fundamentally different goals.

10. Conclusions
We have presented Typical, a practical type checker generator for
real-world languages. Our type checker specification language is
designed to be expressive, declarative, prescriptive, and correct. To
this end, it builds on the functional core of ML and extends it with
declarative constructs where appropriate. Constructs new to Typi-
cal include those capturing a language’s type attributes, type equiv-
alence, scopes, namespaces, and typing constraints. Additionally,
type checker specifications are organized into modules, which sup-
port fine-grained extensibility through rule rewriting. Experiences
with type checkers for Typical and C demonstrate that our language
concisely captures the type rules of these substantially different lan-
guages and that Typical-generated type checkers exhibit reasonable
performance. Typical has been released as open source.

Acknowledgments
We thank Benjamin Goldberg for serving as a sounding board while
designing Typical. We also thank Martin Hirzel and Allan Gottlieb
for their feedback on earlier versions of this paper. This material
is based upon work supported by the National Science Foundation
under Grants No. CNS-0448349 and CNS-0615129.

References
[1] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework

for implementing pluggable type systems. In Proc. 2006 OOPSLA,
pp. 57–74, Oct. 2006.

[2] R. Bahlke and G. Snelting. The PSG system: From formal language
definitions to interactive programming environments. ACM TOPLAS,
8(4):547–576, Oct. 1986.

[3] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang,
and V. Pascual. CENTAUR: The system. In Proc. 3rd SESPSDE, pp.
14–24, Nov. 1989.

[4] G. Bracha. Pluggable type systems. In Proc. of the OOPSLA ’04
Workshop on Revival of Dynamic Languages, Oct. 2004.

[5] M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Program
transformation with scoped dynamic rewrite rules. Fundamenta
Informaticae, 69(1–2):123–178, 2005.

[6] L. Cardelli, F. Matthes, and M. Abadi. Extensible syntax with lexical
scoping. Tech. Report 121, DEC SRC, Feb. 1994.

[7] B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiers. In
Proc. 2005 PLDI, pp. 85–95, June 2005.

[8] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5(3):114–115, Sept. 1940.

[9] R. Cox, T. Bergan, A. Clements, F. Kaashoek, and E. Kohler. Xoc, an
extension-oriented compiler for systems programming. In ASPLOS,
Mar. 2008.

[10] A. Dijkstra and S. D. Swierstra. Ruler: Programming type rules. In
Proc. 8th FLOPS, vol. 3945 of LNCS, pp. 30–46, Apr. 2006.

[11] T. Ekman and G. Hedin. Rewritable reference attributed grammars.
In Proc. 18th ECCOP, vol. 3086 of LNCS, pp. 147–171, June 2004.

[12] T. Ekman and G. Hedin. Modular name analysis for Java using
JastAdd. In Proc. GTTSE, vol. 4143 of LNCS, pp. 422–436, July
2005.

[13] T. Ekman and G. Hedin. The JastAdd extensible Java compiler. In
Proc. 2007 OOPSLA, pp. 1–18, Oct. 2007.

[14] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers.
In Proc. 1999 PLDI, pp. 192–203, May 1999.

[15] J. Garrigue. Relaxing the value restriction. In Proc. 7th FLOPS, vol.
2998 of LNCS, pp. 196–213, Apr. 2004.

[16] H. Gast. A Generator for Type Checkers. PhD thesis, University of
Tübingen, Aug. 2005.

[17] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and W. M. Waite.
Eli: A complete, flexible compiler construction system. CACM,
35(2):121–130, Feb. 1992.

[18] D. Greenfieldboyce and J. S. Foster. Type qualifier inference for Java.
In Proc. 2007 OOPSLA, pp. 321–336, Oct. 2007.

[19] R. Grimm. Better extensibility through modular syntax. In Proc.
2006 PLDI, pp. 38–51, June 2006.

[20] R. Grimm. Declarative syntax tree engineering (or, one grammar to
rule them all). Tech. Report TR2007-905, NYU, Nov. 2007.

[21] J. Heering and P. Klint. Semantics of programming languages: A
tool-oriented approach. ACM SIGPLAN Notices, 35(3):39–48, Mar.
2000.

[22] M. Hirzel and R. Grimm. Jeannie: Granting Java native interface
developers their wishes. In Proc. 2007 OOPSLA, pp. 19–38, Oct.
2007.

[23] ISO. Information Technology—Programming Languages—C.
ISO/IEC Standard 9899:TC2, May 2005.

[24] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, Feb. 1978.

[25] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. Getting started with AspectJ. CACM, 44(10):59–65,
Oct. 2001.

[26] B. Lerner, D. Grossman, and C. Chambers. SEMINAL: Searching for
ML type-error messages. In Proc. of the 2006 Workshop on ML, pp.
63–73, Sept. 2006.

[27] M. Y. Levin and B. C. Pierce. TinkerType: A language for playing
with formal systems. JFP, 13(2):295–316, Mar. 2003.

[28] S. McPeak and G. C. Necula. Elkhound: A fast, practical GLR parser
generator. In Proc. 13th CC, vol. 2985 of LNCS, pp. 73–88, Mar.
2004.

[29] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, May 1997.

[30] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transformation
of C programs. In Proc. 11th CC, vol. 2304 of LNCS, pp. 213–228,
Apr. 2002.

[31] N. Nystrom, X. Qi, and A. C. Myers. J&: Nested intersection for
scalable software composition. In Proc. 2006 OOPSLA, pp. 21–36,
Oct. 2006.

[32] M. Odersky, P. Wadler, and M. Wehr. A second look at overloading.
In Proc. 7th FPCA, pp. 135–146, June 1995.

[33] T. Parr. The Definitive ANTLR Reference. The Pragmatic Program-
mers, May 2007.

[34] N. Ramsey. Eliminating spurious error messages using exceptions,
polymorphism, and higher-order functions. Computer Journal,
42(5):360–372, 1999.

[35] T. W. Reps and T. Teitelbaum. The Synthesizer Generator: A System
for Constructing Language-Based Editors. Springer, 1989.

[36] M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier.
Compiling language definitions: The ASF+SDF compiler. ACM
TOPLAS, 24(4):334–368, July 2002.

10

http://doi.acm.org/10.1145/1167515.1167479
http://doi.acm.org/10.1145/1167515.1167479
http://doi.acm.org/10.1145/6465.20890
http://doi.acm.org/10.1145/6465.20890
http://doi.acm.org/10.1145/64135.65005
http://pico.vub.ac.be/%7Ewdmeuter/RDL04/papers/Bracha.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-121.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-121.pdf
http://doi.acm.org/10.1145/1065010.1065022
http://links.jstor.org/sici?sici=0022-4812(194009)5%3A3%3C114%3AAFOTST%3E2.0.CO%3B2-S
http://www.springerlink.com/content/y5043148m1010874/
http://www.springerlink.com/content/jel9au2pa1f766u7/
http://www.springerlink.com/content/t0g3715800080572/
http://www.springerlink.com/content/t0g3715800080572/
http://doi.acm.org/10.1145/1297027.1297029
http://doi.acm.org/10.1145/301618.301665
http://www.springerlink.com/content/7eaa0fxbpqr5hb4f/
http://doi.acm.org/10.1145/129630.129637
http://doi.acm.org/10.1145/1297027.1297051
http://doi.acm.org/10.1145/1133981.1133987
http://doi.acm.org/10.1145/351159.351173
http://doi.acm.org/10.1145/351159.351173
http://doi.acm.org/10.1145/1297027.1297030
http://doi.acm.org/10.1145/1297027.1297030
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://doi.acm.org/10.1145/383845.383858
http://doi.acm.org/10.1145/1159876.1159887
http://doi.acm.org/10.1145/1159876.1159887
http://dx.doi.org/10.1017/S0956796802004550
http://dx.doi.org/10.1017/S0956796802004550
http://www.springerlink.com/content/gdh7lun4rbv1w54m/
http://www.springerlink.com/content/gdh7lun4rbv1w54m/
http://www.springerlink.com/content/4ehv355j1g39n84q/
http://www.springerlink.com/content/4ehv355j1g39n84q/
http://www.springerlink.com/content/4ehv355j1g39n84q/
http://doi.acm.org/10.1145/1167473.1167476
http://doi.acm.org/10.1145/1167473.1167476
http://doi.acm.org/10.1145/224164.224195
http://comjnl.oxfordjournals.org/cgi/content/abstract/42/5/360
http://comjnl.oxfordjournals.org/cgi/content/abstract/42/5/360
http://doi.acm.org/10.1145/567097.567099

[37] E. van Wyk, L. Krishnan, D. Bodin, and A. Schwerdfeger. Attribute
grammar-based language extensions for Java. In Proc. 21st ECCOP,
pp. 575–599, July 2007.

[38] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, Sept. 1997.

[39] A. K. Wright. Simple imperative polymorphism. Lisp and Symbolic
Computation, 8(4):343–355, Dec. 1995.

11

http://www.springerlink.com/content/353862t8v526064r/
http://www.springerlink.com/content/353862t8v526064r/
http://dx.doi.org/10.1007/BF01018828

	Introduction
	Point of Departure: xtc
	Overview of the Typical System
	Example: Simply Typed Lambda Calculus
	The Typical Language
	Core Language
	Abstract Syntax Tree Nodes
	Source Language Types
	Name Management
	Error Management
	List Reductions
	Summary

	Module System and Extensibility
	Implementation
	Evaluation
	Related Work
	Conclusions

