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Abstract

The success of deep neural networks (DNNs) is due to its strong capability to learn

from data. To continue such success, DNNs must handle the ever-increasing size and

complexity of data. Two concrete challenges stand out. One, to leverage more data, one

needs to train a large DNN model, the size of which becomes limited by the memory

capacity of a single GPU. The other, to leverage graph structured data, one needs to use

DNN models that perform sparse numerical computation. Unfortunately, current deep

learning systems do not provide adequate support for very large or sparse models. This

thesis develops two systems, Tofu and DGL, to enable efficient training of these emerging

DNNs while minimizing user programming efforts.

Tofu supports very large DNNs by partitioning the computation across multiple GPUs

to reduce per-GPU memory footprint. To automatically partition each operator, we pro-

pose a description language for annotating the semantics of an operator. To optimally

partition the whole training, Tofu proposes an algorithm that minimizes the total com-

munication cost. We evaluate and assess the capability of Tofu to train very models

demonstrating the substantial gains by applying the design.

DGL is a new framework for training DNNs for graph structured data. DGL provides

an intuitive and expressive message-passing interface that can cover a wide range of graph

DNN models. We introduce batching and kernel fusion techniques that enable training

GNNs on large graphs and achieve significant improvements in performance relative to

existing systems.
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Chapter 1

Introduction

Recent years have seen tremendous success of deep learning. The resurgence of Deep

Neural Networks (DNNs) have caused major paradigm shifts with substantial breakthroughs [1,

2, 3, 4, 5, 6]. The success of Deep Learning (DL) can be attributed to four factors: the abun-

dance of data accessible as training sets, the innovation in DNN model architecture, the

commoditization of general-purpose massively parallel computing devices such as GPUs

and TPUs to accelerate training, and the development of deep learning frameworks such as

TensorFlow/PyTorch/MXNet to simplify the programming of sophisticated models. The

thesis focuses on the aspect of deep learning frameworks.

Current DL systems [7, 8, 9, 10, 11] typically structure the design into two parts. A

frontend lets users write programs using tensor operators. The dependencies among the

operators are then recorded, declaratively or imperatively, in a tensor dataflow graph (or

tensor computation graph), which is evaluated concretely in a backend. The frontend deter-

mines the programmability of the DL framework. By supporting many tensor operations

or new programming primitives, the frontend could cover a wide range of DNNs. The

backend determines the performance of DL framework. Most existing backends run on a

single GPU, while more performance can be achieved if the backend can utilize multiple

GPUs. However, deep learning research keeps pushing the limits of DL systems as newly

1
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Figure 1.1: The growth of DNN model size.

developed DNN models become more complex in terms of both capacity and architecture.

One major trend of DNN development is to increase the model size. As shown in

figure 1.1, the AlexNet [1] model that achieved 16% prediction error in the ImageNet

image classification challenge in 2012 has only 8 layers, while in 2015, the ResNet [2]

model has 152 layers and achieved 3.5% prediction error. The BERT [4] model proposed

in 2018 that topped several natural language processing tasks has 340 million parameters,

and was surpassed a year later by the GPT-2 [12] model that has 1.5 billion parameters.

Empirical evidence shows that, since the 80s, the number of parameters in the state-of-

the-art neural network has doubled roughly every 2.4 years [13]. As DNNs keep achieving

impressive results with more data and parameters, training very large models beyond the

capacity of a simple computing device (e.g., one GPU) becomes an immediate challenge

to resolve.

Besides the scaling challenge, current DL systems are inadequate when dealing with

the DNNs for structural data. These DNNs tend to define a computation over a sparse

graph while current DL systems are highly optimized for dense tensor computation. As a

result, users have to ponder implementation difficulty into model design. For example, the

author of Graph Attention Networks [14] posted the following reply on OpenReview when

was asked about the lack of result on Pubmed [15] dataset: “Unfortunately, even though

2
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Figure 1.2: (a) Current DL system design. (b) SMEX system design.

the softmax computation on every node should be trivially parallelisable, we were unable

to make advantage of our tensor manipulation framework to achieve this parallelisation,

while retaining a favourable storage complexity ... and caused OOM errors on our GPU

when the Pubmed dataset was provided.” 1. In fact, the Pubmed graph only has 20K nodes

and 45K edges, which is several orders of magnitudes behind the scale of real-world graphs.

Hence, an efficient and flexible system is highly desirable for training the DNNs for graph

data.

The dissertation introduces two systems, Tofu and DGL, to address the two problems

respectively. At a higher level, they share the same design principle we summarized as

SMEX. Compared with the design of current DL systems, SMEX separates the semantic

and runtime contexts to two stages and bridges them with a graph rewriter (figure 1.2).

More precisely, the major components in the design are

• a semantic dataflow graph that includes the semantic specification of the in-

volved tensor operations,

• a dataflow graph rewriter that analyzes the semantic dataflow graph and generates

a new graph for execution,
1. https://openreview.net/forum?id=rJXMpikCZ
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• and an execution dataflow graph that can efficiently run on one or multiple devices.

Thesis Statement. The SMEX design can effectively expand the capacity and the range

of DNN models that a deep learning system can support.

We evaluate the statement by applying it to two systems (Tofu and DGL). Tofu targets

the problem of training very large DNNs by partitioning and distributing the training to

multiple computing devices. We design a domain-specific language which describes the

fine-grained operator semantics. This allows the system to understand how to partition

and parallelize each operator. We further develop an algorithm that can efficiently find the

parallel strategy of an entire dataflow graph that is both load-balanced and communication-

saving. The result is that Tofu can scale to DNNs that are much larger and achieve better

speedup compared to previous work.

The second system DGL focuses on the emerging field of geometric deep learning. Since

the models are meant for sparse and irregular graph data, it is challenging to train them

efficiently in the DL systems optimized for dense tensor computation. DGL proposes a

general programming interface specifying how the models compute on one node or one

edge, and then generates efficient tensor dataflow graph for execution. The evaluation

shows that DGL outperforms other specialized GNN frameworks by a large margin and

can scale to graph of millions of nodes.

In the remainder of the chapter, we discuss more motivations behind the SMEX design

and then highlight some key contributions.

1.1 Challenges with existing DL systems

Challenges in supporting very large DNNs The size of a DNN model that can be

explored today is constrained by the limited GPU device memory. There have been many

efforts to tackle the problem. Some proposals try to fit larger models into a single GPU, e.g.

by using the much larger CPU memory as a swap area for the GPU [16] or by discarding
4



intermediate results to save memory at the cost of re-computation [17, 18, 19]. Another

promising solution is to partition a DNN model across multiple GPU devices. Doing

so reduces per-GPU memory footprint and comes with the additional benefit of parallel

speedup. This is commonly referred to as “model parallelism” in the literature.

A DNN model consists of a large number of layers, each parameterized by its own

weights. There are two approaches to realize model parallelism. One approach is to assign

the computation of different layers to different devices. The second approach is to partition

the tensors to parallelize each layer across devices. For very large DNN models, tensor

partitioning is the better approach; not only it results in balanced per-GPU memory usage

but also it is necessary for speeding up popular models such as CNNs.

Early work on tensor partitioning [20, 21, 22] require users to manually partition ten-

sors, which demands non-trivial analysis of the DNN architecture and implementation.

Recent approaches [23, 24, 25] formulate it as an optimization problem and propose au-

tomatic solutions. However, they still rely on the knowledge on how to partition a few

common layers, and thus support a limited type of DNN models. As a result, how to fully

automate model partitioning for training very large DNNs remains a challenge.

Challenges in supporting DNNs for graph data A broad range of models can be uni-

fied as either learning from explicit or inferring latent structures. Examples include TreeL-

STM [26] that works on sentence parsing trees, and the recent Graph Neural Networks

(GNNs) family that aim to model a set of node entities together with their relationships

(edges).

Unfortunately, existing tensor-based frameworks lack intuitive support for this trend of

deep graph learning. Specifically, GNNs are defined using the message passing paradigm [6].

However, tensor-based frameworks do not support the message-passing interface. As such,

researchers need to manually emulate graph computation using tensor operations, which

poses an implementation challenge. Existing specialized tools [27] cannot fully utilize

5



the sparse tensor operations involved in GNN training and hence cannot scale to graphs

of moderate sizes. Moreover, none of the existing tools have support for GNNs over

heterogeneous graphs.

1.2 Contributions

At a higher level, both challenges expose the same set of issues in current DL system

design:

• Entangled semantic and system contexts: The dataflow graph in current DL

systems expresses not only the actual training logic but also many system decisions

such as device placement and communication pattern. Such practice is burdensome

to the end user and also brittle to any changes of hardware environment and model

architecture.

• Lacking operator semantics: The operators in existing DL systems are opaque and

lack concrete semantics. In the case of automatic tensor partitioning, this prevents

any solution to be applicable to a state-of-the-art DL system that can have hundreds

of tensor operators. In terms of supporting DNNs for graphs, exposing operator

semantics is vital to system optimizations such as automatic batching and fusion.

The SMEX system design tackles the problems in three steps. Firstly, a user program

is directly represented by a semantic dataflow graph with few or no runtime contexts.

Each operator has a specification describing how to compute each output element. The

specification can be provided by an operator developer or naturally derived from a pro-

gramming abstraction so that the effort is affordable. Secondly, a dataflow graph rewriter

is in charge of transforming the semantic dataflow graph into an execution dataflow graph.

The rewriter can implement algorithms to partition, fuse or batch operators for more par-

allelism as long as the two graphs produce the same result. The rewriter is also responsible

6



of generating necessary device contexts and extra communication operators. Finally, the

execution dataflow graph is evaluated by the existing DL system backend. The whole

design is agnostic to the choice of DL platforms, making it widely applicable.

We then present two systems, Tofu and DGL, their technical contributions, and their

connections to the SMEX design.

Tofu targets the scaling problem of training very large DNN models (§3). Given a

DNN training program, Tofu aims to automatically partition every involved tensor and

operator so that the partitioning is both memory-balanced and capable of accelerating

the training. There are two technical challenges to resolve. (i) How to partition the

input/output tensors and parallelize the execution an individual operator? What are the

viable partition dimensions? (ii) how to optimize the partitioning of different operators for

the overall graph? For (i), Tofu lets operator developers annotate operators in a lightweight

Tensor Description Language (TDL). TDL describes tensor computation by specifying the

output tensor value at each index with simple expressions over the input tensor elements.

We then develop a technique based on symbolic execution to determine what input regions

must be transferred across devices when a tensor are divided along a specific partition

dimension (§3.4.2). For (ii), we formulate it as a combinatorial optimization problem that

is proved to be NP-hard. We then propose several techniques to prune the search space

including a recursive algorithm that can effectively reduce the search time from hours to

seconds (§3.5.2). The results show that Tofu can train models that are 6× larger on 8

GPUs and achieve 60%− 95% of the ideal efficiency.

7



SMEX design in Tofu
• Semantic dataflow graph: A dataflow graph with TDL descriptions.

• Dataflow graph rewriter: Responsible for analyzing TDL annotations, discov-

ering viable partition dimensions for individual operators, searching for global

parallel strategy and generating the partitioned dataflow graph.

• Execution dataflow graph: A partitioned dataflow graph that can be executed

on multiple devices.

DGL is a new framework for DNNs for structural data such as TreeLSTM and the

models of the GNN family (§4). Following the message passing paradigm [6], DGL provides

intuitive message passing programming interface, which describes the computation on a

batch of nodes and edges (§4.5). Converting the program to an efficient tensor dataflow

graph for execution requires batching. However, previous auto-batching approaches [28, 29]

incur significant overhead from dataflow graph construction. By contrast, DGL forms

batches by analyzing the input graph and generates the dataflow graph for a batch of nodes,

giving an up to 10× speedup (§4.6.1). Furthermore, we develop a kernel fusion technique

that avoids storing explicit messages, significantly improve both memory consumption and

training speed (§4.6.2). As a result, DGL can scale to graphs with hundreds of millions of

edges, and can train up to 7.5× faster than other specialized GNN frameworks.
SMEX design in DGL

• Semantic dataflow graph: A dataflow graph with operators described in mes-

sage passing paradigm.

• Dataflow graph rewriter: Responsible for analyzing graph structure, auto-

batching and kernel fusion.

• Execution dataflow graph: A dataflow graph with batched or fused operators.

8



1.3 Roadmap

The rest of the dissertation is organized as follows. Chapter 2 discusses more details

about related backgrounds including the evolution of deep learning systems and the prior

work for machine learning on graphs. Chapter 3 describes the overall design of Tofu, its

technical solutions and evaluations. We also provide a theoretical analysis of the proposed

recursive search algorithm in Appendix A. Chapter 4 discusses in detail the challenges of

building a graph DNN system, and explains how the programming interface and optimiza-

tion techniques of DGL address them. Finally, Chapter 5 summarizes this work, lists its

limitations and provides an outlook of future directions.
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Chapter 2

Related Work

2.1 Deep Learning Systems

The growing interest in deep learning leads to an explosion of specialized tools and sys-

tems over the decade. Early tools such as Cuda-Convnet [30], Caffe [31] and CXXNet [32]

let users write a configuration script consisting of a stack of common neural network lay-

ers and their hyper-parameters. The models are trained by some built-in, opaque routines

that perform forward and backward propagation. The design heavily targets the DNNs

used in computer vision, by resembling the construction of feed-forward neural networks,

at a cost of support of models like recurrent neural networks. Seeing the incompetence,

frameworks such as Torch [33] and Theano [34] provide an tensor programming interface,

which expresses neural networks by operators of multi-dimensional arrays (or tensors) and

embeds them into popular programming languages such as Lua, Python and C++. Al-

though these frameworks are capable of accelerating DNN training by utilizing specialized

operator libraries such as cuDNN [35] and MKLDNN [36], training models in scale remains

a challenge.

Inspired by the dataflow systems for cluster computing [37, 38, 39], modern deep learn-

ing systems such as MXNet [7], Tensorflow [8], Caffe2 [9], Chainer [10], PyTorch [11] and

10
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Figure 2.1: (a) A Multi-Layer Perceptron (MLP) model; (b) The dataflow graph for its
forward and backward propagations.

Minerva [21] tackle the scalability challenge by translating the DNN training program

in array-based interface into tensor dataflow graph representation. At its core, a tensor

dataflow graph is a directed acyclic graph consisting of two types of nodes: tensor and

operator. An edge connects either a tensor node to its producer or consumer operators

or two operator nodes indicating the data dependency. Figure 2.1 shows an example

dataflow graph for the forward and backward propagation of a Multi-Layer Perceptron

(MLP) model. The weights of neuron connections between successive layers l and l + 1

are represented by matrix Wl. The forward propagation calculates the training loss C

by repeatedly computing the activation of a layer from its preceding layer. Specifically,

xl+1 = f(xl ·Wl), where layer l’s activation vector xl is multiplied with the weight matrix

Wl and then scaled using an element-wise non-linear function f . After that, the backward

propagation calculates the gradient matrix dC
dWl

of each weight matrix Wl from higher to

lower layers. The dataflow graph thus consists of two towers for the two passes.

Using tensor dataflow graph to represent DNN training has many benefits. Firstly,

the backward computation following the chain rule can be derived automatically from

the dataflow graph for the forward computation. In the simple example, we could roughly
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observe the correspondence between the two towers; for each matrix multiplication MatMul

or non-linear function f in the forward pass, there is the derivative function dMatMul or

df in the backward pass. Auto-differentiation has been the de-facto equipment in modern

DL systems, an essential enabler for training deep and complex neural networks.

Secondly, dataflow graph representation allows modern DL systems to train DNNs

more efficiently because operators with no data dependency can be executed in parallel,

which suits well with multi-threading execution on CPU and multi-stream model on GPU.

Another benefit from an articulate expression of parallelism is that it eases the system de-

sign for distributed training by naturally overlapping independent network communication

with computation. Built upon it, many research work have explored different approaches

for parallelizing DNN training, which we elaborate in §2.2.

Another question is how to extract dataflow graph representation from user programs,

and perhaps more importantly, how to design the programming interface? There are two

considerations. On one hand, there has been a long history of programming machine

learning algorithms in a dynamic scripting language such as Python, which proven to

be very productive. On the other hand, efficient execution and many program analysis

and optimization techniques require a strongly-typed static language. To strike a balance,

DL systems such as Tensorflow and MXNet adopt a declarative programming interface.

Users express training logic such as loss and gradient calculation symbolically in a domain-

specific language (DSL) embedded in a dynamic language (e.g. Python), and perform

concrete evaluation afterwards. This design leans towards execution efficiency at a cost of

debuggability and usability because it artificially segments a user program into declaration

and execution parts. With the explosion of DL research, DL systems shift more and more

toward the productivity end. PyTorch, MXNet Gluon [40] and Tensorflow v2.0 all focus

on imperative programming paradigm, where each tensor operator not only records data

dependency but also concretely calculates the result. The insight is that although such

dynamic execution mode (or eager mode) misses certain optimization chances when the

12
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whole program is available, the strong coherence between two training iterations fuels many

runtime optimization techniques such as cached memory allocator, leading to competitive

performance compared to symbolic mode [11].

A dataflow graph, no matter how it is extracted, is a form of intermediate representa-

tion (IR) of a user program, which by design is conductive for further optimization and

translation. Many previous work have proposed techniques based on dataflow graph for

memory optimization [19, 17], auto-batching [29, 28] and smart device placement [41].

NNVM [42] and ONNX [43] further define a unified and canonical dataflow format to

enable the interoperability between different frameworks and streamline the path from

research to production. However, dataflow representation has the fundamental defect for

expressing control flows which limits its applicable scope. The rise of differentiable pro-

gramming paradigm1 pushes new IRs being developed [44, 45] that are both universal

(i.e. Turing complete) and strongly-typed array language, which opens up new research

directions such as auto-differentiation techniques [46, 47] and optimizations.

2.2 Parallel DNN Training

The most widely used method for scaling DNN training today is data parallelism.

Traditional DNN training is based on batched stochastic gradient descent where the batch
1. https://www.facebook.com/yann.lecun/posts/10155003011462143
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size is kept deliberately small. Within a batch, computation on each sample can be carried

out independently and aggregated at the end of the batch. Data parallelism divides a

batch among several GPU devices and incurs cross-device communication to aggregate and

synchronize model parameters at the end of each batch using a parameter service [48, 49].

Data parallelism has achieved good speedup for some DNN models (e.g. Inception

network [50]). However, since the communication overhead of data parallelism increases

as the model grows bigger, one must train using a very large batch size to amortize the

communication cost across many devices. In fact, for any DNN model, one can always

scale the “training throughput” by ever increasing the batch size. Unfortunately, large

batch training is known to be problematic such as longer convergence time or decreased

model accuracy [51, 22].

Model parallelism partitions the model parameters of each layer among devices, so

that the update of parameters can be performed locally (Figure 2.2). Each device can

only calculate part of a layer’s activation using its parameter partition, so all devices

need to synchronize their activations and activation gradients for each layer during both

the forward and backward propagations. Since model parallelism exchanges activations

instead of the model parameters, it works well for models with small activation size such

as DNN models with large fully-connected layers.

The trade-off between data and model parallelism leads to the development of more

complex strategies. For examples, mixed parallelism [22] distributes some DNN layers

using data parallelism while using model parallelism for others. Combined parallelism

divides workers into groups and uses different strategies for inter-group and intra-group

communication. Combined parallelism was proposed in the earlier generation of special-

ized training systems [48, 52], but is not thoroughly explored due to its programming

complexity.
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Chapter 3

Tofu: Supporting Very Large Models
using Automatic Dataflow Graph Par-
titioning

In this chapter, we applied the SMEX design to the context of partitioning dataflow

graph for training very large models. We will show that by separating the design into

semantic and execution dataflow graphs, Tofu can efficiently utilize the aggregated memory

capacity of multiple devices for training very large models with very little user effort.

3.1 Introduction

The deep learning community has been using larger deep neural network (DNN) models

to achieve higher accuracy on more complex tasks over the past few years [53, 54]. Empir-

ical evidence shows that, since the 80s, the number of parameters in the state-of-the-art

neural network has doubled roughly every 2.4 years [13], enabled by hardware improve-

ments and the availability of large datasets. As deployed DNN models remain many

orders of magnitude smaller than that of a mammalian brain, there remains much room

for growth. However, the size of a DNN model that can be explored today is constrained

by the limited GPU device memory.
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There have been many efforts to tackle the problem of limited GPU device memory.

Some proposals try to fit larger models into a single GPU, e.g. by using the much larger

CPU memory as a swap area for the GPU [16] or by discarding intermediate results to

save memory at the cost of re-computation [17, 18, 19]. Another promising solution is to

partition a DNN model across multiple GPU devices. Doing so reduces per-GPU memory

footprint and comes with the additional benefit of parallel speedup. This is commonly

referred to as “model parallelism” in the literature.

A DNN model consists of a large number of layers, each parameterized by its own

weights. There are two approaches to realize model parallelism. One approach is to assign

the computation of different layers to different devices. The second approach is to partition

the tensors to parallelize each layer across devices. For very large DNN models, tensor

partitioning is the better approach; not only it results in balanced per-GPU memory usage

but also it necessary for speeding up popular models such as CNNs.

Tensor partitioning has been explored by existing work as a means for achieving parallel

speedup [48, 20, 52] or saving memory access energy [55, 56]. Recent proposals [23, 24, 25]

support partitioning a tensor along multiple dimensions and can automatically search for

the best partition dimensions. The major limitation is that these proposals partition at the

coarse granularity of individual DNN layers, such as fully-connected and 2D convolution

layers. As such, they either develop specialized implementation for specific models [23, 20]

or allow only a composition of common DNN layers [24, 25, 48, 52].

However, the vast majority of DNN development and deployment today occur on

general-purpose deep learning platforms such as TensorFlow [8], MXNet [7], PyTorch [11].

These platforms represent computation as a dataflow graph of fine-grained tensor operators,

such as matrix multiplication, various types of convolution and element-wise operations

etc. Can we support tensor partitioning on one of these general-purpose platforms? To

do so, we have built the Tofu system to automatically partition the input/output tensors

of each operator in the MXNet dataflow system. This approach, which we call operator
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partitioning, is more fine-grained than layer partitioning. While we have built Tofu’s pro-

totype to work with MXNet, Tofu’s solution is general and could potentially be applied

to other dataflow systems such as TensorFlow.

In order to partition a dataflow graph of operators, Tofu must address two challenges.

1) How to partition the input/output tensors and parallelize the execution an individual

operator? What are the viable partition dimensions? 2) how to optimize the partitioning

of different operators for the overall graph? Both challenges are made difficult by the

fine-grained approach of partitioning operators instead of layers. For the first challenge,

existing work [23, 24, 25] manually discover how to partition a few common layers. How-

ever, a dataflow framework supports a large and growing collection of operators (e.g. 139

in MXNet), intensifying the manual efforts. Manual discovery is also error-prone, and

can miss certain partition strategies. For example, [24] misses a crucial partition strategy

that can significantly reduce per-worker memory footprint (§3.7.3). For the second chal-

lenge, existing proposals use greedy or dynamic-programming based algorithms [23, 24]

or stochastic searches [25]. As the graph of operators is more complex and an order of

magnitude larger than the graph of layers (e.g. the graph for training a 152-layer ResNet

has >1500 operators in MXNet), these algorithms become inapplicable or run too slowly

(§3.5, Table 3.1).

Tofu introduces novel solutions to address the above mentioned challenges. To enable

the automatic discovery of an operator’s partition dimensions, Tofu requires developers

to specify what the operator computes using a lightweight description language called

TDL. Inspired by Halide [57], TDL describes tensor computation by specifying the output

tensor value at each index with simple expressions on the input tensors. The Halide-style

description is useful because it makes explicit which input tensor regions are needed in

order to compute a specific output tensor region. Thus, Tofu can statically analyze an

operator’s TDL description using symbolic execution to determine what input regions must

be transferred among GPUs when tensors are divided along a specific partition dimension.
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To partition each tensor in the overall dataflow graph, we propose several techniques to

shrink the search space. These include a recursive search algorithm which partitions the

graph among only two workers at each recursive step, and graph coarsening by grouping

related operators.

We have implemented a prototype of Tofu in MXNet and evaluated its performance

on a single machine with eight GPUs. Our experiments use large DNN models including

Wide ResNet [53] and Multi-layer Recurrent Neural Networks [58], most of which do not

fit in a single GPU’s memory. Compared with other approaches to train large models,

Tofu’s training throughput is 25% - 400% higher.

To the best of our knowledge, Tofu is the first system to automatically partition a

dataflow graph of fine-grained tensor operators. Though promising, Tofu has several lim-

itations. Some operators (e.g. Cholesky) cannot be expressed in TDL and thus cannot

be automatically partitioned. The automatically discovered partition strategies do not

exploit the underlying communication topology. Tofu is also designed for very large DNN

models. For moderately sized models that do fit in the memory of a single GPU, Tofu’s

approach of operator partitioning are likely no better than the much simpler approach of

data parallelism. Removing these limitations requires further research.

3.2 Problem settings

The problem. Training very large DNN models is limited by the size of GPU device

memory today. Compared with CPU memory, GPU memory has much higher bandwidth

but also smaller capacity, ranging from 12GB (NVIDIA K80) to 16GB (NVIDIA Tesla

V100). Google’s TPU hardware has similar limitations, with 8GB attached to each TPU

core [59].

Partitioning each tensor in the DNN computation across multiple devices can lower

per-GPU memory footprint, thereby allowing very large models to be trained. When par-
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def conv1d(data, filters):
for b in range(output.shape[0]): #b is batch dimension

for co in range(output.shape[1]): #co is output channel
for x in range(output.shape[2]): #x is output pixel
for ci in range(filters.shape[0]): #di is input channel
for dx in range(filters.shape[2]): #dx is filter window
output[b, co, x] += data[b, ci, x+dx]

* filters[ci, co, dx]

Figure 3.1: The naive implementation of conv1d in Python.

titioning across k devices, each device roughly consumes 1
k
times the total memory required

to run the computation on one device. Furthermore, partitioning also has the important

benefit of performance speedup via parallel execution. As most DNN development today

is done on dataflow platforms such as TensorFlow and MXNet, our goal is to automati-

cally partition the tensors and parallelize the operators in a dataflow graph to enable the

training of very large DNN models. The partitioning should be completely transparent

to the user: the same program written for a single device can also be run across devices

without changes.

System setting. When tensors are partitioned, workers must communicate with each

other to fetch the data needed for computation. The amount of bytes transferred divided

by the computation time forms a lower bound of the communication bandwidth required

to achieve competitive performance. For training very large DNNs on fast GPUs, the

aggregate bandwidth required far exceeds the network bandwidth in deployed GPU clusters

(e.g. Amazon’s EC2 GPU instances have only 25Gbps aggregate bandwidth). Thus, for our

implementation and evaluation, we target a single machine with multiple GPU devices.
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3.3 Challenges and our approach

In order to partition a dataflow graph of operators, we must tackle the two challenges

mentioned in §3.1. We discuss these two challenges in details and explain at a high level

how Tofu solves them.

3.3.1 How to partition a single operator?

To make the problem of automatic partitioning tractable, we consider only a restricted

parallelization pattern, which we call “partition-n-reduce”. Suppose operator c computes

output tensor O. Under partition-n-reduce, c can be parallelized across two workers by

executing the same operator on each worker using smaller inputs. The final output tensor

O can be obtained from the output tensors of both workers (O1, and O2) in one of the two

ways. 1) O is the concatenation of O1 and O2 along some dimension. 2) O is the element-

wise reduction of O1 and O2. Partition-n-reduce is crucial for automatic parallelization

because it allows an operator’s existing single-GPU implementation to be re-used for par-

allel execution. Such implementation often belongs to a highly optimized closed-source

library (e.g. cuBLAS, cuDNN).

Partition-n-reduce is not universally applicable, e.g. Cholesky [60] cannot be paral-

lelized this way. Nor is partition-n-reduce optimal. One can achieve more efficient com-

munication with specialized parallel algorithms (e.g. Cannon’s algorithm [61] for matrix

multiplication) than with partition-n-reduce. Nevertheless, the vast majority of operators

can be parallelized using partition-n-reduce (§3.4.1) and have good performance.

Tensors used in DNNs have many dimensions so there are potentially many different

ways to parallelize an operator. Figure 3.1 shows an example operator, conv1d, which

computes 1-D convolution over data using filters. The 3-D data tensor contains a batch

(b) of 1-D pixels with ci input channels. The 3-D filters tensor contains a convolution

window for each pair of ci input and co output channel. The 3-D output tensor contains
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Figure 3.2: Two of several ways to parallelize conv1d according to partition-n-reduce.
Each 3D tensor is represented as a 2D matrix of vectors. Different stripe patterns show
the input tensor regions required by different workers.

the convolved pixels for the batch of data on all output channels.

There are many ways to parallelize conv1d using partition-n-reduce; Figure 3.2 shows

two of them. In Figure 3.2(a), the final output is a concatenation (along the b dimension)

of output tensors computed by each worker. Each worker reads the entire filters tensor

and half of the data tensor. In Figure 3.2(b), the final output is a reduction (sum) of

each worker’s output. Figure 3.1 shows what input tensor region each work reads from. If

tensors are partitioned, workers must perform remote data fetch.

Prior work [23, 24, 25] manually discovers the partition strategies for a few common

DNN layers. Some [24, 25] have ignored the strategy that uses output reduction (i.e.

Figure 3.2(b)), which we show to have performance benefits later (§3.7.3). Manual dis-

covery is tedious for a dataflow system with a large number of operators (341 and 139 in

TensorFlow and MXNet respectively). Can one support automatic discovery instead?

Our approach. Tofu analyzes the access pattern of an operator to determine all viable

partition strategies. As such, we require the developer of operators to provide a succinct

description of what each operator computes in a light-weight language called TDL (short

for Tensor Description Language). An operator’s TDL description is separate from its
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implementation. The description specifies at a high-level how the output tensor is derived

from its inputs, without any concern for algorithmic or architectural optimization, which

are handled by the operator’s implementation. We can statically analyze an operator’s

TDL description to determine how to partition it along different dimensions. §3.4 describes

this part of Tofu’s design in details.

3.3.2 How to optimize partitioning for a graph?

As each operator has several partition strategies, there are combinatorially many

choices to partition each tensor in the dataflow graph, each of which has different exe-

cution time and per-GPU memory consumption.

It is a NP-hard problem to partition a general dataflow graph for optimal perfor-

mance [62, 63, 64, 65]. Existing proposals use greedy or dynamic-programming algorithm

to optimize a mostly linear graph of layers [23, 24], or perform stochastic searches [25,

41, 66] for general graphs. The former approach is faster, but still impractical when ap-

plied on fine-grained dataflow graphs. In particular, its running time is proportional to

the number of ways an operator can be partitioned. When there are 2m GPUs, each in-

put/output tensor of an operator can be partitioned along a combination of any 1, 2, ...,

or m dimensions, thereby dramatically increasing the number of partition strategies and

exploding the search time.

Our approach. We use an existing dynamic programming (DP) algorithm [24] in our

search and propose several key techniques to make it practical. First, we leverage the

unique characteristics of DNN computation to “coarsen” the dataflow graph and shrink the

search space. These include grouping the forward and backward operations, and coalescing

element-wise or unrolled operators. Second, to avoid blowing up the search space in the

face of many GPUs, we apply the basic search algorithm recursively. In each recursive

step, the DP algorithm only needs to partition each tensor in the coarsened graph among
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@tofu.op
def conv1d(data, filters):

return lambda b, co, x:
Sum(lambda ci, dx: data[b, ci, x+dx]*filters[ci, co, dx])

@tofu.op
def batch_cholesky(batch_mat):

Cholesky = tofu.Opaque()
return lambda b, i, j: Cholesky(batch_mat[b, :, :])[i,j]

Figure 3.3: Example TDL descriptions.

two “groups” (of GPUs). §3.5 describes this part of Tofu’s design in details.

3.4 Partitioning a single operator

This section describes TDL (§3.4.1) and its analysis (§3.4.2).

3.4.1 Describing an operator

Our Tensor Description Language (TDL) is inspired by Halide[57]. The core idea is

“tensor-as-a-lambda”, i.e. we represent tensors as lambda functions that map from coordi-

nates (aka index variables) to values, expressed as a TDL expression. TDL expressions

are side-effect free and include the following:

• Index variables (i.e. arguments of the lambda function).

• Tensor elements (e.g. filters[ci, co, dx]).

• Arithmetic operations involving constants, index variables, tensor elements or TDL

expressions.

• Reduction over a tensor along one or more dimensions.

Reducers are commutative and associative functions that aggregate elements of a tensor

along one or more dimensions. Tofu supports Sum, Max, Min and Prod as built-in reducers.
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It is possible to let programmers define custom reducers, but we have not encountered the

need to do so.

We implemented TDL as a DSL using Python. As an example, Figure 3.3 shows the

description of conv1d, whose output is a 3D tensor defined by lambda b, co, x: ...

Each element of the output tensor is the result of reduction (Sum) over an internal 2D

tensor (lambda ci, dx: ...) over both ci and dx dimensions.

Opaque function. We have deliberately designed TDL to be simple and not Turing-

complete. For example, TDL does not support loops or recursion, and thus cannot express

sophisticated computation such as Cholesky decomposition. In such cases, we represent

the computation as an opaque function. Sometimes, such an operator has a batched-version

that can be partitioned along the batch dimension. Figure 3.3 shows the TDL description

of the operator batch_cholesky. The output is a 3-D tensor (lambda b,i,j:...) where

the element at (b, i, j) is defined to be the (i, j) element of the matrix obtained from

performing Cholesky on the b-th slice of the input tensor. Note that, batch_mat[b, :,

:] represents the bth slice of the batch_mat tensor. It is syntactic sugar for the lambda

expression lambda r, c: batch_mat[b, r, c].

Describing MXNet operators in TDL. Ideally, operator developers should write TDL

descriptions. As Tofu is meant to work with an existing dataflow system (MXNet), we

have written the descriptions ourselves as a way to bootstrap. We found that TDL can

describe 134 out of 139 MXNet v0.11 operators. Out of these, 77 are simple element-wise

operators; 2 use the opaque function primitive, and 11 have output reductions. It takes

one of the authors one day to write all these descriptions; most of them have fewer than

three LoC. Although we did not build Tofu’s prototype for TensorFlow, we did investigate

how well TDL can express TensorFlow operators. We found that TDL can describe 257

out of 341 TensorFlow operators. Out of these, 140 are element-wise operators; 22 use the

opaque function. For those operators that cannot be described by TDL, they belong to
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three categories: sparse tensor manipulations, operators with dynamic output shapes and

operators requiring data-dependent indexing. MXNet has no operators in the latter two

categories.

TDL vs. other Halide-inspired language. Concurrent with our work, TVM [67] and

TC [68] are two other Halide-inspired DSLs. Compared to these DSLs, TDL is designed for

a different purpose. Specifically, we use TDL to analyze an operator’s partition strategies

while TVM and TC are designed for code generation to different hardware platforms.

The different usage scenarios lead to two design differences. First, TDL does not require

users to write intricate execution schedules – code for describing how to perform loop

transformation, caching, and mapping to hardwares, etc. Second, TDL supports opaque

functions that let users elide certain details of the computation that are not crucial for

analyzing how the operator can be partitioned.

3.4.2 Analyzing TDL Descriptions

Tofu analyzes the TDL description of an operator to discover its basic partition strate-

gies. A basic partition strategy parallelizes an operator for 2 workers only. Our search

algorithm uses basic strategies recursively to optimize partitioning for more than two

workers (§3.5.2).

A partition strategy can be specified by describing the input tensor regions required

by each worker to perform its “share” of the computation. This information is used later

by our search algorithm to optimize partitioning for the dataflow graph and to generate

the partitioned graph in which required data is fetched from different workers.

Obtaining input regions from a TDL description is straightforward if tensor shapes are

known. For example, consider the following simple description:

def shift_two(A): B = lambda i : A[i+2]; return B
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Suppose we want to partition along output dimension i. Given i’s concrete range, say

[0, 9], we can compute that the worker needs A’s data over range [2, 6] (or [7, 11]) in order

to compute B over range [0, 4] (or [5, 9]).

Analyzing with concrete ranges is hugely inefficient as a dataflow graph can contain

thousands of operators, many of which are identical except for their tensor shapes (aka

index ranges). Therefore, we perform TDL analysis in the abstract domain using symbolic

interval analysis, a technique previously used for program variable analysis[69], boundary

checking[70], parameter validation[71].

Symbolic interval analysis. Suppose the output tensor of an operator has n dimensions

and is of the form lambda x1, ..., xn : .... We consider the range of index variable

xi to be [0, Xi], where Xi is a symbolic upper bound. We then symbolically execute the

lambda function to calculate the symbolic intervals indicating the range of access on the

operator’s input tensors.

Symbolic execution should keep the range as precise as possible. To do so, we represent

symbolic interval (I) as an affine transformation of all symbolic upper bounds,

I ≜ [ΣiliXi + c, ΣiuiXi + c], li, ui, c ∈ R (3.1)

In equation 3.1, li, ui and c are some constants. Thus, we can represent I as a vector of

2 ∗n+1 real values ⟨l1, ..., ln, u1, ..., un, c⟩. Let ZV[ui = a] denote a vector of all 0s except

for the position corresponding to ui which has value a. By default, lambda variable xi for

dimension i is initialized to ZV[ui = 1].

Our representation can support affine transformation on the intervals, as shown by the

allowed interval arithmetic in Figure 3.4. Product or comparison between two intervals are

not supported and will raise an error. We did not encounter any such non-affine operations

among MXNet operators.
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TDL description: lambda x1, ..., xi, ..., xn: ...
I ≜ ⟨l1, ..., ln, u1, ..., un, c⟩

I ± k, k ∈ R = ⟨l1, ..., ln, u1, ..., un, c± k⟩
I × k, k ∈ R = ⟨l1k, ..., lnk, u1k, ..., unk, c ∗ k⟩
I/k, k ∈ R = ⟨l1/k, ..., ln/k, u1/k, ..., un/k, c/k⟩

I ± I ′ = ⟨l1 ± l′1, ..., u1 ± u′
1, ..., c± c′⟩

Figure 3.4: Tofu’s symbolic interval arithmetic.

Discover operator partition strategies. Using the symbolic interval analysis, we infer

the input regions required by each of the 2 workers for every partitionable dimension.

There are two cases.

Case-1 corresponds to doing partition-n-reduce without the reduction step. In this

case, each partition strategy corresponds to some output dimension. Suppose we are to

partition conv1d’s output tensor along dimension b. We use two different initial intervals

for lambda variable b, ZV[ub = 1
2
] and ZV[lb =

1
2
, ub = 1], in two separate analysis runs. Each

run calculates the input regions needed to compute half of the output tensor. The result

shows that that each worker reads half of the data tensor partitioned on the b dimension

and all of the filter tensor, as illustrated in Figure 3.2(a). Similarly, the analysis shows

how to partition the other output dimensions, co and x. Partitioning along dimension x

is commonly referred to as parallel convolution with “halo exchange” [20, 23, 56].

Case-2 corresponds to doing partition-n-reduce with the reduction step. In this case,

we partition along a reduction dimension. In the example of Figure 3.3, the reduction

dimensions corresponding to ci and dx in Sum(lambda ci, dx: ...). The analysis will

determine that, when partitioning along ci, each partially reduced tensor will require half

of the data tensor partitioned on the second dimension and half of the filter tensor

partitioned on the first dimension, as shown in Figure 3.2(b). Similar analysis is also done

for dimension dx. Out of 47 non-element-wise MXNet operators describable by TDL, 11

have at least one reduction dimension.
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3.5 Partitioning the dataflow graph

To partition a dataflow graph, one needs to specify which partition strategy to use for

each operator. This section describes how Tofu finds the best partition plan for a dataflow

graph.

Different plans result in different running time and per-worker memory consumption,

due to factors including communication, GPU kernel efficiency and synchronization. Find-

ing the best plan is NP-hard for an arbitrary dataflow graph [72]. Recent work has

proposed an algorithm based on dynamic programming (DP) for partitioning a certain

type of graphs. §3.5.1 presents techniques to make a dataflow graph applicable to DP, and

§3.5.2 improves search time via recursion.

Optimization goal. Ideally, our optimization goal should consider both the end-to-end

execution time of the partitioned dataflow graph and the per-worker memory consump-

tion. Unfortunately, neither metric can be optimized perfectly. Prior work [25] optimizes

the approximate end-to-end execution time by minimizing the sum of total GPU kernel

execution time and total data transfer time.

In Tofu, we choose to minimize the total communication cost based on two observations.

First, the GPU kernels for very large DNN models process large tensors and thus have

similar execution time no matter which dimension its input/output tensors are partitioned

on. Consequently, a partition plan with lower communication cost tends to result in

lower end-to-end execution time. Second, the memory consumed at each GPU worker

is used in two areas: (1) for storing a worker’s share of tensor data, (2) for buffering

data for communication between GPUs. The memory consumed for (1) is the same for

every partition plan: for k GPUs, it is always 1/k times the memory required to run the

dataflow graph on one GPU. The memory consumed for (2) is proportional to the amount

of communication. Therefore, a partition plan with lower communication cost results in a
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Figure 3.5: (a) Layer graph of a MLP model. (b) Its dataflow graph including forward and
backward computation (in grey). (c) Coarsened graph. For cleanness, we only illustrate
one operator group, one group for activation tensors and one group for weight tensor
(dashed lines).

smaller per-worker memory footprint.

3.5.1 Graph coarsening

The algorithm in [24] is only applicable for linear graphs1, such as the graph of DNN

layers shown in Figure 3.5(a). Dataflow graphs of fine-grained operators are usually non-

linear. For example, Figure 3.5(b) is the non-linear dataflow graph of the same DNN

represented by Figure 3.5(a). Here, we propose to “coarsen” a dataflow graph into a linear

one by grouping or coalescing multiple operators or tensors.

Grouping forward and backward operations. Almost all DNN models are trained

using gradient-based optimization method. The training includes a user-written forward

propagation phase to compute the loss function and a system-generated backward propa-

gation phase to compute the gradients using the chain rule. Thus, we coarsen as follows:

• Each forward operator (introduced by the user) and its auto-generated backward

operators (could be more than one) to form a group.
1. We say a graph G is linear if it is homeomorphic to a chain graph G′, meaning there exists a graph

isomorphism from some subdivision of G to some subdivision of G′ [73]. Note that a “fork-join” style graph
is linear by this definition.
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• Each forward tensor (e.g. weight or intermediate tensors) and its gradient tensor

form a group. If a (weight) tensor is used by multiple operators during forward

propagation and thus has multiple gradients computed during backward propagation,

the chain rule requires them to be summed up and the summation operator is added

to the group as well.

Figure 3.5(c) shows the coarsened dataflow graph for a MLP model. As forward and

backward operators for the same layer are grouped together, the resulting graph becomes

isomorphic to the forward dataflow graph. For MLPs and CNNs, their coarsened graphs

become linear. We perform the DP-based algorithm [24] on the coarsened graph. When

the algorithm adds a group in its next DP step, we perform a brute-force combinatorial

search among all member operators/tensors within the group to find the minimal cost for

adding the group. This allows tensors involved in the forward and backward operators to

be partitioned differently, while [24] forces them to share the same partition configurations.

As there are only a few operators (typically 2) in each group, the cost of combinatorial

search is very low.

Coalescing operators. In DNN training, it makes sense for some operators to share the

same partition strategy. These operators can be merged into one in the coarsened dataflow

graph. There are two cases:

• Merging consecutive element-wise operators, because the input and output tensors of

an element-wise operator should always be partitioned identically. We analyze the

TDL description to determine if an operator is element-wise. Consecutive element-

wise operators are very common in DNN training. For instance, almost all gradient-

based optimizers (e.g. SGD, Adam, etc.) are composed of only element-wise opera-

tors.

• Merging unrolled timesteps. Recurrent neural networks (RNNs) process a variable

sequence of token over multiple timesteps. RNN has the key property that different
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Figure 3.6: Recursively partition a dataflow graph to four workers. Only one matrix
multiplication is drawn for cleanness. In step#1, every matrix is partitioned by row, and
for group#0, B[1,:] is fetched from the other group. Because of this, B[1,:] becomes
an extra input in step#2 when the graph is further partitioned to two workers. Because
step#2 decides to partition every matrix by column, every matrix is partitioned into a
2x2 grid, with each worker computes one block.

Search Time
WResNet-152 RNN-10

Original DP [24] n/a n/a
DP with coarsening 8 hours >24 hours
Using recursion 8.3 seconds 66.6 seconds

Table 3.1: Time to search for the best partition for 8 workers. WRestNet-152 and RNN-10
are two large DNN models described in §3.7.

time steps share the same computation logic and weight tensors. Thus, they should

be coalesced to share the same partition strategy. As a result, the dataflow graph of

a multi-layer RNN becomes a chain of coalesced and grouped operators. To detect

operators that belong to different timesteps of the same computation, we utilize how

RNN is programmed in DNN frameworks. For example, systems like MXNet and

PyTorch call a built-in function to unroll a basic unit of RNN computation into

many timesteps, allowing Tofu to detect and merge timesteps.

3.5.2 Recursive partitioning

When there are more than two workers, each operator can be partitioned along mul-

tiple dimensions. This drastically increases the number of partition strategies available

to each operator and explodes the running time of the DP-based search algorithm. To
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see this, consider the coarsened graph of Figure 3.5(b). Every operator group has two

input tensor groups and one output tensor group. Each tensor group contains one forward

tensor and one gradient tensor. At each step, the DP algorithm needs to consider all

the possible configurations of an operator group including different ways to partition the

six input/output tensors. For each 4D tensor used in 2D-convolution, there are in total

20 different ways to partition it evenly across 8 workers. Hence, the number of possible

configurations of 2D-convolution’s operator group is 206 = 6.4× 107. Although not all the

dimensions are available for partition in practice (e.g. the convolution kernel dimension is

usually very small) , the massive search space still results in 8 hours of search time when

partitioning the WResNet-152 model (Table 3.1).

Our insight is that the basic DP search algorithm can be recursively applied. For

instance, a matrix, after being first partitioned by row, can be partitioned again. If the

second partition is by column, the matrix is partitioned into a 2×2 grid; if the second

partition is by row, the matrix is partitioned into four parts along the row dimension.

This observation inspires our recursive optimization algorithm to handle k = 2m GPUs:

1. Given a dataflow graph G, run the DP algorithm with coarsening to partition G for

two worker groups, each consisting of 2m−1 workers. Note that each tensor is only

partitioned along one dimension.

2. Consider the partitioned dataflow graph as consisting of two halves: G0 for worker

group#0 and G1 for worker group#1. Each half also contains the data fetched from

the other group as extra input tensors.

3. Repeat step 1 on G0 and apply the partition result to G1 until there is only one

worker per group.

This recursive algorithm naturally supports partitioning along multiple dimensions. Fig-

ure 3.6 illustrates two recursive steps using an example dataflow graph (for brevity, we

only show one matrix multiplication operator in the graph). Note the recursion must be
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done over the entire dataflow graph instead of a single operator, as the partition plan of

the previous recursive step will influence the global decision of the current one.

While the recursive algorithm may seems straightforward, it is less obvious why the

resulting partition plan has the optimal overall communication cost. In particular, the re-

cursive algorithm chooses a sequence of basic partition plans {P1,P2, ...Pm} in m recursive

steps, and we need to prove that no other sequence of choices leads to a better plan with

a smaller communication cost. The main insight of our proof is that the partition plan

decided in each recursive step is commutative (i.e, choosing partition plan P followed by

P ′ results in the same total communication cost as choosing P ′ followed by P.) Based on

this insight, we derive the following property and use it to prove optimality.

Theorem ??. Let the total communication cost incurred by all worker groups at step i be

δi. Then δi ≤ δi+1.

Suppose {P1,P2, ...Pm} is the sequence of partition plans chosen and it is not optimal.

Then there exists a different sequence {P ′
1,P ′

2, ...P ′
m} with smaller total cost. Hence, there

must be two consecutive steps k − 1 and k, such that δk−1 ≤ δ′k−1 and δ′k < δk. We can

show that, by choosing P ′
k instead of Pk at step k, the search could have produced a better

partition plan. This contradicts the optimality of the DP algorithm. The full proof is

included in Appendix A.

If the number of GPUs k is not a power of two, we factorize it to k = k1 ∗ k2 ∗ ... ∗ km,

where ki ≥ ki+1 for all i. At each step i in the recursive algorithm, we partition the

dataflow graph into ki workers in which each partition strategy still partitions a tensor

along only one dimension but across ki workers.

The benefits of recursion. Recursion dramatically cuts down the search time by parti-

tioning along only one dimension at each step. For example, the number of configurations

to be enumerated at each step for a 2D-convolution operator group is only 46 = 4096.

Therefore, the total number of partition strategies searched for the 2D-convolution opera-
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Figure 3.7: (a) Original dataflow graph; (b) Partitioned graph with extra control depen-
dencies (dashed lines).

tor with 8 workers (3 recursive steps) is 3∗4096, which is far fewer than 206 when recursion

is not used. Table 3.1 shows the search time for two common large DNN models when

applying the original DP algorithm on coarsened graph without and with recursion.

As another important benefit, recursion finds partition plans that work well with com-

mon hierarchical physical interconnects which have less aggregate bandwidth near the top

of the hierarchy. For example, many commercial servers group GPUs by faster PCI-e

buses first and then connect the groups with slower QPI buses or Infinibands. As theo-

rem ?? indicates, Tofu assigns worker groups with less communication near the top of the

hierarchical interconnects in earlier steps of the recursion.

3.6 Optimizations in generating the partitioned graph

Once the search algorithm determines how to partition for every tensor and operator,

Tofu generates a corresponding partitioned dataflow graph. The graph generation process

is mostly straightforward save for two optimizations, which are crucial to keep the per-

worker memory consumption low.

Leveraging the existing memory planner. Systems like MXNet and TensorFlow

have their own memory planners to statically allocate and re-use memory buffers among

operators according to their dependencies. Ideally, the per-worker memory consumption

for k workers should be 1/k of the original memory consumption. In our initial implemen-

tation, per-worker memory consumption far exceeded the expected amount. We found

that this is because the partitioning of a dataflow graph changes the dependencies be-

tween original operators. Figure 3.7 illustrates an example. In the original graph, the
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second operator can reuse the memory buffer of the first one (such as the workspace of

a convolution operator) due to the dependency between the two. Naive graph generation

may result in the graph with solid edges in Figure 3.7(b), in which the two operators exe-

cuted by each worker no longer have a direct dependency between them and thus allows no

immediate memory-reuse. To fix this, Tofu maintains the original operator dependencies

on each worker by generating the extra control dependencies (dashed lines), so that the

memory planner can immediately re-use buffers across dependent operators.

Fusing operators for remote data fetch. For each operator in the original graph,

Tofu generates a copy for each GPU worker in the partitioned graph. Often, these op-

erators need to fetch data from a different worker. MXNet already supports copy, split,

concatenate operators, which can be used to support data movements. A naively gener-

ated graph would use split to extract the required input regions from the other workers,

copy data to the local worker, and concatenate them together to assemble the input re-

gion needed by the operator’s GPU kernel. Extra reduce operators can also be generated

if the output tensors of different workers need to be aggregated according to the partition

strategy used. Execution of such graphs results in many intermediate memory blocks, in-

creasing the per-worker memory consumption. To mitigate this, we wrote a custom GPU

kernel called MultiFetch to retrieve remote data and assemble the input region in-place

using CUDA Unified Virtual Addressing (UVA). CUDA UVA allows a kernel running on

one GPU to directly access the memory on another, which avoids explicit data copying

before kernel execution. Our MultiFetch kernel takes multiple pointers to the memory

blocks of the input regions from the other GPUs and assembles them in one kernel launch.

Beyond the two optimizations described above, we also spread out the reduction work-

load to all GPUs (all-reduce) when performing output reduction. This is important for

avoiding any single aggregation bottleneck. We also find that the MXNet scheduler can

execute the remote fetch operator much earlier than required, resulting in memory being

occupied for longer than necessary. We adopt the same technique proposed by TensorFlow
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Figure 3.8: Normalized WResNet throughput relative to the ideal performance. The
number on each bar shows the absolute throughput in samples/sec.

to delay the execution of the remote fetch operator.

3.7 Evaluation

This section evaluates Tofu and compares with various alternative approaches. The

highlights of our results are the following:

• Tofu can train very large WResNet and RNN models across 8 GPUs with high

throughput that is within 60%-98% of a hypothetical ideal baseline.

• Except for a few exceptions, Tofu outperforms existing alternative approaches in-

cluding shrinking the mini-batch size used for training, swapping to CPU memory,

and placing different operators on different GPUs.

• Tofu’s recursive partition algorithm leads to better training throughput than existing

partition algorithms [24, 72] and simple heuristics.

• The overall partition plan found by Tofu is highly non-trivial, even though the un-

derlying DNN model has a regular structure.
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RNN
L=6 L=8 L=10

H=4K 8.4 11.4 14.4
H=6K 18.6 28.5 32.1
H=8K 33.0 45.3 57.0

Wide ResNet
L=50 L=101 L=152

W=4 4.2 7.8 10.5
W=6 9.6 17.1 23.4
W=8 17.1 30.6 41.7
W=10 26.7 47.7 65.1

Table 3.2: Total weight tensor sizes (GB) of our benchmarks.

3.7.1 Experimental setup

Prototype Implementation. We implement Tofu based on MXNet 0.11. The TDL

components (operator descriptions and the region analyzer) are written in Python (2K

LoC). The recursive search algorithm is implemented as a graph transformation pass in

NNVM (4K LoC in C++). As we need information from gradient calculation and shape

inference, we also made slight modifications to the corresponding NNVM passes.

Testbed: The experiments run on an EC2 p2.8xlarge instance. The instance has 8 K80

GPUs with 12GB memory each. GPUs are connected by PCI-e bus with 21GB/s peer-to-

peer bandwidth. It has 32 virtual CPU cores and 488GB CPU memory. The CPU-GPU

bandwidth is 10GB/s.

DNN Benchmarks: We evaluate the WResNet [53] convolutional neural network and re-

current neural network (RNN). We choose these two benchmarks because they correspond

to very large models. We do not evaluate those well-known DNNs that fit into a single

GPU’s memory, such as AlexNet, VGGNet and Inception.

WResNet [53] is a widened version of the original residual network model [2]. It has

a widening scalar to increase the number of channels on each convolution layer. The

model size grows quadratically as each weight tensor is widened on both the input and

output channel. WResNet has been shown to achieve a better accuracy when the model is

widened by 10×. Due to the memory limitation, such improvement is only demonstrated

on CIFAR-10 dataset of small images (32x32) using a 50-layer model. We experiment with

WResNet on ImageNet dataset with images of size (224x224). We also test different model
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variations: widening scalar from 4 to 10 on networks with 50, 101 and 152 layers. We use

notations like WResNet-101-8 to denote the 101-layer ResNet model widened by 8 times.

For RNN, there are two ways to increase model capacity. The number of neurons in

each hidden layers can be increased, and multiple RNN layers can be stacked to form a

deeper model. Researchers have explored very large RNNs by increasing the number of

RNN layers to 8 [41, 66], or by using a large hidden layer size such as 8192 [58]. We use

the model described in [58], and test it with different configurations varying from 6 to 10

layers with 4K, 6K, and 8K hidden sizes. All RNN model variants use LSTM cell [74]

and are unrolled for 20 steps as in [58]. We use the RNN-8-8K to denote the 8-layer RNN

model with 8K hidden size.

All the benchmarks are tested by running a full training iteration including forward/back-

ward propagation and weight update. State-of-the-art weight optimizers such as Adam [75]

and Adagrad [76] must maintain an extra buffer for storing the gradient history. There-

fore, a model of weight size W needs to consume at least 3W size of memory for storing

the weight, gradient and the history tensors. Table 3.2 shows the total weight memory

consumption for all the benchmarks.

Baseline and Alternatives for Comparison. We consider an ideal baseline and several

alternative approaches for comparison.

Ideal is a hypothetical baseline that assumes each GPU has infinite memory. We simulate

this by modifying the memory allocator of MXNet to always return the same memory block.

We measure the single-GPU throughput number and multiply it by 8 as the performance

of running on 8 GPUs.

SmallBatch is a baseline that tries to fit the model in a single GPU by reducing the mini-

batch size. Like the ideal baseline, we scale the single-GPU throughput number by 8 for 8

GPUs. Thus, neither SmallBatch nor Ideal baseline consider the communication cost and

represent performance upper-bounds.

Swapping [16, 77, 78] is a baseline that swaps in/out GPU memory blocks to CPU. There
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are many ways to design the swapping policy. Our baseline combines many of these

techniques in order for a fair comparison. First, our baseline follows the design of [78],

which includes a least recently used algorithm to decide the tensor to be swapped out and

a prefetching unit based on the execution. This supports swapping in/out any memory

block instead of only activation tensors as in [16]. Second, read-only tensors are copied to

CPU only once and simply dropped the next time they are to be swapped out. Third, we

combine dataflow analysis similar to [16] to disable swapping out memory blocks that will

soon be used.

Operator Placement [79, 41, 80, 54] assigns operators to different devices to spread out

memory usage. For RNN, this baseline assigns the computation of different layers to

different GPUs to leverage the pipelining effect, as it is originally proposed in [79]. If

there are more layers than the number of GPUs, we balance the assignment in a round-

robin manner. Operator placement does not perform well for CNNs due the mostly serial

layer-by-layer execution. Therefore, we skip this baseline for all WResNet benchmarks.

In our experiments, the ideal baseline uses a batch size that can saturate the GPU for

the best performance. SmallBatch, Swapping and Tofu all use the largest batch size that

make the execution fit in the GPU memory.

3.7.2 Training Large and Deep Models

We show the performance of Tofu and compare it to the ideal baseline and alterna-

tives. Since different systems use different batch sizes to achieve the best performance,

we use throughput (samples/sec) instead of training time per iteration as the metric for

comparison In Figures 3.8 and 3.9, each bar shows the throughput relative to the ideal

baseline performance. The absolute throughput numbers are shown on top of each bar.

OOM indicates out-of-memory error.
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Figure 3.9: Normalized RNN throughput relative to the ideal performance. The number
on each bar shows the absolute throughput in samples/sec.

WResNet Performance. Figure 3.8 shows the WResNet throughput achieved by differ-

ent systems. The ideal baseline uses a global batch size of 128. Only 3 models, WResNet-

50-4,6 and WResNet-101-4 can be fit in a single GPU memory by shrinking the batch size

(aka SmallBatch).

Tofu can achieve 60%-95% of the ideal performance for all the models. The largest

model, WResNet-152, has the biggest performance gap. This is because we configured the

ideal baseline to use a much larger mini-batch size for peak throughput without any con-

sideration for memory consumption. For example, the ideal baseline uses base size 128 for

WResNet-152-4 while Tofu can fit at most 32. The batch sizes used by Tofu ranges from

8 (for WResNet-152-10) to 128 (for WResNet-50-4). Tofu performs better than alterna-

tives in all scenarios except for WResNet-50-4 and WResNet-101-4, in which SmallBatch

achieves 12% and 15% better throughput than Tofu. This is because convolution kernels

have good GPU utilization even for small batch sizes. However, SmallBatch runs out of

memory for most of the models in Figure 3.8.

As shown in Figure 3.8, swapping is 20%-63% slower than Tofu across all the models.

This is due to swapping’s much larger communication amount. Although we implemented

prefetching to “hide” communication latency in swapping, the CPU-GPU communication

is the bottleneck as all 8 GPUs share the same bandwidth to communicate with the CPU.
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RNN Performance. Figure 3.9 shows the throughput for RNNs. The ideal baseline

uses a (global) batch size of 512. Tofu performs better than the other baselines in all RNN

configurations, achieving 70% - 98% of ideal throughput. Unlike the WResNet experiments,

SmallBatch does not achieve better throughput than Tofu in any RNN configuration. This

is because the main RNN computation is matrix multiplication, which has much less

arithmetic density than convolution. Thus, performing matrix multiplication using small

batch sizes results in decreased GPU utilization. The same reasoning explains why Tofu’s

relative performance with the largest model (RNN-10-8K) is worse than with other RNN

models; Tofu uses a batch size of 128 in order to fit RNN-10-8K in memory while it uses

larger batch sizes (256 or 512) with other RNN models. As is also the case with WResNet,

SmallBatch results in OOM for larger RNN configurations.

Operator placement achieves 38%-61% of Tofu’s throughput and cannot train RNN-10-

8K (OOM). Two reasons contribute to the lower performance. First, layer-wise placement

results in imbalanced load because the number of layers is not a multiple of the number of

GPUs. Second, layer-wise placement relies on pipelined parallelism: GPU-1 executes the

first operator in the first layer and forwards its result to GPU-2. GPU-2 can execute the

first operator in the second layer while GPU-1 concurrently executes the second node in

the first layer. Pipelined parallelism cannot fully saturate GPUs at all times: e.g. GPU-2

is idle while GPU-1 executes its first operator. By contrast, Tofu parallelizes the execution

of each operator and keeps all GPUs busy at all times.

Swapping achieves 23% - 30% throughput of Tofu and 48% - 53% throughput of oper-

ator placement when the weight size is large. The main reason is that many tensors may

be used simultaneously in RNN training. To fully saturate a GPU, most deep learning

frameworks, including MXNet and Tensorflow, schedule operators immediately when they

are ready. RNN’s mesh-like dataflow graph results in more tensors to be used at the same

time. When the weight size is large, the amount of swapping increases significantly. Cou-

pled with the CPU-GPU communication bottleneck, swapping is unable to achieve good
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RNN-6 RNN-8 RNN-10
Tofu 210 154 122
MX-OpPlacement 107 95 59
TF-OpPlacement 50 36 30

Table 3.3: Comparison of throughput (samples/second) for RNN models. The hidden size
is 4096.

throughputs for RNNs.

Comparing with TensorFlow. We compare with Tensorflow v1.8 (using Op-Placement)

for training RNNs. Table 3.3 shows the throughputs for running on RNN-6-4K, RNN-8-

4K, and RNN-10-4K. For additional comparison points, we also include MXNet (using

Op-Placement). Note that the throughputs of Tofu and MXNet are same as those in

Figure 3.9. Tensorflow’s throughput is roughly half of MXNet and about 23% of Tofu.

As Tensorflow and MXNet use the same operator kernel implementations, we originally

expected the two systems to have similar throughput. However, further investigation shows

that TensorFlow does not support in-place gradient aggregation which may be crucial for

the performance of large RNNs.

3.7.3 Comparing different partition algorithms

We have compared Tofu’s search time with the original DP algorithm [24] in §3.5.2

(Table 3.1). We now compare the quality of partition plan found by Tofu vs. [24] and

various other heuristics.

The simplest heuristic (AllRow-Greedy) partitions all tensors along the first dimension

and partitions each operator using the best strategy given that its input/output tensors are

partitioned on the first dimension. Note that, for the case of WResNet, this gives similar

result as the one-weird-trick strategy proposed in [22], because all the convolution layers

are partitioned by the batch dimension and the only fully-connected layer in WResNet

occupies <1% of the total time. Our next heuristic is to greedily partition the largest
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Figure 3.10: Comparison of different partition algorithms using RNN-4-8K and WResNet-
152-10 on 8 GPUs. Striped parts show the overhead (percentage) due to communication.

tensor first (along any dimension), followed by its incident operators, followed by the

second largest tensor and so on. This is equivalent to what is proposed by Spartan [72].

We also compare with Tofu’s DP algorithm applied to chop each tensor equally along

only one dimension (EqualChop). Finally, we compare with the algorithm in [24](ICML18)

which does not consider the partition strategy of aggregating output tensors (aka output-

reduction).

Figure 3.10 shows the execution time of training one batch on 8 GPUs for RNN-

4-8K (batch size is 512) and WResNet-152-10 (batch size is 8). To see the impact of

communication on the execution time, we modify the backend to skip memory copy among

GPUs and measure the resulting pure computation time, which is shown as the lower light-

colored portion of the bars in Figure 3.10.

AllRow-Greedy performs worse among all the algorithms and run out of memory for

WResNet-152-10 because it needs to fetch too much data from the other GPUs. Spartan

and EualChop reduce the communication overhead by 3%-10% but are still worse than Tofu.
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This result shows the benefit of partitioning a tensor along multiple dimensions. ICML18

is 7% slower than Tofu for RNN-4-8K and results in OOM for WResNet-152-10 due to

the lack of output-reduction. After adding output-reduction, ICML18 can find the same

strategy as Tofu, albeit with a much longer search time (see Table 3.1).

3.7.4 Partition Results

Figure 3.11 shows the partition found by Tofu for WResNet-152-10. ResNet-152 con-

tains 4 groups of residual blocks: each block includes 3 convolutions and is repeated 3, 8,

36, and 3 times for each group respectively. The lower residual blocks (those close to the

input layer) have larger feature map but smaller weight tensors while the higher ones are

the opposite.

We make the following observations:

• Tofu partitions both the batch and channel dimensions and the resulting partition

plan is a complicated combination of different partition strategies.

• Tofu chooses different partition plans for different convolution layers within one

residual block. Repeated residual blocks are partitioned in the same way except for

the first block in the group which has a different configuration to shrink the initial

input feature map size by half.

• As the activation tensors in lower layers are larger and the weight tensor smaller,

Tofu chooses to fetch weight tensors from remote GPUs to save communication. As

the weight tensors are larger in the higher layers, Tofu switches to partition strategies

that fetch the relatively smaller activation tensors.
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3.8 Additional Related Work

Parallel DNN training. Many parallel strategies have been developed to speedup DNN

training. Some strategies such as the popular data parallelism [49, 81, 82, 83] cannot be

used for training very large models because the parameters are replicated to each device.

Model parallelism spreads out the model parameters to multiple GPUs, thus is suitable

for training very large models. Early work[20, 22, 48] parallelizes specific classes of DNN

models, and is limited in flexibility and generality. Minerva[21] and Strads[84] require users

to implement extra interfaces to partition model parameters while Tofu requires no change

to the user program. Another approach is to assign different layers/operators to different

devices via heuristics [80] or stochastic search [79, 41]. However, operator placement only

works well only when there are sufficiently many concurrent operators, and thus is not

suitable for DNN models with a deep stack of layers.

Out-of-core DNN training. This includes recomputation on demand [17, 18, 19] ,

swapping and prefetching from host memory [16, 77, 78]. Recomputation is not viable for

large weight tensors. Swapping with host memory reduces the opportunity of co-locating

computation and data, and scales poorly when there are multiple GPUs. None of them

can efficiently utilize the aggregated memory capacity of multiple cards as Tofu does.

Moreover, Tofu can also be combined with these techniques.

Model compression. This includes network pruning [85, 86] (which removes small

weight values), quantization[87] and reduced precision[88]. The compressed model can

then be deployed on mobile or edge devices or to speed up the inference. However, these

approaches affect model accuracy while Tofu allows exploring very large models without

changing the model behavior.
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Parallel tensor computing. There is a long history in developing efficient parallel sys-

tems for tensor computing. The very first effort starts from developing low-level, optimized,

parallel matrix/tensor libraries [89, 90, 91, 92, 93]. These libraries implement efficient par-

allel matrix algorithms [61, 94] and tensor operations [95]. However, they have very limited

programmability support and adding new operators requires tremendous manual efforts.

Many frameworks or tools have been built to ease the programming of parallel tensor

computation. In the low-level, ZPL [96], Chapel [97] and Unified Parallel C [98] are parallel

language supports. In the higher-level, systems such as [99, 100, 101, 102, 103, 72] let users

write programs in high-level primitives like map and reduce. MadLinq [60] and Presto [104]

let user describe operators using parallel loop primitives. Users need to express parallelism

using the proper combination of these primitives. For example, implementing a parallel

matrix multiplication needs to call the shuffle primitive in Spartan [72] or the Collect

primitive in [103]. However, these primitives are limited (e.g. it is hard to express halo-

exchange in convolution). Distributed Halide [105] lets user describe the algorithm in their

DSL and specifies how it is paralleled. As there are usually multiple ways of partitioning

data and computation, the efficiency varies with different implementations. Spartan [72]

and Kasen [102] propose algorithm to automatically optimize array/matrix partitioning

to reduce communication. [103] further improves this by also considering different parallel

patterns via transformations of nested high-level primitives.

More recent proposals aim to fully automate the whole stack – user programs are

written in array language and the system can distribute the data and computation au-

tomatically. There are several approaches. Cylops Tensor Framework [106] and Tensor

Contraction Engine [107] are specialized systems for automatically parallelizing tensor con-

traction. Spartan tries to map Numpy operators to high-level map and reduce primitives

and then partitions them accordingly. Others tried to leverage the parallelism among

array operators. For example, Pydron [108] translates Python program into an internal

dataflow graph to parallelize independent loops. [79, 41] tries to dispatch array operators
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to different devices automatically based on the dataflow graph. However, they are not

suitable for DNN computation that is mostly sequential. Compared with previous sys-

tems, Tofu automatically discovers the partition-n-reduce parallel patterns of operators

using TDL description and optimizes partitioning for the entire dataflow graph.

Data layout optimization. There have been extensive work on optimizing communica-

tion (aka remote memory access) on the multiprocessor architecture (e.g. [109, 110, 111,

112, 113, 114, 115, 116, 117, 118, 119]) or the new hardware [56, 23, 55]. Since searching the

optimal solution is NP-Complete [62, 63, 64, 65], heuristics are used in practice [65, 111].

By contrast, Tofu analyzes the relatively simpler operator description language instead of

the source code, and exploits the DNN computation structure for its optimization.

3.9 Conclusion

We present the Tofu system, which enables the training of very large DNN models by

partitioning a dataflow graph of tensors across multiple GPU devices. To automate this

process, Tofu infers each operator’s valid partition strategies by analyzing its semantics

written in a simple description language (TDL). Tofu uses a recursive search algorithm

based on dynamic programming and DNN-specific heuristics to find the best partition

plan that minimizes communication for the entire dataflow graph.
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Chapter 4

Deep Graph Library: An Efficient and
Scalable Framework for Deep Learning
on Graph

4.1 Introduction

Learning from structured data like graphs is widely regarded as an important prob-

lem [120], because the graph is inherently a more general form of data structure than

tensors. A broad range of models can be unified as either learning from explicit or infer-

ring latent structures. Examples include TreeLSTM [26] that works on sentence parsing

trees, Capsule Network [121] and Transformer [122] that learns soft connections among

entities (e.g. capsules, words). Recently, Graph neural networks (GNNs) is a rising family

of models that aim to model a set of node entities together with their relationships (edges).

The application regime of the GNN framework is broad, such as chemical molecules, social

networks, knowledge graphs and recommender systems [123, 124, 125, 5].

Unfortunately, existing tensor-based frameworks (e.g. Tensorflow, Pytorch, MXNet)

lack intuitive support for this trend of deep graph learning. Specifically, GNNs are defined

using the message passing paradigm [6], which can be seen as a model inductive bias to
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facilitate information flow across the graph. However, tensor-based frameworks do not

support the message-passing interface. As such, researchers need to manually emulate

graph computation using tensor operations, which poses an implementation challenge.

During the past year we have seen the release of several graph training systems [126, 127,

128, 27]. However, most if not all of these libraries compromise programming flexibility to

boost the performance of a narrow range of GNNs, as we briefly summarize in the Table 4.1.

As research on deep graph learning is going to evolve and iterate quickly, we dive in to

the source of graph learning problems to provide a more comprehensive graph-oriented

solution, the Deep Graph Library (DGL)1.

Currently, with DGL, we provide 1) graph as the central abstraction for users; 2)

flexible APIs allowing arbitrary message-passing computation over a graph; 3) support for

gigantic and dynamic graphs; 4) efficient memory usage and high training speed.

DGL is platform-agnostic so that it can easily be integrated with tensor-oriented

frameworks like PyTorch and MXNet. It is an open-source project under active devel-

opment. In this paper, we compare DGL against the state-of-the-art library on multiple

standard GNN setups and show the improvement of training speed and memory efficiency.

4.2 Background

Graph has been an intriguing subject of study for a long history. Frequently applied

algorithms include shortest-path, different kinds of traversal algorithms, belief propaga-

tion [129] for probabilistic reasoning and variations on the page rank theme [130]. These

graph analytic algorithms have played a central role during the boom of internet and social

network assisted by specialized systems [131, 132, 133, 134, 135].

In the deep learning world, there has been continuous interest in developing DNNs for

graph data. In natural language processing, TreeLSTM [26] generalizes LSTM [74] model

to sentence syntactic parse trees. SPINN [136] develops a tree-sequence hybrid model for
1. Project Website: http://dgl.ai
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more efficient training. Recently, an emerging family of neural networks, Graph Neural

Networks, have achieved significant breakthroughs in modeling general graphs such as

citation networks [137], knowledge graphs [124] and molecular structures [138]. The ability

of GNNs to combine structural signals with side channel features, potentially extracted by

other DNN models, makes them promising end-to-end approaches.

At a higher level, all these DNN models for graph data fit into the message passing

paradigm [6, 126]. Formally, we define a graph G(V,E). V is the set of nodes with vi being

the feature vector associated with each node. E is the set of the edge tuples (ek, rk, sk),

where sk → rk represents the edge from node sk to rk, and ek is feature vector associated

with the edge. The message passing paradigm contains the following edge-wise and node-

wise computation:

Edge-wise: m(t)
k = ϕe(e

(t−1)
k ,v(t−1)

rk
,v(t−1)

sk
), (4.1)

Node-wise: v(t)
i = ϕv(v

(t−1)
i ,

⊕
k

s.t. rk=i

m
(t)
k ) (4.2)

The equation updates a node representation v
(t)
i by collecting messages m(t)

k sent from

neighbors, which contain information of the neighbors and edges. ϕe and ϕv are message

function and update function shared by all the nodes and edges, commonly parameterized

by a neural network. So is the reduce function
⊕

for aggregating messages. A GNN model

can then apply such computation iteratively each with different functions (or different set of

neural network parameters) so that a node can gather information from further neighbors.

Each iteration is also known as one GNN layer. The final node representations are the

inputs to other classifier or decoder modules depending on the tasks.

Despite the similarity to the vertex-centric programming model [131, 132] core to the

systems for graph analytics, the message passing paradigm in graph DNNs has disparate

characteristics. First, each layer needs to book-keep its representations for gradient com-

putation, which means that directly mutating node-wise states is not allowed. By contrast,

graph analytic systems provide a shared-memory abstraction and state updates are usu-
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GNet NGra Euler PyG DGL

Message
Passing

arbitrary ϕe 3 3 3 3 3

arbitrary ϕv 3 3 3 3 3

arbitrary
⊕

3 7 3 7 3

Propa-
gation
Order

full 3 3 7 3 3

partial 7 7 7 3 3

random walk 7 7 7 3 3

sampling 7 7 3 3 3

Graph
Type

many & small 3 7 7 3 3

single & giant 7 3 3 7 3

dynamic 7 7 7 7 3

heterogeneous 7 7 7 7 3

System multi-platform 7 7 7 7 3

Table 4.1: DGL vs. GraphNet (GNet), NGra, Euler and Pytorch Geometric (PyG)

ally inplace. Second, the node and edge states in DNNs are tensors while graph analytic

algorithms typically have scalar states. Therefore, a graph DNN system should utilize

the parallelism in node-wise and edge-wise computation which is not available in graph

analytic algorithms. Third, graph analytic systems heavily rely on the assumption that

the reducer function is commutative, which does not hold for graph DNNs. Finally, the

node-wise and edge-wise computations reuse standard DNN modules. However, none of

the graph analytic systems is compatible with existing DL frameworks.

4.3 System Challenges for DNNs on Graphs

In the recent years, there are many efforts in developing specialized systems for graph

DNNs (e.g., Pytorch Geometric [27], NeuGraph [127], Euler [128], Aligraph [139], Graph-

Net [126]). We elaborate the main challenges in designing such a system, what are the

issues with existing GNN tools and DGL’s contributions. Table 4.1 summarizes the differ-

ences between these GNN systems and DGL from multiple aspects.
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Support flexible message passing paradigm. To strictly follow the message passing

paradigm defined in equation 4.1, the system should let users express arbitrary message

function ϕe, update function ϕv and reduce function ⊕. Specifically, ⊕ is not necessarily

a commutative sum, mean, or max/min, but could be an LSTM network [125], since sim-

ple reduce operations limit the theoretical capability of GNNs [140]. Supporting arbitrary

reduce function efficiently is challenging on GPU because each node receives different num-

ber of messages. As such, PyG and NeuGraph do not support arbitrary reduce function

while GraphNet and Euler let users implement the non-trivial batching strategy.

Enable flexible propagation order. The message passing paradigm defines the com-

putation on each node/edge while the propagation order determines how messages are

propagated. One can trigger the computation synchronously [137, 14, 141] (full propaga-

tion), or following a certain order like TreeLSTM [26] and Belief Propagation [142] (partial

propagation), or on some random walks [143, 144] and sampled subgraphs [125, 145, 146].

All said, the propagation aspect is another crucial aspect to consider.

Scale to giant graphs. Real-world graphs such as social networks, knowledge graphs and

the user-item interaction graphs for recommendation can have millions of nodes. However,

many graph DNN systems are incapable of training GNNs on even moderately large graphs.

This is because systems like GraphNet and PyG generate explicit edge-wise messages

during message passing. Storing messages consumes the size of memory proportional to

the number of edges in a graph, which could be several orders of magnitude larger than

the memory required for storing node features.

Support dynamic and heterogeneous graphs. Besides giant graphs, there are other

dimensions to categorize graph data. The first dimension is whether they are static. Dy-

namic graphs are particularly important in generative models, for example to infer latent

graph structure which is crucial in relational reasoning AI [147]. Graph mutation occurs

53



from time to time, e.g. by adding/removing nodes/edges [142, 148] or pooling [141]. Fi-

nally, no graphs are born giant, they grow to be (e.g. a knowledge graph); it is important

to keep this evolution viewpoint in mind.

The second dimension is whether they are heterogeneous. Heterogeneous graphs are

graphs that contain different types of nodes and edges. The different types of nodes

and edges tend to have different types of attributes that are designed to capture the

characteristics of each node and edge type. Moreoever, within the context of graph neural

networks, depending on their complexity, certain node and edge types may need to be

modeled with representations that have different number of dimensions. Unfortunately,

none of the existing systems supports GNNs on heterogeneous graphs.

Obviously, the above categorization is not mutually exclusive and a complete model

can embrace multiple aspects, depending on model dynamics, dataset type or optimization

algorithm design.

To address these challenges, we design DGL with following technical contributions.

• DGL provides graph as the central abstraction for users with efficient graph and

feature storage. The graph data structure allows mutation and heterogeneous at-

tributes.

• DGL allows the most general form of the message passing paradigm. To support

arbitrary reduce function, DGL proposes an auto-batching technique that efficiently

utilizes GPU and introduces little overhead. Moreover, DGL allows performing mes-

sage passing on a subset of nodes and edges. Building upon this, DGL enables

flexible propagation order naturally.

• DGL fuses the message and reduce functions and avoids storing explicit messages,

enabling training on graphs up to 512K nodes and 209M edges on one GPU.

• The design of DGL is platform-agnostic and is compatible with multiple popular DL

frameworks.
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Figure 4.1: DGL system stack.

4.4 Design Overview

Figure 4.1 depicts an overview of DGL’s system stack. At the top level, DGL provides

programming interfaces that are intuitive to express graph DNNs including graph, message

passing interfaces and common utilities on graphs such as traversal, random walks, etc.

In the middle there is the dataflow graph scheduler in charge of translating the message

passing computation into a dataflow graph for execution. The scheduler also performs

batching and fusion automatically. To support multiple DL frameworks, DGL defines a

DL system abstraction level including the tensor operators and a custom operator interface

required by DGL’s execution. Currently, DGL realizes the abstraction for MXNet and

Pytorch, while Tensorflow support is on the way.

In the remainder of this chapter, we first highlight two key user-facing APIs: the graph

(§4.5.1) and the message passing interface (§4.5.2). We then explain DGL’s auto-batching

(§4.6.1) and kernel fusion (§4.6.2) strategies.
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1 def mfunc(edges):
2 # message UDF
3 return {'msg' : edges.src['h']}
4
5 def rfunc(nodes):
6 # reduce UDF
7 return {'newh' : nodes.mailbox['msg'].sum(dim=1)}
8
9 class GraphConv(torch.nn.Module):

10 def __init__(self , in_size , out_size):
11 self.linear = torch.nn.Linear(in_size , out_size)
12
13 def forward(g, feat):
14 # g : DGLGraph object , feat : node feature tensor
15 g.ndata['h'] = feat / g.out_degrees().sqrt()
16 g.update_all(mfunc , rfunc)
17 newh = g.ndata['newh'] / g.in_degrees().sqrt()
18 return self.linear(newh)

Figure 4.2: Example codes of Graph Convolution layer in DGL.

4.5 Programming Interface

Figure 4.2 shows the example codes in DGL for implementing a Graph Convolu-

tional [137] layer defined as follows:

v
(t)
i =

∑
j∈N (i)

1√
|N (i)||N (j)|

v
(t−1)
j W

Here, N (i) is the set of neighbors of node i and W is the trainable weight matrix. We

use this example to lead the discussion in this section.

4.5.1 Graph and feature storage

Prior libraries including GraphNet and PyG require users to maintain graphs as sparse

matrices and features separately as dense tensors. Although this is convenient for quick
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prototyping, many low-level system design choices are exposed to users: which sparse

format (CSR or COO) to use, what is the order of stacking node/edge features?

DGL’s central abstraction for graph data is DGLGraph. It is inspired by NetworkX [149]

– a popular package for graph analytic, to which we maintain maximal similarity (e.g.,

g.out_degrees() at L13). Nodes and edges are assigned integer IDs starting from zero

as indices to their features. The graph structure is stored in adjacency matrix. Different

sparse formats have their own strength depending on the operations performed. For exam-

ple, CSR is good at finding the successors of a node while CSC is more efficient in finding

the predecessors. In DGL, we store copies of a graph in all these formats and use the suit-

able one depending on the invoked operation. Since the memory consumption of storing

the graph structure is much smaller than storing the features, such redundancy is afford-

able. These copies are also created on demand. In most cases, only CSC is materialized

due to the common operations to retrieve in-coming messages.

DGLGraph stores node/edge features so that it can access or modify them at any time,

even when the graph is mutated. Users query or modify these features with a dictionary-

style interface. For example g.ndata['newh'] returns the newh features of all nodes (L17).

The node/edge features of a certain key are packed in one dense tensor, where each row

slice corresponds to the feature of a node/edge. In order to support gradient computation,

feature update cannot be inplace. Therefore, DGL simulates the inplace write with an

outplace tensor operator. The operator creates a new tensor that has the same values as

the old one except the rows being updated, which is expensive when there are many writes.

We address this issue in §4.6.

4.5.2 Message passing interface

DGL provides the following two basic primitives to perform computation on graphs:

send(E , ϕe), recv(V ,
⊕

, ϕv) (4.3)
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Here, send and recv are message passing triggers on edge and node respectively. E and

V define the set of edges and nodes that are triggered for message passing. Collectively,

we call them active set. Computation can be repeatedly triggered on different active sets

to propagate messages and update features along a walk on the graph or a preset path.

DGL supports a variety of propagation orders using the active set design:

• full propagation involving all nodes/edges by update_all(ϕe,
⊕

, ϕv) [137, 14];

• propagation from/to neighbors by pull(V , ϕe,
⊕

, ϕv) and push(V , ϕe,
⊕

, ϕv) [145];

• subset node/edge propagation under certain traversal order [26, 142];

• random walk [5, 125];

• active sets that are generated dynamically, including exploration algorithms on graph

navigation [150, 151] and graph generative models [148].

ϕe,
⊕

, ϕv are the message, reduce and update functions. More precisely, they can be

specified as follows:

• User-defined function (UDF). A UDF can be any function or class that acts like

function. For example, they could be parameterized by neural network modules

(e.g., torch.nn.module). The message function has the access to the feature data of

an edge and its source and destination nodes and returns the messages (L1-3). The

messages are then delivered to the mailbox of the destination nodes, accessible by the

reduce function for aggregation (L5-7). The results are stored as node features. To

harness the parallelism of GPU devices, we require a UDF to perform computation

in a batch which we will explain later in §4.6.1.

• Built-in function. DGL provides symbolic functions for common message and re-

duce functions. For example, users can replace rfunc at L16 with dgl.function.sum('msg',

'newh') for message summation, saving programming efforts. Built-in functions
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Figure 4.3: The semantics of the message tensor dimensions in a reduce UDF.

makes it easier to analyze the program and enables the kernel fusion technique in

§4.6.2.

Besides the graph and message passing interfaces, DGL exposes many common routines

for training various graph DNNs. We provide a batching API to collect a set of small

graphs of different sizes into a larger graph by treating them as disjoint components.

When faced with much larger graphs, many [125, 146] propose to sample the graph to

avoid full-graph propagation. In DGL, we provide graph sampling API in the form of data

loader rendering sampled subgraphs. Optionally, these subgraphs can then be batched for

efficient processing.

4.6 Optimization and Implementation

This section explains the optimizations in our system for accelerating graph DNN

training.

4.6.1 Auto-batching user-defined message passing

The node-wise and edge-wise computations in the message passing must be batched

in order to run efficiently on GPUs. Batching message and update functions is straight-

forward because they operate on every node and edge independently. Batching reduce

function is non-trivial because the number of messages to reduce is different for each
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node. Prior work such as DyNet [29] and Tensorflow Fold [28] perform auto-batching

by analyzing dataflow graphs for batching opportunities, but bring significant overhead.

Specifically, DyNet constructs one dataflow graph for every node which is not viable in a

graph of hundreds of thousands of nodes.

DGL leverages two insights to efficiently batch reduce functions. First, most tensor

operators in deep learning systems support batched computation by specifying the dimen-

sion the inputs are batched on. Second, nodes receiving the same number of messages can

compute in a batch. Therefore, we let the UDFs operate directly on the features of a batch

of nodes and edges. For example, the message function at L3 operates on edges.src['h'],

which packs the source node features of all the edges. For reduce phase, we divide nodes

into buckets based on the number of received messages and invoke reduce UDF to aggre-

gate the messages of each bucket. The (i, j) slice of the tensor for the batched messages is

the jth message received by the ith node in the current bucket (Figure 4.3). In such way,

DGL replaces the expensive dataflow graph construction in previous approaches with a

lightweight degree calculation, which is essential to scaling to large graphs.

4.6.2 Fusing message and reduce functions

The batching-by-degree strategy is applicable to arbitrary reduce function, but suffers

from two problems. For graphs with high degree variance, it generates small batches with

few nodes leading to under-utilization of GPUs. Moreover, storing messages consumes an

excessive amount of memory especially on graphs of many edges.

In DGL, system detects and fuses message and reduce phases. Taking update_all

(ϕe,
⊕

, ϕv), it assesses ϕe and
⊕

. When ϕe is an element-wise operation like +−×÷ and⊕
is a commutative reduction like sum/mean/max/min, it calls a fused GPU/CPU kernel.

The kernel divides the workload into edge chunks for parallel processing, where a block

of threads further process the feature dimension cooperatively. Each thread loads the

required node or edge feature data, computes ϕe, and saves the message into its register.
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Dataset Model Accuracy Time Memory
|V| |E| PyG DGL PyG DGL

Cora GCN 81.31± 0.88 0.478 0.666 1.1 1.1
3K 11K GAT 83.98± 0.52 1.608 1.399 1.2 1.1

CiteSeer GCN 70.98± 0.68 0.490 0.674 1.1 1.1
3K 9K GAT 69.96± 0.53 1.606 1.399 1.3 1.2

PubMed GCN 79.00± 0.41 0.491 0.690 1.1 1.1
20K 889K GAT 77.65± 0.32 1.946 1.393 1.6 1.2

Reddit GCN 93.46± 0.06 OOM 28.6 OOM 11.7
232K 114M

Reddit-S GCN N/A 29.12 9.44 15.7 3.6232K 23M

Table 4.2: Training time (in seconds) for 200 epochs and
memory consumption (GB).
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Figure 4.4: GCN training time
on Pubmed with varying hid-
den size.

It then uses atomic instructions to accumulate the results. When fusion is possible it

saves both time and memory, since messages typically do not need to be materialized.

When computing the gradients, the backward kernel adopts the same thread scheduling

but needs to re-compute the messages dropped in the forward pass. The re-computation

does not involve message reduction so has negligible overhead.

4.7 Evaluation

We evaluate our system to demonstrate its effectiveness in several settings. We first

compare DGL with the implementations by the original author and by existing graph

DNN systems on small models and datasets. To show that DGL can scale to much larger

graphs, we evaluate it on synthetic graphs. Finally, we measure the performance of our

auto-batching technique on classical models. All experiments use DGL configured with

Pytorch (v1.0) backend and are carried out on an AWS EC2 p3.2xlarge instance installed

with one NVIDIA Tesla V100 GPU (16GB) and 8 vCPUs.
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4.7.1 Speed and memory efficiency

Experimental setup. We focus on the semi-supervised setup for node classification [137].

Our datasets include three citation networks (Cora, Citeseer and Pubmed [137]) as well

as the larger scale Reddit posting graph ([125]). For model selection, we follow the setup

in the original papers and report the average performance from 10 rounds of experiments.

Table 4.2 evaluates the speed and memory consumption of training Graph Convolu-

tional Network [137] and Graph Attention Network [14]. We primarily compare DGL v0.3

against PyG v1.0.3 [27]2. As we can see from Table 4.2, DGL is consistently faster than

PyG in training GAT. For GCN, DGL lags behind because it has a slightly higher python

overhead cost in the wrapper codes (e.g. storage APIs) in the original setting. However

when we increase the hidden layer size, DGL starts to out-perform PyG, as shown in

Figure 4.4. GAT causes OOM for both DGL and PyG on Reddit so is not included.

DGL’s superior performance is largely owing to kernel fusion. It brings both speed and

memory advantage, in particular on larger and denser graphs such as Reddit graph whose

average degree is around 500. On this dataset, PyG runs out of memory while DGL can

complete training by using less than 12 GB memory. For further comparison, we randomly

prune out 80% of the edges in Reddit graph (dubbed as Reddit-S). Under this setup, we

can measure PyG’s memory consumption. In this case, DGL is still 3× faster and saves

77% memory.

4.7.2 Scalability

We test DGL on synthetic graphs to further evaluate the performance on larger and

denser graphs. All graphs are generated using the Erdos-Renyi model. In all experiments,

we train two models GCN and GAT for 200 epochs and measure the running time.

Figure 4.5 shows the scalability of DGL with growing graph size. The density of the
2. PyG compared with DGL v0.2 in their paper which does not include DGL’s the kernel fusion feature.
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Figure 4.5: Time to train GCN and GAT for 200 epochs on synthetic graphs of increasing
number of nodes. All graphs have fixed density 0.08%.
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Figure 4.6: Time to train GCN and GAT for 200 epochs on synthetic graphs of increasing
density. All graphs have 32K nodes.
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Figure 4.7: Time to train GCN and GAT for 200 epochs with increasing hidden sizes on
a synthetic graph. The graph has 32K nodes and density is 0.08%.

graphs are fixed (0.008%) so the number of edges grows quadratically. DGL is much faster

than PyG and uses much less memory. It can train GCN and GAT on graphs of up to

512K and 128K nodes respectively on one GPU, while PyG runs OOM. On graph of size

256K, DGL can train GCN 3.4× faster than PyG and only occupies 4.7GB memory. We

then fix the graph size to be 32K and densify the graph by more edges (figure 4.6). PyG

quickly runs OOM especially for GAT as it is more memory demanding on denser graphs.

By contrast, DGL can scale to graphs of 209M edges and 26M edges for GCN and GAT

respectively, and be 7.5× faster when both systems fit the training in one GPU. Finally,

we fix the graph size and density but scale the GNN models with larger hidden dimension

(figure 4.7). For GCN, DGL is always faster than PyG on models with hidden sizes larger

than 32, and is 4.3× faster for hidden size equal to 1024. For GAT, DGL can fit hidden

size up to 256 while PyG can only fit 32.

The advantages of DGL in both speed and memory come from kernel fusion, which

avoids storing messages and the high traffic for accessing them.
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4.7.3 Auto-batching

We compare the DyNet implementation of the Stanford Sentiment Treebank regres-

sion [152] task using the same TreeLSTM model [26]. Figure 4.8 shows the training

throughputs under different batch sizes. DGL is capable of achieving more throughput

with larger batch size on GPU while DyNet is bottlenecked by the overhead of dataflow

graph construction. As a result, with batch size 1024, DGL can train 10.67× faster and

can finish one epoch in only 1.70s. On CPU, the training speeds are similar and DGL is

faster when batch size is large. In addition, it is worth noting that DGL’s implementation

uses existing modules and operators from Pytorch, which is much more straightforward

and easier for developing and debugging.

4.8 Conclusion

We present Deep Graph Library, a graph-oriented library built for deep learning on

Graphs. On the ML side, we will continue to push ease of use, diversity and scale. On

the system end, as the models grow deeper and larger, or structurally more complex, how

to speed up them using modern hardware is another challenge; kernel fusion technique in
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DGL is only a stepping stone.

66



Chapter 5

Conclusion and Future Work

The dissertation studied the problems of training emerging deep neural networks includ-

ing DNNs scaling beyond the capacity of a single device and DNNs for graph structured

data. Exploring these models is limited in current deep learning systems due to burden-

some programming experience and complex system decisions. We pointed out that the

insufficiency is due to the current single stage design and the lack of operator semantics.

By this motivation, our proposed SMEX design extends the previous pipeline to two stages,

semantic dataflow graph and execution dataflow graph, allowing the system to automati-

cally optimize for execution with little user awareness. In addition, it introduces operator

specifications into the system pipeline, enabling more extensive optimizations.

We applied the design to two concrete systems, Tofu and DGL. Tofu supports training

very large models by tensor partitioning. As discussed in §3.3, the sheer quantity of the

possible partition strategies and the complexity in choosing the right one should be opaque

to users. Moreover, Tofu demonstrates that the introduction of operator semantics (in

Tensor Description Language (§3.4.1)) is necessary for the solution to be applicable more

widely. Because searching for the best partition strategy of a whole program is hard, we

proposed several techniques to shrink the search space (§3.5.2). With these improvements,

Tofu can find the best parallel strategies for state-of-the-art DNNs in seconds and can train
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6× larger DNNs using 8 GPUs efficiently. It is also worth noting that all these require no

change to user programs and little effort in writing operator specifications.

The second part of the thesis introduces a new system DGL for training graph DNNs.

Based on the common definition of graph DNNs (§4.3), we proposed the message passing

programming interface as a natural form of operator specification. Besides, DGL provides

flexible APIs to cover a wide range of graph DNNs (§4.5). To save both memory and

training time, DGL batches the node-wise and edge-wise computation automatically and

aggressively fuses them if possible (§4.6)), all of which further improve the usability of DGL.

The evaluation shows that DGL is 10× faster than previous auto-batching approaches and

can train DNNs efficiently on much larger graphs using one GPU.

All is said, there are still many remaining challenges which shed light on some future

directions.

5.1 More General Operator Specification

Designing a flexible operator specification is challenging. As an example, Tensor De-

scription Language (TDL) is a simple language without control flow primitives and data-

dependent indexing. Furthermore, Tofu does not support sparse tensor operations due to

load-imbalance, even though they can usually be described in TDL. The message passing

interface in DGL can describe certain sparse operations in the notion of graph. Developing

a powerful whilst natural operator specification is a promising direction.

Besides, there is no guarantee that the operator implementation matches its description.

In fact, such verification is an open research problem even if the underlying implementation

is open sourced. A more promising direction is to leverage recent operator code-generation

tools such as TVM [67], TC [68], and TACO [153].

68



5.2 More Extensive System Optimizations

Tofu only supports parallelization via partition-n-reduce, which restricts each worker

to perform a coarse-grained task identical to the original computation. This pattern

is not applicable to all parallelizable computation (e.g. Cholesky [60]). Furthermore,

the partition-n-reduce parallel strategies do not necessarily minimize communication, and

do not take advantage of the underlying interconnect topology. By contrast, parallel

algorithms developed for specific computation (e.g. matrix multiplication [61, 94], tensor

contraction [106]) are explicitly structured to minimize communication and exploit the

interconnect topology.

Furthermore, Tofu always partitions every operator and tensor across all workers. For

moderately sized DNN models, partitioning across all workers lead to small GPU kernels

that leave a GPU unsaturated. In such scenarios, it may be beneficial to leave certain

operators un-partitioned or partially partitioned among a subset of workers. Furthermore,

Tofu has no support for non-uniform partitioning when GPUs have different computing

and memory capacity. Although Tofu’s search algorithm tries to accommodate bandwidth

differences in a hierarchical interconnect, it does not explicitly optimize communication

according to the interconnect topology.

Unfortunately, Tofu’s recursive search cannot be extended to address the above limi-

tations. This is because the underlying DP algorithm cannot optimally search different

device placement choices for un-partitioned, or non-uniformly-partitioned operators. Ex-

ploring stochastic or machine learning based search mechanisms [41, 66, 25] is a direction

of future work.
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5.3 Scale to Real World Graphs

Graphs from real world scenarios can have hundreds of billions of nodes and edges.

Processing graphs of such magnitude requires advancement from both system and machine

learning sides. Graph partitioning has been well studied for graph analytic algorithms [132,

154] and is recently explored in graph DNN domain [127]. However, the effectiveness

of graph partitioning is constrained by the connectivity of a graph. A perhaps more

promising direction is to develop stochastic algorithms[145, 5, 146, 155]. This involves

several technical challenges such as how to balance the exploration (the urge to gather

global information) and exploitation (the benefit from utilizing locality).
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Appendix A

Recursive Partitioning Algorithm and
its Correctness

A.1 Recursive partition plan

We first formally define the partition plan of a dataflow graph. Given a dataflow graph

G, a partition plan P consists of the choices of how each tensor is partitioned and how each

operator is paralleled. Note that the tensor can be partitioned along multiple dimensions

but the number of splits should be equal to the number of GPUs.

Given 2k GPUs, any partition plan for a dataflow graph can be realized by a sequence

of recursive steps, ⟨p1, p2, . . . , pk⟩, where each pi is a basic partition plan that partitions

tensors along only one dimension among two (groups of) workers. Note that after i steps,

there are 2i identical sub-dataflow graphs whose tensors are 1/2i the original size. So the

pi+1 basic partition plan is applied to all 2i sub-graphs.

To see a concrete example, consider a dataflow graph of one matrix multiplication

C=A*B. Suppose there are 4 GPUs, an example partition plan sequence ⟨p1, p2⟩ is as follows:

p1 = {A 7→ 0, B 7→ 0, C 7→ 0, ∗ 7→ 1}

p2 = {A 7→ 1, B 7→ 0, C 7→ 0, ∗ 7→ 0}
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Here, A 7→ 0 means that row dimension is chosen to partition the matrix; ∗ 7→ 1 means

the second partition-n-reduce strategy is chosen for the multiplication operator. Because

p1 has partitioned each matrix into two sub-matrices, p2 is applied on the sub-matrices.

The sequence represents a plan where A is partitioned into a 2x2 grid and B and C are

partitioned into four row strips.

Tofu’s recursive partition algorithm chooses a sequence of partition plans A = ⟨a1, a2, . . . , ak⟩

in k recursive steps and we want to show that this sequence is no worse than the optimal

sequence O = ⟨o1, o2, . . . , ok⟩.

A.2 Region Analysis

Recall in Sec 3.4.2, we use symbolic interval to analyze the access pattern of an operator.

Let X1, . . . ,Xn and Y1, . . . ,Ym be the symbolic upper bound of each output index and

access range of each input dimension, respectively. The analysis produces following affine

transformation: 
Y1

...

Ym

 =


α11 α12 . . .

... . . .

αm1 αm(n+1)





X1

...

Xn

1


(A.1)

Here, we consider a restricted form of affine transformation:

Assumption#1. Each output index is used to access only one dimension for each input

tensor. The same output index can be used in multiple input tensors such as element-

wise operators lambda i : A[i] + B[i], but lambda i: A[i, i] is not considered. In

practice, we do not encounter any such example when investigating operators in MXNet

and Tensorflow.
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Assumption#2. We only consider input dimensions that scale linearly with one output

index (i.e, in the form of Yi = αiXj). This restriction rules out the partition-n-reduce

strategies such as halo exchange in convolution, but still includes many strategies such as

partitioning on channel dimension. Whether such assumption is necessary or not requires

further study.

Consider an operator that has output shape X1× . . .×Xn. The shape of any of its input

tensors can be represented as α1Xπ1 × . . . × αdXπd
, where d is the number of dimensions,

α1 . . . αd are constants and π is a permutation of 1 . . . n.

A.3 Communication cost

Theorem 1. Let p be any basic partition plan, the communication cost incurred by p is

proportional to the total tensor size in the dataflow graph.

Proof. Communication happens in two situations:

• The selected partition-n-reduce strategy requires input region that is not available lo-

cally.

• The selected partition-n-reduce strategy produces output region that is assigned to other

devices.

Consider an operator whose output shape is X1× . . .×Xn and the partition plan p chooses

to partition the dimension i into halves. For the first case, the communication required to

fetch one of the input tensor is either:

1

2
Πd

j=1αjXπj

if i is not included in π1 . . . πd (i.e, the whole tensor is needed), or

1

4
Πd

j=1αjXπj

, otherwise.
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The same analysis can be applied to the second case. Because the communication cost

of each individual operator is proportional to the tensor size, the total cost is proportional

to the total tensor size of the dataflow graph.

Let cost(P ) be the total communication cost of a partition plan sequence P . Due to

symmetry, the cost can be calculated by aggregating the within-group communication cost

incurred by each basic partition plan:

cost(P ) =
k∑

i=1

2i−1cost(pi) (A.2)

We can then show that the following commutativity property holds:

Theorem 2. cost(⟨p1, p2⟩) = cost(⟨p2, p1⟩), where p1 and p2 are basic partition plans.

Proof. The case is trivial if p1 = p2. Let G be the unpartitioned dataflow graph; G1 and

G2 be the partitioned graph by p1 and p2; S(G) be the total tensor size of a dataflow graph

G. Because every tensor is partitioned by half, S(G1) = S(G2) =
1
2
S(G). By theorem 1,

we then have:
cost(⟨p1, p2⟩) = cost(p1) + 2 ∗ cost(p2)

= α1S(G) + 2 ∗ α2S(G1)

= α1 ∗ 2 ∗ S(G2) + 2 ∗ α2
1
2
S(G)

= α2S(G) + 2 ∗ α1S(G2)

= cost(p2) + 2 ∗ cost(p1)

= cost(⟨p2, p1⟩)

Let the per-step cost be δi = 2i−1cost(pi). We can easily prove theorem ??.

Proof. Suppose there exists a sequence ⟨p1, . . . , pi, pi+1⟩ such that δi > δi+1. By theorem 2,

cost(⟨p1, . . . , pi, pi+1⟩) = cost(⟨p1, . . . , pi+1, pi⟩)
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Because δi > δi+1, we have

cost(⟨p1, . . . , pi+1⟩) < cost(⟨p1, . . . , pi⟩)

This means applying pi+1 instead of pi at step i is a more optimized partitioning, which

contradicts with the per-step optimality of the dynamic programming algorithm.

A.4 Optimiality proof

Theorem 3. The recursive algorithm is optimal under assumption #1 and #2.

Proof. Let A = ⟨a1, a2, . . . , ak⟩ be the partition sequence produced by the recursive algo-

rithm and O = ⟨o1, o2, . . . , ok⟩ be the optimal sequence. By theorem 2, we can reorder the

sequence so that the per-step costs of both sequences are non-descending.

We prove by contradiction. Suppose cost(A) > cost(O). Then there must exist a step

i such that:

cost(⟨a1, . . . , ai⟩) ⩽ cost(⟨o1, . . . , oi⟩) (A.3)

cost(⟨a1, . . . , ai, ai+1⟩) > cost(⟨o1, . . . , oi, oi+1⟩) (A.4)

Let Ga and Go be the partitioned dataflow graphs after applying ⟨a1, . . . , ai⟩ and

⟨o1, . . . , oi⟩, respectively. Every tensor is only 2i of the size of original tensor so S(Ga) =

S(Go). Finally, by theorem 1, we have

cost(⟨a1, . . . , ai, ai+1⟩) > cost(⟨o1, . . . , oi, oi+1⟩)

= cost(⟨o1, . . . , oi⟩) + 2iαoS(Go)

≥ cost(⟨a1, . . . , ai⟩) + 2iαoS(Ga)

= cost(⟨a1, . . . , ai, oi+1⟩)

Hence, applying oi+1 at step i + 1 produces strictly less communication cost than

applying ai+1, which contradicts the optimality of the dynamic programming algorithm.
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