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Abstract

This article presents a novel Sparse Constant Propagation technique which provides a heretofore
unknown level of practicality. Unlike other techniques which are based on data flow, it is based on the
execution-order summarization sweep employed in Memory Classification Analysis (MCA), a technique
originally developed for array dependence analysis. This methodology achieves a precise description
of memory reference activity within a summary representation that grows only linearly with program
size. Because of this, the collected sparse constant information need not be artificially limited to satisfy
classical data flow lattice requirements, which constrain other algorithms to discard information in the
interests of efficient termination. Sparse Constant Propagation is not only more effective within the
MCA framework, but it in fact generalizes the framework. Original MCA provids the means to break
only simple induction and reduction types of flow-dependences. The integrated framework provides the
means to also break flow-dependences for which array values can be propagated.

1 Introduction

The propagation of sparse constants within aggregate data structures has proven significantly more difficult
to perform practically than the propagation of scalar constantsfWZ91]. In fact, the only work focusing
on this problem to date[SK98] suggests that in the interests of efficiency no more than a small number of
constant elements be collected for each program aggregate. The fundamental difficulty in generalizing scalar
propagation to aggregate propagation has been that the classical data flow-based abstract interpretation,
which can provide only a bounded number of constants with respect to the program size in the scalar case,
can produce an unbounded number of constant elements within an aggregate.

This basic difficulty is of course not confined merely to the propagation of constant values, but arises when-
ever analysis of program aggregates is required. It happens that the summarization of the memory reference
behavior of aggregates has been an extremely active area of research within the automatic parallelization
community, where good aggregate summarization techniques have been held to hold the key to effective in-
terprocedural dependence analysis for parallelization. Since dependence analysis in the scalar case computes
a superset of the information required for constant propagation, as constants are propagated precisely across
flow dependences, it turns out that the summarization techniques employed for general dependence analysis
can be useful in generalized constant propagation. We will also see that the dependence analysis is itself
considerably enhanced when combined with this propagation.

This paper is organized as follows. First, Section 2 provides a brief overview of basic dependence analysis for
parallelization and reviews aggregate summarization techniques, focusing on the promising Linear Memory
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Access Descriptor (LMAD). Section 3 describes the Memory Classification Analysis (MCA) build around
the LMAD, and Section 4 describes the extensions to the LMAD and to MCA which would support con-
stant propagation in tandem with dependence analysis. Section 5 then shows how the integration of these
techniques leads to an improved MCA. Section 6 considers some advanced examples. The following Sec-
tion 7 details limitations and possible extensions of our work. Section 8 reviews related work and Section 9
concludes.

2 Array Summarization for Dependence Analysis

An important motivation for dependence analysis is program parallelization[AK87], where it is desired to
shorten the execution time of a program by splitting its execution across a number of processors. This
program division will be incorrect if it does not respect program dependences. There are three important
types of dependences: flow, anti and output. A statement B is said to be flow-dependent on a statement A
if it reads a variable which A has written, anti-dependent on B if it writes a variable the B has read, and
output-dependent on B if it writes a variable which B has written. The latter two types of dependence are
memory-related and can be “broken” by transforming the program to perform the write at B (and subsequent
reads of the value) to a fresh variable. SSA form[CFR*91] efficiently realizes this transformation.

However, the ineffectiveness of SSA form in the context of program arrays has resulted in the adoption of
ad-hoc methods for dependence testing of array references. These methods provided a means for deciding
the existence of dependence between any two array references based on their subscript expressions and
surrounding loop bounds. This decision algorithm would then be applied to each pair of possibly aliased
array references within the program section of interest, typically a candidate loop. While sufficient for small
programs, the high asymptotic cost of pairwise comparisons has limited its application to larger codes.

To obtaining pragmatic implementations, various access summarization techniques have been studied, and
a number of different paradigms have gained popularity. Linear constraint techniques [TIF86] are based on
finding a Fourier-Motzkin [Wil76] solution to a system of linear inequalities which characterize the conditions
under which a pair of array accesses can overlap. Although the Fourier-Motzkin procedure is expensive and
produces real solutions rather than only the relevant integer ones, the Omega Test[Pug91] has extended
it to alleviate these complications. However, precise linear constraints cannot completely describe accesses
involving non-affine conditionals or when the overall shape of an access does not form a convex hull. Because
the latter can be produced by an intersection operation between two otherwise convex regions, frequent
approximation is inevitable.

Triplet notation[HK91], in which each access region is characterized by an upper bound, lower bound and
stride in each dimension, has also gained a number of proponents. In Gu, et. al’s]fGLL97] interpretation of
this scheme, every access contains a guard specifying the conditions under which it occurs. Approximation
is avoided by maintaining high-level representations of operations which cannot be performed precisely. For
example, a difference list of regions is associated with a region when not enough is known to perform a required
difference operation. However, complications may arise in the presence of Fortran-style array reshapes, for
which no general method for relating accesses interprocedurally has been devised. Furthermore, this scheme
relies on the dubious assumption that all array access occur within declared bounds.

Recently, Paek, et al.[PHP98] have proposed a representation based on the Linear Memory Access Descriptor
(LMAD). The LMAD achieves maximum precision by describing accesses uniformly as a (recursive) sequence
of equidistant element references. An arbitrarily complex multidimensional traversal can be uniquely repre-
sented (up to LMAD equivalence) with only a base offset and a series of stride/span pairs (access dimensions).
The size of each element completes the exact memory map for the access.

LMAD construction for an array access starts with the formation of a linearized access expression which is the
sum of the products of each dimension’s access expression and the size of each element of that dimension,



REAL A(14,%);

DO I=1,2 (A5 14 26 - 26)
DO J=1,2 (A3 11 + 261 — 26)
DO K=1,10,3 (A3 + 261 + 14J — 26)
A(J,K+26%(I-1)) ... (A+26] + 14J + K — 26)
END DO
END DO
END DO

Figure 1: Hoeflinger’s Example Showing Expansion Through Indices

and in which each index variable has been normalized. This symbolic expression is repeatedly ezpanded
through successive index variables, starting with the innermost. As each index variable is substituted out,
a stride/span pair is inserted into the LMAD. The stride is set to the increase in base expression due to the
increment by one of the normalized index variable, and the span is set to the difference between the base offset
expression with the normalized index variable set to its minimum and maximum values. Figure 1 presents a
corrected version of Hoeflinger’s LMAD construction example[Hoe98] detailing the expansion through each
index variable.

Conditional statements are taken into account by associating each LMAD with an execution predicate.
Because the LMAD uses array declarations in the same manner they are used in a compiler, namely, to
calculate actual element offsets, it avoids the complexity of continually relating subscript expressions to
array bounds expressions. By explicitly linearizing array accesses, the LMAD offers a level of accuracy
unmatched by the other representations: it directly supports programmer linearization of array references,
traditionally the bane of dependence analysis, and offers full Fortran-style array reshape transparency while
avoiding the in-bounds assumption.

3 Memory Classification Analysis

Memory Classification Analysis is an execution-order sweep through the program, which is assumed to be
comprised of a series of nested contexts. Summary sets which describe the memory activity for each of these
contexts are generated in a manner in which a single representative dependence of a particular type is present
between the summary sets of two different contexts exactly when there is an actual dependence between
the contexts. There are three summary sets for each context, or grain: Read-Only (RO), Read/Write (RW)
and Write-First (WF). Together, they contain the collection of LMADs describing all memory activity. All
dependences between two grains A and B are then precisely characterized by following equations:

Flow: (ARO n BRW) U (AWF n BRO) U (AWF N BRW) u (ARW n BRO) U (ARW N BRW) <> @
Anti/Output: (ARO n BWF) U (AWF n BWF) U (AWR n BWF) <>0

Flow-dependences, unless of a simple inductive or reductive nature, prevent parallelization across dependence
grains, while anti- and output-dependences can be removed using variable privatization.

The Access Region Test[HPP96] uses this classification scheme to check for dependences between loop it-
erations. First summary sets are formed for a single iteration of the loop. Then these sets are expanded
through the loop index variable. One check is made for internal overlap in any of the descriptors contained
in one of the two write sets. Another check is made for intersection among any of the three summary sets.
The final check for intersection between descriptors within the same write set completes the cross-iteration



dependence test.

The MCA framework also incorporates conditional array access, by attaching a (true by default) predicate
to each Access Region Descriptor (ARD). The framework is kept efficient by the aggressive coalescing of
related ARDs. For example, a series of writes to successive array indices under the similar conditions
will be incorporated into the appropriate write set as only a single ARD. Aggressive simplification keeps
the analysis efficient, as the analysis cost rises with the size of each summary set. To maintain complete
precision, however, no coalescing is performed in the case where attached predicates are dissimilar.

4 Sparse Constant Propagation Extensions

The essential observation is that the Memory Classification Analysis can perform constant propagation
almost for free. This may be accomplished by adding a “current value” field to each LMAD. Of course, this
field will only be set for LMADs in the write sets. This field is then used much as any attached predicate as
a discriminating factor for future coalescing operations.

In Figure 2 we show several styles of initializations with which our enhanced MCA must deal. The example
in Figure 2(a) is taken from the regex library distributed with the GNU FSF version of grep[Foub]. Since
none of the accessed array sections overlap, no special action over Paek’s MCA is taken, other than the
integration of the constant initializer value as part of the LMAD.

Figure 2(b), taken from the Huffman code inflater of the GNU FSF version of gzip[Fouc], is slightly more
complex. In this case, the original MCA would actually coalesce the LMADs produced by the series of
assignments together. In our case, we respect the differing constant values by disallowing the coalescing
operation unless the assigned values also match.

The third example of Figure 2(c) is taken from the utility library of zsh[Tea]. In this case, the Write-First
set generated from the first loop is { typtabl.e +0 }, from the second loop { typtab;, +0, typtabs, + 128 },
and from the last statement { typtab+ 127 }. Because the latter two Write-First sets are subsets of the first,
ordinary MCA would ignore them and use the first set as the overall program segment summary. However,
in using the assigned constant value in the classification, we must split up the monolithic LMAD into its
uniform constituent parts. The overall Write-First summary set which respects constant assignments is:
{ [typtabl, + 0li<<o, [typtabls + 32]o, [typtabis + 127]1<<g, [typtabls + 160]¢ }, where each LMAD is
shown with its initial constant value as an outside subscript.

for (¢ ="a’; c <="7"; c++) for (i=0;i< 144; i++ ) for (t0 = 0; t0 != 256; t0++ )
re_syntax_table[c] = 1; 1[i] = §; typtab[t0] = O;

for (¢ ="A%c<="2Z;ct++) for (;i < 256; i++ ) for (t0 = 0; t0 != 32; t0++ )
re_syntax_table[c] = 1; I[i] = 9; typtab[t0] =

for (¢ =05 ¢c <="’9; c++) for (;i < 280; i++ ) typtab[t0+128] = 1<<9;
re_syntax_table[c] = 1; Ii] =7 typtab[127] = 1<<9;

re_syntax_table[’_)] = 1; for (;i < 288;i++ )

I[i] = 8
(a) Syntax Table Initialization (b) Huffman Code Initialization (¢) Type Table Initialization

Figure 2: Array Initialization Examples



4.1 Expression Initializers

Although the above approach works well for constant initializers, in practice many useful initialization
expressions are written in terms of index and other program variables. Propagation of these values requires
us to store full expressions as initializers. These expressions can then be evaluated at selected values of the
index variable using a sophisticated symbolic evaluation subsystem, such as that described by Gerlek, et
al.[GSW95] for classifying induction sequences.

Furthermore, incorporating this capability permits us to retain the original structure of the analysis. Instead
of keeping array sections with different initializers as separate LM ADs, we can coalesce as usual and maintain
precise initialization information using a complex initialization expression.

For example, the preceding summary Write-First set could also be simplified to:

1
{ [typtabysg + 0]oc—ig&ic32||127< =i &i<1607(1<<9):0 }

where the variable i is the offset from the base of the descriptor. Although somewhat more complex, this
scheme is preferable because it provides a uniform way of dealing with differing neighbor constant initializers
and general expression initializations.

It is also worth noting that significant splintering of the LMADs, which is the inevitable alternative, can
impact the performance of the MCA, which depends on maintaining summary sets with as few elements as
possible to keep operations between and within sets efficient.

5 A Better Memory Classification Analysis

As described in Section 3, ordinary Memory Classification Analysis can only break flow-dependences of an
inductive or reductive nature. However, our Sparse Constant Propagation enhancements provide the tools
to break certain ordinary flow dependences as well. Figure 3 shows how a typical array dependence taken
from the diff3 program of the GNU FSF diffutils distribution[Foua] is broken.

Figure 3(a) shows an array mapping which is initialized in the first if-statement grain, and used in the second
loop grain. These two grains would be inseparable by Memory Classification Analysis alone, but in tandem
with Sparse Constant Propagation, the flow dependence can be broken by transforming the code to that
shown in Figure 3(b).

This is performed as follows. The Write-First set for the earlier grain contains the LMAD

{ [mappings + 0lie—o70:stremp( file[2],” - ) =07 (i==172:1):(i==171:2) }

for mapping. When this value is then used in the second grain, we can use instead the closed form expression
as a function of the index variable. This transformation removes the LMAD for mapping from the Read-Only
summary set of the later grain, rendering the two grains parallelizeable.

This transformation is a generalization of induction variable substitution. In induction variable substitution,
a closed form expression for an induction variable is generated in terms of the index variable to break a
flow dependence. This transformation is more general in that the closed form expression is generated from
a sequence of arbitrary array assignments.

6 More Complex Examples

In Figure 4(a)-(c) we present more complex cases. In all three cases, the Write-First summary set generated
by the first loop is: { [t + 0]; }. In 4(a), the second loop contains a Write-First reference to c¢ and to a.



if (strcmp (file[2], "-") == 0) if (strcmp (file[2], "-") == 0)

{ {

mapping[0] = 0; mapping[0] = 0;
mapping[1] = 2; mapping[1] = 2;
mapping[2] = 1; mapping[2] = 1;

else else

{ {
mapping[0] = 0; mapping[0] = 0;
mapping[1] = 1; mapping[1] = 1;
mapping[2] = 2; mapping[2] = 2;

for (i = 0; i < 3; i++) for (i = 0; i < 3; i++)
rev_mapping[mapping[i]] = i; revmapping[i==0 7 0 :

strcmp(file[2],"-")==0 7
(1i==172:1) : (i==171:2)] = i;

(a) Original Code (b) Flow-Dependence Free Code
Figure 3: Broken Flow Dependence

These start out as { [¢c+i]2, [a +¢]2 }, where the initial value for a is simply copied from the constant value
assigned to c. Expansion through the loop variable results in { [c} + 0]a, [a} + 0]z }. There is no internal
overlap within descriptors, no overlap between descriptors of the same set, and no intersection between sets,
so no further analysis is needed.

In case 4(b), the value written to each element of a comes from array c, but until we generate a summary
of the behavior of the entire loop we cannot be sure that the value is indeed a constant. Therefore, the
Write-First set for the first statement in the second loop starts out as { [a + i].[; }. The Read-Only set for
the statement is { [c + ¢] }. The Write-First set for the second statement of the second loop is { [¢ +i]2 },
which in tandem with the identical Read-Only set gets converted to a Read/Write set. When we expand the
LMADs through the i, we can also change the c[i] initializer of the LMAD for a to 1, because it is now
known that no other index of ¢ was written to during the course of the loop, and every value written to a
from ¢ must have come from outside of the loop.

Case 4(c) is complicated because expansion of the LMADs through the second loop index and subsequent

for (1 =0; i < 5; i++ ) for (1 =0; i < 5; i++) for (1 =0; i < 5; i++)
cli]l = 1; cli]l = 1; c[i] = 1;

for (i =0; i < 5; i++ ) for (i =0; i < 5; i++ ) for (i =0; i < 5; i++ )

{ { {
clil = 2; a[il = c[il; ali] = c[il;
ali] = c[i]; cl[i] = 2; cl4-i] = 1;

} } }

(a) Write Before Read (b) Write After Read (c) Writes and Reads Intertwined

Figure 4: More Complex Cases



application of the Access Region Test reveals overlap between the Read-Only and Write-First summary
sets which contain overlapping references to array c. In this and similar complex cases, a good deal of
sophistication will be required to precisely characterize the sequence of values assigned from c. Therefore,
it seems appropriate to fall back on more general and expensive element-level methods such as [SK98].

7 Limitations and Extensions

The Memory Classification analysis described by Hoeflinger[Hoe98] does not support recursive cycles in the
call graph. Extension of MCA by iteration over these cycles would make the method more general.

Although our discussion has been couched only in terms of propagation of constants and expressions, this
technique also has very important implications for aggregate Shape Analysis. Shape AnalysisfSRW96] com-
putes a conservative description of the structure of program heap space produced by a series of pointer
operations. What has not been yet been shown is how to handle shape analysis over an array of pointers.
Using the present constant summarization technique, and allowing Static Shape Graphs[SRW96] for constant
“values”, we can obtain a precise and concise description even of arrays of heap objects. This line of research
has been pursued in a companion paper[Sch99)].

8 Related Work

The first practical algorithm for Constant Propagation based on SSA form was by Wegman and
Zadeck[WZ91]. Extending this for Sparse Constant Propagation could be accomplished only inefficiently by
the treatment of entire aggregates as scalars and the introduction of special Access and Update functions
as suggested by Cytron, et. al[CFRT91].

Choi, et. al[CCF94] showed that introducing these functions not only increases the volume of imprecise
information in the analysis, but actually obscures the data-flow by replacing all def-def chains with use-def
chains even when this is semantically inaccurate. Instead, they advocated maintaining def-def chains, but
in a factored form which would keep the analysis manageable.

Steensgaard[Ste95] improved on this factorization through the use of storage fragmentation. He showed that
by classifying areas of storage as being the referents of only a limited number of program pointers, further
reduction of the SSA into assignment factored form was possible. He also demonstrated that finer levels of
fragmentation could be obtained by more elaborate pointer analysis.

Knobe and Sarkar’s recent introduction of Array SSA form[KS98] has provided a new unified framework for
reasoning about program aggregates, offering precise data flow information on a per-element basis. However,
this is also its biggest weakness. The Array SSA-based Sparse Constant Propagation[SK98] algorithm they
propose cannot deal effectively with arrays of unbounded size. Indeed, as presented in their paper, Array SSA
form relies on the allocation of additional space of the same magnitude as the original arrays, something which
may not be known until run-time. True, the Array SSA technique lends itself to a run-time implementation,
but this is irrelevant for constant propagation, which is a fundamentally static analysis.

The present work can be seen as extending the assignment factored SSA form of Steensgaard to fragment not
only program aggregates from one another, but to logically fragment particular aggregates into constituent
pieces according to the manner in which they are used in the program. The original MCA merely classifies
memory accesses by type of access; this work introduces the finer classification within write accesses of
the value written, producing an effective Sparse Constant Propagation algorithm which operates within the
framework of MCA.



9 Conclusion

Paek, et al.[PHP98] expressed the belief that simplification of array access patterns using the notions of
strides and spans would benefit all array-related analyses. This study has shown how this technique may be
profitably applied to the long-standing Sparse Constant Propagation problem. A number of other solutions
have been proposed, but because they all operate fundamentally at the element level, they cannot deal
effectively with the potentially unlimited volume of information which can be generated.

Hoeflinger[Hoe98] proposes an elaborate interprocedural analysis framework built around a powerful Region
processor. Benefits of this would be both conceptual and practical. On the one hand, this architecture would
neatly sidestep the age-old analysis phase-ordering dilemma. On the other, the entire system would benefit
uniformly from incremental improvements to this central processor. This phenomenon has been amply
demonstrated in this work, where enhancing the Region processor for Sparse Constant Propagation has
produced a more powerful Memory Classification Analysis capable of breaking array-based flow dependences.
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